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Abstract

Learning by temporal association rules such as Foldiak’s trace rule
[1] is an attractive hypothesis that explains the development of invari-
ance in visual recognition. Consistent with these rules, several recent
experiments have shown that invariance can be broken by appropriately
altering the visual environment but found puzzling differences in the ef-
fects at the psychophysical [2, 3] versus single cell [4, 5] level. We show
a) that associative learning provides appropriate invariance in models of
object recognition inspired by Hubel and Wiesel [6], b) that we can repli-
cate the ”invariance disruption” experiments using these models with a
temporal association learning rule to develop and maintain invariance,
and c) that we can thereby explain the apparent discrepancies between
psychophysics and singe cells effects. We argue that these models account
for the stability of perceptual invariance despite the underlying plasticity
of the system, the variability of the visual world and expected noise in the
biological mechanisms.

1 Introduction

Temporal association methods are attractive solutions to the problem of invari-
ance development or learning [1, 7, 8, 9, 10, 11, 12, 13, 14]. However, these
algorithms have mainly been examined in idealized situations that do not con-
tain the complexities present in the task of learning to see from natural vision or,
when they do, ignore the imperfections of a biological learning mechanism. This
paper presents a model of invariance learning that predicts the invariant object
recognition performance of a neural population can be surprisingly robust, even
in the face of frequent temporal association errors.

Experimental studies of temporal association and the acquisition of invari-
ance involve putting observers in an altered visual environment where objects
change their identity across saccades. Cox et al. showed that after a few days
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of exposure to this altered environment, the subjects mistook one object for an-
other at a specific retinal position while preserving their ability to discriminate
the same objects at other positions [2]. A subsequent physiology experiment
by Li and DiCarlo using a similar paradigm showed that individual neurons
in primate anterior inferotemporal cortex (AIT) change their selectivity in a
position-dependent manner after less than an hour of exposure to the altered
visual environment [4]. It is important to note that the stimuli used in the
Cox et al. experiment were difficult to discriminate “greeble” objects, while
the stimuli used by Li and DiCarlo were extremely easy to discriminate e.g., a
teacup versus a sailboat.

This presents a puzzle, if the cells in AIT are really underlying the discrimi-
nation task, and exposure to the altered visual environment causes strong neural
effects so quickly, then why is it that behavioral effects do not arise until much
later? The fact that the neural effects were observed with highly dissimilar ob-
jects (the equivalent of an easy discrimination task) while the behavioral effects
in the human experiment were only observed with a difficult discrimination task
compounds this puzzle.

The physiology experiment did not include a behavioral readout, so the
effects of the manipulation on the monkey’s perceptual performance is not cur-
rently known; however, the human evidence suggests it is highly unlikely that
the monkey would really be perceptually confused between teacups and sailboats
after such a short exposure to the altered visual environment.

In this paper, we present a computational model of invariance learning that
shows how strong effects at the single cell level, like those observed in Li et
al.’s experiments do not necessarily cause confusion on the neural population
level, and hence do not imply perceptual effects. Our simulations show that a
population of cells is surprisingly robust to large numbers of mis-wirings due
to errors of temporal association. In accord with the psychophysics literature
[2, 3], our model also predicts that the difficulty of the discrimination task is the
primary determiner of the amount of exposure necessary to observe a behavioral
effect rather than the strength of the neural effect on individual cells.

2 The cortical model

We examine temporal feature learning with a class of cortical models inspired by
Hubel and Wiesel’s discoveries of cells in the visual cortex [6]. These models con-
tain alternating layers of simple S cells or feature detectors to build specificity,
and complex C cells that pool over simple cells to build invariance. [15, 16, 17].
We will focus on one particular such model, HMAX [17]. The differences be-
tween these models are likely irrelevant to the issue we are studying, and thus
our results will generalize to other models in this class.
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3 Temporal association learning with the corti-
cal model

Temporal association learning rules provide a plausible way to learn transforma-
tion invariance through natural visual experience [1, 7, 8, 9, 10, 11, 12, 13, 14].
Objects typically move in and out of our visual field much slower than they
transform, and based on this difference in time scale we can group the same
object under different transformations.

We learn this translation invariance from a series of continuously trans-
lated images. We use a training phase to learn S2 to C2 connections from a
continuously translating image sequence, as shown in Figure 1, left. A video
sequence is presented, and over a certain temporal period and highly active S2
features/template locations are grouped so they all pool to a C2 cell. One C2
cell is learned during each ”association period” or image sweep across a screen,
and correct temporal association should group similar features across spatial lo-
cations, as illustrated in Figure 1, left. The C2 cell then pools over the learned
features. Potential effects of a temporally altered image sequence are illustrated
in Figure 1, right.

3.1 Learning rule

In Foldiak’s original trace rule, shown in Equation 1, the weight of a synapse
wij between an input cell xj and output cell yi is strengthened proportionally
to the input activity and the trace or average of recent output activity at time
t. The dependence of the trace on previous activity decays over time with the
δ term [1].

Foldiak trace rule:

∆w(t)
ij ∝ xj ȳ

(t)
i

(1)

ȳ
(t)
i = (1− δ)y(t−1)

i + δy
(t)
i

In the HMAX model, connections between S and C cells are binary. Ad-
ditionally, in our training case we want to learn connections based on image
sequences of a known length, and thus for simplicity should include a hard time
window rather than a decaying time dependence. Thus we employed a modified
trace rule that is appropriate for learning S2 to C2 connections in the HMAX
model.

Modified trace rule for the HMAX model:

for t in τ :
if xj > θ, wij = 1 (2)
else, wij = 0

With this learning rule, one C2 cell is produced for each association period.
The length of the association period is τ .
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4 Experiments

4.1 Training for translation invariance

We model natural invariance learning with a training phase where the model
learns to group different representations of a given object based on the learning
rule in Equation 2. Through the learning rule, the model groups continuously-
translating images that move across the field of view over each known association
period τ . An example of a translating image sequence is shown at the top, left
of Figure 1. During this training phase, the model learns the domain of pooling
for each C2 cell.

4.2 Accuracy of temporal association learning

To test the performance of the HMAX model with the learning rule in Equa-
tion 2, we train the model with a sequence of training images. Next we com-
pare the learned model’s performance to that of the hard-wired HMAX [17]
on a translation-invariance recognition task. In standard implementations of
the HMAX model model, the S2 to C2 connections are hard-wired, each C2 cell
pools all the S2 responses for a given template globally over all spatial locations.
This pooling gives the model translation invariance and mimics the outcome of
an idealized temporal association process.

The task is a 20 face and 20 car identification task, where the images in a
given class are similar (but not identical) for different translated views1. We
collect hard-wired C2 units and C2 units learned from temporal sequences of
the faces and cars. We then used a nearest neighbor classifier to compare the
correlation of C2 responses for translated objects to those in a given reference
position. The accuracy of the two methods (hard-wired and learned from test
images) versus translation is shown in Figure 2. The two methods performed
equally well. This confirms that the temporal associations learned from training
yield accurate invariance results.

4.3 Manipulating the translation invariance of a single cell

To model the Li and DiCarlo physiology experiments in [4] we perform normal
temporal association learning described by Equation 2 with a translating image
of one face and one car. The S2 units are tuned to the same face and car
images (see Figure 1 caption) to mimic object-specific cells that are found in
AIT. Next we select a ”swap position” and perform altered training with the
face and car images swapped only at that position (see Figure 1, top right).
After the altered training, we observe the C2 response (of one C2 cell) to the
two objects at the swap position and another non-swap position in the visual
field that was unaltered during training.

1The training and testing datasets come from a concatenation of
two datasets from: http://www.d2.mpi-inf.mpg.de/Datasets/ETH80, and
http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
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As shown in Figure 4.3 the C2 response for the preferred object at the swap
position (but not the non-swap position) is lower after training, and the C2
response to the non-preferred object is higher at the swap position. As in the
physiology experiments performed by Li and DiCarlo, these results are object
and position specific.

4.4 Individual cell versus population response

Li and DiCarlo showed, and this simulation reproduces the results, that trans-
lation invariant representations of objects can be disrupted by a relatively small
amount of altered temporal association learning. However, single cell changes do
not necessarily reflect whole population or perceptual behavior. No behavioral
tests were performed on the animals in this study. Additionally, it is difficult
to perform population decoding for object preference, because while one can
find single AIT cells that preferentially fire for a certain object, it is unlikely
that multiple cells in the same recording area will have a strong preference for
a single object over others.

A cortical model with a temporal association learning rule provides a way to
model population behavior with swap exposures similar to the ones used by Li
and DiCarlo [4, 5]. A C2 cell in the HMAX model can be treated as analogous
to an AIT cell (as tested by Li and DiCarlo), and a C2 vector as a population
of these cells. We can thus apply a classifier to this cell population to obtain a
model of behavior or perception.

4.5 Robustness of temporal association learning with a
population of cells

We next model the response of a population of cells to different amounts of
swap exposure. The temporal training sequence with which we train the model
replicates visual experience, and thus jumbling varying amounts of these training
images is analogous to presenting different amounts of altered exposure to a test
subject as in [4, 5]. These disruptions also model the mis-associations that may
occur with temporal association learning due to sudden changes in the visual
field (such as light, occlusions, etc), or other imperfections of the biological
learning mechanism. During the training phase we randomly swap face and
car images in the image sequences, and observe the effect on the response of
a classifier to a population of C2 cells. The accuracy versus different neural
population sizes (number of C2 cells) is shown in Figure 4 for various amounts
of altered exposure. We measured altered exposure by the probability of flipping
a face and car image.

A small amount of exposure to altered temporal training (0.125 probability
of flipping face and car) has negligible effects, and the model under this altered
training performs as well as with normal temporal training. A larger amount
of exposure to altered temporal training (0.25 image flip probability) is not
significantly different than perfect temporal training, especially if the neural
population is large enough. With enough C2 cells, each of which is learned
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from a temporal training sequence, the effects of small amounts of jumbling in
training images are insignificant. Even with half altered exposure (0.5 image
flip probability), if there are enough C2 cells then classification performance is
still reasonable. This is likely because with similar training (multiple translating
faces or cars), redundant C2 cells are formed, creating robustness to association
errors that occurred during altered training. Similar redundancies are likely
to occur in natural vision. This indicates that in natural learning mis-wirings
do not have a strong effect on learning translation invariance, particularly with
familiar objects or tasks.

4.6 Task complexity versus exposure to altered training

Finally, we aim to reconcile the contradiction posed by the long exposure time
needed to alter behavioral effects in a difficult psychophysics task [2, 3] with the
relatively short exposure time needed to alter physiology readouts in an much
easier discrimination task [4, 5]. We investigate the effect of task complexity on
temporal association learning by using a fixed neural population size (number of
C2 units) for face recognition tasks of varying difficulty. We can systematically
increase task difficulty by adding additional examples of each type of face (again
with slight differences such as expression) to the test set. These tasks become
more difficult, because they require additional generalization. We measure ac-
curacy on the identification task versus amount of altered training exposure for
different complexity tasks: easy (one instance of each face, and thus no gen-
eralization needed), medium (two instances of each face, slight generalization
needed), hard (ten instances of each face, wide generalization needed). The
results are shown in Figure 5.

This simulation shows that although the relative change in performance
for each task is roughly the same, increasing task difficulty decreases initial
performance thus making small effects in performance more noticeable. These
results confirm that the ability to alter invariance learning in psychophysics tasks
[2, 3] is not due to significant wiring changes, but rather an overall decrease in
performance to near threshold levels due to task difficulty.

5 Discussion

We use a cortical model inspired by Hubel and Wiesel [6], where translation
invariance is learned through a variation of Foldiak’s trace rule [1] to model the
visual response to altered temporal exposure. We first show that this temporal
association learning rule is accurate by comparing its performance to that of a
similar model with hard-wired translation invariance [17]. This extends previous
modeling results by Masquelier et al. [9] for models of V1 to higher levels in
the visual recognition architecture. Next, we test the robustness of translation
invariance learning on single cell and whole population responses. We show
that although it is fairly easy to disrupt translation invariance in a single cell
with altered temporal training, the whole population response is much more
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robust. This resolves a puzzling discrepancy between experiments that show
how invariance can be altered [2, 4, 5, 3]. Through the use of a cortical model
with an appropriate temporal association learning rule, we are able to directly
compare the implications of these experimental results and demonstrate that
learned errors in translation invariance were likely due to factors besides mis-
wiring. This study shows that despite unavoidable disruptions, models based on
temporal association learning are quite robust and therefore provide a promising
solution for learning invariance from natural vision.
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Figure 1: An illustration of the HMAX model with two different input image
sequences: a normal translating image sequence (left), and an altered temporal
image sequence (right). The model consists of four layers of alternating simple
and complex cells. S1 and C1 (V1-like model): The first two model layers
make up a V1-like model that mimics simple and complex cells in the primary
visual cortex. The first simple cell layer, S1, consists of simple orientation-tuned
Gabor filters, and the following complex cell layer, C1, performs max pooling
over local regions of a given S1 feature. S2: The next simple cell layer, S2, per-
forms template matching between C1 responses from an input image and the C1
responses of stored prototypes (unless otherwise noted, we use prototypes that
were tuned to natural image patches). Template matching is performed with
a radial basis function, where the responses have a Gaussian-like dependence
on the Euclidean distance between the (C1) neural representation of an input
image patch and a stored prototype. The RBF response to each template is
calculated at various spatial locations for the image (with half overlap). Thus
the S2 response to one image (or image sequence) has three dimensions: x and
y corresponding to the original image dimensions, and feature the response to
each template. C2: The final complex cell layer, C2, performs global max pool-
ing over all the S2 units to which it is connected. The S2 to C2 connections are
highlighted for both the normal (left) and altered (right) image sequences. To
achieve ideal transformation invariance, the C2 cell can pool over all positions
for a given feature as shown with the highlighted cells.
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Figure 2: The classification accuracy (AUC for ROC curve) for both hard-
wired and temporal association learning model plotted for different degrees of
translation compared to a reference position with a nearest neighbor classifier.
The model was trained and tested on separate training and testing sets, each
with 20 car and 20 face images. For temporal association learning, one C2
unit is learned for each association period or training image, yielding 40 learned
C2 units. One hard-wired C2 unit was learned from each natural image that
cells were tuned to, yielding 10 hard wired C2 units. Increasing the number of
hard-wired features has only a marginal effect on classification accuracy. For
temporal association learning, the association period tau was set to the length
of each image sequence (12 frames), and the activation threshold theta was
empirically set to 3.9 standard deviations above the mean activation.
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(a) Figure from Li and DiCarlo 2008 [4] summarizing the expected results of
swap exposure on a single cell. P is response to preferred stimulus, and N is
that to non-preferred stimulus.

(b) The response of a C2 cell tuned to a preferred object before (time point 1) and
after (time point 2) altered visual training where the preferred and non-preferred
objects were swapped at a given position. To model the experimental paradigm
used in [4, 5, 2, 3], training and testing were performed on the same altered
image sequence. The C2 cell’s relative response (Z-score) to the preferred and
non-preferred objects at both the swap and non-swap positions are plotted.

Figure 3: Manipulating single cell translation invariance through altered visual
experience.
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Figure 4: Results of a translation invariance task (+/- 40 pixels) with varying
amounts of altered visual experience. To model the experimental paradigm used
in [4, 5, 2, 3], training and testing were performed on the same altered image
sequence. The accuracy (AUC for ROC curve) with a nearest neighbor classifier
compared to center face for a translation invariance task versus the number of
C2 units. Different curves have a different amount of exposure to altered visual
training as measured by the probability of swapping a car and face image in
training. The error bars show +/- one standard deviation.
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Figure 5: Results of a translation invariance task (+/- 20 pixels) for tasks of
varying difficulty. The accuracy (AUC for ROC curve) with a nearest neighbor
classifier compared to center face for a translation invariance task versus the
amount of altered training (measured by probability of flipping two training
images). The easy task includes one instance of each face, medium includes two
instances of each face, and difficult includes 10 instances of each face. The error
bars show +/- one standard deviation.
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