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Abstract

Geological sequestration has been proposed as a way to remove CO 2 from the atmosphere by
injecting it into deep saline aquifers. Detecting leaks to the atmosphere will be important for
ensuring safety and effectiveness of storage. However, a standard set of tools for monitoring
does not yet exist.

The basic problem for leak detection - and eventually for the inverse problem of deter-
mining where and how big a leak is given measurements - is to detect shifts in the mean
of atmospheric CO 2 data. Because the data are uncertain, statistical approaches are nec-
essary. The traditional way to detect a shift would be to apply a hypothesis test, such as
Z- or t-tests, directly to the data. These methods implicitly assume the data are Gaussian
and independent. Analysis of atmospheric CO 2 data suggests these assumptions are often
poor. The data are characterized by a high degree of variability, are non-Gaussian, and
exhibit obvious systematic trends. Simple Z- or t-tests will lead to higher false positive
rates than desired by the operator. Therefore Bayesian methods and methods for handling
autocorrelation will be needed to control false positives.

A model-based framework for shift detection is introduced that is capable of coping
with non-Gaussian data and autocorrelation. Given baseline data, the framework estimates
parameters and chooses the best model. When new data arrive, they are compared to
forecasts of the baseline model and testing is performed to determine if a shift is present.
The key questions are, how to estimate parameters? Which model to use for detrending?
And how to test for shifts?

The framework is applied to atmospheric CO 2 data from three existing monitoring sites:
Mauna Loa Observatory in Hawaii, Harvard Forest in central Massachusetts, and a site from
the Salt Lake CO 2 Network in Utah. These sites have been chosen to represent a spectrum
of possible monitoring scenarios. The data exhibit obvious trends, including interannual
growth and seasonal cycles. Several physical models are proposed for capturing interannual
and seasonal trends in atmospheric CO2 data. The simplest model correlates increases in
atmospheric CO 2 with global annual emissions of CO 2 from fossil fuel combustion. Solar
radiation and leaf area index models are proposed as alternative ways to explain seasonality
in the data.

Quantitative normality tests reject normality of the CO 2 data and the seasonal models
proposed are nonlinear. A simple reaction kinetics example demonstrates that nonlinear-
ity in the detrending model can lead to non-Gaussian posterior distributions. Therefore
Bayesian methods estimation will be necessary. Here, nonlinear least squares is used to
reduce computational effort.



A Bayesian method of model selection called the deviance information criterion (DIC) is
introduced as a way to avoid overfitting. DIC is used to choose between the proposed models

and it is determined that a model using a straight line to represent emissions driven growth,
the solar radiation model and a 6-month harmonic term does the best job of explaining

the data. Improving the model is shown to have two important consequences: reduced
variability in the residuals and reduced autocorrelation.

Variability in the residuals translates into uncertainty in CO 2 forecasts. Thus by reduc-
ing the spread of the residuals, improving the model increases the signal to noise ratio and
improves the ability to detect shifts.

A least squares example using CO 2 data from Mauna Loa is used to illustrate the effect
of autocorrelation due to systematic seasonal variability on the ability to detect. The issue

is that ordinary least squares tends to underestimate uncertainty when data are serially
correlated, implying high false positive rates. Improving the model reduces autocorrelation
in the residuals by eliminating systematic trends. Because the data exhibit gaps, Lomb

periodograms are used to test the residuals for systematic signals. The model chosen by
DIC removes all of the growing and seasonal trends originally present at the 5% level of
significance. Thus improving the model is a way to reduce autocorrelation effects on false
positives.

A key issue for future monitoring sites will be demonstrating the ability to detect shifts
in the absence of leaks. The urban weekend weekday effect on atmospheric CO 2 is intro-
duced to illustrate how this might happen. A seasonal detrending model is used to remove
systematic trends in data at Mauna Loa, Harvard Forest and Salt Lake. Residuals indi-

cate the presence of positive shifts at the latter sites, as expected, with the magnitude of
the shift being larger at the urban site than the rural one (~ 8 ppm versus ~ 1 ppm).

Normality tests indicate the residuals are non-Gaussian, so a Bayesian method based on
Bayes factors is proposed for determining the amount of data needed to detect shifts in

non-Gaussian data. The method is demonstrated on the Harvard and Salt Lake CO 2 data.
Results obtained are sensitive to the form of the error distribution. Empirical distributions
should be used to avoid false positives. The weekend weekday shift in CO 2 is detectable

in 48-120 samples at the urban site. More samples are required at the rural one. Finally,
back-of-the-envelope calculations suggest the weekend weekday shift in emissions detected

in Salt Lake is - 0(0.01) MtCO 2km- yr- 1. This is the equivalent of 1% of 1 MtCO 2 stored
belowground leaking over an area of 1 km2

The framework developed in this thesis can be used to detect shifts in atmospheric

CO 2 (or other types of) data after data is already available. Further research is needed

to address questions about what data to collect. For example, what sensors should be

used, where should they be located, and how frequently should they be sampled? Optimal
monitoring network design at a given location will require balancing the need to gather more
information (for example, by adding sensors) against operational constraints including cost,
safety, and regulatory requirements.

Thesis Supervisor: Gregory J. McRae
Title: Hoyt C. Hottel Professor of Chemical Engineering
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Notation

Table 1: Conventions for notation

Symbol(s)

a
a
A
A
a(w)
&

AT

Description

Scalars, vectors and matrices

A scalar.
A column vector.
A set, as in A = ai, a2 , ... , a 3 .
A matrix.
Random variable
Point estimate of a(w); for example, a least squares es-
timate or the mode from Bayesian estimation.
Transpose of A.

Observations and model predictions

Time.
Observation.
State variable.
Model parameter, linear regression coefficient.
Time of shift in mean CO 2 associated with leak.
Magnitude of shift in mean CO 2 associated with leak.
Autoregressive model coefficient
Moving average model coefficient
Model approximation to nature, for predicting C0 2.

t
y, Yobs
:

ts

Ay
pi

y (0, t|M),M04(0, t)

Errors

Random error, also known as a random innovation.
Eobs Observation error due to instrumentation and averaging.
EM Error from approximating nature with model M
so, CAy, Et, Errors due to uncertainty.
E = CM + Eos Model error.
Continued on Next Page...



Table 1 - Continued

Symbol(s) Description
E = e + co Forecast error.
e, Ay(t) Residual. An outcome of E. Ay(t), not to be confused

with Ay which is a shift parameter, is sometimes used
in place of e.

Estimates and other important terms

J Jacobian matrix.
Gradient vector.

V1 O, V Variance-covariance matrix of 0 or #.
p Population mean.
o. 2 Population variance.

p Population correlation coefficient.

pt Sample mean.
.2)s2 Sample variance.

Sample correlation coefficient.

Shift window and averaging

T Time period, usually the length of the window of time
considered to detect a shift.

N Number of observations considered for detection.
T Averaging time, also used as a lag coefficient.

Probability

r(0| Yobs)
f(y|O) or f(0)
L(0)
f (y), f (y|MA)

p(-)
P (),Pr(-)
E[-]
Var{-}
N,7 {V

Prior density, sometimes used to represent a generic den-
sity function for 0.
Posterior density.
Likelihood function.
Natural logarithm of the likelihood function.
Predictive density for model M, sometimes called the
marginal of the observations because it is the result of
marginalizing f(y, 0) over the unknowns.
Probability mass function.
Cumulative probability
Expected value, mean
Variance
Normal distribution



Acronyms

Table 2: List of acronyms

Acronym Term
CCS Carbon capture and storage
RSS Sum of squared residuals
AIC Akaike's information criterion
BIC Bayesian information criterion, also called Schwarz's information

criterion
DIC Deviance information criterion
K-L Kullback-Leibler
K-S Kolmogorov-Smirnov
B-G Breusch-Godfrey
AR Autoregressive error model
MA Moving average error model
ARMA Autoregressive moving average error model
ppm Parts per million, sometimes referred to as ppmv for parts per mil-

lion by volume; a mole fraction
SNR Signal to noise ratio
FPE Final prediction error
R 2 Coefficient of determination
OLS Ordinary least squares
(E)GLS (Estimated) generalized least squares
NOAA National Oceanic and Atmospheric Administration
SIO Scripps Institution of Oceanography
MAP Maximum a posteriori
WMO World Meteorological Organization
PFC Perfluorocarbon (a class of tracer molecules)
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Carbon dioxide and climate change

There is broad agreement within the scientific community that anthropogenic emis-
sions, especially the release of CO 2 from fossil fuel combustion, are responsible for
recent shifts in climate and that if left unchecked, these emissions could have seri-
ous consequences [1] for the future. Continuous records of atmospheric CO 2 were
initiated by C.D. Keeling at Mauna Loa in 1958 [2]. Before 1950, the CO 2 record is
based primarily on indirect measurements of air bubbles trapped in polar ice. The
ice core records indicate that historic CO 2 mixing ratios ranged between 180 and 300
ppm [3]. Between 1750 and 2005, the global average CO 2 mixing ratio increased from
somewhere between 275 and 285 ppm to 379 ppm, with half the change coming in
the last ~30 years [4]. The global average CO 2 mixing ratio was approximately 386
ppm in 2009 and has been increasing at a rate of 0.66-2.92 ppm yr1 since 1980 [5].
Measurements of atmospheric 1 3C/ 12C isotopic ratios (see [6, 7, 8, 9, 4]) and atmo-
spheric 02 (see [10, 11, 12, 4]) have made possible the partitioning of CO 2 fluxes to
the atmosphere into separate fossil fuel, ocean and land contributions. It is estimated
that more than 75% of the shift in atmospheric CO 2 since pre-industrial times is
due to fossil fuel combustion and cement manufacture [13]. This trend is unlikely to
change, with international emissions projected to increase from 29.7 GtCO2 (in 2007)
to 42.4 GtCO2 by 2035. The same forecasts [14] predict a growing fraction of these
emissions will be due to coal, with coal representing 46% of fossil fuel emissions in
2035. The bulk of this increase is projected to come from non-OECD (Organisation
for Economic Co-operation and Development) countries, especially (but not solely)
China, with coal consumption rates in 2035 forecasted at about three times what
they were in 1990. OECD countries are expected to increase their rates of natural
gas consumption, with coal and petroleum remaining roughly constant.



1.1.2 Mitigating CO 2 emissions

Many approaches have been proposed for reducing anthropogenic CO 2 emissions to
the atmosphere. These fall into a few main categories: (1) increasing energy efficiency
of existing appliances, automobiles, buildings, etc., (2) changing behavioral patterns
to conserve energy, (3) using carbon free technologies like nuclear or switching to
reduced carbon energy sources like natural gas, and (4) capturing and storing CO 2
before it can be emitted to the atmosphere.

It is likely that a portfolio of technologies will be required to make the needed
reductions in CO 2 emissions (see, for example, [15]). Pacala [16] reviews several large
scale options for reducing CO 2 emissions, each of which could reduce CO 2 emissions
by 1 GtCyr' (=3.67 GtCO 2yr-). Among these, three fall under the umbrella of
carbon capture and storage (CCS), and one of these three entails capturing and
storing CO 2 from a coal or natural gas power plant. A single 500 MW coal fired
power plant releases ~3 MtCO 2yr-1 to the atmosphere [17]. One of Pacala's wedges
would therefore require capturing and storing CO 2 from over a thousand, 500 MW
coal fired power plants. The U.S. alone has more than 500 such plants. CCS from
coal fired and natural gas fired power plants is a particularly attractive option in view
of the fact that coal and natural gas based CO 2 emissions are likely to continue to
increase for decades to come.

1.1.3 Carbon capture and storage

Carbon capture and storage entails capturing carbon dioxide from large scale point
sources and then isolating it from the atmosphere by storing it. Four basic ap-
proaches have been proposed for storing C0 2: mineral carbonation, industrial use,
ocean storage, and geological sequestration [18]. Mineral carbonation involves chem-
ically processing CO 2 to convert it into inorganic carbonates. This technology is
energy intensive, costly and would have significant environmental impacts of its own.
Industrial uses of CO 2 involve short term storage in intermediate forms like carbona-
tion in drinks and urea. Total industrial usage of CO 2 only consumes on the order of
100 MtCO 2yr-1 [18], not nearly the demand that would be required for a large scale
option [16]. Ocean storage could take one of three forms: column release, sea floor
release, or dissolution of mineral carbonates. Experience with these forms of storage
is extremely limited and more research is needed. The best CO 2 mitigation option is
geological sequestration.

1.1.4 Geological sequestration and leak detection

Geological sequestration involves injecting CO 2 belowground into one of several types
of formations: a depleted hydrocarbon field, a saline aquifer, a salt cavern, or an
active hydrocarbon field. Saline aquifers are the best option for mitigation, with
storage capacities estimated in the thousands of Gigatonnes. While underground CO 2
storage is not new - enhanced recovery, for example, has been performed for decades
now - scale is a concern. Today, just a handful of sites inject 0(1) MtCO 2 yr- 1.



Performing geological sequestration at the Gigatonne scale will require the equivalent
of thousands of such sites. Such dramatic scaling up means engaging in carbon
capture and storage well beyond the current operating range. There is concern about
what might happen if CO 2 leaks into groundwater or the atmosphere. Several leakage
pathways exist, including already existing fractures, faults and wellbores and also new
pathways due to dissolution of rock by acidic CO 2 rich fluids and mechanical stresses
associated with injection [19, 20, 21]. Clearly there is a need for monitoring to detect
leaks. Today, a standard set of protocol for monitoring does not exist. This thesis
is geared toward understanding how detection should take place at future geological
sequestration monitoring sites.

1.2 Thesis statement

Geological sequestration is being proposed as a way to remove CO 2 from the atmo-
sphere by injecting carbon dioxide into deep saline aquifers. A key challenge is to
ensure that the CO 2 remains underground and does not leak into the atmosphere.
Monitoring will be needed to detect leakage to ensure safety and effectiveness of stor-
age. However, a standard procedure for monitoring to detect leaks does not exist.

At its most basic, the leak detection problem is to detect upward shifts in atmo-
spheric CO 2 concentration data. A few obvious questions arise:

o If there were a sudden (or even a slow) leak, how long would it take to detect
a statistically significant change?

e From a policy perspective, what are the risks associated with a false positive
signal detection?

o If a monitoring system were to be put in place, how could it be tested if there
were no leaks to the atmosphere?

This thesis is directed at developing the statistical tools, analysis methodologies and
network design decisions needed to address each of the above issues.

1.3 Chapter overview

The discussion in the remainder of this thesis proceeds as follows:

e Chapter 2. The leak detection problem is introduced in the context of atmo-
spheric CO 2 concentration data from the Mauna Loa Observatory. The data
are characterized by systematic seasonal cycles and growing trends linked to bi-
ology and fossil fuel emissions. Superimposed on these systematic trends there
are deviations primarily due to averaging and instrumental calibration errors.
The challenge is to detect shifts in such data associated with leaks.

Because the data are uncertain, statistical approaches are appropriate. Tradi-
tional hypothesis tests, such as Z- and t-tests, can be applied. False positive



rates can be reduced by increasing the signal to noise ratio or by providing
more time for data analysis. Larger signal to noise ratios can be achieved by
improving the accuracy and precision of models and/or sensors. A statistical
framework is introduced for combining models and data to detect shifts. Sta-
tistical approaches to shift detection are introduced. Two factors affect false
positive rates: normality and autocorrelation.

CO 2 data are often not normally distributed. Exploratory statistics and quanti-
tative normality tests are used to show CO 2 data from one site is non-Gaussian.
Z- and t-tests implicitly assume the data are Gaussian. Blindly using such tests
when data are not normally distributed will lead to false positive rates that are
different in practice from the level chosen by the decision maker. Methods of
parameter estimation are introduced and a chemical reaction example is used
to show that nonlinear models can lead to non-Gaussian posterior distributions.
The consequence is that non-Bayesian estimation methods will tend to misrep-
resent uncertainty in future atmospheric C0 2, leading to loss of control over
false alarm rates just as occurs when Z-tests are applied non-Gaussan data.
Bayesian methods are needed to cope with non-Gaussian uncertainties.

Autocorrelation is an issue because standard estimation methods such as least
squares, which form the basis for the standard errors most often reported with
sample means, tend to underestimate uncertainty when data are serially corre-
lated. The implication is that methods such as generalized least squares should
be used for parameter estimation when modeling errors are correlated; otherwise
false alarm rates will be higher than they should be. Model building, estimation
and selection and the effects of modeling on autocorrelation are discussed later
in the context of atmospheric CO 2 from existing monitoring sites.

" Chapter 3. Two examples are used to illustrate the effects of non-normality
and autocorrelation on false positives.

The first example involves random trajectories having different distributions but
the same means and variances. The Gaussian is used to illustrate the impact
of waiting longer (NAt) and the effect of forward (parameteric) uncertainty on
the ability to detect are both illustrated. There is a tradeoff between the time
allotted for detection and the certainty with which conclusions about shifts can
be made. Issues associated with data being non-Gaussian are illustrated. The
Central Limit Theorem may not apply; confidence intervals assuming Gaussian
data will lead to false positives. The non-Gaussian data motivate the need for
Bayesian methods.

The second example uses CO 2 data from Mauna Loa to demonstrate the prob-
lem with ordinary least squares when data are autocorrelated. Later it is shown
that modeling can remove the systematic trends contributing to correlation. In
general, modeling may not resolve all correlation in the data and methods akin
to generalized least squares will be needed to avoid false positives.

" Chapter 4. Three data sources are chosen representing a cross section of



the types of settings in which monitoring would take place in the future. The
first source of data, Mauna Loa Observatory, is used to represent an ideal site,
where diurnal variability is minimal. The other two sites - Harvard Forest
and the University of Utah in Salt Lake City, Utah - represent locations where
local biology and urban emissions lead to greater variability in the data. Key
findings from past studies of atmospheric CO 2 at Mauna Loa, Harvard Forest
and Salt Lake are summarized and combined with exploratory statistics to give
implications for modeling.

" Chapter 5. Several physically inspired, correlative models are built for pre-
dicting interannual and seasonal changes in atmospheric CO 2 using the findings
from Chapter 4. Improved models decrease the magnitudes of the residuals by
explaining more of the systematic variability in the data. While for shift detec-
tion decreasing the variance of the residuals is desirable because it increases the
signal to noise ratio, there is nothing to stop an operator from adding terms un-
til the model perfectly fits the data. The deviance information criterion (DIC) -
a Bayesian method of model selection which balances goodness-of-fit with par-
simony - is introduced as a way to avoid overfitting. Applying the criterion
to validation data at Mauna Loa, Harvard Forest and Salt Lake City suggests
using a simpler extended solar radiation model of seasonality rather than a
more complex model based on leaf dynamics. The final model predicts seasonal
changes well at all three sites considered.

" Chapter 6. Forecast uncertainties are quantified for each site. It is shown that
the bullk of forecast uncertainty at sites influenced by local sources and sinks
arises from diurnal variability when seasonal models are used.

* Chapter 7. A key issue is demonstrating the ability to detect a leak at new
monitoring sites where leaks have not occurred. The urban weekend weekday
shift detection problem is used to illustrate how this might happen in practice.
The data are non-Gaussian. Therefore a Bayesian method of detection is intro-
duced. The method is applied to data from Harvard Forest and Salt Lake City.
The results indicate that less time would be required to detect the shift present
at Salt Lake. This makes sense, as the Harvard site is far from metropolitan
areas. A back-of-the-envelope calculation suggests the shift detected at Salt
Lake is on the order of 10,000 tonnes CO 2 km- 2 yr '. This is the equivalent of
1% of 1 MtCO 2 stored belowground leaking over an area of 1 km2 .

" Chapter 9. Conclusions relevant to leak detection for geological sequestration
are discussed.

" Chapter 10. Future research directions are given.
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Chapter 2

Statistical approaches to leak
detection

This chapter introduces the leak detection problem mathematically. Different statis-
tical frameworks for detection are briefly described, and issues affecting detection are
highlighted. Finally, lessons applicable to the leak detection problem are summarized.

2.1 Which variable to monitor?

For leaks to be detected, the variable(s) being monitored should be sensitive to leak-
age. Examples of near-surface variables that could be used include soil gas flux,
perfluorocarbon (PFC) tracer concentrations, isotopic abundances of V1 C and 6"C
in soil gas, pH of groundwater, and atmospheric CO 2 concentration [19, 22]. It is
unclear what variables should be monitored. A sensor might provide lots of informa-
tion about leakage, but if this information is expensive to obtain then cheaper less
informative sensors could be preferable. Optimal monitoring designs addressing such
tradeoffs are an important topic for future research. This thesis focuses on how to
analyze a given data stream for changes related to leakage.

Figure 2-1 shows atmospheric CO 2 concentration data from Mauna Loa Observa-
tory. Several characteristics are apparent in the data. First, there is a small growing
trend of magnitude ~1 ppm per year. Superimposed on this growing trend is a
seasonal cycle whose peak to peak amplitude is roughly 5 ppm. On top of these sys-
tematic trends there are random deviations ranging between ±2 ppm due primarily
to averaging and instrumental calibration errors. The leak detection problem is to
detect a shift in noisy data like those in the figure.

While atmospheric CO 2 concentration is just one of many examples of variables
that could be targeted for monitoring to detect leaks, it is a useful variable to consider
because of the high degree of natural variability present. This variability, which has
both random and systematic components and is characteristic of both fluxes and
concentrations of CO 2 near the Earth's surface, necessitates careful consideration
of trends and uncertainties during decision making. The remainder of this thesis
therefore uses atmospheric CO 2 concentration data as a vehicle for describing how to



detect leaks in the presence of uncertainty. The ideas and methods introduced in the
context of atmospheric CO 2 are equally applicable to situations where fluxes or other
variables are targeted for monitoring.

364

360

356

352

348

344 '
1989 1990 1991 1992 1993 1994

Figure 2-1: Atmospheric CO 2 data from Mauna Loa Observatory,
concentration is in parts per million in the mole fraction (ppm).

Hawaii (20'N, 156'W) where CO 2

2.2 Fluxes and concentrations

Shifts in atmospheric CO 2 concentration provide information about fluxes at the sur-
face and as such can be used to detect leaks from belowground. Figure 2-2 illustrates
a uniform leak flux of magnitude E moles per m-2s-1 into a well mixed box into
which air is entering on the left at background concentration COb moles m- 3 and
leaving on the other side at concentration CO 2 moles m-3. Because CO 2 is leaking
into the box, the concentration leaving will be higher than that entering. At steady

state, the perturbation in carbon dioxide concentration across the box is given by

ACO 2 = CO 2 - CO'
LE
uzi

(2.1)

where L is related to the spatial scale of the leak and zi is the mixing height dictated

by boundary layer dynamics. Equation (2.1) states that the size of the shift in atmo-
spheric CO 2 concentration across the leak is directly proportional to the magnitude
of the leak flux. If sensors were placed upwind and downwind of the leak, then the

difference in their signals will reflect leakage.
The atmosphere is a dynamic medium. Figure 2-3 illustrates what happens when

wind direction changes. Initially, the wind carries leaking CO 2 to a sensor measuring
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Figure 2-2: A simple well mixed box model.

atmospheric CO 2 concentration, marked in blue. At some later time the wind direc-
tion shifts, carrying the plume away from the sensor. The trajectory followed by the
sensor data shifts downward. Placing additional sensors in the field, as shown in the
figure on the bottom left, can ensure detection regardless of wind direction. As wind
direction changes, the data obtained from sensors in the field will shift up and down.
Whether a single sensor or multiple sensors are used, the ability to detect shifts in
atmospheric CO 2 concentration is critical for detecting leaks and inferring how big
they are and where they are located.

2.3 Detecting mean shifts in atmospheric CO 2

Figure 2-4 illustrates the effect of an artifical +20 ppm step change after 00:00:00
July 3, 1991, in the Mauna Loa CO 2 data from Figure 2-1. The exact time profile of
the CO 2 perturbation will depend on the spatial and temporal profile of the leak and
on atmospheric mixing between the leak and the sensor. In practice, gradual shifts
evolving more smoothly over time than step changes can be expected. Detecting
gradual shifts will require more time.

2.4 Conceptual methods for detecting shifts in CO 2

The leak detection problem is a mean shift detection problem. Mean shifts arise under
many different names in the literature [23], including observational inhomogeneities,
change points, and regime shifts. Homogenization is the practice of detecting and
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then correcting for artificial shifts in time series and is commonly used in climate
science. Regime shift detection methods arise in finance, economics and ecology
where there is interest in issues such as the onset of economic recession and changes
in population dynamics. The changes being sought out can be mean shifts, shifts in
variance, changes in harmonic content, or structural changes in the system governing
the observations [24].

Figure 2-5 illustrates three possible ways to think about detecting shifts in mean
CO 2. The idea behind all three approaches is to slide a window across the data and
at each point along the series analyze the data in the window. Averaging leads to
moving averages like the one shown in the figure on the top right, where the moving
average shifts upward in the vicinity of the shift time. Computing variances, the
shift will result in a spike in the series of variances obtained. Finally, if histograms
or density functions are generated then the upward shift in the data will result in a
leftward shift in the distribution after the onset of a shift associated with leakage.
This last approach - detecting shifts in distributions - is one that will be revisited
later in the thesis.

Figure 2-5: Ideas for mean shift detection.

Figure 2-6 shows how the sample mean evolves as the size of the averaging window
increases. Oscillations present due to natural variability are damped out and the mean
value converges to its long term value as more data is analyzed. The result is less
biased estimates of the mean and therefore reduced risk of false positives.
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Figure 2-6: Convergence of the sample mean as window size increases.

2.5 Uncertainty in the data

The data used in this thesis are time averages of atmospheric CO 2 concentration.
There are two important points to be made in regard to the data. First, they are
uncertain in the sense that the true value being measured is unknown and will always
error from the measured value by some amount. Second, there are two sources of
error: averaging and instrumental calibration.

Most of the data used in this thesis are hourly averages. Figure 2-7 illustrates the
procedure leading to the average from a hypothetical hour. Typically several data
are recorded within the hour, which are referred to in the figure as 5-minute averages.
The hourly average is then obtained as the mean of these subhourly data, as in

1 navg

y(t) = Y ymin(ti) (2.2)
7avg =1

Each 5-minute datum errors from the true value because of calibration error. 1 The
calibration procedure requires conversion of raw voltages into atmospheric concentra-
tions. This is done through a calibration model, which is never perfect. As a result,
the 5-minute data will tend to error from the true value by fixed amounts. Because
these amounts are unobservable, they can be treated as random errors. The random
errors in the subhourly data persist in the hourly average. However, calibration is
not the only source of error. Because an hourly average cannot capture subhourly
trends in nature, hourly values will tend to differ from their true counterparts even

'Drift can be ignored because the data used in this thesis come from instruments that are cali-
brated frequently (on an hourly basis).



in the absence of calibration error. Again, these differences are unobservable and can
be treated as random errors. Therefore, hourly data can be modeled as

y(t) = ynatue(t) + 0 (t) (2.3)

where ynature(t) is the true CO 2 value and

Eo(t) = Einstrument(t) + Eaveraging(t) (2.4)

is the error associated with a given hourly datum. The question is, what is the scale
of the hourly error?

Scales of errors are most often reported in terms of standard deviations. For the
sites considered here, two different types of standard deviations are reported. One
type is the standard deviation of the subhourly samples with regard to the hourly
mean value. In this case, the standard deviation is the square root of the sample
variance determined using

1 navg

s2 [y 5min(ti) - y(t)]2  (2.5)
~avg-1

The other type is the standard deviation associated with the hourly value y(t). This
is determined as the square root of

2 s2 (t)s (t) = (2.6)
navg

Because the instrumental and averaging errors are random,

Var {y(t)} = Var {instrument(t)} + Var feaveraging(t)} (2.7)
2 2(.
instrument + gaveraging

where o notrument and u2agi denote the variances of the errors due to calibration
and averaging. The uncertainty in the data will tend to grow as the instrument
becomes less precise and as natural variability during an hourly interval increases.
Natural variability will depend on location. The instruments used to generate the
data used here are typically very precise, with standard deviations less than 1 ppm.
Because the data are uncertain, statistical approaches to detection are useful. The
next section describes popular approach based on hypothesis testing.

2.6 Detecting shifts with Z- and t-tests

Z- and t-tests are the most commonly used methods for comparing the means of two
populations. The tests (see Table 2.1) operate in a nearly identical fashion. Data
from one of the populations of interest is used to compute a mean value. This is
compared to the mean value of the other population. If the difference is extreme
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Figure 2-7: Averaging and instrumental errors in CO 2.

given the natural variability in the data, then a shift is concluded present.
To demonstrate the factors affecting the ability to detect shifts, consider a simple

example. Assume CO 2 data up to some point in time are independent and identically
distributed according to N(ao, a2), where ao and a2 are the known mean and variance,
respectively. A leak signal may or may not already be present. If the variance of the
data is not affected by the shift induced by leakage, then a Z-test can be used to
test for shifts given new data y = [yi, ... , YN]'. The Z-test starts by computing the
statistic

y - ao
T i/='H(2.8)

ai/v'I

where y is the sample mean of the new data. If the data are indeed normally dis-
tributed2, then the test statistic T will have a standard normal distribution in the
absence of a shift. A shift is declared whenever the value of the test statistic is more
extreme than a critical value z. The value of z is dictated by the level of signif-
icance (a) required by the user. Because the data are uncertain, there is a finite
probability of concluding a shift has occurred when none is present. This event is
called a false positive or false alarm. False positives are obviously events any operator
would like to avoid, to minimize effort spent diagnosing erroneous shifts. The level
of significance a is the false positive rate the operator is willing to live with. For
example, if a = 0.05, then false positives will occur on average 5% of the time shifts
are detected.

2If the individual data are Gaussian, then this assumption is satisfied. If not, then by the Central
Limit theorem it will be for a sufficiently large number of observations. The implication of the
Central Limit theorem is discussed shortly.



Suppose the operator specifies the shift size to be detected at the a level of signif-
icance is Ay = k -a1 . k is the signal to noise ratio (SNR) of the shift. The probability
of false alarm is related to the SNR according to

a = 1 - erf N (2.9)

where erf represents the error function

erf(x) = exp -t 2dt. (2.10)

The conclusion is that the level of significance (and the false positive rate) decreases
(1) as the number of data considered increases and (2) as the signal to noise ratio
increases. Therefore strategies for reducing false positive rates include:

1. Increasing the signal to noise ratio (SNR) by

" removing systematic sources of variability in the data and/or

" improving the accuracy and precision of measurements; or

2. Increasing the number of observations (N) by

" waiting longer (NAt) and/or

" adding additional sensors.

The first strategy motivates the need for models capable of removing as much sys-
tematic variability from the data as possible. The next section describes a framework
combining models and data to detect shifts.

2.7 A model-based detection framework

The discussion in the previous sections motivates the need for statistical model-based
detection methods. Figure 2-8 illustrates a framework that can be used to detect
shifts in atmospheric CO2 data given models and data. Several questions arise:

* Which model(s) should be used given a set of plausible models?

" What methods should be used to estimate the model parameters?

* What type of statistical test should be used?

The ingredients required by the framework are (1) models, (2) estimation and model
selection methods, and (3) detection methods. These ingredients will are discussed
in the following sections.
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2.7.1 Models and forecasts

Any model Mi is an approximation to nature and will be prone to error. Thus,

ynature(t) = y(0, t|IM) + cmi(t) (2.11)

where 0 is the vector of model parameters and Emi is an unobservable error due to
the model's inability to exactly capture the natural processes affecting the data. We
call this error the misfit error. Misfit errors are model-dependent. The better the
model, the smaller misfit errors will tend to be.

In practice, misfit error is unobservable: only the difference between the model
and the data is observable. The data are related to the model predictions by

y(t) = y(0, tA4i) + EM (t) + Eobs(t) (2.12)

Given a particular value for 0, say 0, the difference

e(t) y(t) - y(6, t|A4i) (2.13)

is a series of residuals. Residuals are not random. They are specific outcomes of
model errors defined by

E(t) = EM (t) + &obs(t) (2.14)

Because of uncertainty in the parameters (0) and uncertainty in the observing process
(&obs), model errors can be treated as random variables. The scale of the uncertainty
in model errors depends on both misfit error (that is, the chosen model) and on the
measuring process. This scale can be estimated using the residuals:

Var {E(t)} ~ Var {e(t)}
Var {Em,(t)} + Var {&Eo, (t)} (2.15)

2 2
M + robs

=o22

As the model improves, om, will tend to decrease. This decrease is reflected in the
magnitudes of residuals.

Future observations are subject to uncertainty in the model parameters. Since the
data are uncertain, the model parameters in 0 will also be uncertain. When a single
value of 0 is used to forecast C0 2, the future observations can thus be written

y (t) = y (0, t|A4) + - 0 (t) + &M (t) + ob, (t) (2.16)

where co indicates the error associated with the true 0 being different from 6. We
call so(t) the forward error since it arises when uncertainty is propagated forward
through the model. Forward errors will be model dependent, although this depen-
dence has not been explcitly written in the above equation.



The variance of the forecast is given by

Var {y(t)} = Var {&o(t)} + Var {Em,(t)} + Var {Eos(t)} (2.17)
= 0-2 +0 2 ±0 2ob

Figure 2-9 illustrates the propagation of uncertainty in forming forecasts. Future
observations can be modeled as

y(t) = y(O, t|Mi) + cE (t) + EM (t) + ob(t) (2.18)

If the best fit forecast y(O, t|M) is subtracted from both sides, then future residuals
should behave according to

e(t) = EO (t) + EMj (t) + Eo,(t) (2.19)

Therefore the shift detection problem can equally be viewed as the problem of detect-
ing a mean shift in an uncertain forecasted series of residuals. The uncertainties due
to modeling and the observation procedure remain the same, at least in magnitude.
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Quantifying uncertainties in future CO 2 data Practically, this suggests the
following procedure. Start by proposing a model M. Next, estimate the model
parameters. For example, least squares or Bayesian inference can be used to obtain
means (b) and variances (o). The scale of forward uncertainty (&2) can be assessed
by measuring the spread of random trajectories simulated using 0 and V. The scale
of observational uncertainty (&2 ,) can be measured using (2.5). The scale of misfit
uncertainty can be obtained as the difference between the variance of the residuals
(&2) and the variance of the observational errors (&s), as in & &2 bs

The uncertainty in the forecast is captured by the sum of the variances

&2 &2 + 2 + 2
forecast +M +obs (2.20)

- &2 + &2

&2, measures the uncertainty associated with individual future observations. If
the future observations are independent Gaussian random variables with mean y and
variance &forems,, then the sample mean of N future observations will have a 95%
confidence interval given by

y(0,t|Mi) 1. 9 6 "forecast (2.21)

The mean shift detection problem is essentially the problem of comparing confidence
intervals like this one. If they overlap, then the hypothesis that a shift has occurred
cannot be rejected. If they do not, then the no-shift hypothesis is rejected in favor of
the hypothesis that a shift has occurred.

2.7.2 Formalizing the shift detection problem

The shift detection problem is the problem of choosing between multiple hypotheses.
Given N observations [y(t 1), ... , y(tN)] and a model M for making predictions, the
question is, is a shift in the mean present? The data are related to the model by

y(t) = M(0, t) + Ay - 6(t - t,) + EM(t) + ob(t) (2.22)

where 0 is the vector of detrending model parameters, Ay and t, are shift parameters
which in the following will be grouped into the vector 'q, and where 6(t - ts) is given
by

6(t - t,) = t (2.23)
1 t ;> ts

EM is the error associated with the detrending model's approximation of nature. Eobs

is the sum of the errors from instrumentation and averaging.
If no shift exists then we adopt the convention of setting t, = to and the mean

(Ay) should be close to zero. Otherwise a shift occurs and Ay is non-zero.
The different possible events represent competing hypotheses, each with its own

associated model Li (i = 0,1,..., N) of the data. Lo represents the no-shift hypothesis



for which t, = to and Ay = 0. 4i>o represents the t, = ti hypothesis, for which Ay = 0
until t = t, at which time it shifts to a new value Ay / 0. To be more concise, the no-
shift hypothesis has unknown Ayo, which when estimated should be close to zero. The
single-shift hypothesis has unknowns to, Ayo (which should be near zero), and Ay1
(the shift size, which should be positive). Here, the unknowns for a given hypothesis
are lumped into the vector 1j. The value predicted by the complete model depends
on both the detrending model parameters as well as the shift parameters, and can be
denoted y(O, 77, t). In the following, it is assumed the detrending parameters are held
fixed while the detection algorithm proceeds. The predictions are still dependent on
the particular model chosen for detrending, but for conciseness they will be referred
to by y(q, t).

The formulation just described can be extended without loss of generality to the
case where multiple shifts are possible in the observations. However, as argued shortly,
consideration of multiple shifts is not important for leak detection. Therefore, algo-
rithms are presented in the context of a single possible shift. This maintains focus on
the leak detection problem and has the added benefit of keeping notation simple.

2.8 Statistical approaches to detection

2.8.1 Approaches

Several different approaches are available for determining if, when (t,) and how big
(Ay) a shift in the observations has occurred. We distinguish between the following
approaches:

e Heuristics. These are based on measures of distance involving the predictions
and the observations. Different formulations are possible. One class of formu-
lations is based on the distance between the observations and the predictions.
An example is the sum of squared residuals:

robs

RSS = >j [y(ty) - M(, tj )]2  (2.24)
j=1

The shift detection procedure would be as follows. First, hypothesize a time of
shift t,. Estimate Ay for the chosen shift time as the mean of the samples for
which t > t,. Compute the sum of squared residuals, let us denote it RSS(t,).
Do this for all possible shift times. Choose the shift time for which RSS is
minimized. If the shift time obtained is t, = to, then there is no shift.

Other criteria can be substituted for RSS. Examples include the maximum
absolute deviation (maxj y(tj) - M(, tj)) and the sum of absolute deviations

(i y (ty) - M4(n, tW)).
Another class of criteria are based on zonation techniques [25, 26]. These tech-
niques split the series into two zones around the hypothesized shift time. The
first zone has data yi = [y1 : ys-1] associated with it. The second zone comprises



Y2 = [Ys : YNI. Each zone has its own mean value, yi and Y2 respectively. The
mean of all of the samples has some other value p. Based on these values and
the observations, it is possible to define measures of "within-zone" variability
as

2  z (2.25)
W = N 1 2 (yz2(k) - 92)2,(.5

z=1 k=1

where the factor of 2 in the denominator is the number of zones; and "between-
zone" variability as

2

B = E nz (g2 - 9) 2 , (2.26)
z=i

The criterion used to determine the best shift time is given by

R = W (2.27)
B

The value of R will range between 0 and 1. The best shift time is the one that
obtains R closest to one. The motivation is to choose the shift time that split
the series into widely separated zones, given the natural variability in the data.
There is a caveat in applying the above zonation procedure: it assumes there are
two distinct zones in the data. The zonation procedure is only applicable when
you already know a shift is present in the data. Such a procedure is obviously
not useful for leak detection.

A second, more concerning issue associated with the procedures described above
is their inability to provide theoretically sound stopping points. In general, the
more "zones" the better the value of the criterion obtained. The decision to add
an additional shift time into the model is made based on a heuristic rule defined
by the researcher. Clearly this is unsatisfactory for leak detection because it
means different researchers will come to different conclusions, with the detection
criteria providing no objective way to reconcile their different points of view.

9 Significance. Tests of statistical significance are the most widely used meth-
ods for hypothesis testing. The procedure is to propose a null hypothesis (in
this case, Lo) and then reject or fail to reject it baesd on the value of a test
statistic. The test statistic is usually translated into a p-value. p-values are of-
ten misinterpreted. They represent the probability of observing a more extreme
test statistic value under the null hypothesis. Before the test, the researcher
sets a threshold called the level of significance (a). If the p-value is smaller
than a, then the null hypothesis is rejected. Otherwise no decision can be made
between the competing hypotheses.

An extremely common detection method based on the significance paradigm is
to compare 95% sample mean confidence intervals. The 100 x (1 - a)% sample
mean confidence interval of a small number of samples (N) is given by

AY1:N + t(a/2,N-1) ' (2.28)



where 2 is the sample variance of the residuals Ay(ti) (i = 1, ..., N) and to
is the upper critical value of the t distribution with N - 1 degrees of freedom.
As N increases, the asymptotic value of to is 1.96 when a=0.05 because the
t distribution approaches a standard normal distribution as N -+ 00. Thus,
95% sample mean confidence intervals are often computed as 1.96&/VW and
for rough calculations 2&/ N is sometimes used.

Other examples of tests include the Z-test and different versions of Student's
t-test. Table 2.1 summarizes these methods. Standard tests like t-tests as-
sume the residuals are independent and have identical, normal distributions,
but nonparametric tests also exist that can be used to extend significance test-
ing to non-normal distributions. One of the biggest setbacks in using significance
tests is that they are unable to choose between multiple hypotheses: p-values
cannot be used to rank hypotheses, they can only be used to reject them. Even
in the simplest case, where Li>O represents the possibility of a single shift being
present, there are N +1 hypotheses to choose from. (N are from the N possible
shift times and one is from the no-shift hypothesis.) Therefore, unless the shift
time is known, which in our case it is not, standard significance tests are poorly
suited to leak detection.

* Likelihood. These methods rely upon the value of the likelihood function.
Let us assume that the problem is to detect a shift in the mean of normally
distributed observations all having the same variance o. The portion of the
log likelihood function of interest would be given by

N

L(ts, Ay) =- [y(ty) - M4 (r, ty)] 2  (2.29)
j=1

which is just the opposite of the sum of squared residuals. Maximizing the above
likelihood function results in "optimal" estimates for t. and Ay. Hawkins [27]
shows this problem can be solved with a dynamic programming approach. As
with the heuristic algorithms presented earlier, however, a sound method of
determining the number of shifts present, if any, does not exist: the optimal
value of the likelihood function can be increased by introducing additonal shift
times into the model.

Lavielle [28] introduces a penalized version of the likelihood function. His ap-
proach for detecting a single shift in observations that differ from the model by
Gaussian white noise (see equation (15) in the paper) would entail minimizing

U(ts) = RSS(ts) + # - [1 - 6(s, 0)] (2.30)

where # (not to be confused with 8) controls the eagerness of the algorithm to
declare shifts and 6(i, 0) is the Dirac delta function. The dilemma is what value
to assign to /. Large values will lead to decisions in favor of no-shift, while
small values will have the opposite effect. Lavielle's approach is qualitatively
appealing because it captures the tradeoff between goodness-of-fit and model



Table 2.1: Significance tests for mean shift detection

a The leak detection problem is to detect
should be zero before a leak arises.

b Notation used:

a shift in the residuals. The mean

Ay(ti) = y(ti) - M('r, ti) is the residual, or model error, at time ti.
Aym:n = [Ay(tm), ... , Ay(ta)] is a vector of residuals.
Aym:n = m-n+1 M y~
o is the population variance of the residuals.
& is a measure of sample variance of the residuals. Its exact definition depends
on the test.

Test Formulab Assumptions

Z-test - Model errors Gaussian and in-
dependent.

T ____N - Population variance known,
/IN does not change.

Shift has occurred before ti.

Student's t-test - Model errors Gaussian and in-
dependent.

Tr AV1:N - Population variance unknown,
&/vN does not change.

- Shift has occurred before ti.

Two-sample t-test - Model errors Gaussian and in-
dependent

P =- Population variance known,
ay/'N may change.

- Tests for shift at time t,, where
1 <s<N.



complexity. However, the absence of a strong statistical rationale for choosing #
means that this approach will still leave researchers unable to reconcile differing
views when they arise.

9 Information theoretic. A number of information criteria exist for choosing
between hypotheses like the ones we are considering [29, 30, 31, 32]. The main
ones are Akaike's criterion (AIC and AICc), Schwarz's Bayesian criterion (BIC),
and Spiegelhalter's Deviance information criterion (DIC).

The starting point for information based criteria is the Kullback-Leibler infor-
mation loss

~~ G( yebs) d)I(G, g) - G(yob,) In G(Ydbs) s (2.31)

Here, G represents the true distribution of the observations implied by nature
and g the likelihood implied by our model. For example, if we assume the data at
time t are Gaussian with mean y(q, t) then g cx fl exp{-[yobs,j -tj)]2/2o2}.

q is restricted to continuous parameters, so it can include physical model pa-
rameters in addition to the shift parameters (Ay's) of interest. Physical model
parameters would be included in q if the model parameters are allowed to ad-
just to the new data. Otherwise the physical parameters are held fixed at their
prior values and 1 may just include shift parameters.

The Kullback-Leibler information loss represents the information lost when g
is used to approximate G. The problem is that G is never known in practice.
The way around this is to rewrite K-L information loss as

I(G, g) = J G(yos) In G(yobs)dyobs - JG(Yobs) In g(Yobs1)dYobs (2.32)

The first term does not depend on the parameters and thus can be dropped from
further consideration. Information theoretic criteria are based on estimates of
the second integral in (2.32).

Akaike's information criterion (AIC, or a modified version AICc) is very com-
monly encountered. AIC is based on an asymptotic estimate of f G(yobs) In g(yobs l1)dyobs.
It is defined as

AIC = 2k - 2ln f(yYobs) (2.33)

where k is the number of parameters in rl (k = 1 parameter, Ayo, if there is
no shift; and k = 2 parameters, Ayo and Ayi, if there is one), and f is the
likelihood function associated with the observations. For example, if the data
are normally distributed with Gaussian variance about the model predictions
then

AIC = 2k + 2 In RSSe) (2.34)
12o.2

Since 71 cannot include discrete parameters, the shift time t, must be incre-
mented manually and AIC is calculated for each. Hypotheses (Li) resulting in
smaller AIC values are more favorable. The Gaussian case above highlights the



trade-off between model complexity (which grows with k) and goodness-of-fit
(RSS). Since AIC only considers part of the K-L information, the magnitude
of AIC obtained for a particular model is without meaning. However, inter-
pretation is possible through consideration of differences in AIC's obtained for
different models. Burnham and Anderson [33, 34] demonstrate how AIC values
can be translated into "Akaike weights", which from a Bayesian standpoint can
be interpreted as posterior odds. This is a major strength of information the-
oretic methods: they provide a statistically sound basis for determining when
and how big a shift occurred.

o Bayesian. Bayesian methods to shift detection would base their decisions
on posterior probabilities, or ratios of posterior probabilities, of the hypotheses
given the data. Examples of Bayesian methods of model selection include Bayes
factors, Markov switching models and supermodeling (see [35, 36] for descrip-
tions of each). Bayesian methods require prior distributions for the unknowns,
and are capable of handling all questions regarding the number, size and times
of shifts. They tend to be more computationally intensive than information
theoretic methods but provide a similarly sound statistical basis for deciding
whether, when and how big a shift has occurred.

2.8.2 Dealing with multiple shifts

Many of the criteria introduced above are applicable to the case where multiple shifts
are to be detected. In some cases, the criteria we reference were even created specif-
ically for the purpose of detecting multiple shifts. In detecting leaks from geological
sequestration, we are really only interested in two shifts: (1) is there an unexpected
increase in C0 2, and (2) after mitigation, does CO 2 decrease. From a purely math-
ematical standpoint, these problems are equivalent. Detecting an increase of Ay
should be just as difficult as detecting the opposite. From a practical standpoint, we
are really just interested with the first case.

For a different problem, which is estimating leakage rate and location by invert-
ing perturbations in CO 2 concentration to get fluxes, the key is obtaining accurate
estimates of the shift as a function of time (Ay(t)). We could think about using
multiple shift detection methods to approximate the true CO 2 enhancement from
leakage. This approach would be useful when a relatively large time period is being
considered, in which multiple shifts are likely to have occurred. A simpler approach
is to slide a smaller window across the data of interest and look for individual shifts
one at a time. Each time a shift is detected, the mean of the residuals after the
determined shift time can be used to estimate the CO 2 perturbation. By sliding the
window across the data, a smooth curve can be produced for Ay(t). The ability to
resolve this smooth curve Ay(t) will depend on the size of the window required to
detect individual shifts at the desired level of statistical significance. If the size of this
window can be reduced, then more sudden the changes in Ay(t) should be resolvable.
Choosing the appropriate window size, as discussed in Chapter 3, is an important
step in being able to estimate shifts in atmospheric CO 2 due to leakage.



2.8.3 Normality and autocorrelation

Most methods rely on the assumptions that forecasting errors are normally distributed
and independent. If errors are non-Gaussian, then Bayesian methods are needed
for detection. Use of non-Bayesian detection methods when uncertainties are non-
Gaussian will lead to loss of control over false alarm rate. When errors are autocorre-
lated, it is important to use estimation methods capable of handling the correlation.
Common methods of estimation like ordinary least squares do not account for autocor-
relation and tend to result in overconfidence parameter estimates whose consequence
is increased false positive rates. Normality and autocorrelation are discussed in more
detail next.

2.9 Normality

Figure 2-10 shows the distribution of hourly CO 2 data from Harvard Forest, a site
which will be studied in more detail later. The site is subject to local and regional
sources and sinks of biological origin. The data exhibit substantial variability due to
these sources and sinks. From the figure it is clear that the data are not normally
distributed. This can be confirmed using normality tests.
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Figure 2-10: Distribution of hourly CO 2 data from Harvard Forest between Jan 1, 1998 and Dec
31, 1999. The blue bars are a normalized histogram of the data. Normal (solid red) and empirical
(dashed green) densities based on the data are also plotted.
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2.9.1 Testing normality

Most normality tests are qualitatively similar insofar as they both involve comparisons
between expected and observed probability densities. When choosing between multi-
ple distributions for the same data, information theoretic results like K-L distance (for
an example see Burnham and Anderson [33]) are best used because p-values are not
intercomparable. Significance tests are useful when the goal is simply to determine
whether the residuals are Gaussian.

There are many ways to test normality. Exploratory approaches include normal
probability plots 3 and plotting normal density fits alongside normalized histograms
as done in Figure 2-10. These types of methods rely on the eye of the user to dis-
tinguish whether normality is reasonable. Many quantitative alternatives exist. The
various approaches follow along the same lines as the detection approaches outlined
earlier. The most statistically rigorous approach of which the author is aware is due
to Burnham and Anderson [33], who demonstrate the use of information criteria to
ranking several proposed distributions when the "true" distribution is unknown. More
standard approaches include those based on classical and nonparametric significance
tests. Numerous tests of this type are available: for a survey of several methods, the
reader is referred to D'Agostino and Stephens [37]. Examples of statistical signifi-
cance tests for normality include the chi-square, Jarque-Bera, Kolmogorov-Smirnov,
and Lilliefors tests. We used these tests in our analysis, a choice motivated by the
fact that routines were already available for them in MATLAB. Brief descriptions of
each test are provided below.

Chi-square goodness-of-fit test (chi2gof)

Chi-square normality test would compare the histogram of the et's to that which would
be expected if the observations were normally distributed with mean and variance
given by the sample mean and variance. The test statistic is

nbins

T = (Oi - Ei)2 /Ei (2.35)

where Oi and Ei are the observed and expected numbers of candidate values falling
into bin i. The null hypothesis is that the observations come from a normal distri-
bution parameterized by the sample mean and variance. The test statistic has an
approximate chi-square distribution with noinS - 3 degrees of freedom under the null
hypothesis.

3 Probability plots work by plotting the percentiles of the observations against the percentiles
from a normal distribution with mean and variance equal to the sample mean and variance of the
observations. If the curve deviates from a straight line, for example because of fat tails or skew,
then the normality hypothesis is rejected.



Jarque-Bera test (jbtest)

The test proposed Jarque and Bera [381 by is a two-sided goodness-of-fit test based
on the sample skewness and sample kurtosis. The test statistic is

'T = N/6[( + b) 2 4 3 ) (2.36)

where
/I =3/03/2 (2.37)

is the sample skewness and
b2 = A4/fA (2.38)

is the sample kurtosis and Aj = E(et - a)i/N and E = Eet/N. When the sample size
(N) is sufficiently large, the test statistic has an approximate chi-square distribution
with two degrees of freedom under the null hypothesis. In MATLAB, jbtest enables
the Jarque-Bera test to be applied for smaller sample sizes (N < 2,000) using tables
based on Monte Carlo simulations. The null hypothesis is that the samples come
from a normal distribution with unknown mean and variance. The alternative is
that the they come from a distribution in the Pearson family other than the normal
distribution.

Kolmogorov-Smirnov test (kstest)

This is a distribution free test. The one-sample version of the test can be used to test
against the null hypothesis that the samples have a standard normal distribution with
unknown mean and variance. The test statistic is based on the difference between
the emipirical cumulative distribution function of the samples and that for a standard
normal distribution.

Lilliefors test (lillietest)

The null hypothesis is that the samples come from a normal distribution with un-
known mean and variance. The alternative is that the samples belong to a non-normal
distribution. The test statistic is defined just like the test statistic for the K-S test,
except that the empirical cdf is compared to the cdf of a normal distribution with
mean and variance determined by the sample mean and variance of the observations.
Lilliefors test is a two-sided goodness-of-fit test.

2.9.2 Results for the Harvard data

Applying the Jarque-Bera test to the Harvard data in Figure 2-10 results in rejection
of normality at the 5% level of significance. The Jarque-Bera test statistic is 580,
which far exceeds the 5% threshold value of 5.99. The test statistic corresponds to
a P-value less than 0.001. The chi-square and Kolmogorov-Smirnov tests also reject
normality at the 5% level of significance.



2.9.3 Implications of non-Gaussian distributions

However, the normality assumption is often not tested. This is especially a problem
when there are few samples to work with, in which case the Central Limit theorem
may not apply. For example, consider the Z-test. The Z-test compares the mean of
the samples, Yobs, to a known value. If the observations are normally distributed, then
the sample mean will be also. What if the observations are not normally distributed?
The Central Limit theorem suggests that for a large enough number of observations,
the sample mean will be Gaussian. However, if insufficient observations are considered
then the sample mean need not be Gaussian. This has obvious implications for our
ability to detect. In the case of the Z-test, the test statistic will not be standard normal
which means that the actual rate of false alarm may be higher or lower than that
prescribed by the researcher. The implication is that violation of normality implies
a loss of control over the performance of the detection algorithm. Bayesian methods
should be used when the model residuals are not normally distributed because they
can handle any type of distribution.



2.10 Parameter estimation

Substantial fluctuations are naturally present in the data. Figure 2-11 shows the
empirical distribution of the fluctuations alongside a Gaussian fit after a smooth
seasonal trend has been removed from the data. The difference between the two
suggests the need for Bayesian methods.
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Figure 2-11: Distribution of fluctuations in CO 2 . Normal (red, dashed), and empirical (blue).

2.10.1 The problem

Bayesian inference refers to the use of Bayesian methods for making inferences about
unknowns from data. From the Bayesian perspective - in contrast with that of the
frequentist - the unknowns are uncertain. Bayes' theorem provides the basic tool
needed to adjust certainty in these unknowns after receiving new data y.

Bayesian inference is based on Bayes' theorem. Bayes' theorem is a rule for updat-
ing beliefs given data when degree of belief, or certainty, is measured by probabilities.
The discrete version is applicable to model selection

f(yIM)P(M)
P(Mfy) = )

(2.39)

P(M) is the prior probability assigned to model M. After observing new data y,
the new probability is the posterior P(Mly). The theorem is useful when there are
multiple competing models. The bigger the probability associated with a model, the
more likely it is to be the target model. f(y) is the marginal density of the data,
the distribution of the observations averaged over all possible models. f(yJM) is the
density function of the data conditioned on model M.



The continuous version of Bayes' theorem is useful for estimating the values of
unknown, continuous model parameters. It states that

f (y|0)w(6)
7(01y) = f (y1O)w(O) (2.40)

f f (yl6)7r(6)d6

Prior knowledge of 0, which exists before the observations are available, is contained
by the prior density w(O). Posterior knowledge is encapsulated by the posterior density
w(Oy). The third term appearing in (2.40) is the likelihood f (yl0), which as the name
describes measures the likelihood of observing y given a value for 0. The integral in the
denominator of (2.40) is a normalization constant that ensures the posterior density
is a proper density function.

In practice, we are interested not only in the posterior density itself but in some
of its features. Inference results are often summarized in terms of features like the
mean, mode, and (1 - a) confidence intervals. Most features can be expressed as
weighted arithmetic averages of the form

E [f(0)|y] = f (9)w(Oly)dO (2.41)
f 7r(0|y)d0

The primary goals in Bayesian inference are thus solving (2.40) and evaluating
expectations like (2.41). The biggest obstacle is solving (2.40) because the integral
in the denominator is usually difficult to evaluate. A special case when analytical
evaluation is possible occurs when the prior density has conjugacy with the family
of the likelihood. In this case the posterior density will have the same functional
form as the prior density and the integral can be ignored. An alternative which is
only sometimes appropriate is to use an approximation method. Some approximation
methods, like Laplace appriximation, can modify the problem in a way that makes it
analytically tractible. When analytical evaluation is not possible, one must resort to
numerical integration or Monte Carlo integration. Numerical integration methods like
quadrature fail when 0 has a large number of components. Monte Carlo integration
methods are flexible enough to handle problems where numerical integration fails.
The tradeoff is that they can be challenging to implement.

When, for a given likelihood f(y|0), the prior density can be chosen so that the
posterior density belongs to the same family, then the prior density family is said to
have conjugacy with the family of the likelihood. If conjugacy is present, then the
posterior density's parameters can be determined from the observations y and the
prior density's parameters. Conjugacy is important because it makes computation-
ally efficient recursive estimators like recursive least squares and the Kalman filter
possible. These are useful for leak detection from geological sequestration, where N
new observations will be considered at a time and if no leak is detected will need to
be assimilated into the baseline model.



2.10.2 Ordinary least squares

Ordinary least squares is one special case where the posterior density can be obtained
analytically. The assumptions are:

* Observables are linearly dependent on the unknowns and are subject to additive
Gaussian noise.

* The unknowns (0) do not vary in time.

" In ordinary least squares, as opposed to generalized least squares, the noise is
independent and identically distributed (i.i.d.) Here, we assume the noise is
N(O, o 2 ), or zero mean with variance o, where o2 is known. In general, the
noise variance can be estimated alongside the other unknowns. In least squares
this is usually done in a two step fashion; in theory Bayesian inference can
estimate (0, o2 ) in a single pass. The Bayesian approach would require us to
incorporate prior knowledge about o.

" There is zero prior knowledge about the values of the unknowns.

Practically, these assumptions specify a model wherein

ng9

Yt ixtfi + Et
i=1

1 [y(t) - M(3, t)]2  (2.42)f2i#1r2,..,u )= exp -&
7o- 2o-2

r(#) = a constant (an improper density)

The first two equations in (2.42) can be simplified using matix notation. Let

Y = [Yi, Y2, ... - nobs ]T

ot = [zt, 1, Xt,2, ..., z X,ng] T

X = [Xi, 7X2, ... nos] T

0 = [#1, # 2, ..., #n,3]

E = [l, -2, ... , Enobs T

In matrix form, the assumption of i.i.d. Gaussian noise can be written

e ~ N(O, aInobs)

The model in (2.42) becomes

y =X/3+E
1 no"s [y - XO]T [Yob, - X)3f(y ) = )/r2b79 exp o2- (2.43)

r(/3) = a constant (no change from before)



It can be shown that the posterior density arising from the model in (2.43) is Gaussian
with mean and variance

# = E [01y] (2.44)
= (XTX-XlXTy

V = [E(0 -- J )(O -- )Ty]F3 [(2.45)
= (xT X)-l

Specifically, the posterior density is

exp [~(/3 -1(# - i3)] (2.46)
(2-r)'no /(det V'3)1/2 12

It turns out that #3 and V are the same mean and variance one obtains as the solution
to the ordinary least squares problem,

min[yobs - X3]T [yObS - X1 (2.47)

Thus, in the special case that the assumptions listed in the beginning are correct,
ordinary least squares is a Bayesian inference method. Violation of any of the original
assumptions means the posterior density will no longer be Gaussian and the ordinary
least squares estimators in (2.44) and (2.45) no longer accurately capture the posterior
knowledge about the unknowns.

2.10.3 Nonlinear least squares

Nonlinear least squares applies when the model relating the parameters and observed
variables is nonlinear. Thus,

y = g(x,O) + e. (2.48)

The problem is that when the model is nonlinear, the posterior density of the pa-
rameters is almost guaranteed not to be Gaussian. This means that the confidence
regions will tend not to be perfectly ellipsoidal. Nonlinearity also can affect the least
squares value we obtain. There are two reasons for this. First, the when the Jaco-
bian of the model relation g, which we will call J, becomes extremely ill conditioned,
it can make finding the optimal value of 0 difficult. In ordinary least squares, the
optimal value is reached in a single step by computing 2.44 and so ill conditioned
X does not represent a problem expect possibly a numerical one for the inversion
of (XTX)1. In nonlinear least squares, however, findig the optimal value requires
making an initial guess and then using an optimization algorithm to iteratively find
the optimal solution. In this case, having ill conditioned J makes the contours of
the least squares objective function narrow in certain dimensions, which can make
finding the optimal solution extremely challenging. The second way in which nonlin-
earity affects our ability to find an optimal solution is due to the fact that multiple
minima can exist. The consequence is that finding the global minimum can be a



challenge, especially when the objective function takes time to compute. Methods
like simulated annealing exist that can be applied to finding global solutions to the
nonlinear least squares problem. Let us overlook this technicality and assume that a
solution has been found, since our primary interest here will be to demonstrate the
effect nonlinearity has on the confidence regions for the least squares values. Two
versions of confidence intervals can be found in the literature and both are described
on pp. 97-98 of Seber and Wild [39]. (For a discussion that parallels that of Seber
and Wild, the reader may find pp. 308-309 of Sen and Srivastava [40] useful. Also,
pp. 807-818 of Press et al. [41] gives a sampling approach to obtaining confidence
regions.) The two major alternative definitions of confidence regions for nonlinear
least squares problems are described below:

1. Asymptotic confidence regions. This approach is the more common one. Given
a level of significance a, a confidence region can be determined as the contour
determined by

{0 : (0 - 5)TJTJ(o - 0) < p&2Fa _,} (2.49)

where n is the number of observations, p is the number of systematic model
parameters in 0, F" is the upper critical value of the F distribution, &2 is the
sample variance of the residuals computed as RSS(O)/(n - p), and J is the
value of the Jacobian matrix obtained for 0 0. The key idea is that (2.49) is
based on a linear approximation to g(x, 0) which is only a good approximation
in some small neigborhood of the least squares value 0. Within this neigh-
borhood, however, the model function is approximately linear, so the posterior
distribution looks Gaussian and the confidence regions within this neighborhood
can be well approximated by the ellipsoids given by (2.49). If (2.49) is good
approximation to the actual posterior distribution of the parameters, then the
posterior distribution can be represented using just the least squares estimate
0 and the covariance matrix

V = (jTj) - &2 (2.50)

2. Exact confidence regions. So-called "exact" confidence regions arise to handle
the case where the linear approximation to g( is a poor one, given the level
of significance of interest. (Note that by choosing a bigger level of significance,
we focus on a smaller neighborhood around 0 so for some big enough value
of a we can expect the linear approximation to be a good one. However, we
are usually interested in small a's, which in the case of nonlinear least squares
can necessitate consideration of the confidence regions presented next.) Exact
confidence regions are formed directly from the contours of the nonlinear least
squares objective function:

0 : D(O) < () 1 + pF,n_, (2.51)



where <D is the least squares objective function defined by

'(O) = [Yobs - g(x, 0 )]T [Yobs - g(x, 0)] (2.52)

Seber and Wild [39] demonstrate that this region is valid when n is large.

2.10.4 Forward sensitivity method

Sensitivity methods are useful for determining least squares estimates for parameters

0={[Oj] j=1,2,...,p (2.53)

when the observations are given by

y(t) = h(x, 0, t) + e(t) (2.54)

and the state variables x
o = [i] i -=1, 2, ... , n (2.55)

are governed by an initial value problem of the form4

dx - f(x 0 t)
dt (2.56)

x(O) = xo(0)

h( is called the observer model because it relates how the observed variables in y
depend upon the states and parameters. e(t) in (2.54) represents model error as in
previous sections.

Below, the notation is simplified slightly by replacing y(t) with y(t) and h( with
h(. In this thesis, we have only made use of this method for the case of a single
observed variable (CO 2 concentration).

The problem is to solve the least squares problem

nobs

min <(0) = [y(t) - h(t, x, 0)]2 (2.57)
t=1

subject to the initial value problem in (2.56).

In practice, the initial value problem could be replaced with a more general differ-
ential algebraic system. The basic challenge is the same: the observer is a nonlinear
function of the parameters 0. Most methods for optimizing (2.57) require the gra-
dient of the objective function. This can be difficult to obtain. Each component is

4The model can involve differential algebraic equations. We used the sensitivity method outlined
here to estimate the parameters for the dynamic leaf model of Liu et al. [421, in which leaf area is
governed by an ordinary differential equation. We introduce the method in the context of ODEs to
keep the notation simple.



determined by

0#
qi =0

nos" h x (2.58)
-2E ht + A Ox)

t=1 00 xt 0

where
et = yt - h(t, x, 0) (2.59)

If a closed form solution exists for the initial value problem, then (2.58) can be eval-
uated analytically. If a solution does not exist, then one might consider using a finite
difference approach to determine qj. In general, however, sensitivity methods offer a
more computationally efficient alternative. Sensitivity methods solve for sensitivity
coefficients

Oz~
Si- 00 (2.60)

It is convenient to collect-these in the n x p sensitivity matrix as

S = [Si,] (2.61)

The sensitivity coefficients can be inserted into (2.58) to obtain the desired gradient.

Robs 'Oh Oht
q = -2 Set - + S.,g (t) (2.62)

t=1 1 Ox

where S.,j is the Jth column of S
Sensitivity methods fall into two categories.

" Forward methods. The sensitivity equations are solved forward from t = 0 to
t = T to get S(T). The sensivity equations are obtained by differentiating
(2.56) with respect to 0. Using the chain rule,

dS h O x Oh
d0 x 00 80 (2.63)

OxO
S(0) 00

" Reverse (or adjoint) methods. The adjoint equations associated with the initial
value problem are solved backward from t = T to t = 0 to get S(t).

In this thesis, we use the forward sensitivity approach to obtain S(T). This matrix
is used to calculate the gradient vector of the objective as in (2.62). A trust-region
reflective method has been used to minimize the objective function in (2.57). The
solution, 0, is a local minimum of the objective. 5 The minimum that is obtained

5We anticipate a high degree of nonlinearity may be associated with the objective function,



implies a trajectory for x(t), and thus for the model predictions y(x,0,t). The
variance of the model errors (e(t)) can be estimated using the sample variance of
the residuals (&) determined in the usual manner. This value and the values of the
sensitivity coefficients and partial derivatives of ho at 0 can be used to obtain the
standard deviations of the least squares parameter estimates. These are obtained as
the sauare roots of the diagonal terms in the covariance matrix

VO = (H'H) &2 (2.64)

where H0 is the nos, x p Jacobian matrix composed of the time dependent gradient
vectors that showed up earlier in equation (2.62):

Ho= h ± ax ( (2.65)

...ahnbs ahobsS (t

2.10.5 Monte Carlo integration

Monte Carlo integration offers a sample based approach to (2.40) and (2.41). The
idea is to use samples O(R) such that k = 1,2,...,n to evaluate the expectation in

(2.41). These samples are drawn from the posterior density. Thus, the solution to
(2.40) is in the form of a set of samples and not a closed form density function. If a
closed form density function were desired, one could use a density estimator to infer
the parameters of a density function from the samples. The arithmetic average in
(2.41) can be obtained from the samples by

f Zkl f(6fl)) (2.66)

The weights in (2.66) are not specified. In Monte Carlo integration, the samples
are drawn according to the density ir(O|y) so the weightings are 7rk = 1/n. The desired
expectation is then approximately

n
nf f (O~k) (2.67)

k=1

The Metropolis-Hastings algorithm provides a general framework for sampling
from r(O|y). For example, the Metropolis algorithm, independence sampler and
Gibbs sampler are all special cases of Metropolis-Hastings [35]. Given a sample 0 ),

the Metropolis-Hastings algorithm generates a candidate sample 0c from a probing
distribution q(0,c0(i)). The candidate sample is then accepted with probability

leading to multiple local minima. We have not used a technique simulated annealing to determine
if the estimates we obtain are global minima. In practice, this would be desirable to ensure the
solution being used for detrending is the most optimal one.



a= min 1T(OrIY)q((i) O) (2.68)
' r(6(i)|y)q(Oc|O(i))J

If the candidate is rejected, then the present sample is kept. Thus, the update rule is

0(i1) = 0g with probability a,
otherwise.

What differentiates the Metropolis algorithm, independence sampler, and Gibbs
sampler from one another is the forms of their probing distributions q(0c 0(')). Several
factors affect choice of the probing distribution. Ideally, the probing density should
be easy to compute, easy to sample from, and should have a shape similar to the
posterior density r(O|y).

2.10.6 Example: First-order reaction

Here, a simple example is introduced to demonstrate the effect of nonlinearity on
the shape of the posterior distribution of least squares estimates. The problem is
this. A series of observations are made of concentrations of a reactant in a first-order
reaction. The reaction is A-+B, with unknown reaction rate constant k and unknown
initial concentration yo. The model is thus

y(t) = g(t, k, yo)

= yo exp -kt
(2.70)

Ten noisy observations of y(t) have been recorded at different times t. The ob-
servations are summarized in Table 2.2. The question is, what is the associated

Table 2.2: Reactant concentrations for A-±B

t (s) y (mol L-')

0 4.19
1 3.88
2 2.47
3 0.58
4 0.37
5 0.62
6 0.83
7 0.92
8 0.71
9 1.83

10 0.68

with the least squares estimates? To address this question, we did a couple things.

(2.69)



First, a steepest descent algorithm obtained the least squares estimates (k, yo) =
(0.3165, 4.3175) in 32 iterations. The least squares predictions are shown in Figure
2-12.
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Figure 2-12: Reaction example: observed versus predicted. The observations are
shown in blue circles. The first-order model predictions based on the least squares

estimates (k, yo) = (0.3165,4.3175) are shown in red diamonds.

The value of
termined to be

the Jacobian matrix J = [8gt/k, &gt/&yo] at the solution was de-

-3.146
-4.585
-5.012
-4.869
-4.435
-3.878
0.109

-2.746
-2.251
-1.823

0.729
0.531
0.387
0.282
0.206
0.150

-3.297
0.080
0.058
0.042

Plugging this Jacobian into (2.49) gives us ellipsoidal confidence regions. We calcu-

lated the asymptotic confidence region and the exact confidence region given by (2.51)
at the 0.05 and 0.01 levels of significance. We also generated Monte Carlo samples
from the posterior distribution of (k, yo).
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Figure 2-13: Reaction example: effect of nonlinearity on parametric uncertainty.
The dashed contours are asymptotic confidence regions. The solid contours are exact
confidence regions. For each type of contour, two isolines are shown. The inner isoline
is that associated with an 0.05 level of significance. The outer isoline is based on an
0.01 level of significance. The grey dots represent 105 post-burn-in samples from the
posterior density of (k, yo) obtained using the Metropolis-Hastings algorithm. Also
shown are the mean values of the parameters from least squares and Metropolis-
Hastings. The least squares (LS, blue) and Bayesian (MH, red) estimates are also
plotted.

From Figure 2-13, we observe that the asymptotic confidence regions poorly rep-
resent the actual posterior distribution of the parameters. The consequence is that
the covariance matrix of the least squares estimates obtained using (2.50) alone can-
not completely capture the uncertainty in the parameters. In such case the use of
actual samples from the Bayesian posterior density may be more appropriate means
of accounting for parametric uncertainty.



2.11 Autocorrelation

Most approaches to shift detection assume the model errors are independent. This
is usually not the case. Many have studied the effects of autocorrelation and het-
eroskedasticity on inferences about the parameters [43, 44, 45, 46]. The consensus is
that when residuals are autocorrelated, estimates of Ay obtained by standard esti-
mation methods like ordinary least squares will tend to be overconfident6 [43]. The
implication for leak detection is that not accounting for autocorrelation in the resid-
uals can lead to high false alarm rates, since naturally occurring shifts will tend to be
detected more frequently than they should be. If residuals are found to be correlated,
estimation methods exist capable of accounting for it should be used.

2.11.1 Autocorrelation

An error process e(t) is said to be correlated, autocorrelated, or serially correlated,
at lag T if

E [e(t)je(t - T )]
p(T) =E(t)(t - T) 0 (2.71)

U(t)0_(t - r)

for some lag timeT 0. Here, p(r) is the correlation coefficient of the process at lag
T and a(t) is the standard deviation of the process at time t. p(T) will be between -1
and 1. If the process is zero mean then the correlation at zero lag is

p(0) E [(t)]
(2.72)

Var {c(t)} /Var {E (t)}

A process is said to be positively correlated if p(T) > 0, negatively correlated if
p(T) < 0, and uncorrelated if p(T) - 0.

When residuals are autocorrelated, the observations cannot be explained simply as
the sum of model predictions and random errors. Two alternatives exist for modeling
correlated observations. The first replaces the random error term (c(t)) with an
autoregressive error model. The second replaces it with a moving average error model.
In the order p autoregressive model (often denoted AR(p)), the observations are given
by

y(ty) = M(O, ty) + E(ty)

E(ty)= ZPke(t-k) _3 -(t)
k=1

where E(t) is still a random error but now the model errors are e(tj) which depend
on past errors E(ty-k) through autoregressive coefficients Pk. The same order moving

61n the sense that uncertainty in Ay will tend to be underestimated, leading to confidence intervals
that are too narrow.



average error model (denoted MA(p)) implies different behavior,

y(t) = A4(0, t) + E(ti)

e(tj) = #,kE(tj-k) + (t)
k=1

where ((tj-k) are past random shocks or innovations. The difference between the
AR(p) and MA(p) models is AR(p) remembers the magnitudes of past deviations
E(tj-k), whereas MA(p) only remembers the magnitudes of historical shocks ((tj-k).
The implication is that Perturbations tend to persist longer in autoregressive pro-
cesses than in moving average ones. In the leak detection problem, moving average
processes are better suited to modeling disturbances due to factors like correlation
due to the measurement procedure, whereas autoregressive are better for modeling
correlation due to atmospheric mixing. Not all contributions to correlation have such
physical grounds. An important contributor in practice might be due to missing
and misrepresented physics in the detrending model for the observations. In general,
it is unclear whether an AR or MA process is better. Therefore, both are usually
considered together in the form of autoregressive moving average (ARMA) models.

2.11.2 Correlation coefficients

Since only a single realization e = [e1, ..., eN] T of the process E(t) is available for
leak detection 7, the autocorrelation coefficient for lag k can be estimated using the
following version of the sample correlation coefficient:

p(k) = (el:N-k - 1l:N-k)T (ek+1:N - Ek+1:N) (2.75)
(n - k) - s1:N-kSk+1:N

where ei:j = [ej, ... , ej]T, and where i: and si:j are the sample mean and sample
variance of ei:j, respectively, given by

1
ej:j = . >. e(t) (2.76)

t=i

Si:j -. E [e(t) - si:j]2  (2.77)

These equations assume samples are recorded at equal intervals and that there are
no missing values in the series. When missing values are present, as is often the case
for in situ CO 2 measurements, the equations can be modified to accomodate for these
missing values as follows. First, form el:N-k and ek+1:N as usual. Each vector is of
length N - k. Some of the values in each vector are missing. Determine the N(k)
indices f C {1, ... , N - k} for which neither el:N-k(£) nor ek+1:N(f) are missing, and

7No two sensors can measure CO 2 at the same point and time.



form new N(k)-length vectors 6i1 and it 2 using these indices so that el:N-k -+ di and

ek+1:N -6 u2 . Note that N(k) < N - k, depending on the locations of missing values
in the original series. The sample correlation coefficient can then be calculated as

(k) =OE(1 - 21)T (d2 - e2 ) (2.78)
N(k) -8si2

where a and si (i E {1, 2}) are the sample mean and sample variance of ei, respec-
tively, and are given by

1 N(k)

e. = -- E E(t) (2.79)
N(k) .~

N(k)

s- N= ) 1_ [(t) - 2 (2.80)
N(k) - 1 t=i

In practice, sample correlation coefficients will always differ from zero in a random
fashion, even for truly white noise series. The question is, how to decide whether a
series is autocorrelated given this element of chance?

2.11.3 Testing for autocorrelation

Many tests exist for autocorrelation [44, 47]. The data are plagued by gaps. An
exploratory approach capable of handling these gaps involves constructing the Lomb
periodogram (see Appendix B) of the residuals. We make use of this approach in later
chapters to test models' abilities to remove systematic trends in the observations.
Here, we describe two alternative approaches based on autocorrelation. The first is a
Lagrange multiplier test [48, 49] proposed by Breusch and Godfrey in the late 1970's.
The second is based on confidence intervals for sample correlation coefficients.

The Breusch-Godfrey test

Given a model of the form y = X,8, the Breusch-Godfrey test can be used to test for
ARMA(p,q) behavior. The Breusch-Godfrey test for AR(p) behavior in the residuals
proceeds as follows [50].

1. Detrend the observations to obtain e. Estimate the variance (u) of the model
errors using the sample variance (&) of the residuals.

2. Use the residuals to construct the N x p lag matrix E, = [ei...ep], where
ej = [0...0, e1...eN-i -

3. Calculate the test statistic

I = e[T E ('E, ETX(X T X ) XTE] -lETel& (2.81)



The null distribution of I is x. Thus, if I exceeds a critical value of the x distribution,
then the null hypothesis that the p x 1 AR coefficient vector p = 0 is rejected in favor
of the alternative that p f 0.

Testing using confidence intervals

The second approach is an exploratory one wherein the 95% confidence intervals for
p(k) as a function of lag k is plotted alongside the sample autocorrelation function
p(k). If the samples in e are independent and normally distributed, then the value
obtained for p(k) will tend to lie in the interval

1.96 1.96- .6 < p(k) < + 1.6(2.82)
N(k) (k) n(k)

The value of 1.96 arises as the upper critical value of the standard normal distribution
for which the probability of exceeding that value is (1 - 95%)/2. If the sample
autocorrelation function falls outside the interval defined by (2.82) at low lags (e.g.,
k = 1, 2, ...), then the hypothesis that the series is uncorrelated is rejected at the 0.05
level of significance.

Summary: testing for autocorrelation

The presence of N(k) in the denominator of (2.82) indicates the effect gaps have on
our ability to detect autocorrelation in a set of samples. Bigger gaps mean fewer sam-
ples to work with, implying wider confidence intervals and therefore decreased ability
to decipher whether samples are autocorrelated. Gaps have a second, more serious
consequence however and this is standard methods like Breusch-Godfrey and the con-
fidence interval approach introduced here do not apply. These methods assume the
samples are evenly spaced in time. Gaps will generally violate this assumption. In
such case, alternative methods like the Lomb periodogram represent better alterna-
tives because they are capable of detecting harmonic content in unevenly sampled
signals.

2.11.4 Dealing with autocorrelation

Autocorrelation introduces off-diagonal terms into the error covariance matrix, so
the correct assumption is in fact e ~ N(O, Q). There are two ways to deal with
autocorrelation. The first is to estimate the coefficients in Q along with the other
unknowns in the error model. The downside of this approach is that this matrix is
N x N, so the number of unknowns grow like the square of the number of observations.
The second approach, which is more common, is to truncate the error model after
some number of terms. Akaike's FPE [51] is an example of a criterion for choosing
the order of an autoregressive model (see 3.2.2). This can be combined with Yule-
Walker algorithm [52] for estimating the regression coefficients (see 3.2.4).



2.12 Lessons for leak detection

Standard estimation procedures such as ordinary least squares will tend to lead to
higher rates of false alarm when model errors are correlated over time. If system-
atic effects can be explained in M(O, t) it may be possible to remove much of this
autocorrelation by improving the detrending model. In general, some degree of au-
tocorrelation will remain due to missing and misrepresented physics in the model
and due to nonzero instrumental response. Therefore, when detecting leaks it will be
important to use some method capable of accounting for autocorrelation.



Chapter 3

Illustrating statistical issues for
leak detection

The leak detection problem requires considering shifts beyond historical levels in fu-
ture observations of atmospheric CO 2. Doing so requires making predictions - more
specifically, forecasts - about the values the observations will take in the near future
and then waiting to see whether the values that are eventually observed coincide with
our predictions. Were instruments perfect and nature predictable, detecting shifts
would be a simple task. The dilemma is that instruments are always imprecise and
nature unpredictable, so that uncertainty must be entertained. This section intro-
duces a simple framework for thinking about the effects various sources of uncertainty
in the leak detection problem, introduces important concepts affecting our ability to
detect, and finishes with a real example illustrating the effect of autocorrelation on
baseline estimation.

3.1 Illustrating the basic issues

Chapter 2 introduced a number of algorithms for detection. The algorithms were
presented in the context of "N" observations. But how big should N be? This
section introduces factors influencing our choice of N, and clarifies the impact this
choice will have on the ability to detect in the context of hypothetical observations.

3.1.1 Hypothetical trajectories

Atmospheric CO 2 concentrations at Mauna Loa are presently around 390 ppm [5].
The scale of uncertainty associated associated with hourly averages at Mauna Loa is
on the order of 0.2 ppm (one standard deviation, Komhyr et al. [53]). For simplicity,
let us ignore calibration biases, assume that CO 2 concentrations remain at 390 ppm
in the absence of leakage, and assume measurements are uncorrelated. A series of
CO 2 measurements would then be given by

y(t) = ao + e(t) (3.1)



where ao = 390 ppm is the signal mean, and F(t) are random measurement errors

with zero mean and standard deviation ai = 0.2 ppm.

In the classical case, the errors are Gaussian so F(t) - N(0, a4. The next sub-

section presents examples of trajectories obtained when the errors have different dis-

tributions, but the same mean and variance. These trajectories enable us to explore

effects of non-normality. Afurther omplication is to Account for forward certainty
This is done to capture the forecasting aspect of the problem: the leak detection prob-

lem requires comparison of observed values with forecasted values which per Section

2.7.1 are associated with both observation and forward uncertainty. The scenarios

considered in the sections to follow are enumerated in Table 3.1

Table 3.1: Hypothetical trajectories for shift detection at Mauna Loa

Scenario Description Distribution Variance (ppm2 )
G Classical, neglecting Gaussian 0.22

forecast
Gf Classical, with forecast Gaussian 0.22 + 12

good to ±1 ppm (2-)
U Uniform, neglecting Uniform 0.22

forecast
L Lognormal, neglecting Lognormal 0.22

forecast
B Bimodal, neglecting Bimodal 0.22

forecast
a Trajectories are defined in terms of error distribution and variance.

Mean was set to 390 ppm in all cases. The number of observations
(N) is sometimes varied, so it will be defined later as needed.

Figure 3-1 illustrates trajectories and probability density functions based on the

Gaussian and non-Gaussian scenarios defined in Table 3.1.
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Figure 3-1: Four trajectories with equal mean and variance but different underlying distributions.
Top two rows: trajectories of 103 values having the same mean and standard deviation (390 ppm
and 10 ppm, respectively) but coming from very different distributions. From top left to bottom
right: (1) normal, (2) uniform, (3) lognormal, and (4) bimodal distributions. Bottom: kernel density
estimates based on 106 draws from each of the four distributions.

67

0.5-

0-
389



3.1.2 One-tailed Z-test

Detecting a mean shift requires an estimate of the mean before the shift arrives. For
simplicity, we assume the mean (ao) and variance (a2) of the observations are both
known exactly and that the latter remains constant in time. The previous chapter
showed how Z-tests can be applied to detect shifts in CO 2 data. It was shown that by
increasing the signal to noise ratio and/or amount of data considered the false positive
rate associated with detection could be reduced. The example in this section assumes
a leak is absent to begin with, and uses a right-tailed Z-test to test for upward shifts
linked to leakage. A right-tailed Z-test with a = 0.05 results in a critical value of 1.64.
This is the value z for which Pr (7 > zlCo) = 0.05. That is, a is the probability of
detecting a shift when none is present. This is the false alarm rate associated with
the test. The level of significance a is therefore the false alarm rate the user is willing
to put up with in search of actual shifts, and should be chosen as such. Controlling a
is important because it means having control over the amount of effort spent looking
in more detail for leaks that are not present.

What if a leak is present? If the sensor is sensitive to the leak's plume in the atmo-
sphere, then leakage will induce a positive shift of magnitude Ay in the observations.
On average, (2.8) will be

T = (Ay/ai) v (3.2)

The signal to noise ratio of a random signal is given by the inverse of the coefficient
of variation, which is the ratio of standard deviation to mean. Therefore, Ay/ai is
just the signal to noise ratio (SNR) of the shift:

SNR = Ay/ai (3.3)

The distribution of the test statistic in the presence of a shift is T - N(SNR5I, 1).
For a = 0.05, the detection rate' is

Pd= Pr (T 1.64|I 1 )

= 1 - Fz(1.64 - SNRVK)

where Fz is the cumulative probability density function for the standard normal dis-
tribution.

According to (3.4), the probability of detecting a shift increases with the signal to
noise ratio of the shift (SNR) and with the number of samples observed (N). Thus,
our chance of detecting a shift improves as:

" The magnitude of the shift (Ay) increases.

* The variance of the forecast (a2) decreases.

" The number of observations (N) increases.

'Also referred to as the probability of detection.



3.1.3 Evolution of uncertainty in the sample mean

The Z-test assumes the mean of the observations (ao) is known. When it is unknown
to begin with, it must be estimated by a sample mean. The question is, how many
samples (N) are required to estimate the mean? The 95% confidence interval of the
sample mean is given by

ao ± 1.96 - ai/VN (3.5)

The confidence interval narrows with increasing sample size N as illustrated in Figure
3-2. For a test like the Z-test, this means the baseline estimate improves as N
increases. Since the detection problem requires the comparison of two such sample
means, increasing N should also decrease the shift size that is detectable. Therefore,
the narrower the confidence interval, the smaller the shift we expect to be able to
detect.

3.1.4 Limits to detection

Figure 3-2 demonstrates the effects of increasing sample size (N) and increasing shift
size (Ay) on our ability to detect a shift in a white Gaussian noise with mean of
390 ppm and standard deviation of 10 ppm. As expected, increasing the number of
samples considered decreases the shift size that can be detected. 2

Without increasing the number of sensors or measurement frequency, increasing
N means waiting longer to detect a shift. Therefore, Figure 3-2 illustrates the tradeoff
between time to detection and detectable shift size.

2The latter two figures have been determined by calculating the probabilities of detection at the
0.05 level of significance for varying sample size and by increasing the number of samples available
until the detection probability exceeds 90%.
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Figure 3-2: Evolution of sample statistics. Top: the red solid line shows evolution of sample mean
as more samples are considered. The dashed red lines show the 95% confidence intervals computed
as 9 ± 1.96 - a1/vN. Bottom: the effect of increasing sample size on the size of the shift that is
detectable at the 0.05 level of significance. Here, time to detection was calculated as the number
of samples required to achieve 90% detection rate at the 0.05 level of significance, using (3.4) to
determine probability of detection. The figure on the right is the same as the one on the left, but
plotted as a log-log plot to emphasize the logarithmic dependence between detection time and shift
size. An important consequence of this relationship is that there are diminishing returns
from waiting longer.

3.1.5 Normality and the Central Limit theorem

The results of the Z-test depend on critical values which assume the sample mean
is normally distributed. If the errors aiE(t) are Guassian, then the sample mean
will also be Gaussian. What happens if instead of being Gaussian the measurement
errors are uniform or lognormal? Figure 3-3 below considers the density of the sample
mean of uniform random values as the number of samples considered grows. As the
number of samples increases, the sample mean appears to become increasingly more
Gaussian. This is in accord with the Central Limit theorem, which states that the
sum of an increasingly large number of independent random variables tends to a
normal distribution. The consequence is that if the samples are not Gaussian, then
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Figure 3-3: Normality and sample means. This figure depicts the Central Limit theorem in action.
Each figure shows empirical fits (obtained using kernel density estimators, dashed) and normal den-
sity fits (solid) to 5 x 103 sample means generated by considering increasing numbers of observations.
Black: N 1 observation. Blue: N = 102. Bottom: N = 5 x 103. The observations were generated
from Scenario L in Table 3.1.



probabilities determined using Z-test statistics will differ somewhat from what they
should be. Figure 3-4 uses the distributions introduced earlier in the context of
Figure 3-1 to assess the importance of distribution type. According to the figure,
the 95% confidence intervals differ most when only a few samples are considered, but
they converge quickly to those assuming normality as sample size increases. Bayesian
methods should be more used when means are being compared and sample size is
limited.

95% confidence intervals
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Figure 3-4: Comparing evolutions of sample mean confidence intervals for non normal and normal
observations. The dashed black line is the mean used to generate the observations, which is 390
ppm. The curves surrounding the mean are 95% confidence intervals generated by simulating random
trajectories from the various populations being compared and then computing standard errors from
the standard deviations of these random trajectories. Red: normal observations, green: uniform,
blue: lognormal, magenta: bimodal.

3.1.6 The effect of forward uncertainty

The uncertainty associated with the model parameters will also affect our ability
to detect. The simplest possible case is where the mean predicted by the model is
uncertain. The observations are then given by

y(t) = ao + a'(w) + e(t) (3.6)

a'(w) is a random number that is independent of time and which represents error
of the modeled mean from the actual mean of the signal. Scenario Nf in Table
3.1 has been constructed assuming Gaussian errors with zero mean and variances
Var {a'} = 2.52 and Var {E(t)} = a1 . We can consider generating random trajectories
based on scenarios N and Nf. In case Nf, the trajectories will consist of random values
having mean ao and standard deviation \(aO)2 + al. Therefore, uncertainty in the



model parameters inflates the noise associated with the forecasted observations. This
reduces the signal to noise ratio from SNR = Ay/0.2 to SNR = Ay/v/0.22 + 2.52.
Such a change implies reduced detection rates and worse limits to detection 3 . The
time to detection for a given shift size should also increase. Figure 3-5 demonstrates
the impact of forward uncertainty on time to detection.
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Figure 3-5: Time to detection and parametric uncertainty. Shown are number of samples required to
achieve 90% probability of detection for varied shift size. Two cases from Table 3.1 are considered,
N and Nf.

3 We use "limits to detection" to refer to curves trading-off detection time T against shift size Ay
of the type presented in Section 3.1.4
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3.1.7 Summary

There is a tradeoff between the size shift (Ay) that can be detected and the number
of samples (N) required to detect. Without adding sensors or increasing sampling
frequency, the only way to decrease the detectable size shift is to wait longer. For
monitoring and verification of leakage from geological sequestration, waiting longer
may not be an option: it means increased risk to the population and increased loss

of CO 2 before mitigation. The basic analysis presented in this section suggests that
smaller leaks can be detected in another way, which is to increase the signal to noise
ratio of the shift. Practically, this means reducing uncertainty associated with fore-
casts. This can be achieved in two ways: (1) increasing measurement precision or (2)
improving the model so the variance of the residuals decreases.

The number of samples considered also has implications for the false alarm rate.
There are two reasons for this. First, the more samples considered the more accurate
the sample means being compared will be. Second, when classical detection algo-
rithms like Z-tests and t-tests are being used but the model errors are not normally
distributed, increasing sample size tends to increase the validity of the Central Limit
theorem. In general, when the errors are not Gaussian it should be safer to use a
Bayesian detection algorithm since the number of samples required for the Central
Limit theorem to apply is not the same for all distributions.

The above results all assume the samples are independent. Autocorrelation is
also an important issue for mean shift detection. The next section illustrates the
consequences of and importance of using estimation methods capable of handling
autocorrelated errors.

3.2 Autocorrelation and the case for improved mod-
els

This section (1) illustrates that modeling reduces autocorrelation and improves the
validity of the normality hypothesis and (2) demonstrates the danger of not accounting
for autocorrelation in the residuals. The message is clear: explain the observations as
best as possible before testing for a shift. These ideas are generated in the context of
atmospheric CO 2 data from Mauna Loa. The data, which comprise monthly averages
of daily mean values from NOAA (post-1974) and SIO (pre-1974) and were obtained
from ftp://ftp. cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt, are plotted in

Figure 3-6.
Three models are used in this section:

o Model Z. The model is

y(t) = + E(t) (3.7)

where time t is measured in days, y(t) is monthly average CO 2 at Mauna Loa,
and #1 is a model parameter representing the mean concentration during the
training period. The model, which is a zero-slope straight line, characterizes
the ability to predict CO 2 in the absence of any prior knowledge of the trends
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the RSS. The "optimal" value for Mauna Loa was 1.2 months.

3.2.1 Impact of detrending on autocorrelation, normality

The impact of detrending on autocorrelation and normality was explored using ex-
ploratory plots and signifmcance tests. Since Lie detrending imudeis are all linear, of
the form

y=X (3.10)

fits were obtained using the ordinary least squares (OLS) estimates of the param-
eters (/). These were obtained as follows. First, OLS estimates of the regression
coefficients 3 were computed considering all available observations. The resulting
OLS estimates, /, were combined with the explanatory variables to generate OLS
predictions according to X/. The difference between the observations and the OLS
predictions yielded OLS residuals e = y - X3. The residuals were then tested for au-
tocorrelation in two ways. The first was by plotting the autocorrelation function and
comparing the result to the 95% confidence interval associated with the hypothesis
that the residuals be independent and normally distributed. The second way used the
Breusch-Godfrey test from Section 2.11.3 against the alternative that the residuals
were first-order autoregressive. The residuals were tested for normality using three
significance tests. These were the chi-square goodness-of-fit test, Lilliefors test, and
the Jarque-Bera test from Section 2.8.3.

The Breusch-Godfrey test rejected the hypothesis that the residuals were inde-
pendent at the 0.05 level of significance for all models considered. The test statistic
decreased (from 423.7 to 319.4 to 293.0) as model complexity increased, hinting that
the level of autocorrelation present was decreasing with the explanatory power of the
model. This observation was corroborated by the autocorrelation function plots. In
these plots, it was observed that the sample autocorrelation function of the residu-
als vanishes to zero more rapidly as the detrending model improves. These results
suggest that by removing more of what can be explained in atmospheric

CO 2 records, the effects of autocorrelation should be reduced. Note that the
effects of autocorrelation have not yet been demonstrated. It has simply been shown
that autocorrelation is present in the residuals, and that the level of autocorrelation
present appears to decrease as the detrending model improves. The next section deals
with the consequences of autocorrelation for the risk involved in detecting mean shifts
in noisy signals.

Similar conclusions applied to the normality hypothesis. Normality was rejected
by all three tests for model Z, by two of the three tests for model S, and by none
of the tests for model SR' at the 0.05 level of significance. Essentially, the residuals
become more normal as the model is improved. This said, however, the only model
for which classical detection methods are justified is model SR'. For the other models,
Bayesian methods are justified but classical methods might be robust if the normality
assumption is not overly poor. The impact of using least squares instead of Bayesian
estimation was not assessed. Assuming the least squares esimates used to obtain the
residuals we tested are not significantly biased from their Bayesian counterparts, our



results seem to suggest that improving the detrending model leads to more Gaussian
residuals.



3.2.2 Choosing the order of an autoregressive model (Akaike's
FPE)

Akaike [51] introduced a method for determining the order of an autoregressive moving
average (ARMA) model that values parsimony and therefore avoids overfitting. We
used this method to test for autoregressive (AR) behavior. The underlying model is

q

Et = Po + piEt _i + t (3.11)

-i N (0, 02)

where E(t) is the model error and ((t) is a random shock. Given residuals e(t), the
questions is, are the model errors autoregressive? For N observations, there will be an
equal number of residuals, {et : t = 1, 2, ..., N}. The algorithm analyzes the residuals

for AR behavior as follows:

1. Remove the sample mean from the residuals.

et = et - e (3.12)

where
N

e = ( et (3.13)
t=1

2. Set an upper bound qhi on the model order to be considered. qhi should be large
enough to include the minimum qO sought in step 4, but should also generally be
much smaller than the number of lags necessary to estimate the power spectrum
of e(t) by Fourier transforming the windowed sample autocovariance function.

3. Choose a model order q = 1. Calculate the sample autocovariances

IN-h
(h) = ( Et Et+h h = 0, 1, ---,) qhi (3.14)

t=1

4. Determine the values {pj : i = 1, 2, ..., q} that minimize the sum of square

residuals (RSS)

N ( 2
RSS(q) = RSS [()] = ( e -(pe-i (3.15)

t=1 i=1

The sum of square residuals is calculated assuming

Bo = E_1 = -.. = E1_q = 0 (3.16)



This is equivalent to solving the Yule-Walker equation

Tqopt") = iq ++ pq") = T - i (3.17)

The variance of the random errors is estimated by

S1) RSS(q) (3.18)
N-I- q

The '1' in the denominator comes from the reduction of the number of degrees
of freedom due to the presence of po. When po is absent, which occurs when the
ut's are residuals from a detrending model involving a constant term #0, then

S ) qRSS(q) (3.19)
N-p-q

where p is the number of systematic model parameters. In the special case
that the observations are already zero mean, so that both systematic model
parameters and po are absent from the model,

-() 1 RSS(4) (3.20)
N-q

Taking the first case as an example, Akaike defines the final prediction error
(FPE) associated with the autoregressive model of order q as

FPE () = I + + 1 (q) (3.21)

5. Choose the value qO of q that minimizes the final prediction error FPE(q),
where q is of course restricted to integers equal to and between 0 and qa.

The algorithm is clarified through examples. Here, we include the figure used to
diagnose AR model order for the Mauna Loa example in Chapter 3.2.

Akaike noted that FPE tends to be large when q is either too large or too small.
The reason this happens when q is too small is a consequence of missing terms in the
autoregressive model. I believe the reason it happens when q is too large is related to
the assumption in (3.16), but it can also be anticipated because (3.21) is a growing
function of q.
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3.2.3 Dealing with autocorrelation

OLS assumes the residuals are independent and normally distributed. When residuals
are autocorrelated, generalized least squares (GLS) is justified. Unlike GLS, OLS
precludes the error covariance matrix from containing anything but zeros off-diagonal.
But what consequences does this have for the ability to detect a shift in the mean of
a set of residuals?

To illustrate the effect of autocorrelation on our ability to detect a shift, we fitted
SR' to the monthly CO 2 data in Figure 3-6 using OLS and estimated GLS (EGLS).
The results are described in Section 3.2.5. Model SR' was selected because its OLS
residuals were previously found to be autocorrelated but normally distributed, so
normality was not an issue. OLS fitting was done in the usual way. EGLS was
performed using the Yule-Walker algorithm [52] (see 3.2.4), with autoregressive
model order (of 25 months) determined by minimizing Akaike's FPE [51] (see 3.2.2).



3.2.4 The Yule-Walker Algorithm

Autocorrelation introduces off-diagonal terms into the error covariance matrix, so the
correct assumption is in fact e ~ N(O, Q). There are two ways to deal with the
autocorrelation. The first is to estimate the coefficients in Q along with the other
unknowns in the error model. The downside of this approach is that this matrix is
N x AT, so the number of unknowns grow like the square of the number of observations.
The second approach, which is more common, is to truncate the error model after
some number of terms. Akaike's FPE [51] is an example of a criterion for choosing
the order of an autoregressive model (see Appendix 3.2.2). This can be combined with
Yule-Walker algorithm [52] for determining the regression coefficients. The latter
algorithm, which is sometimes referred to as "estimated generalized leasts squares"
(EGLS), is presented below.

Gallant and Goebel [52] introduced a method of estimating model parameters
when the residuals are autocorrelated. It is assumes the order of the disturbance

(error) model - which can be either of the autoregressive or moving average types -
is already specified. The model is assumed to take the form

y(t) = M(O) + E(t)

q

E(t) = - piE(t - iAt) + ((t) (3.22)

,(t) ~ N (0, U 2 )

where M(O) = [M(O, t2)]. The errors ((t) are assumed to be independent, zero
mean, and homoskedastic with variance a2 . Gallant and Goebel make the additional
assumption that the population from which the c(t)'s are drawn is covariance sta-
tionary. The implication of this assumption is that the variance-covariance matrix of
the model errors E = (1, ... , EN)T has a special banded structure.

The algorithm employed by Gallant and Goebel proceeds as follows:

1. Compute the ordinary nonlinear least squares estimator 6. The obtained value
minimizes

{y - M (0)]T [y - Mv (0)] (3.23)

The variance-covariance matrix of 0 is given by

&2O (3.24)

where

&2 IN [y M(9)][y - A4 (3.25)

estimates the variance of the disturbances (which ordinary least squares assumes
to be uncorrelated) and

O = [JT($) J() (3.26)



J is the N x p Jacobian of the model predictions (M) with respect to 0:[ VM (ti, 0)
J(O) = VM(t 2, 0) (3.27)

VM (tN, 0)

2. Compute the residuals

e = y - M() (3.28)

The sample autocovariances up to lag q are calculated as

N-h

i (h) = Z etet+hAt h=O,1, ... ,q q<N-p (3.29)
t=1

3. Compute least squares estimates of the autoregressive coefficients and the error
variance using the Yule-Walker equations:

(3.30)
&2=i(0) + #T7%t

where
# = [p(1), i(2), ...,p(q)] T  (3.31)

and
(0) (1) -. - (q - 1)
(1) (0) -. - (q - 2)

F4= . (3.32)

L (q - 1) (q - 2) -. - (0)J
where

-gq = ['(1), '(2), ... , (q)]T  (3.33)

Next, factor F ' P=T # using, for example, Cholesky decomposition. The
following steps are described in terms of an nxn matrix P . For large n, this
matrix can be expensive to store. The beauty of Gallant and Goebel's algorithm
is that P need not actually be stored. All the necessary calculations involving P
can be performed just by knowing (1) the qxq matrix 1%, (2) the q autoregressive
coefficients #, and (3) the ordinary least squares variance &2. Thus, rather than
storing N 2 values we need only store q2 + q. We leave the reader to refer
to Gallant and Goebel's original paper [52] for the expression for P. Their
notation differs slightly from ours. By replacing their di with our pi one obtains
the desired expression.

4. Compute the estimated generalized nonlinear least squares model parameter



estimates by minimizing

1 = - -PA(0)] T[ _ PM(0)] (3.34)QN -0N

with respect to 0. The solution to this problem, which we denote 0, is a gener-
alizeu leas' squares ebLHiaite w1u1 accu I16 auuucurLUitiahiuL11 inl L11t ulun1miy

least squares residuals obtained in (3.28). From (3.34) we see that the general-
ized least squares estimate is obtained by transforming the systematic model by
P and then using ordinary least squares to estimate the model parameters from
the transformed model. Transforming the model in the way described makes
the residuals uncorrelated, which is why ordinary least squares is applicable.
From 6 we obtain

- 1 - - -T
o2 P-y - PM()' IPy - PM(6) (3.35)

which estimates the variance of the random errors in (3.22), and

0 = [JT () - p T  - J(6)] (3.36)

The variance-covariance matrix of the estimator is

50 = &20 (3.37)

Standard errors can be estimated as usual from the diagonal terms of this ma-
trix.

5. (Optional.) Set 6 equal to 6 and repeat steps 2-4.



3.2.5 OLS and GLS results

The 95% standard
sion coefficients #1
matrix of the least
estimates in Table

errors associated with the OLS and EGLS estimates of the regres-
, #2, and #3 were determined from the diagonal of the covariance
squares estimates. These are provided along with the least squares
3.2.

Table 3.2: OLS and EGLS results for model SR'

OLS results EGLS results, AR(25)
Parameter Value Standard error Value Standard error

#1 345.95 0.66 346.84 1.60

#2 4.45e-03 1.88e-05 4.45e-03 1.10e-04

33 -1.45e-02 5.26e-04 -1.49e-02 1.08e-03

When autocorrelation is considered (as demonstrated by the EGLS case), the
standard errors associated with the model parameters are larger than they are when
autocorrelation is neglected (as in the OLS case.) Although in general it is impossible
to say whether autocorrelation will inflate or deflate uncertainty, the former appears
to be the usual case. In their chapter on serial correlation, Davidson and MacKinnon
[44]) demonstrate that positive AR(1) autoregressive behavior leads to inflated errors,
and similar results tend to hold for various other extended cases ([43, 46, 54]).

3.2.6 Conclusions

Building better detrending models appears to reduce autocorrelation in the residuals
and improve the normality assumption. Autocorrelation injects additional risk into
the detection process because OLS leads us to be overconfident in the mean values
being compared, which means higher rates of false alarm when detecting mean shifts.
This section demonstrates the need for models capable of capturing systematic trends
in the observations to reduce this added risk.
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Chapter 4

Data sources and dataset
characterization

Our ability to detect will depend upon the nature of the observations. The goal of
this chapter is to analyze some existing data sets and characterize their properties.

4.1 Variability of CO 2 in the atmosphere

Historic CO 2 data exhibit many trends. There is an increasing interannual trend
due to fossil fuel emissions. A similar interannual trend is present at all latitudes,
but a latitude gradient of about 4 ppm exists with CO 2 levels being higher in the
Northern Hemisphere. Small deviations from the fossil fuel based interannual trend
occur that are less well understood. These have been hypothesized to arise because
of temperature effects on terrestrial photosynthesis and respiration and on equilib-
rium partitioning of carbon dioxide across the air-sea interface. Most sites exhibit a
seasonal cycle superimposed on the rising trend due to terrestrial photosynthesis and
respiration. The magnitude of this cycle is much larger in the Northern Hemisphere,
and ranges from 1-15 ppm. The phase and amplitude of the seasonal cycle have been
observed to change systematically over time. This section reviews some of the trends
that have been highlighted in the scientific literature.

4.1.1 13C/ 12C ratios

Measuring carbon and oxygen isotopes in CO 2 is the most common way to determine
where the CO 2 is coming from. Isotopes can distinguish the contributions of multiple
sources to a mixture [55, 56, 57]. The ratio of 13 C to 12C abundance in CO 2 can
be used to partition changes in CO 2 into contributions from fossil fuel combustion,
oceanic carbon, etc. About 1% of carbon exists as '3 C, with the remainder being
mostly 1 2C. Isotopic composition of carbon in CO 2 is typically defined relative to a
reference value rref ~ 0.01 %o by

136 = 1000 x (r/rref - 1) (4.1)



where r is the 13C/ 12C ratio of the air being measured. The 136 of atmospheric CO 2

is about -8%o, plant carbon is around -25%o. Oceanic 1 3C content is close to that of
atmospheric CO 2 and fossil fuel, being composed mostly of fossilized plants, tends to
have a 13C content similar to plant carbon. These values are approximate. Actual
values can be expected to vary with space, time, and other factors [58]. The 136

value of a mixture of CO 9 from two sources is approximately given by sum of the
mole-fraction weighted 136's of the original sources:

136mix ~xiaoi + x3 6 2 (4.2)

where Xi = Ni/(Z Ni), Ni is the numer of moles from source 'i' in the mixture, and
136mix is the 136 of the mixture. Thus 136 of CO 2 in the atmosphere will shift slightly
from -8 towards -25%o as the terrestrial contribution grows. Given knowledge of the
fossil fuel contribution from elsewhere, 136 can therefore be useful for constraining the
individual contributions from oceanic and terrestrial sources.

4.1.2 Interannual trends

Long term atmospheric CO 2 observations are characterized by interannual trends.
Similar rising trends are apparent at sites in both the Northern and Southern Hemi-
spheres. This rising trend appears to be accelerating with increasing fossil fuel emis-
sions. Small systematic anomalies are present in the emissions predicted trend that
are harder to explain. The interannual trends are superimposed on a latitude gradient
with CO 2 levels being higher in the Northern Hemisphere.

Atmospheric CO 2 is on the rise. Hofmann et al. [59] estimate CO 2 is doubling ev-
ery 30 years with growth tracking population increases. The ice core records indicate
that historic CO 2 mixing ratios ranged between 180 and 300 ppm [3]. Between 1750
and 2005, the global average CO 2 mixing ratio increased from somewhere between
275 and 285 ppm to 379 ppm, with half the change coming in the last ~30 years [4].
The global average CO 2 mixing ratio was approximately 386 ppm in 2009 and has
been increasing at a rate of 0.66-2.92 ppm yr 1 since 1980 [5].

Increasing trends in CO 2 are predicted fairly well by cumulative emissions from
fossil fuel combustion. Keeling et al. [60] propose a relationship between deseasonal-
ized CO 2 and net fossil fuel combustion which assumes a constant fraction (fabf) of
emissions remain airborne. The model is

Cinter(t) = fabf J E(t)dt + Canom(t) (4.3)

where Cinter is the interannual trend neglecting seasonal and diurnal variations, E(t)
is the CO 2 emissions rate from fossil fuel combustion, and anom is the anomalous
difference between the observed interannual trend and the trend predicted by fossil
fuel emissions. Figure 4-1 compares cumulative emissions with ambient CO 2 from
Mauna Loa. The emissions curve has been rescaled so it matches the concentration
curve in Jan 1959 and Jan 1982. The emissions curve explains the observations quite
closely. Systematic deviations of up to 2 ppm exist that cannot be explained by this



CO2 Conceaion (montyverage, seasona aused)

350

345

SII
310 -
305 .~ .

1958196019621964196619681970'197219741975197819801982196419861988

Figure 4-1: Mauna Loa CO 2 versus fossil fuel CO 2 emissions courtesy of Keeling et al. [60]. Shown
are deseasonalized CO 2 obtained by removing a third order polynomial and harmonic signal from
observations (dots) alongside rescaled CO2 emissions (line). As described by the original authors,
emissions have been rescaled to match the concentrations obtained in Jan 1959 and Jan 1982.

simple model. Reasons that have been given for these systematic departures include
(1) El Nino events and (2) Indian summer monsoons. More recently, Francey et al.
[61] accounts for volcanic emissions when correlating growth in CO 2 with fossil fuel
emissions.

Keeling et al. [60] observed a growing interhemispheric gradient in CO 2 which
correlates well with changes in fossil fuel emissions. The difference between desea-
sonalized CO 2 at Mauna Loa and the South Pole was estimated to have grown by
about 2 ppm from 1958 to 1988. Growth slowed after the 1973 oil crisis, signaling
the importance of fossil fuel emissions. The rationale is that most CO 2 emissions
occur in the Northern Hemisphere and tend to accumulate there due to the presence
of an equatorial barrier to atmospheric transport. Interhemispheric mixing occurs on
time scales of 1-1.5 years. The interhemispheric gradient is not explained by fossil
fuel emissions alone. If CO 2 is regressed against fossil fuel emissions and the resulting
curve extrapolated back to zero cumulative emissions, Keeling et al. [60] find that the
fit predicts higher CO 2 in the Southern Hemisphere than in the North. The reason
for this has been the subject of some debate (see [62]).

4.1.3 Seasonal trends

Most sites have a seasonal cycle superimposed over the increasing trend described
above. Past interpretations of seasonal cycles have been aided by isotopic data. At
least three characteristics of seasonal trends have been studied. First, the seasonal
amplitude is minimal in the Southern hemisphere and grows from South to North.
Second, relative isotopic abundances are less negative at tropical latitudes. Third,
the amplitude of the seasonal cycle has undergone systematic changes in time.

Keeling et al. [60] summarize characteristics of CO2 and " observations from
numerous global observing sites. Isotopic data suggests the majority of seasonality
is due to photosynthesis and respiration. During the summer, plants fix CO 2 by
photosynthesis. This leads to lower CO 2 in the summer than in the winter. The



amplitude of the seasonal cycle is smaller in the Southern Hemisphere where there
is less land mass for terrestrial uptake and release. The seasonal cycle also increases
farther north of the equator. This is due to increasing seasonality in solar radiation,
temperature and leaf mass. At Point Barrow, Alaska (~70' North), the seasonal
cycle has an amplitude of 15-20 ppm. At Maua Loa, it is about 5 ppm. South of the
eauator, the seasonal cycle is typically at most 1 ppm.

Less negative 16's in the tropics indicate relatively small contributions from
sources besides land plants to seasonal cycles there. Keeling et al. [60] hypothe-
size that the presence of plants with lower 136's and increased contributions from
oceanic carbon might be behind these observations. There is evidence that seasonal
amplitudes are increasing. Keeling et al. [10] observe 20-40% amplitude increases
from 1964-1994 that are correlated with lengthened growing seasons. Buermann et
al. [63] hypothesize the seasonal amplitude at Mauna Loa can be explained by alter-
nating contributions from enhanced photosynthesis in North America and respiration
in Eurasia.

4.1.4 Diurnal trends

Diurnal fluctuations are affected by a number of factors, including terrestrial pho-
tosynthesis and respiration that vary over the course of the day [64]. Fossil fuel
combustion for heating and transportation can vary greatly with time of day. Bound-
ary layer dynamics tend to exhibit diurnal behavior. Diurnal amplitudes are inflated
when meteorology covaries with trends in surface sources. Changes in wind direction
can drive variability when a site is located near the boundary separating spatially
heterogeneous regions.

Law et al. [65] compare predictions of diurnal CO 2 variability in the atmospheric
boundary layer obtained for a number of different locations using twenty five different
models. Their study highlights the difficulty in predicting diurnal fluctuations. In
a later study, Law et al. [66] focus on a single site at Cape Grimm, Tasmania.
Their results support the importance of high resolution flux estimates in regions
that are spatially heterogeneous. Cape Grimm is prone to urban contamination from
Melbourne to the north and biomass burning in Tasmania. The authors improved the
correlation between model predictions and the observations by ignoring records having
large CO and H2 concentrations, which are correlated with fossil fuel combustion, and
selecting observations originating over the ocean to the west. Ahmadov et al. [67]
demonstrate better predictions of diurnal trends by including subgridscale fluxes and
meteorological transport. Their model consists of a nested scheme with a maximum
resolution of 2 km trained using local meteorology and tracers. Flux measurements
were used to constrain contributions from different types of plants. Simulations for the
high resolution model (WRF-VPRM) are compared to the those from lower resolution
models in Figure 4-2. The results indicate the higher resolution model is much better
equipped to explain the timing and magnitudes of diurnal scale changes.
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Figure 4-2: Effect of increasing model resolution on diurnal CO2 predictions, adapted from Ahmadov
et al. [67]. The top two figures show simulations (red) from low resolution models. The bottom
figure shows the simulated trajectory from the 2 km resolution WRF-VPRM model. Observations
are shown by dashed black lines. Arrows in the bottom figure indicate the presence of double peaks
resulting from front passage or sea breeze WRF-VPRM can explain.



4.2 Data sources

This section characterizes atmospheric CO 2 records from three different sources: (1)
Scripps and NOAA data from the Mauna Loa Observatory; (2) Harvard Forest; and
(3) the Salt Lake CO 2 Network. These were chosen to represent a range of CO 2
emissions scenarios. The Mauna Loa records are unique because they are obtained
from a high altitude location with barren surroundings and are mostly devoid of
local influences. Harvard Forest is an ecological monitoring site in semi-rural, central
Massachusetts. The Salt Lake CO 2 Network is an urban atmospheric monitoring
network located in Salt Lake City, Utah.

There are numerous sources of CO 2 data and analyses; three key sites are:

" The CarbonTracker, Interactive Atmospheric Data Visualization, and
GLOBALVIEW tools provided by NOAA at http://www.esri.noaa.gov/
gmd/dv/.

" CDIAC's Online Trends resource, which provides pointers to data and data vi-
sualization products and is available online at http: //cdiac .ornl. gov/trends/
co2/contents .htm.

* Scripps Insitution of Oceanography's CO 2 Program website, which can be found
online at http://scrippsco2.ucsd.edu/home/index.php.

4.2.1 Mauna Loa

The Mauna Loa Observatory, located on the slope of Mauna Loa in Hawaii (see Figure
4-4), is unique because its surroundings are extremely barren and the site is located
at -3400 meters altitude so that the measurements come from above the boundary
layer and are relatively free of local influences. Because of its unique location, the
site's measurements are representative of global trends.

Data

There are two measurement programs at Mauna Loa. Scripps Institution of Oceanog-
raphy started measuring in 1958. NOAA added continuous in situ measurements of
their own in 1974 for comparison to the Scripps set up.

Both programs provide flask and in situ measurements of CO 2 . Flask samples
are typically collected twice [68]. In situ samples are made semi-continuously using
infrared gas analyzers calibrated hourly. The measurements from the two programs
(SIO and NOAA) come from distinct instruments.

Other variables measured at the Mauna Loa Observatory include 13C/ 12C, 14C/1 2C,
and 180/160 isotope ratios; atmospheric concentrations of hydrocarbons, halocar-
bons, CO, H2, N2 0, 03, and SF6 ; and meteorology including wind speed and direc-
tion, barometric pressure, air temperature and precipitation.



Trends

Previous studies at Mauna Loa have made the following observations:

e Increasing trend. CO 2 has been increasing at Mauna Loa since Dave Keeling
began measuring there in 1958. Figure 4-3 depicts annual increases in CO2. The
annual increase has been positive every year and appears to follow an increasing
trend. The figure shows an exponential fit to the annual changes to show the
trend the changes should be following if the data are growing exponentially like
fossil fuel emissions [59].
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Figure 4-3: Annual increases in CO 2 at Mauna Loa, data courtesy of Dr. Pieter Tans, NOAA/ESRL,
(www.esrl.noaa.gov/gmd/ccgg/trends/). Annual changes computed for Jan 1 to Dec 31 of each
year are shown in blue. The black line is an exponential fit to the annual data, highlighting the
increasing trend that appears to be present.

* Seasonal trend. Keeling et al. [69] determine the peak-to-peak seasonal ampli-
tude to be around 5 ppm using an empirical fit composed of a cubic polynomial
to represent the long term increase and 6- and 12-month harmonics to represent
the seasonal cycle.

* Changing seasonality. The seasonal amplitude increased by 0.7% per year from
1958-1982 [70]. This translates to a 23% change in 30 years, which is consistent
with Keeling et al.'s [10] estimate of 20-40% for 1964-1994. The size of the
seasonal amplitude at a given site is affected by changes in upwind sources and
sinks. Buermann et al. [63] determine that the growing seasonal amplitude at
Mauna Loa is due to increased drawdown alternated with increased respiration,
and that the amplitude stopped growing in the 1990's because drought reduced
photosynthetic uptake in North America and because of changes in atmospheric
circulation leading to less respiration enriched air from Eurasia.
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* Diurnal trends. The measurements at Mauna Loa tend to exhibit little diurnal
variability due to the location. The site is above the atmospheric boundary layer
and surrounded by volcanic rock. Local influences cannot be avoided altogether,
however. These are primarily a concern late at night, when radiative cooling
brings air from upslope [71, 72, 73]. The air flowing downslope brings with it

CO 2 emitted during outgassing events at the volcano's summit located 6-7 km
away. Ryan [74] used CO 2 measurements to estimate emissions following three
volcanic events. At night, emissions led to concentrations that were tens of ppm
above background.

Figure 4-5 shows the data at three time scales. The interannual and seasonal
trends already discussed are clearly present. Changes in seasonality and acceleration
of the upward trend are difficult to see by eye. As expected, diurnal variability is
fairly random.

4.2.2 Harvard Forest

Harvard Forest is one of the world's oldest and best equipped ecological monitor-
ing sites. The semi-rural site is located in central Massachusetts approximately 100
miles west of Boston (see Figure 4-6). Prevailing wind directions are from the west-
northwest and southwest. As a member of Fluxnet, one of the site's primary purposes
is to provide measurements of CO 2 exchange between the local canopy and the atmo-
sphere. Unlike most Fluxnet sites, however, the CO 2 concentrations used to generate
eddy fluxes at Harvard Forest are calibrated frequently and are considered fairly ac-
curate.

Data

CO 2 concentrations at Harvard Forest are measured in two ways. First, concentra-
tions are measured above the canopy at ~30 meters. Second, concentrations are
measured at several heights below the canopy. The first type of measurement is used
in combination with wind velocity data to generate eddy fluxes. The second type pro-
vides a vertical profile which is used to measure CO 2 storage within the canopy. All
measurements are made using infrared gas analyzers. A custom calibration procedure
is applied hourly to maintain accuracy of the measurements.

Many other types of data are available besides CO 2. The EMS tower itself mea-
sures wind speed and direction, hourly precipitation, air temperature and pressure,
and solar radiation. Field measurements of plant and soil biomass have been per-
formed periodically at various locations. Past monitoring has also included measure-
ments of atmospheric CO, NO, NO 2 and 03 concentrations.

We obtained hourly mean CO 2 concentration data from the final quality-assured
dataset made available at http: //atmos .seas .harvard. edu/lab/data/nigec-data.
html. The CO 2 data used in this thesis came from the above-canopy sampling lo-
cation. The dataset also includes hourly wind direction and speed, air temperature,
soil temperature, air pressure, relative humidity, precipitation, and CO, NOy and 03
concentrations.



Figure 4-4: NOAA's monitoring site at Mauna Loa. Top: map of the island courtesy of Google
Maps. Bottom: photograph of the Mauna Loa Observatory. The observatory is located at 19.50
north, 155.60 west, and 3,397 meters (11,142 feet) above sea level. The high altitude and the barren
location make it an ideal location for measuring atmospheric concentrations above the boundary
layer.
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Figure 4-5: Atmospheric CO 2 trends at Mauna Loa. Top: complete hourly mean CO 2 time series
from NOAA. Middle: zoom-in to observations between Jan 1, 1998 and Jan 1, 2000. Bottom:
zoom-in to observations between 00:00:00 Jul 3, 1999 and 00:00:00 Jul 17, 1999.
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Figure 4-6: The Harvard Forest monitoring site. The map (courtesy of Google Maps) shows the
location of the monitoring site in the Northeast industrial corridor. CO 2 measurements are made
by sampling air from an eddy flux tower. The samples we used come from just above the canopy,
~30 meters above the ground. The eddy flux tower is shown in the photographs. Finally, a wind
rose has been provided in the lower left to illustrate the dominant wind directions are from the
west-northwest and soutwest.
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Trends

Previous studies at Harvard Forest have made the following observations:

" CO 2 fluxes tend to vary interannually and seasonally. Interannual and decadal
changes related to changes in forest composition, disturbances, and tree growth
can be systematic but are difficult to capture through models [75]. Seasonality
in net exchange is determined by the sum of respiration and photosynthesis. At
Harvard Forest, photosynthesis is all but absent in the winter but dominates
in the summer and is well explained by solar radiation [64]. Photosynthesis
tends to dominate respiration on an annual time scale and fluxes are sensitive
to weather and seasonality [76].

* Potosnak et al. [77] use a linear regression model' to estimate the contributions
of fossil fuel combustion, regional variability, and local terrestrial processes to

CO 2 concentrations. The estimated monthly means vary systematically by -15
ppm, with lower values in the summer. According to their model, the bulk of
diurnal variability in the summertime is due to regional biotic uptake and re-
lease rather than canopy scale terrestrial exchange. In Figure 3 of their paper,
the authors present trends for several days in July 1995. The trends indicate
a regional biotic influence of -20 to +5 ppm but a smaller local biotic influ-
ence ranging between -5 and 5 ppm. This recommends the importance
of accounting for regional variability as well as local biotic exchange.
Positive contributions from fossil fuel combustion tend to be about 4-5 ppm in
the winter and 2-3 ppm in the summer. Barnes et al. [78] use measurements of
CO and perchloroethylene (PCE) to demonstrate pollution events are strongly
correlated with winds from the southwest, the direction of the D.C.-New York
industrial corridor.

Figure 4-7 depicts CO 2 at Harvard Forest for three different time scales. The peak-to-
peak amplitudes of the seasonal cycles do not conflict with the 15 ppm cycle estimated
by Potosnak et al. [77], but not all of the variability in the data can be explained by
a seasonal cycle of this magnitude. The short summertime period considered in the
bottom plot in Figure 4-7 highlights the presence of significant diurnal cycles most
likely due to photosynthesis and respiration, indicating that diurnal variability is an
important factor in the overall variability of CO 2 at the site.

Figure 4-8 compares CO 2 data at Harvard Forest to contemporaneous data from
Mauna Loa. Wintertime median CO 2 at Harvard Forest is consistently 10 ppm higher
than at Mauna Loa. This systematic difference must be to the combined effects of
regional respiration and fossil fuel emissions from the D.C.-New York corridor [77].
A much stronger seasonal cycle is apparent at Harvard Forest. The weaker cycle at

'The model they use is re-estimated on a monthly basis to capture seasonal variability. In each
month, the regional mean is represented by a constant term. Deviations from the regional mean are
modeled using (1) correlation between hourly mean CO and CO 2 , to capture the effect of regional
sources of CO 2 from fossil fuel combustion; (2) the ratio of hourly eddy covariance CO 2 flux to a
term measuring the strength of vertical mixing; and (3) an empirical term representing the mean
diurnal trend for CO 2 arriving at the canopy.



Mauna Loa is attributable to attenuation by atmospheric mixing. Both sites exhibit
similar growing trends. Finally, the seasonal CO 2 trend at Mauna Loa is out of
phase with that at Harvard Forest. We expect some lag due to the time required for
atmospheric mixing to mix surface influences observed in the boundary layer into the
free troposphere. From the data, it appears that the wintertime peak requires more
time (-3-5 months) to mix than the summertime trough (~1-2 months), presumably
the result of enhanced vertical mixing in the summer time.

Figure 4-9 plots time series of CO 2 and various meteorological variables for com-
parison. As expected, CO 2 concentrations tend to reach their minimum in the summer
when sunlight is strongest. The CO 2 minimum appears to lag that of solar radia-
tion very slightly, indicating the possible presence of a delay due to time required for
biomass growth.

4.2.3 Salt Lake City

The Salt Lake CO 2 network is an urban atmospheric monitoring network located
in Salt Lake City, Utah. The network is the longest running urban atmospheric
monitoring network of which we are aware.

Salt Lake City is located in a valley surrounded by the Wasatch and Oquirrhs
mountains to the east and west, respectively, and the Great Salt Lake to the north-
west. Prevailing winds are from the north, although cross winds sometimes occur
(personal communication with Steve Rowley).

The Salt Lake network consists of four urban sites and one rural site (see Figure 4-
10). The first urban site (University) samples from the rooftop of a University of Utah
building just east of downtown. The second (Residential) is located in a backyard in a
residential neighborhood south of University by about 5 km. The third (Junior High)
is located on the roof of a school approximately 10 km south of University. The fourth
(Downtown) was initially located downtown on the roof of the X-Mission building but
eventually moved westward to Rose Park; the data from these two locations has been
merged into a single record. The rural site (Mine) is located to the southwest of the
city on land owned by a copper mining company and is surrounded by agricultural
land. The oldest site in the network is University, from which CO 2 data are available
as far back as 2001.

Data

The data set we used is available to the public at http: //ecophys . utah. edu/download/C02/.
Variables measured include hourly means and standard deviations of CO 2 concentra-
tion, wind velocity, air temperature, atmospheric pressure, relative humidity, and
solar radiation. Total hourly rainfall is also recorded.

CO 2 concentrations at each site in the Salt Lake network are measured using in-
frared gas analyzers. The measurement method used has previously been described
by Pataki et al. [79]. The infrared gas analyzers are high precision closed-path in-
struments which have been calibrated hourly using C0 2-free air and WMO standards
to minimize errors due to span and zero drift. Two minute running averages are
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Figure 4-8: Atmospheric CO 2 at Harvard Forest (black) versus Mauna Loa (blue). Top: complete
hourly mean CO 2 time series from NIGEC and NOAA. Bottom: the shaded regions represent the
middle 50% of the hourly observations from Harvard Forest (grey) and Mauna Loa (blue). These
regions were determined by computing the 2 5 th and 7 5 th percentiles of each for each month and
shading the region between the resulting curves.
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Figure 4-9: Relationships between atmospheric CO 2 at Harvard Forest and meteorological variables.
For comparison to atmospheric CO 2 concentration, time series of the following are also plotted. PAR:
photosynthetic active radiation; TAIR: air temperature measured by a precision thermistor; WSPD
and WDIR: wind speed and direction, respectively, from a sonic anemometer; and PAIR: ambient
air pressure. The time series for WSPD and PAIR appear striated in places; the reason for this is
unknown. The white zones in WDIR are most likely the result of measurement deadzones.

102



Figure 4-10: The Salt Lake network, map courtesy of Google Maps and photographs courtesy of
the Ehleringer lab. Locations of active monitoring stations are shown in green; the blue marker
indicates the old downtown site; the red marker is a background monitoring site that is part of the
Rocky RACCOON monitoring network, which was not included in our analysis. The network is
located between the Wasatch and Oquirrhs mountains to the east and west, respectively, and the
Great Salt Lake to the northwest. The prevailing wind direction is from the north, although cross
winds sometimes occur (personal communication with Steve Rowley).

recorded every five minutes. These five minute averages are then averaged to obtain
hourly means and standard deviations. The hourly means are thus typically averages
of 12 sub-hourly measurements.

Because most of our analysis focuses on the University site we often refer to it
simply as "Utah". Unless stated otherwise, this refers to the University of Utah site.

Trends

Previous studies in Salt Lake have made the following observations:

" Measurements of V'C and 61O can be used to infer biotic and abiotic contri-
butions to ambient CO 2 in urban settings [80, 81].

* CO 2 concentrations in Salt Lake City exhibit relatively small seasonal trends
and larger diurnal fluctuations [82, 83, 81]. Diurnal enhancements can be >200-
250 ppm, with greater variability in the winter when increased emissions coin-
cide with reduced vertical mixing (see Figure 4-11).

" More than 60% of summertime diurnal variabilty is attributable to respiration,
with a greater fraction at the Mine site than the urban locations. In the city,
most wintertime variability is attributable to gasoline and natural gas combus-
tion (see Figure 4-11).
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" Nightime variability is far greater than daytime [82] (see Figure 4-12), the ratio-
nale being the same as that for the difference between winter and summertime
variability.

" Contributions from natural gas vary significantly with time of day and are
sensitive to changes in temperature [79]. Colder temperatures increase demand
for natural gas which is used for heating.

" There are periods during which atmospheric stability leads to low lying inver-
sions that trap emissions inside the valley, causing atmospheric pollutants to
accumulate [83].

Salt Lake City. 2002
450

E
[1 background

425 I gasoline combustion

c natural gas combustion

.G U respiration
E 400

N0

375

Z 50 100 150 200 250 300

Day of year

Figure 4-11: Contributions to CO2 in Salt Lake City, adapted from Pataki et al. [82].

Figure 4-13 shows trends in CO 2 at University on three different time scales.
A seasonal cycle is present, but its amplitude is difficult to assess by eye because
of the substantial variability. CO 2 is lower in the summer as should be expected
because of increased regional uptake by photosynthesis. The data support the notion
that variability is greater in the winter than in the summer. Peak-to-peak diurnal
fluctuations in the summer data considered range from 20-30 ppm. Short (1-2 week)
upward shifts are apparent in the winter data as observed by Pataki et al. [82].

Figure 4-14 compares data from University and Mauna Loa. As at Harvard Forest,
upward and seasonal trends are present in both and high frequency variability at
University is far greater than that Mauna Loa. In the winter, CO 2 tends to be 10-15
ppm higher than at Mauna Loa, not dissimilar to what is observed at Harvard Forest.
The data at Mauna Loa also appear to lag that at University in a similar manner as
previously observed for Harvard.

Preliminary analysis of correlation between CO 2 from different sites in Salt Lake
suggest higher correlations between sites on north-south than east-west transects,
reflecting the dominant wind direction from the north. We find correlations between
University and each of Residential and Junior High sites to be around 0.7. The
correlation between hourly CO 2 at University and Downtown is approximately 0.5.
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Figure 4-12: Daytime versus nighttime CO 2 variability in Salt Lake City, adapted from Pataki et
al. [82].

Comparisons of CO 2 trends at University with those at Residential and Junior
High support the notion that diurnal trends at these sites will at times be highly
correlated.

4.3 Implications for modeling

Past studies of CO 2 variability and observations from the three sites considered here
all confirm the presence of systematic interannual, seasonal and diurnal trends.

Most interannual variability is captured assuming a constant fraction of emissions
from fossil fuel combustion remains airborne. The growing trend is currently ~2
ppm, and appears to be growing with increasing rates of fossil fuel consumption.
Relatively small deviations occur due to processes that even relatively sophisticated
models have difficulty capturing. Interannual trends are fairly consistent across sites,
although absolute levels may differ because of the interhemispheric gradient.

Seasonal cycles are present, moreso in the Northern Hemisphere, which are due
primarily to terrestrial photosynthesis and respiration. The magnitude of the seasonal
cycle tends to grow larger north of the equator with increasing seasonal changes in
sunlight and vegetation. The seasonal amplitude at Mauna Loa is 5 ppm. The
amplitude in Barrow, Alaska is approximately 15 ppm. Seasonality is minimal south
of the equator, 1 ppm at most. Systematic changes in seasonal amplitude have been
observed at Mauna Loa due to changes in terrestrial sinks and wind patterns.

Diurnal deviations from seasonal trends can be larger in magnitude than the
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Figure 4-13: Atmospheric CO 2 trends at Salt Lake's University site. Top: complete hourly mean

CO 2 time series from University of Utah. Middle: zoom-in to observations between Jan 1, 2004 and

Jan 1, 2006. Bottom: zoom-in to observations between 00:00:00 Jul 3, 1999 and 00:00:00 Jul 17,
1999.
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Figure 4-14: Atmospheric C02 at Salt Lake's University site (black) versus Mauna Loa (blue). Top:
complete hourly mean C02 time series from University of Utah and NOAA. Bottom: the shaded
regions represent the middle 50% of the hourly observations from University site (grey) and Mauna
Loa (blue). These regions were determined by computing the 25 th and 7 5 th percentiles of each for
each month and shading the region between the resulting curves.
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seasonal cycles themselves. Both local, canopy (-1 km) scale processes as well as
advection of regional (1 to 100+ km) air masses affect diurnal variability. Diurnal
trends therefore depend not only on the direct vicinity of the sensor but also upon
the regional context. At Mauna Loa, local influences are minimal except occasionally
at night when downslope winds bring CO 2 emitted from the volcano's summit. At
Harvard Forest, both regional and local influences are important with regional biotic
contributions tending to dominate. Combustion emissions from hundreds of kilome-
ters upwind may contribute 5 ppm enhancements at Harvard Forest in the winter.
In Salt Lake City, diurnal variability is dominated by fossil fuel combustion, but res-
piration does contribute significantly in the summer. The scale of diurnal variability
in Salt Lake is much greater than at Harvard Forest, presumably due to larger scale
emissions.
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Chapter 5

Detrending models for atmospheric

Co2

The previous chapter describes the types of trends observed in atmospheric CO 2 data
and where the trends come from. This chapter uses this knowledge to build several
physical models for detrending atmospheric CO 2 data. A key question is, which
model should be used for detrending? The processes affecting atmospheric CO 2 are
numerous and complex, so it is difficult to objectively know when to stop adding terms
to the model. Deviance information criterion is introduced as a Bayesian method for
choosing between models that avoids overfitting. The method is demonstrated for
the set of models developed in the beginning of the chapter. The final model selected
will be used later in Chapter 7 to detect urban shifts in atmospheric CO 2.

5.1 Developing models

5.1.1 Global emissions

Past data indicate the presence of an increasing trend related to emissions from fossil
fuel combustion. The use of emissions and surrogates for emissions (e.g., exponential
functions [61]) is commonplace in models of atmospheric CO 2. Figure 5-1 illustrates
trends in net emissions and Mauna Loa atmospheric CO 2 data side by side for com-
parison. The shapes of the trends are very similar, supporting the hypothesis that
emissions drive global increases in atmospheric CO 2 over time. If a constant fraction
of emissions remains airborne, then interannual increases in CO 2 can be explained by
a model of the form

COinler(t) CO 2 (to) + f - [E(t) - E(to)] (5.1)

where to is a reference time and t the time of interest, CO 2 is the atmospheric carbon
dioxide concentration, E(t) - E(to) is the net emissions from fossil fuel combustion
since time to, and f is the fraction of the emissions remaining airborne. The unknowns
are the model parameters C0 2 (to) and f. Since the model is linear, ordinary least
squares can be used to estimate the parameters from concentration and emissions
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data. For example, using the annual Mauna Loa data shown in Figure 5-1, least
squares estimates the global mean concentration of CO 2 in 1959 to be approximately
316.5±0.2 ppm, with an emissions contribution of 7.5 x 10-2 0.04 x 10-2 ppm/GtCO2.
The least squares fit is shown in Figure 5-2. From the figure, it is apparent that the

decadal trend in global mean atmospheric CO 2 correlates well with net emissions from
fossil fuel combustion.
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Figure 5-1: Global emissions and atmospheric CO 2. The data on the left come from CDIAC and
represent annual global emissions of CO 2 from fossil fuel combustion. The data on the right are

yearly atmospheric CO 2 data from Mauna Loa.
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CO, (0) = 316.5 ±0.2 ppm
f = 7.5E-02 ± 0.04E-2 ppm/GtCO2,

Figure 5-2: Fitting global emissions to yearly atmospheric CO 2 data at Mauna Loa.

Next, CO 2 data from Harvard Forest were fitted using emissions data from the
1U.S. Energy Information Administration .

1The choice of the new emissions data source reflected the order in which analysis was performed.
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The EIA reports annual global emissions since 1980. For modeling, the data for
each year has been dated to the end of the reported year (i.e., 12:59:00 Dec 31). The
result is a series of annual emissions AE(ti), where i = 1980, 1981, .... Net emissions
E(ti) are obtained by summing the annual emissions, as in E(to) = E7 AE(ts).
Table 5.1 presents the annual and net annual emissions data used here. Assuming
fossil fuel emissions of CO 2 to be relatively constant throughout the year, the net
emissions at some time I has been obtained by linearly interpolating the curve defined
by the E(ti)'s. The result is a curve that accelerates upward in time, as shown in
Figure 5-3. This curve is the basis for the emissions models in the rest of this chapter.

700

600

500

400

300

01
1980 1984 1988 1992 1996 2000 2004 2008

Year

Figure 5-3: Cumulative international fossil fuel emissions since 1980 based on data from the U.S.
Energy Information Administration.

Figure 5-4 depicts the emissions model fit alongside monthly averages of the origi-
nal (hourly) Harvard Forest data. The emissions model is clearly incapable of captur-
ing seasonal fluctuations in the data. Much of the seasonal variation should be due to

Although slight differences do exist between the datasets, this was not a motivating factor in our
choice of emissions data. In future studies, the model choice methods presented later could be used
to objectively choose between two or more sources of emissions data.
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Table 5.1: Fossil fuel emissions data

Date Annual emis- Net emissions
sions (GtCO 2 (GtCO 2 )
yr-1)

31-Dec-80 18.4 18.4
31-Dec-81 18.2 36.6
31-Dec-82 18.1 54.7
31-Dec-83 18.2 73.0
31-Dec-84 19.1 92.1
31-Dec-85 19.5 111.6
31-Dec-86 19.9 131.6
31-Dec-87 20.5 152.0
31-Dec-88 21.2 173.2
31-Dec-89 21.5 194.7
31-Dec-90 21.6 216.3
31-Dec-91 21.5 237.8
31-Dec-92 21.4 259.2
31-Dec-93 21.6 280.9
31-Dec-94 21.8 302.7
31-Dec-95 22.2 324.8
31-Dec-96 22.7 347.5
31-Dec-97 23.1 370.5
31-Dec-98 23.0 393.5
31-Dec-99 23.3 416.9
31-Dec-00 23.8 440.7
31-Dec-01 23.9 464.6
31-Dec-02 24.7 489.3
31-Dec-03 25.9 515.2
31-Dec-04 27.5 542.7
31-Dec-05 28.4 571.1
31-Dec-06 28.9 600.0
31-Dec-07 29.8 629.8
31-Dec-08 30.5 660.3
31-Dec-09 30.4 690.7
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photosynthesis and respiration. These biological processes depend on solar radiation.
The next model considered therefore uses solar radiation to explain seasonal changes
in atmospheric CO2.

1993 1994 1995 1996 1997 1998
387

Emissions Model fE Monthly Average CO2 (ppm)
CO 2 (t) = CO 2 (0) + f -[E(t) - E(0)]

E

Least squares estimates 367
CO,(0) = 362.8 ±0.2 ppm 0

f = 8.6E-02 ±0.1E-2 ppm/GtCO,

347

Figure 5-4: Emissions fit to atmospheric CO 2 data at Harvard Forest.

5.1.2 Solar radiation

The amount of solar radiation reaching the Earth changes seasonally for locations
away from the equator because the Earth is tilted relative to its plane of orbit around
the Sun. The tilt, which is called the declination angle (Z6), varies between ±23.44*
and can be modeled as

2 DayOfYear(t) + 101/o(1) = 23.44* cos 27r5 (5.2)
365

where DayOfYear(t) is the number of days (0-365) elapsed since 00:00:00 Jan 1 of the
year containing time t.

At solar noon, the flux of radiation normal to a point on the Earth's surface
depends on the difference between the declination angle and the angle between the
local normal vector and the equatorial plane, with the latter angle being simply the
latitude of the monitoring site. The difference between these angles is called the
zenith angle. The zenith angle is location dependent, and as already described is
determined as

0""(latitude, t) = latitude - Z6(t) (5.3)

The noontime solar flux SOLRAD(latitude, t) is determined here as

SOLRAD(latitude, t) = I,, -max {0, cos [O(latitude, t)] }, (5.4)

where I,,, ~ 1, 367 Wm-2 is the typical flux of solar radiation reaching the Earth's
outer atmosphere2 throughout the year, and 0"" is the local zenith angle.

The hypothesis is that atmospheric CO 2 is negatively correlated with solar radi-

2 Commonly referred to as the "solar constant".
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ation, so the model is

CO'"""(t) =-Y - SO LRAD(latitude, t) (5.5)

where YR is the yield (ppm/W m- 2 ) of atmospheric CO 2 per flux of solar radiation.

Figure 5-6 plots solar radiation flux reaching the outer atmosphere and atmo-

spheric CO 2 for comparison. There is a clear lag between the decrease in atmospheric

CO 2 and the increase in solar radiation. This lag is likely due to time required for

vegetation to grow. To account for this lag, a lag time can be introduced into the

solar radiation function. The resulting model is

COeas (t) = -YRt- SOLRAD(latitude,t - Tgroth) (5.6)

Since the model is nonlinear, nonlinear least squares is used to estimate the pa-
rameters3 . Figure 5-5 plots the fit to the Harvard data obtained using solar radiation.
The seasonal changes are poorly captured by the model. This is due to asymmetry
in the seasonal trend in atmospheric CO 2, as highlighted in Figure 5-6. The problem

is, the lag shown in the latter figure is not the same in the autumn as in the spring.
It is impossible to accurately capture the seasonal fluctuation in atmospheric CO 2 by

simply shifting the solar radiation curve to the right.

1993 1994 1995 1996 1997 1998
19937

Solar Radiation Model MER
Co2()= CO2( 0)+±f -[Et)-E(0)]

- , -SOLRAD(latitude,r, t)

Least squares estimates u
CO 2 (0)=385.2 ±0.2 ppm
f = 6.9E-02 0.1E-2 ppm/GtCO,_

Y = 2.2E-02 0.1E-2 ppmi/W m-2

r,=36.7 0.1E-2 0.05 Residuals after
detrending w6t

0.04 
Model Wm
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Conclusion: Solar radiation model poorly
0. -20 -10 0 10 20 30
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Figure 5-5: Solar fit to atmospheric CO2 data at Harvard Forest. The model includes both emissions
and solar terms.

3A more careful approach should employ Bayesian estimation; since the goal of this work is

primarily demonstration of ideas, least squares has been used instead as it entails less computational

effort.
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Figure 5-6: Solar radiation and atmospheric CO 2. Seasonal changes in atmospheric CO 2 and solar
radiation are compared. CO 2 lags solar radiation in the spring by a time Trroath related to time
required for biological growth.

5.1.3 Leaf area

An alternative to using solar radiation is to use knowledge of seasonal changes in
biomass to predict C0 2. When atmospheric CO 2 concentration drops in the summer,
it does so because carbon dioxide molecules are being utilized for plant growth. One
place where the CO 2 goes is into leaves. A logical next step in the modeling is to see
how well changes in leaf mass can predict seasonal fluctuations in atmospheric CO 2 .

Some sites, like Harvard Forest, measure a quantity related to leaf mass called
the leaf area index (LAI). Leaf area index is leaf area per unit soil area. Obviously
the greater the LAI, the greater the amount of CO 2 that has been removed from the
atmosphere. A model relating seasonal changes in CO 2 to LAI can thus be conceived
as

CO"as(t) = -Y - LAI(t, aDLM) (5.7)

where YL is the yield (in ppm) of atmospheric CO 2 per unit leaf area index and aDLM
is a vector of five DLM parameters which will be defined shortly.

A dynamic leaf model (DLM) proposed by Dickinson et al. [84] and Liu et al. [42]
has been used to simulate leaf area. The authors used their dynamic leaf model as
a way to obtain smooth leaf area estimates when inverting satellite albedo measure-
ments. Soil moisture and air temperature govern leaf dynamics in the general version
of the model. As Liu et al. point out, air temperature is more important in cold
weather, deciduous environments like Harvard Forest. Since Harvard Forest and Salt
Lake are both situated in colder climates, a simpler version which accounting only
for air temperature was chosen for use.

In the DLM, air temperature (T, in Kelvin) affects leaf growth and abscission in
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a switch-like manner through a Heaviside function 4

R (x) = [1 + exp (-2x)]-1 (5.8)

where x = x(T) is a normalized temperature given by

= Tmin (5.9)
AT

When temperature is low, R is close to zero and leaf decay dominates growth. The
reverse is true at high temperatures, with R providing switch like behavior to the
leaf dynamics. Dickinson et al. [84] note that such leaf area models tend to be prone
to greater uncertainty in the spring and autumn, when leaf area changes most. This
reflects uncertainty in the timing of leaf growth and abscission.

Leaf area index is modeled by

dLA -A (LAI) - LAI (5.10)
dt

where A is the inverse time scale (in days) of leaf growth (negative) or decay (positive).
A is given by

-A (LAI) = Ao {1 + a [1 - R (x)]} - Ao R (x) LAmax) [ - eLAI1 (5.11)N (LAI IJ
Specific leaf loss rate

Specific leaf growth rate

The unknown model parameters are the scaling coefficient YL and the DLM parame-
ters AO, a, LAIma, Tmin (in Kelvin), and AT (in Kelvin). Since the model is nonlinear,
nonlinear least squares is used to estimate all six parameters. Due to the presence
of the differential equation, forward sensitivity analysis is used in the optimization
procedure.

Figure 5-7 shows the dynamic leaf model (DLM) fit to monthly average CO 2 data
from Harvard Forest. The model captures the seasonal fluctuations better than the
solar radiation model did. Figure 5-8 shows the power spectrum of the residuals
from the leaf model. The power spectrum contains no statistically significant peaks
below 10 cycles per year, indicating that all long term and seasonal signals have been
removed by the model.

5.1.4 An extended solar radiation model

While leaf area index does a good job capturing seasonal changes in the data, few sites
measure LAI. The solar radiation model might be considered as a substitute for the
more complex leaf model. The issue with the solar radiation model is that because it is
incapable of capturing the changing lag between solar radiation and atmospheric CO 2
during the year the residuals that result contain a semiannual signal, as highlighted in

4R -+ 0 for large negative x and -+ 1 for the opposite.
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Figure 5-7: Leaf model fit to atmospheric CO 2 data at Harvard Forest. The model includes both
emissions and leaf terms.

the upper plot of Figure 5-9. To remove this semiannual signal, a 6-month harmonic
term can be added to the model. The result is an extended solar radiation model of
the form

CO s"(t) = Y -SOLRAD(latitude, t - Tgrowth)

+ a, sin 4. -DayOfYear(t) + co CO DayOfYear(t) (5.12)
365 365

where DayOfYear(t) is the number of decimal days elapsed since the beginning of the
year to which time t belongs. Adding the 6-month harmonic to the solar radiation
model eliminates the semiannual signal remaining when the solar radiation model is
used to remove seasonality from the Harvard data. This is demonstrated by the lower
plot in Figure 5-9.

The origin of the harmonic term introduced here is complex and site dependent.
Previous studies have used it to explain deviations from emissions predicted trends.
Such deviations have been noted to occur because of changes in transport and upwind
terrestrial exchange [63]. Other reasons have also been hypothesized [61]. Many
studies have used a 6-month sinusoidal term identical to the one used here to model
trends in atmospheric CO 2 [69, 85, 86, 87].
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Figure 5-8: Three Lomb periodograms are shown for, from top to bottom, (1) the raw data, (2) the
residuals obtained by removing emissions driven growth, and (3) the residuals after removing both
emissions and leaf trends. The horizontal dashed lines are thresholds corresponding to 0.1% (top)
and 5% levels of significance.
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Conclusion.
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To remove semiannual signal, we introduce an extra model term:

14.DayOfYear(t) + Cs4r-DayOfYear(t)CO(t) = CO,(0) +...+ a sin4r +a,cos (4
365 ) ~t~365 j

DayOfYear(t) = Day of the year
(0-365 days)

Conclusion.
. Adding the Semiannual Harmonic term el
systematic the 6-month signal that remain!
using the solar radiation model.
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Figure 5-9: Extending the solar radiation model. Not all sites are equipped to measure leaf area.
The idea illustrated in this figure is that the seasonal signal in the original data can be eliminated
by extending the solar radiation model using sine functions. The resulting model is much simpler to
simulate than the leaf model and does not require leaf data for validation. The plots shown are Lomb
periodograms of the residuals from the solar radiation model (top) and for the extended version of
the same model (bottom). The horizontal dashed lines in each plot are thresholds corresponding to
0.1% (top) and 5% levels of significance.
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5.1.5 Slope-intercept

Over short periods of time, the emissions trend can be approximated by a simple
linear trend. Thus, models of the form

COi"le(t) = CO 2 (to) + CO2 - (t - to), (5.13)

where CO' is a new model parameter (with units of ppm/day) representing the aver-
age rate of change in atmospheric C0 2, might also been considered. The suitability
of such a model will depend upon the size of the training window. This type of model
has been used before to model long term trends in CO 2 [69, 85, 87].

5.1.6 Summary of proposed models

Different combinations of the terms just described can be used to formulate different
models for atmospheric CO 2. Any model that is proposed should at minimum include
a term explaining the growing trend in atmospheric CO 2. Over short periods of
time, slope-intercept terms can be used for this purpose; longer periods of time may
necessitate the use of emissions data for describing nonlinear trends in the data. A
seasonal term composed of either leaf model predictions or solar radiation can be
added to either of these growing terms, with the optional addition of a harmonic
term to account for missing low frequency terms. The final models considered here
thus represent the sum of interannual and seasonal components as in

CO 2(t) = COiner(t) + COseas(t) (5.14)

The interannual terms include the slope-intercept (S) model and the emissions (E)
model. Seasonal terms include solar radiation (S), dynamic leaf area index (L), and
the semiannual harmonic term (0) used earlier to extend the solar model. Table 5.2
summarizes the model terms developed earlier.
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Table 5.2: Model terms

Model Expression Notes
S 01 + 62(t - to) Slope-intercept term. Explains interannual

trend as straight line. This type of model has
been used before to explain long term trends in
CO2 [69, 85, 87].

E 61 + 02 [E(t) - E(to)] Cumulative international emissions since Jan
1980. E(t) has been formed by interpolating
E(ti). Annual emissions data was obtained from
the U.S. Energy Information Administration, so
the ti's were dated to 12:59:00 Dec 31 of the re-
ported year and the cumulative emissions value
at the end of the nth year was obtained as
E(tn) = =1 AE(ti). The use of emissions
and surrogates for emissions (e.g., exponential
functions [61]) is commonplace in models of at-
mospheric CO 2.

R -- 3SOLRAD(t - 64) Lagged solar radiation term. By restricting 63
to be positive, the model has been forced to cor-
relate high values of solar radiation with low val-
ues of CO 2. The lag parameter 64 represents the
time required for the acceleration of biological
growth.

L -63LAI(t, 64..68) Dynamic leaf term. Improves on the solar radi-
ation model by correlating CO 2 to leaf mass as
predicted by the dynamic leaf model described
by Dickinson et al. [84] and Liu et al. [42].
The form of the model used here predicts leaf
mass changes with air temperature. This version
of the model applies to cold weather deciduous
forests [42]. Temperature increases have been
cited as a possible reason for observed increases
in amplitudes of seasonal trends in CO 2 [10].
Parameters (64...68) = (Tmin, AT, Ao, Lo, a)

0 The origin of this term is complex and may be
site dependent. Here it is used to remove sys-

690 sin [4,r (t - to) /365] ± tematic signals remaining because of poor fit.
Past studies have linked this type of term to
slow systematic deviations from emissions pre-
dicted trends. Such deviations have been noted
to occur because of changes in transport and
upwind terrestrial exchange [63]. Other reasons
have also been hypothesized [61]. Many previ-
ous studies have used this term to model trends
in atmospheric CO 2 [69, 85, 86, 87].
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Models formed by combining individual interannual and seasonal terms are named by
the letters designating the individual components. For example, the model combining
slope-intercept trend with a dynamic leaf term would be designated "SL". In building
models, each model has been required to have one interannual term, either S or E.
The harmonic term (0) is used to diagnose lack of fit, so the solar radiation and leaf
terms (S and L) have been given higher priority than. A total of ten possible models
are thus entertained: S, E, SR, ER, SL, EL, SRO, ERO, SLO, and ELO. At Mauna
Loa leaf area models are not considered because temperature data are unavailable in
the CO 2 data provided by NOAA, so six models were possible at that site.

5.1.7 Improving the model

Figure 5-10 illustrates the effect improving the model has on the distribution of the
residuals at Harvard Forest. As the model is improved, the distribution narrows
slightly. This reflects the model's ability to capture systematic growing and seasonal
trends in the data. Significant variability remains in the residuals because of diurnal
variability.

MID Emissions+ solar didtion t hau nic
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0 IUJ9 01AM1B4 01RM90 0tI01

0.03 model

0.02
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0
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- The residuals decrease as the model

improves.
- There is still substantial variability due

to diurnal trends.

Figure 5-10: The effect of improving the detrending model is shown for hourly CO2 data from
Harvard Forest. The figures on the left are least squares fits obtained using emissions, solar radiation,
and extended solar radiation models. The distributions of the residuals are compared on the right.

While for shift detection decreasing the variance of the residuals is desirable be-
cause it increases the signal to noise ratio, there is nothing to stop an operator from
adding terms to the model until it fits the data perfectly. The next section introduces
the deviance information criterion (DIC) as a way to avoid overfitting.
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5.2 Choosing a model

We used three measures to examine model performante and choose the best model
for each observation site. The metrics used included:

" Sum of squared residuals (RSS).

" Akaike's information criterion (AIC).

" Deviance information criterion (DIC).

Choosing the model that minimizes the sum of squared residuals leads to overfitting.
AIC avoids overfitting by penalizing excessive numbers of parameters in the models
proposed, but is based on the frequentist assumption that parameters are exact. DIC
is a Bayesian alternative that is much easier to compute than Bayes factors but
accounts for uncertainty in the parameters. As defined in the following discussion,
the best model is the one that minimizes AIC or DIC.

The procedure we followed for choosing the best model was as follows. First,
we divided the data into two sets, a training set ylb and a validation set ys. (We
employed a cross-validation approach to model selection.) The training and validation
data sets used for Mauna Loa, Harvard Forest and the University of Utah site were
defined using the dates found in Table 5.3.

Table 5.3: Definitions of training and validation data sets

Training set (Si) Validation set (S2)
Site Start End Start End

Mauna Loa 1-Jan-1993 31-Dec-1995 1-Jan-1996 31-Dec-1998
Harvard Forest 1-Jan-1993 31-Dec-1995 1-Jan-1996 31-Dec-1998

Utah 1-Jan-2002 31-Dec-2004 1-Jan-2005 31-Dec-2007

Ordinary least squares parameters were estimated for each model using the train-
ing set S1. Because the dynamic leaf model (L) does not have an analytical solution
the forward sensitivity methods with numerical integration of the ODEs to obtain
gradients and Hessians for optimization. At this point, the mean 0 and covariance EiJ
of the parameters were available. The residuals were assumed to be independent and
Gaussian with time-independent variance &2 obtained as the sample variance of the
residuals:

nSi

b obs

whee i thnuber o s (5.15

where ns' is the number of observations in the training set. Now everything is set
for the model to be tested against the validation data. The RSS was obtained as

nS2
obs

RSS = S [yj,2 07 - M(0,t ] 2  (5.16)
j=1
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Akaike's information criterion was obtained using RSS from above and computing

AIC = 2k + nob in RSS (5.17)

where k is the number of parameters in the model being considered and nS2 is the
number of observations in the validation set.

The deviance information criterion is given by

DIC = D(O) + 2PD (5.18)

where D() is the "Bayesian deviance", a measure of fit, and PD is a measure of the
effective number of parameters in the model. DIC thus represents a tradeoff between
goodness-of-fit and complexity [31].

Calculating DIC is slightly more involved. It requires drawing random samples
from the posterior distribution of Blyg,, which in our case is already determined as
N(O, E). (The actual posterior distribution may be nonnormal. We are assuming
it can be approximated by a normal distribution.) We used the following steps to
obtain values for DIC.

1. Choose the number of random trajectories to build. Call it n.,im.

2. For i = 1..nsim:

" Draw a random sample 00) from the multivariate normal distribution hav-
ing mean 6 and covariance matrix t.

* Simulate the model forward in time to obtain predicted values ySed for
the validation data set.

* Calculate the sum of squared residuals for the validation data given O) as

S2nobs

RSS(i) = >Z [vy - M(0) tj)]2 (5.19)
j=1

* Calculate the log-likelihood of the validation set's observations given the
random parameter value O) as

Sn [f(yi0())] = nS2 ln RSS (5.20)

* Calculate the adjusted mean deviance as

-2n 2
D -n f-(y2 $)m

1 f(5.21)

-2nS in + -SSR)
27ro.2 ) .2
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where
1 im

SSRW = SSR(') (5.22)
nsim =

" Calculate the adjusted deviance given the mean value 0. This can be
obtained easily since RSS was already computed earlier. We first compute
the log-likelihood, which is given by

1_I S RSS)
nf(y|)] =n ln( ) 2U2 (5.23)

The deviance of the mean is then obtained by multiplying by -2, so that

D () = -2 In f (y .|1)

1_ RSS (5.24)= -ni S2n 1 + RS
os 27&2 ,2

" The DIC can now be obtained as

DIC = 2D - D(O)

= 72S 2 In (1I +±2RSS(i) - RSS (5.25)
os 27&2 &2

5.3 Training and validation results

The models described above were trained to the data from Mauna Loa, Harvard Forest
and Salt Lake using (nonlinear) least squares. The parameter estimates are given in
Table 5.4. After training the parameters, the validation data sets defined earlier were
used to rank the models. The results, which can be found in Table 5.5, support
the simpler extended radiation based model (SRO) over its relatively more complex
dynamic leaf model counterparts. The majority of the variance in the residuals is
coming from diurnal fluctuations which neither model can capture, so it makes sense
the simpler model should prevail.

Figure 5-11 illustrates the ability of Model SRO to capture seasonal variability
at Mauna Loa, Harvard Forest, and University. The extended solar radiation model
provides good fits to the seasonal changes in the data.
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Figure 5-11: Performance of the extended solar radiation model. Nonlinear least squares fits are
shown (red line) for training data from Mauna Loa, Harvard Forest and Salt Lake. Monthly averages
of the original data are plotted for comparison.
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Table 5.4: Least squares parameter estimates

Mauna Loa

Model 01 02 03 04 05 06 07 08 09 010 02

S 356.7±0.03 0.0034±0.0000 5.7
E 356.7i0.03 0.0570±0.0008 5.7

SR 375.0±0.07 0.0048±0.0000 0.015±0.000 125.4±0.2 1.5
ER 375.0i0.07 0.0800±0.0004 0.015±0.000 125.4A0.2 1.5

SRO 377.0±0.05 0.0050±0.0000 0.017±0.000 115.0±0.1 -0.2±0.0 1.5±0.0 0.6
ERO 377.0±0.05 0.0842±0.0003 0.017±0.000 115.0±0.1 -0.2±0.0 1.5±0.0 0.6

Harvard Forest

Model 01 02 03 04 05 06 07 08 09 010 02

S 360.3±0.2 0.0084±0.0003 118.1
E 360.3±0.2 0.1396±0.0046 118.1

SR 383.1±0.4 0.0060±0.0003 0.021±0.000 31.8±0.8 96.0
ER 383.2±0.4 0.0997±0.0043 0.021±0.000 31.8±0.8 96.0
SL 366.4±0.2 0.0072±0.0002 2.057±0.365 281.0±1.4 4.6±0.7 0.037±0.004 7.4±1.3 6.4±2.6 88.8
EL 366.6±0.2 0.1269±0.0041 2.073±0.398 280.7±1.3 4.6±0.7 0.035±0.004 7.4±1.5 6.9±2.7 88.9

SRO 379.5±0.4 0.0070±0.0002 0.018±0.000 33.3±0.8 -3.7±0.1 -1.2±0.1 89.2
ERO 379.5±0.4 0.1173±0.0042 0.018±0.000 33.4±0.8 -3.7±0.1 -1.2±0.1 89.2
SLO 366.5±0.2 0.0069±0.0002 2.129±0.469 280.8±1.6 4.8±0.8 0.041±0.006 7.1±1.6 5.9±2.7 -0.3±0.2 0.5±0.2 88.7
ELO 366.0±0.2 0.1262±0.0041 1.966±0.402 280.8±1.3 4.1±0.6 0.044±0.006 7.2±1.5 6.9±2.8 -0.4±0.2 0.7±0.2 88.7

Utah

Model 01 02 03 04 05 06 07 08 09 0io U
2

S 393.1±0.3 0.0051±0.0005 549.1
E 393.1±0.3 0.0719±0.0066 549.1

SR 441.4±0.5 0.0079±0.0004 0.050±0.000 21.6±0.6 386.6
ER 441.5±0.5 0.1109±0.0058 0.050±0.000 21.6±0.6 386.6
SL 408.0±0.4 0.0083±0.0005 3.992±0.707 275.5±0.7 4.5±0.6 0.091±0.010 7.1±1.2 2.0±0.5 374.9
EL 407.6±0.4 0.1399±0.0057 3.585±0.580 275.6±0.7 4.7±0.5 0.087±0.007 8.0±1.3 2.6±0.7 375.4

SRO 439.3±0.5 0.0080±0.0004 0.048±0.000 23.3±0.6 0.3±0.2 6.4±0.2 366.9
ERO 439.4±0.5 0.1125±0.0057 0.048±0.000 23.3±0.6 0.3±0.2 6.4±0.2 366.8
SLO 401.7±0.3 0.0097±0.0004 4.424±0.600 281.8±2.3 7.2±0.8 0.085±0.007 8.0±1.0 7.5±3.9 7.0±0.2 11.7±0.2 378.4
ELO 400.7±0.3 0.1463±0.0057 3.986±0.767 281.4±2.1 5.5±0.7 0.086±0.008 7.8±1.5 8.5±4.4 6.6±0.2 11.4±0.2 379.7

a Least squares estimates are given as means ± one standard deviation. a2 is the sample variance of the least squares residuals from the Training
data set described previously.



Table 5.5: Model validation results

Mauna Loa

No. parameters Training result (Si) Validation results (S2)
Model k n(S2) RSS AIC DICobs

S 2 2.39 24,528 2.053E+05 3.OOOE+05 1.236E+05
E 2 2.39 24,528 1.974E+05 2.991E+05 1.225E+05

SR 4 1.24 24,528 4.574E+04 2.632E+05 8.546E+04
ER 4 1.24 24,528 4.458E+04 2.626E+05 8.466E+04

SRO 6 0.80 24,528 2.413E+04 2.475E+05 7.196E+04
ERO 6 0.80 24,528 2.478E+04 2.482E+05 7.317E+04

Harvard Forest

No. parameters Training result (S1) Validation results (S2)
Model k a n(S2 RSS AIC DICobs

E 2 10.87 21,630 2.949E+06 3.222E+05 1.681E+05
E 2 10.87 21,630 2.990E+06 3.225E+05 1.684E+05

SR 4 9.80 21,630 2.OOOE+06 3.138E+05 1.594E+05
ER 4 9.80 21,630 2.017E+06 3.140E+[05 1.596E+05
SL 8 9.42 21,630 2.009E+06 3.139E+05 1.609E+05
EL 8 9.43 21,630 2.187E+06 3.158E+05 1.632E+05

SRO 6 9.44 21,630 1.894E+06 3.127E+05 1.582E+05
ERO 6 9.44 21,630 1.918E+06 3.129E+05 1.584E+05
SLO 10 9.42 21,630 1.938E+06 3.132E+05 1.607E+05
ELO 10 9.42 21,630 2.146E+06 3.154E+05 1.618E+05

Utah

No. parameters Training result (S1) Validation results (S2)
Model k - n RSS AIC DICobs

S 2 23.43 25,433 1.105E+07 4.125E+05 2.274E+05
E 2 23.43 25,433 1.111E+07 4.126E+05 2.274E+05

SR 4 19.66 25,433 8.833E+06 4.068E+05 2.211E+05
ER 4 19.66 25,433 9.022E+06 4.073E+05 2.217E+05
SL 8 19.36 25,433 1.284E+07 4.163E+05 2.155E+05
EL 8 19.38 25,433 9.015E+06 4.073E+05 2.319E+05

SRO 6 19.15 25,433 8.676E+06 4.063E+05 2.206E+05
ERO 6 19.15 25,433 8.870E+06 4.069E+05 2.211E+05
SLO 10 19.45 25,433 1.352E+07 4.176E+05 2.190E+05
ELO 10 19.49 25,433 1.044E+07 4.111E+05 2.325E+05

a DIC values are based on 100 random simulations. For clarification, & is the standard deviation of
the residuals obtained from detrending the observations in the training step.

128



Chapter 6

Quantifying uncertainties at
Mauna Loa, Harvard and Utah

The detection problem requires us to consider shifts in fnture observations before any
data has been collected. This requires us to make some prediction - a forecast - about
the values the observations will take in the near future and then to wait and see
whether the values that are eventually observed coincide with our predictions. Were
instruments perfect and nature predictable, this would be a simple problem. The
dilemma is that instruments are always imprecise and nature unpredictable, so that
uncertainty must be entertained. This section is aimed at developing a better under-
standing of where this uncertainty is coming from, what sources are most important,
and what can be done to reduce it.

6.1 Observational uncertainty

Observational uncertainty is due to averaging of sub-hourly trends and instrumental
error. To give an idea of the scales of uncertainty contributed by natural variability
versus measurement imprecision, Figure 6-1 compares the hourly sample standard
deviations s2 for Mauna Loa, Harvard Forest, and the University site in the Salt Lake
CO 2 network. All three site maintain well calibrated instruments with similar preci-
sions. Any differences are therefore expected to arise from high frequency fluctuations
driven by local sources and sinks. This expectation seems to be supported, with the
sample variances at Utah being larger than those Harvard, which in turn are larger
than those at Mauna Loa. In the pristine conditions of Mauna Loa, the sub-hourly
samples typically vary about the mean with a standard deviation of -0.04-1.16 ppm
(with these number being the 2.5 and 97.5 percentiles of the standard deviations).
The mean of the standard deviations from Mauna Loa was 0.28 ppm. In contrast, the
the same percentiles of the standard deviatons from the University of Utah represent
a range of 0.17-13.39 ppm, with a mean of 2.81 ppm. The bottom plot in Figure
6-1 suggests that the samples appear to be more variable in the winter than in the
summer at the University of Utah. The reason this occurs is most likely due to the
fact that atmospheric mixing tends to be more vigorous in the summertime because

129



4.5

-4
A.

0- 3.5

C
03

2.5

2 1.5

0.5

0'-
Jan01 JanO2 JanO3 Jan04 JanO5 JanO6 JanO7 Jan08 JanO9 Jan10

Date

-I
Jan99

Date

JanO5 JanOS Jan07 Jan08 Jan09 Jan10
Date

Figure 6-1: Natural variability versus measurement imprecision: contributions to observational un-
certainty. Shown are hourly sample standard deviations of sub-hourly CO 2 measurements from
Mauna Loa (top), Harvard Forest (middle), and the University of Utah (bottom). Atmospheric
CO2 measurements were typically made 4 times per hour at Mauna Loa by NOAA and 12 times per
hour at Harvard Forest and the University of Utah. At Mauna Loa, NOAA reported the standard
deviations associated with the hourly means. These were converted to sample standard deviations
by multiplying by the square root of the number of samples considered per hour, which in this case
was a factor of V4 = 2. The other two sites report sample standard deviations of the sub-hourly ob-
servations. The connection between the standard deviation of an hourly mean value and the sample
standard deviation of the sub-hourly measurements used to compute the mean can be understood
by taking the square roots of the left and right sides of (2.7). Special thanks go to Bill Munger, who
made the standard deviation data from Harvard Forest available.
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of sunlight driven thermal instabilities in the air near the surface. The greater degree
of sub-hourly variability in the wintertime could come from two places. First, because
the boundary layer tends to be relatively stable, CO 2 concentrations may be changing
smoothly from hour to hour. Second, plumes emitted by local sources will tend to
remain more coherent in the atmosphere and will create shifts in the signal being
measured as they are advected across the sensor. Table 6.1 gives statistics for the
sample standard deviations from Mauna Loa and University of Utah. We calculated
wintertime (October-March) and summertime (April-September) statistics separately
to determine if seasonality appears to be significant at the two sites. To appreciate

Table 6.1: Statistics for sample standard deviations of sub-hourly CO 2 observations

Mauna Loa
Season 2.5'h Percentile Mean 9 7 .5th Percentile
Global 0.04 0.28 1.16

Summer 0.04 0.30 1.26
Winter 0.04 0.25 1.04

Harvard Forest
Season 2.5th Percentile Mean 97.5th Percentile
Global 0.06 0.78 3.44

Summer 0.10 1.05 4.28
Winter 0.05 0.46 2.02

University of Utah
Season 2.5th Percentile Mean 97.5th Percentile
Global 0.17 2.81 13.4

Summer 0.15 1.84 7.19
Winter 0.23 3.75 17.1

the effect location has on observational uncertainty, Figure 6-2 shows how the stan-
dard deviations associated with the hourly mean values at Mauna Loa and University
of Utah evolve as the number of sub-hourly measurements being averaged grows. For
each site, two curves are shown. One curve represents the standard deviations ob-
tained if summertime measurements are considered. The second gives the same for
wintertime measurements. All of the curves have been calculated by dividing the
mean values in Table 6.1 by the square root of the number of samples being averaged

(navg). The basis for doing this can be seen by taking the square roots of the left and
right sides of equation (2.7). Figure 6-2 illustrates a few points. First, note that by
sampling more frequently the uncertainty associated with the observation process can
be reduced. Second, at a site like University of Utah, improving the precision of the
sensor is unlikely to make much of a difference since we presume the majority of the
uncertainty is coming from variability of atmospheric CO 2 crossing the sensor during
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Figure 6-2: Evolution of uncertainty associated with hourly mean CO 2 at Mauna Loa, Harvard
Forest, and University of Utah. Six curves are shown, two for each site. Curves for Mauna Loa
are shown as solid black lines, for Harvard Forest as dotted green lines, and those for University
of Utah as dashed blue lines. For each site, the summertime results are marked by diamonds and
the wintertime results are marked by open circles. Each curve has been calculated as the 9 7 .5th
percentile value for the respective site and season tabulated in Table 6.1 divided by the square root
of the number of samples recorded per hour (nag). The reason we used the 9 7 .5th percentile instead
of the mean value was to capture the extreme cases where the sub-hourly samples are most variable.
To give an idea of the measurement frequencies in place at actual sites, Mauna Loa typically records
4 samples per hour and the other sites typically record 12 per hour. The curves shown measure
the uncertainty associated with the hourly means. They can be interpreted as follows. Suppose
samples are recorded at a rate of 12 per hour at a pristine location like Mauna Loa. The standard
deviation of the hourly means will be less than roughly 0.4 ppm about 97.5 percent of the time.
The standard error of the hourly mean is 1.96 times this value, or roughly 0.8 ppm. Therefore, if
the sample mean from a given hour is 390 ppm, the true mean value from that hour should lie in
the confidence interval 390±0.8 ppm. Sampling at the same rate but in a dirty location like the
University of Utah the uncertainty we might expect the spread of the confidence interval to depend
on the season. In the summer, the sample standard deviation is roughly 2 ppm, which translates
into a confidence interval of approximately 390±4 ppm. In the winter, the standard deviation is
roughly 5 ppm, which translates into a confidence interval of approximately 390±10 ppm.
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the course of a given hour and not from imprecision or drift of the instrumental cali-
bration. If this sub-hourly varaibility is random with respect to time, then sampling
more times per hour should reduce the uncertainty associated with the hourly mean.
If the variability is systematic, however, then sampling more frequently will lead to
overoptimistic statements about the variance of the hourly mean and a better way to
proceed would be to fit the sub-hourly measurements to a line and use the variance of
the straight-line prediction as the variance of the hourly mean. At a pristine site like
Mauna Loa, it is still unclear what fraction of the variability is due to the instrument,
since we have considered measurements the site curators usually reject because of the
influence of local sources and sinks. For all of these reasons, it is difficult to come
to a strong conclusion about how to reduce observational uncertainty for any of the
sites under consideration. The best we can do is to use values from the curves in
Figure 6-2 and hope that sub-hourly variability is mostly random so that the values
obtained are representative of the actual uncertainty in the hourly means from those
sites.

6.2 Misfit uncertainty

The contribution from model misfit is captured in part by the residuals. Part of the
variability in the residuals is due to observation error, since the model errors are given
by

E (t) = M s(t) +Eob, (t) (6.1)
Model error Misfit error

As we will see, observation error is negligible compared to the residuals at Harvard
and Utah, so the variance of the residuals can be used to approximate the variance
of misfit errors at these sites. At Mauna Loa the same is not true, but to keep things
simple we use residual variance as a surrogate for misfit error.

Table 6.2 lists the standard deviations of the least squares residuals obtained
using models S and SRO at Mauna Loa, Harvard Forest and the University of Utah.
We expect two trends to be present in the standard deviations. First, as diurnal
fluctuations in the hourly means increase in magnitude - that is, as we move from
pristine conditions at Mauna Loa to "dirtier" conditions at Harvard Forest and Utah
- the residuals should tend to increase, implying greater misfit uncertainty. Second,
as the model is improved by adding a seasonal predictive capability the residuals
should decrease. We expect the gain from improved modeling to be less significant
at Utah, where the variability is presumably dominated by urban emissions and not
biology, than at Mauna Loa and Harvard Forest, for which the seasonal component
is relatively more important.
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Table 6.2: Scales of misfit uncertainty

Residual standard deviation (ppm)a
Site Interannualb Seasonalb

Mauna Loa 2.39 0.80
Harvard Forest 10.87 9.44

University of Utah 23.43 19.15
a The residuals were obtained by subtracting the least

squares best fit trajectory for models S (interannual)
and SRO (seasonal) from the training data.

We notice a few things in Table 6.1. First, the diurnal fluctuations at Mauna Loa
are presumably small (they would probably be smaller yet if we rejected samples af-
fected by local sources and sinks), so the majority of the 2.39 ppm standard deviation
of the observations around the linear trend is most likely coming from seasonality.
This is qualitatively confirmed by the large reduction in the residuals after seasonal-
ity is accounted for by model SRO. At Harvard Forest, seasonality is strong but we
expect diurnal fluctuations to be stronger. Still, the leaf area model may not be doing
a good job fitting the seasonal trend. To test this, we generated the power spectra
of the residuals from the linear and seasonal models already described. The results
are shown in Figure 6-3. Figure 6-3 tells us a few things. First, the observations
exhibit strong annual and diurnal signals. Second, the residuals are still seasonal
after removal of a linear trend. Third, it suggests that at least qualitatively the ma-
jority of the seasonality is removed by adding the solar radiation and oceanic terms.
The surprising thing is that the standard deviation of the residuals only decreases
from 10.87 to 9.44 ppm. Even after removing the seasonal trend, the residuals are
still much more variable at Harvard Forest than at Mauna Loa. Based on the power
spectra in Figure 6-3, the logical explanation for this is the strong diurnal fluctua-
tions present at Harvard Forest, which we expect are largely absent from the Mauna
Loa data. Therefore, we suspect diurnal variability at dirty sites like Harvard
Forest and Utah represents a significant contribution to misfit uncertainty
when the model only accounts for seasonality and we might think about
reducing misfit uncertainty by somehow removing diurnal fluctuations be-
fore testing for a shift. There are different ways to reduce diurnal variability. We
can improve the model, for example by adding correlative terms linking fluctuations
in CO 2 with fluctuations in carbon monoxide and carbon and oxygen isotopes. An
analogous approach is to use signals from highly correlated, upwind sensors to explain
fluctuations in readings from the sensor of interest. Finally, if all else fails one can ap-
ply a heuristic filter like a simple moving average. Each of these possible alternatives
are considered next.

Smoothing the observations with a T-day moving average.
Here we consider the use of simple moving averages to reduce the diurnal signal that
is present at sites like Harvard Forest and Utah. A T-day moving average entails
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Figure 6-3: The impact of modeling seasonality on the harmonic content of the residuals. Power
spectra of residuals obtained after subtracting interannual (top and middle left, model S) and leaf-
model based seasonal (bottom and middle right, model SRO) trends from the Harvard Forest training
data. The plots in the middle zoom in on the low frequency signals. Initially, both annual and a
semiannual signals are present. Model SRO removes the annual signal and most of the semiannual
signal from the observations. The power spectra were determined using 103 random samples from
the least squares residuals. Because the data are unevenly spaced in time, the power spectra were
calculated using Lomb's method. The dashed lines mark the power thresholds asociated with 0.05
and 0.001 significance levels.
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forming a window containing samples within tT/2 days to either side of the time
of interest and then averaging the samples in the window using an equation like 2.2.
Figure 6-4 illustrates the effect of applying such a filter to hourly means from Harvard
Forest, which is to reduce the variability of the hourly values about the modeled trend.
The downside is that in situ CO 2 series are plagued by frequent gaps, so that the
number of representative smoothed values tends to decrease with increasing window
size. Figure 6-5 shows the effect of applying a one day moving average to hourly mean
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Figure 6-4: Applying moving average filters smoothens the hourly observations from Harvard Forest.
The original hourly means are shown in blue, the hourly filtered values in red, and the green line is
the best fit from model SL employing the dynamic leaf model of Liu et. al [42]. Filtered values have
been obtained by applying T-day moving windows about the hours of interest. Top: 1-day moving
average. Bottom: 4-day moving average. Only moving averages for which at least 50% of the hourly
means were available are plotted.

CO 2 observations from Harvard Forest. As we can see, the diurnal signal is eliminated
to the level of the noise. Time series methods like moving averages are not the most
ideal way to reduce the diurnal signal. The reason for this is that they are devoid
of any physics. While the correlative models will no doubt tend to oversimplify
the processes contributing to diurnal fluctuations in C0 2, they do have a physical
basis and can take in real data to inform future expectations. Nonetheless, it is still
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filter. Lomb periodograms were computed because of uneven spacing of the data in time. Six years
of data were considered including dates considered were Jan 1, 1993 through Dec 31, 1998.
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interesting to see what impact smoothing has on forecast uncertainty. Smoothing
affects two of the three error terms contributing to the forecast: observational and
misfit errors. We expect observational uncertainty to increase because, as before with
the case of hourly averages, representing the true signal as a T-day mean by averaging
implies error due to the presence of the systematic diurnal signal the average is meant
to eliminate. Averaging is not all bad though. The advantage is the reason why we
are thinking about averaging in the first place, which is to reduce the misfit between
the observations and seasonal model trajectories (as illustrated in Figure 6-4.)

Table 6.3: Effect of smoothing on observational uncertainty

Stdeva(ppm)

T (days) Globalb Summerb Winterb
0C 0.99 1.24 0.58
1 2.95 3.35 1.65
2 2.02 2.21 1.22
4 1.40 1.48 0.93
7 1.03 1.08 0.70

a T-day moving average filter was applied to the data.
Only windows with 50% of original hourly means
available were considered. Numbers are based on
observations between Jan 1993 and Dec 1998 from
Harvard Forest. Standard deviations determined
as 9 7 .5 th percentile of the T-day window sample
standard deviations, divided by the square root of
the number of hourly observations being considered
(which is 24 -T + 1).

b Global = both summer and winter, Summer = Apr-
Sep, and Winter = Oct-Mar.

c Standard deviations represent uncertainty in un-
smoothed hourly mean observations. Values are
representative ones obtained by dividing the appro-
priate standard deviations from Table 6.1 by v1_2
since Harvard Forest typically measures 12 samples
per hour.
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Table 6.4: Effect of smoothing on misfit uncertainty

Stdeva(ppm)
T (days) Globab Summerb Winter

0 9.44 10.43 7.73
1 9.13 10.39 6.86
2 8.79 9.77 7.03
4 9.17 10.04 7.44
7 9.79 10.62 7.98

a T-day moving averages were applied to the hourly
mean CO 2 observations in the Harvard Forest trai-
ing data set. The same data was used to train model
SRO. Standard deviations were determined as the
square roots of sample variances of the smoothed
hourly values minus the least squares fit of SRO
to the original hourly means. Distinct subsets of
the resulting difference series were used to generate
standard deviations to better appreciate the impact
of smoothing on misfit in different seasons (Sum-
mer, Winter or Global which is both Summer and
Winter). Only windows with 50% of original hourly
means available were considered.

b Global = both summer and winter, Summer = Apr-
Sep, and Winter = Oct-Mar.

Correlating diurnal fluctuations with upwind CO 2 series
Figure 6-6 below compares CO 2 observed at Residential and Junior High sites in Salt
Lake to the University site. The dominant wind direction is from the north and the
sites are roughly aligned from north to south. University is the northernmost site,
with Residential being about 5 km to the south and Junior High about 10 km to
the south. We therefore expect concentrations at Residential and Junior High to
be correlated with some lag time related to the time required for advection. Because
Junior High is farther from University, we also expect the diurnal fluctuations present
in its observations to be less correlated with University's than those at Residential.
Several points are highlighted by the figure. First, note that the seasonal fitted trends
line up with what we expect. That is, the fitted values at Residential and Junior
High are greater than those for University, reflecting the fact that air traveling from
University to the other sites encounters urban emissions along the way. Second, note
that the afternoon minima tend to align quite well - both in time and in magnitude -
probably due to enhanced vertical mixing. Third, in the morning and at night, the air
is CO 2 rich. Fourth, during the window of time considered in the figure, the nighttime
peaks in CO 2 tend to be higher at Residential and Junior High than at University.
This relates back to the first point. Fifth, the timing of the diurnal increase and
decline appears to be similar at the three sites. Finally, note that the nighttime
peaks at Junior High, which is the southernmost point, tend to be much higher than
those at Residential. There are several nights however where the nighttime peak at
Junior High is visibly closer to that at University than the peak at Residential is.
This reason for this is somewhat of a mystery.
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Figure 6-6: Comparing C 2 series along a 10 km north-south transect of Salt Lake City, Utah. Top:
Hourly meanC b2 observations from University (open blue circles) and Residential (black crosses)
sites. The least squares trajectories obtained by fitting model SRO to a training set consisting of
dates from Jan 1, 2005 through Dec 31, 2007 are shown in red, with University being the dotted line
and Residential the dashed line. Bottom: same as in the top figure, but with data from Junior High
replacing the data from Residential. Dates shown in both plots are 00:00:00 Jun 17 to 00:00:00 Jul
8, 2005.

To improve our ability to detect, the ideal neighboring sensor(s) must exhibit diur-
nal fluctuations that are highly correlated with the ones at the location of ipterest but
should also be devoid of the leak signal. The time series in Figure 6-6 often exhibit
similar timing. However, a simple correlation model will fail to predict the magnitude
of the difference between two series like the ones from University and Residential. It
is possible that atmospheric mixing plays a role, but there may also be times when
a highly local source like a stationary automobile leads to large divergences from the
CO 2 baseline. In such cases, measurements such as carbon monoxide concentration
at the location of interest could help differentiate automobile emissions from emis-
sions due to leakage by accounting for the fact that automobile emissions will tend
to increase CO concentration as well as CO2 concentration. Meteorological measure-
ments such as the Monin-Obhukov stability parameter and wind direction may prove
useful for explaining changes associated with boundary layer dynamics and advective
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transport. Finally, we note that when considering placing neighbor sensors in the
field, one should account for the natural correlation structure of atmospheric CO 2.
In desiging a network to detect a leak from a geological storage site, a second length
scale also becomes important, which is the expected footprint of a leak. Leakage over
a large area could mean a sensor meant to act as an upwind sensor exhibits the leak
signal just like the candidate sensor, so that in subtracting the neighbor-based trend
we may remove some or all of the leak signal we are trying to detect. This spatial
aspect of the network design problem merits further attention.

6.3 Forward uncertainty

Forward uncertainty arises when uncertain inputs and model parameters are passed
through a model to obtain predictions. Figure 6-7 illustrates the impact parametric
uncertainty has on model predictions. Because the parameters we consider are time
invariant, the figure was generated by taking random samples from the posterior
distribution obtained by training the models using the Training data set to obtain
least squares values. The posterior distributions are multivariate normal densities
with mean 0 and covariance matrix E obtained by ordinary least squares estimation.
It is apparent from the figure that the scale of the forward variability is far less than
that due to model misfit for the forecast window considered. Longer forecasts will
entail more uncertainty, which is readily apparent from the standard deviation plots
in the figure. Additionally, the forecast uncertainty decreases as we add information
to the model.
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Figure 6-7: Uncertainty in forward simulations. From the top as follows. First and third axes plot
100 random forward model SRO trajectories (red curve) alongside hourly means (blue circles) for
Harvard Forest and University of Utah, respectively. Second and fourth axes plot the evolution of
the standard deviations of the random trajectories in time. Each random trajectory is based on a
random draw from the multivariate normal posterior density defined by the least squares estimate
and covariance matrix obtained using the usual Training data set.
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6.4 Forecast uncertainty

Figure 6-8 is a stacked plot illustrating the effect of model, location, and smoothing
on the variance associateed with our forecasts. It is readily apparent that forecast and
observational uncertainty are negligible. The biggest concern is by far the uncertainty
due to misfit, which in this case arises because of diurnal fluctuations that cannot be
captured using sesasonal trends.

Forecast uncertainty
700

Observation Misfit Forward

. 6 00 --------------------------------------------------------- ------ ----------------- -------- -------------

200 ----------------------------------------------------------- -------------------------------------- -------------

1u 00 ----------------------------------------------- ---------- ------- I-------- -------------.1 00----- -------- - - - - - - - - - -

200

MLO HF UT MLO HF UT MLO HF UT

S SRO SRO + SMOOTH

Figure 6-8: Forecast uncertainty. Shown are variances associated with forecasts. The overall forecast
variance is broken into its individual contributors: observation, misfit and forward variances. Nine
cases are considered. These are labeled along the horizontal axis. The nine cases are broken down
into three subsets, one for model S, one for model SRO, and one for model SRO plus smoothed
(1-day moving average) observations. These cases illustrate the effect of improving the model and
smoothing the hourly observations to eliminate diurnal trends. In each of these cases, we determined
variances for observations, misfit, and forward uncertainties. These were determined as follows.
Observational variances were determined in the manner described earlier on a site-wise basis and
assuming 12 samples per hour. Misfit variance was determined as the sample variance of the least
squares residuals obtained by fitting the appropriate Training data set. Finally, forward variance
was determined as the maximum value attained by the standard deviation of the random trajectories
in the Validation data set.

6.5 Conclusions

The seasonal models' inability to capture diurnal variability in the observations is
the biggest contributor to the overall uncertainty in future atmospheric CO 2 levels.
Smoothing the observations by applying moving average filters with widths of at least
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T = 1 day can help reduce misfit errors. The biggest downside to using simple filters is
that they cannot account for changes in the physical system. A better approach would
be to improve the model by adding correlative terms linking diurnal fluctuations in

CO 2 at the location of interest to changes in CO 2 at upwind sensors as well as to
ancillary variables such as CO concentration, carbon and oxygen isotopic abundances,
wind direction, atmospheric mixing (via the Monin-Obhukov length), and others. A
worthwhile next step would be to screen new candidate model terms using model
selection criteria like RSS, AIC and DIC, which were presented earlier. In deciding
where to place sensors in the field, the correlation structure of atmospheric CO 2
should be accounted for as well as the expected leak footprint. This spatial aspect of
the network design problem merits further attention.

In conclusion, improving our ability to detect a shift in atmospheric

CO 2 observations from a given sensor will require methods for coping
with diurnal variability. The spatial aspect of the design problem merits
attention.
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Chapter 7

Detecting urban weekend weekday
shifts

One of the challenges facing future monitoring sites will be demonstrating the ability
to detect leaks before any leaks have occurred. This chapter illustrates how this can
be done using the urban weekend weekday effect on CO 2 as an analogue for leakage
from belowground.

7.1 Urban weekend weekday effects on CO 2

The hypothesis is that during the workweek, increased human activity leads to greater
emissions of CO 2 than on the weekend. If this hypothesis is correct, then atmospheric
CO 2 concentrations should be higher on weekdays than on weekends. This difference
can be tested for in the absence of shifts associated with leaks.

7.1.1 Differences observed in Salt Lake City, Utah

Figure 7-1 compares weekend and weekday diurnal trends in atmospheric CO 2 at
the University site in Salt Lake City. An upward shift is discernible in the morning.
This is to be expected since in the morning rush hour often coincides with a stable
atmospheric boundary layer.

The idea used in this chapter is to look for shifts in the distribution of the data.
This is illustrated in Figure 7-2, which plots interquartile ranges for the data instead
of mean confidence intervals. The challenge is distinguishing shifts given the high
degree of overlap often present between distributions on weekdays and weekends.

Figure 7-3 depicts interquartile ranges by month of the year. Upward shifts are
generally more noticeable in the morning. Large shifts are observed in some summer
months and winter months. Larger shifts are expected in the winter, when sunlight
is weak and the atmosphere relatively stable. The large shifts in the summer might
reflect biological respiration present to a lesser degree in the winter.
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Figure 7-1: Comparison of mean diurnal atmospheric CO 2 trajectories on weekends (red) and weekdays (blue) during
the month of October, 2006, at the University site in Salt Lake City, Utah. Sample means and 95% errors bars are
given by hour of day. Error bars associated with the sample mean have been computed using 2.28 at the a =0.05
level of significance. This figure was adapted from McKain and Wofsy [88].
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Figure 7-2: Comparison of interquartile ranges of diurnal atmospheric CO2 trajectories on weekends (red) and week-
days (blue) during the month of October, 2006, at the University site in Salt Lake City, Utah. The interquartile
ranges represent the 2 5 th-7 5 th percentiles of the original hourly averages. Conceptually, this figure illustrates a shift
in the distribution of atmospheric CO 2 from weekends to weekdays for each hour of the day.
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Figure 7-3: Changes in weekend weekday diurnal
ranges are shown for weekend (red) and weekday
University site in Salt Lake City, UT, during year
described in the caption of Figure 7-2.

CO 2 trends with month of year. Interquartile
(blue) data by month and hour of day for the
2009. Interquartile ranges were constructed as
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7.1.2 Basic analysis of weekend weekday differences at Mauna
Loa, Harvard Forest and Salt Lake

Table 7.1 explores the effects of season and time of day on the size of the shift present
in atmospheric CO 2 through statistics for weekend and weekday CO 2 residuals1 at
Mauna Loa, Harvard Forest and the University of Utah. Biological effects are ex-
pected to be less important in the winter (for example, see the respiration term in
Figure 4-11). Weekend weekday CO 2 shifts have been observed to be bigger in the
morning than the afternoon [91, 90]. Differences due to timing and season are illus-
trated by statistics for intersections of the Winter/Summer and AM/PM sets.

The last column in Table 7.1 gives the signal to noise ratio of the shift, as described
in (3.3). The signal to noise ratio measures the ease with which the weekend weekday
shift in atmospheric CO 2 should be detectable.

The signal to noise ratios of the weekend weekday shift is generally small at both
Mauna Loa and Harvard Forest. At Harvard Forest, it increases to ~0.15 in the
winter. At the University site, the signal to noise ratio is relatively large throughout
the year. The magnitudes of the signal to noise ratios tend to be larger at that site
than the other two. We expect the weekend weekday shift to be more easily detected
at this site than the other two. This makes sense considering University is located in
a city, whereas the other two sites are relatively far from urban effects.

The samples of most interest are those in the "Winter AM" subset. Because the
samples come from cold months, biological effects are expected to be small. The inter-
est in the morning rather than afternoon reflects the expectation that morning rush
hour coupled with poor mixing should lead to high levels of CO 2 . This expectation
seems reasonable, given that Winter Mon-Fri residuals have a mean of 7.05 ± 0.479
ppm in the morning versus -10.39 ± 0.328 in the afternoon2

The Winter AM shift at Utah is +7.86 ppm3 . The 95% confidence intervals4

for the weekend and weekday residuals are -0.81 t 1.35 ppm and 7.05 ± 0.96 ppm,
respectively. A positive weekend weekday shift is clearly present in Salt Lake City,
Utah.

The Winter AM shift at Harvard Forest is +1.13 ppm. The 95% confidence
intervals for the weekend and weekday residuals are -1.59±0.32 ppm and -0.46±0.22
ppm, respectively, which leads us to believe a positive weekend weekday shift may
also be present at Harvard Forest.

The Winter AM shift at Mauna Loa is +0.019 ppm. The 95% confidence intervals
for the weekend and weekday residuals are -0.027 ± 0.036 ppm and -0.008 ± 0.024
ppm. The weekend weekday shift is not statistically significant, as expected given

'The residuals have been obtained by detrending using model SRO. The method traditionally
employed for this sort of problem is to compute confidence intervals for sample means and detect
a shift when they do not overlap. (For example, this is the method presumably used by Idso et al.
[89].) The approach in this chapter is conceptually similar to the one presented by Cerveny and
Coakley [90], which is to consider shifts from a gradual seasonal trend. As we have seen, detrending
reduces the autocorrelation and therefore the probability of false alarm.

2The numbers given are mean ± one standard deviation.
30btained as the difference in Mon-Fri and Sat-Sun means, 7.81 ppm -(-0.81) ppm.
4 These are given as mean ± 2x(standard deviation).
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Mauna Loa observatory's remote location.
The above discussion suggests the a shift is not detectable at Mauna Loa, and

that a bigger shift is detectable at the urban University of Utah site than the rural
Harvard Forest site. The signal to noise ratios in Table 7.1 support this trend. The
signal to noise ratios of the weekend weekday shift are greatest (on winter mornings)
for Utah (0.278), smaller for Harvard Forest (0.144), and near zero for Mauna Loa
(0.027).

It is interesting to think about what would happen if all times were included. The
relatively smaller signal to noise ratios obtained when considering all times suggest
including all residuals in the analysis means diluting the shift we are looking for,
hampering the ability to detect the shift by including residuals that are not sensitive
to shifts in urban emissions.
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7.1.3 The need for a Bayesian detection method

Comparisons based on 95% confidence intervals assume the residuals are normally
distributed. Figure 7-4 compares the weekend and weekday distributions for the
residuals from each site against normal distributions. It is clear the CO 2 residuals
(and hence forecasts) are non-Gaussian. This conclusion is confirmed by normality
tests. The chi-square, Lilliefors, and Jarque-Bera tests outlined in Section 2.8.3 all
reject normality of the Winter AM residuals from the sites considered at the 0.1% level
of significance. Standard detection methods provide poor control of false positive rates
when forecast uncertainties are non-Gaussian. The next section therefore introduces
a Bayesian approach to detection that can handle non-Gaussian distributions.

Mauna Loa

-4 -3 -2 -1 0 1 2 3

Co2 (ppm)

Figure 7-4: Comparison of residual
red).

Harvard Forest
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0 50
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distributions from Model SRO (blue) with Gaussian fits (dashed

7.2 Shift detection using Bayes factors

The previous section demonstrated the need for Bayesian methods capable of han-
dling non-Gaussian uncertainties. The concept behind the method introduced in this
section was introduced earlier in Figure 2-5. The idea is to detect a shift in the distri-
bution of the data. Figure 7-5 illustrates how this idea applies to detecting weekend
weekday shifts in atmospheric CO 2.

7.2.1 Bayes' theorem and Bayes factors

The challenge is assessing which distribution to believe in given new data. The
discrete version of Bayes' theorem provides a statistically sound basis for addressing
this problem. The theorem was introduced earlier in (2.39). It is repeated here with



Table 7.1: Weekend weekday CO 2 shift statistics

Mauna Loa

Subset nobs Mean (ppm) Stdev of residuals Stdev of mean Shift SNRC
(ppm) (ppm)

Sat-Sun 15,912 -0.110 0.906 0.007
All Mon-Fri 33,392 -0.062 0.890 0.005 0.054

Sat-Sun 8,021 -0.090 1.020 0.011
Summer Mon-Fri 16,764 -0.029 0.989 0.008 0.061

Sat-Sun 7,891 -0.130 0.773 0.009
Winter Mon-Fri 16,628 -0.094 0.777 0.006 0.046

Sat-Sun 1,679 0.089 0.889 0.022
Summer AM Mon-Fri 3,749 0.171 0.856 0.014 0.094

Sat-Sun 1,647 -0.027 0.725 0.018
Winter AM Mon-Fri 3,699 -0.008 0.701 0.012 0.027

Sat-Sun 1,672 0.310 0.878 0.021
Summer PM Mon-Fri 3,652 0.305 0.888 0.015 -0.005

Sat-Sun 1,648 0.035 0.710 0.017
Winter PM Mon-Fri 3,631 0.077 0.703 0.012 0.060

Harvard Forest

Subset nobs Mean (ppm) Stdev of residuals Stdev of mean Shift SNRC
(ppm) (ppm)

Sat-Sun 21,466 -2.369 9.400 0.064
All Mon-Fri 50,626 -1.905 9.847 0.044 0.048

Sat-Sun 12,088 -2.775 10.639 0.097
Summer Mon-Fri 28,671 -2.860 10.864 0.064 -0.008

Sat-Sun 9,378 -1.847 7.476 0.077
Winter Mon-Fri 21,955 -0.658 8.169 0.055 0.152

Sat-Sun 3,005 -3.379 9.727 0.177
Summer AM Mon-Fri 6,929 -3.599 9.538 0.115 -0.023

Sat-Sun 2,275 -1.588 7.637 0.160
Winter AM Mon-Fri 5,339 -0.459 8.046 0.110 0.144

Sat-Sun 3,035 -10.848 7.801 0.142
Summer PM Mon-Fri 7,300 -11.269 7.859 0.092 -0.054

Sat-Sun 2,369 -3.656 7.073 0.145
Winter PM Mon-Fri 5,415 -2.626 7.809 0.106 0.138

Utah

Subset nobs Mean (ppm) Stdev of residuals Stdev of mean Shift SNRC
(ppm) (ppm) b

Sat-Sun 15,758 -4.97 18.07 0.144
All Mon-Fri 34,609 -2.07 18.73 0.101 0.158

Sat-Sun 7,718 -3.02 8.34 0.095
Summer Mon-Fri 17,100 -1.34 9.52 0.073 0.188

Sat-Sun 8,040 -6.85 23.80 0.265
Winter Mon-Fri 17,509 -2.78 24.57 0.186 0.168

Sat-Sun 1,614 0.36 8.84 0.220
Summer AM Mon-Fri 3,537 5.89 11.83 0.199 0.529

Sat-Sun 1,674 -0.81 27.69 0.677
Winter AM Mon-Fri 3,649 7.05 28.95 0.479 0.278

Sat-Sun 1,598 -9.56 4.68 0.117
Summer PM Mon-Fri 3,557 -8.17 4.91 0.082 0.290

Sat-Sun 1,675 -14.00 18.82 0.460
Winter PM Mon-Fri 3,642 -10.39 19.81 0.328 0.187

a Winter = Oct-Mar, Summer=Apr-Sep, AM 6-10am, PM = 12-4pm.
b Calculated in the usual way, as Stdev of residuals divided by square root of nobs.
C Defined as (wkday mean - wkend mean)/(0.5*var of res for wkend + 0.5*var of res for wkday). See (3.3).
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Figure 7-5: Concept for Bayesian detection of weekend weekday shifts in CO 2. The curves shown
represent the distributions of the data before and after the shift (that is, on weekends and weekdays).
The challenge is assessing which distribution to believe in given new data.
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slightly different notation appropriate for the shift detection problem:

P(Hily) ff(yIHi)P(Hi) 0 if y comes from Saturday or Sunday, and
f(y) 1 otherwise.

(7.1)
P(Hi) is the prior probability the new data being observed comes from a weekend or
weekday. Bayes' theorem updates the prior probability after new data (y) is observed.
The new probability is the posterior P(Hily). The bigger the probability associated
with a model, the more likely it is to be the target model. f(y), the density of the
data marginalized over the models, is independent of the hypothesis of interest and
thus can be ignored. The data enter through the likelihood f(y|Hi), which is the
predictive density function of the data associated with hypothesis H. The cartoon
density functions in Figure 7-5 illustrate the likelihoods for the weekend and weekday
hypotheses. Given an observation, the values implied for each of the competing
densities are what enter Bayes' theorem.

The posterior odds in favor of He is defined as the ratio of posterior probabilities

P(HoIy) f(yIHo)P(Ho)
P(HI|y) f(yIHI)P(Hi)

The ratio of the predictive densities is called the Bayes factor

_f (y|H0 )
BF = (7.3)

f(y|H1 )

which is just a ratio of predictive densities. When the researcher prefers neither
hypothesis over the other a priori, then the posterior odds ratio is equivalent to the
Bayes factor:

P(HOIy)= BF (7.4)
P(H|y)

Thus, the Bayes factor conveys information about which hypothesis is preferred, given
the new data y. Combined with prior odds (P(HO)/P(H1)), the Bayes factor enables
the evaluation of the posterior odds in favor of HO.

Evaluating the Bayes factor requires evaluating predictive densities (see Appendix
A). This requires integrating over the distributions of the parameters and hyperpa-
rameters affecting forecasted values of y. For sake of example, suppose the model
parameters, observation errors, and misfit errors are all Gaussian and independent of
time, so

0 ~ N(,V ),

6obs (t) ~ N(0, O2S), and (7.5)

6m (t) ~ N(0ok 7 )
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where oab and or are themselves uncertain according to

U-0s, ~ N(ao, al) and
om ~ N(bo, b).(

The a's and b's are hypothesis-dependent hyperparameters dictating the scale of the
observational and misfit errors. In this case evaluating the predictive density for Hi
requires evaluation of the integral

f f(yO, ao, ai, bo, bi, Ho)7r(O, ao, a, bo, bi IHo)dOdaodaidbodbi
f f(y0, ao, ai, bo, bi, H1)7r(, ao, a1, bo, b1|H1)dOdaodaidbodb1

Forward and observational uncertainties were demonstrateed earlier to be negligible
compared to misfit uncertainty. Therefore 0 can be treated as if it were known
exactly (with value 0 obtained from ordinary least squares) known and it is safe to
assume ao = 0 and ai = 0 so that observational uncertainty drops out. The only
parameters we need to worry about are bo and bi, which characterize the uncertainty
in the residuals. Since thousands of residuals are used to formulate the weekend and
weekday distributions in this chapter, these parameters might be treated as if they
were exact. These assumptions simplify (7.7) to

f(yO, Ho)BF = '~~,i (7.8)
f (yle, H1)

Thus, the Bayes factor simplifies to a traditional likelihood ratio.
This motivates the following conceptual procedure.

1. The detrending parameters are estimated by ordinary least squares, resulting
in a site specific value 6.

2. This value is used to detrend observations, resulting in residuals e.

3. Two subsets of the residuals are created, one including weekend values and the
other weekday values.

" The weekend subset defines the population of weekend model errors, with
associated predictive density f(yl1, HO).

" The weekday subset defines the population of weekday model errors, with
associated predictive density f(y 0, H1).

4. The posterior odds after observing new data, Yobs, is updated by the Bayes
factor obtained by inserting the new data into (7.8).

Two types of predictive distributions are considered:

e Empirical density. The empirical density function is close to the actual distri-
bution of the residuals. The empirical densities used here are based on kernel
density estimators.
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* Normal density. These are Gaussian approximations to the true distribution,
which based on the normality test results described earlier are different from
the actual distribution at the 0.001 level of significance.

The next section gives a more detailed algorithm for analysis based on Bayes
factors computed as explained above.

7.2.2 Bayesian detection algorithm

The procedure is as follows:

1. Distributions. Because the algorithm is Bayesian, the densities f(ylO', Hi) could
take any form supported by the residuals. We considered two possible forms.
The first was a normal fit to the residuals. The second was a Gaussian kernel
density estimator. Sample means and variances are sufficient to characterize
normal fits. Kernel density estimators can be obtained in MATLAB using the
ksdensity function.

2. Resampling. Two ensembles of random trajectories are generated by resampling
the null and alternative densities f(Y|O66) and f(Y|O6). The null ensemble is a
set of nobs, x 1 vectors {Y6 , 2) Ynim)}. The alternative ensemble was a

similar set of n, x 1 vectors {y , y, . y6 "}. To simplify our notation,
we denote each of these ensembles as Yi= {y9} where i denotes the ensemble
for hypothesis Hi (i = 0, 1), j denotes the jth value in a given trajectory (j =

1, 2, ... , nos), and k denotes the kth trajectory in the ensemble (k = 1, 2, ... , nsim).
nrim was set to 10,000. The number of observations can be varied to simulate
different sized detection windows.

3. Bayes factors. The samples are assumed independent, so the Bayes factor for
trajectory k generated under hypothesis H can be computed according to

nobs (k),

BF J f(yij1 0, H-) (7.9)
=1f (yj 10', H1)

To avoid numerical problems, the log Bayes factor was first generated and then
exponentiated to arrive at the desired Bayes factor. Therefore,

~ nobs

BFk) =exp [lnf(y 6,Ho) - log f (y |01, Hi) (7.10)
.j=1

The result was two ensembles of Bayes factors. The null ensemble is BF'), ... , BF(nim)

The alternative ensemble is BFf'), ..., BF(*nim). We represent these ensembles
as BF(Y) to highlight the dependence on the observational ensemble Yi.

4. Probabilities. We specified the prior weights for HO and H1 as wo = wi = 0.5.
Thus, the decision criterion is a maximum a posteriori (MAP) criterion, which
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chooses HO if the value of the Bayes factor is greater than 1, and chooses Hi
otherwise. Probabilities are then obtained as follows:

Detection probability

Pd = Prob (BF (y) < I|Hi) = No. of BF's in BF(Y) less than or equal to 1

nsim

(7.11)

False alarm probability

Pfa = Prob (BF (y) < 1IIJo) = No. of BF's in BF(Y) less than or equal to 1

nsim

(7.12)

The procedure outlined above is illustrated in Figure 7-6. A key idea is the fact that
as the number of samples available increases, the null and alternative Bayes factor
distributions become more distinct. This fact, illustrated in Figure 7-7, is what
enables us to attain the same detection rate at reduced frequencies of false alarm.
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Density functions: f(BF(Y))

Figure 7-6: Illustration of the Bayesian detection algorithm.
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7.2.3 Results for Harvard Forest and Salt Lake

We used the algorithm described in Sections 7.2 and 7.2.2 to determine how many
samples (N) would be required to detect the weekend weekday shifts at Harvard
Forest and Utah at the 0.05 level of significance. This section describes the findings.
The analysis was restricted to winter months (Oct-Mar) between 6 a.m. and 10 a.m.
in the morning. The detrending model used was SRO, which has the form

c(t) - 01+0 2 (t-tO)+03 SOLRAD(t-0 4 )+09 cos[47r(t-to)/365] +-010 sin[4-F(t-to)/365]
(7.13)

The parameter estimates 6 were obtained using ordinary least squares, considering
the Training data sets defined in Table 5.3. The parameter estimates for Harvard
Forest and University of Utah are provided in Table 7.2.

Table 7.2: Least squares parameter estimates for model SRO

Site 01 02 03 04 09 010
Harvard 379.5+0.4 0.0070+0.0002 0.018±0.000 33.3±0.8 -3.7±0.1 -1.2±0.1

0.0080±0.0004 0.048±0.000

Residuals were obtained by considering six years of hourly mean atmospheric
CO 2 data from Salt Lake's University site and twelve years5 from Harvard Forest. At
Harvard Forest, there were 2,275 weekend and 5,339 weekday samples available. At
Utah there were 1,674 and 3,649 of the same, respectively.

Detecion results were obtained using both normal and empirical densities to test
the robustness of the algorithm to the normality assumption

The following figure depicts the weekend and weekday predictive densities (for
residuals) at Harvard Forest and University. The densities conform with what we
expet in that they appear to be non-Gaussian. There are slight upward shifts in the
residuals from weekends to weekdays at both sites, with the shift at Utah being more
obvious. These are presumably due to changes in urban emissions.

5More years were used at Harvard Forest to improve the ability to detect the smaller shift expected
there.
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Utah 439.3±0.5 23.3i0.6 0.3±0.2 6.4+0.2
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Figure 7-8: The weekend weekday shift at Harvard Forest and University of Utah. The curves shown are kernel
density fits to weekend (blue) and weekday (red) residuals obtained by detrending the Training data set for each
site using the least squares estimates for model SRO.
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Earlier analysis based on Table 7.1 showed that the mean shift size is roughly
+1.13 ppm at Harvard Forest and +7.86 ppm at the University of Utah. The shifts
are positive, supporting the hypothesis that increased activity during the week is
leading to increased fossil fuel emissions. The signal to noise ratio of the weekend
weekday shift is bigger at Utah than Harvard Forest, in accord with expectations
that the signal at the semi-rural Harvard Forest site be weaker than at the urban
University site. This is despite much larger diurnal deviations at Utah due to urban
emissions.

The weekend weekday urban CO 2 shift detection results are summarized in Tables
7.3 and Figure 7-9. Time to detection was computed as the number of samples
required to reduce the false alarm rate' to below 5%.

The results suggest time to detection is sensitive to the distribution assumed for
the residuals (empirical versus normal). Thus, results based on empirical distribu-
tions should be considered. The shift at Harvard is detectable at the 0.05 level of
significance in 120-240 samples. The shift at Utah is detectable at the 0.05 level of
significance in 48-120 samples, fewer samples as expected given the bigger signal to
noise ratio at that site. If samples are recorded hourly, at least 2 days at Utah and
5 days of data at Harvard Forest should be considered to detect at the 0.05 level of
significance.

Table 7.3: Time to detection at University

6The false alarm rate associated with MAP-based (maximum a posteriori based) detection.

Normal Empirical
No. samples Pf a Pd Pf a Pd

12 0.3100 0.6780 0.2740 0.7440
24 0.2440 0.7460 0.2010 0.8330
48 0.1590 0.8280 0.1050 0.9100
120 0.0610 0.9250 0.0200 0.9890
240 0.0120 0.9800 0.0010 0.9970
480 0.0000 0.9990 0.0000 1.0000
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Figure 7-9: Probabilities of detection and false alarm for the weekend weekday shift at Harvard
Forest and University of Utah. In each figure, the curves shown are the results from 103 simulations
of trajectories with 12, 24, 48, 120, and 480 samples from either normal (left) or empirical (right)
densities. The kernel densities alluded to are the ones shown in Figure 7-8.
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Table 7.4: Time to detection at Harvard Forest

Normal Empirical
No. samples Pf a Pd Pf a Pd

12 0.330 0.588 0.314 0.637
24 0.324 0.605 0.225 0.677
48 0.252 0.702 0.177 0.761
120 0.168 0.794 0.057 0.877
240 0.096 0.89 0.024 0.944
480 0.035 0.96 0.002 0.989

7.3 Lessons from Phoenix, AZ

The urban effect on atmospheric CO 2 has been considered previously. One set of
studies began in the late 1990's in Phoenix, Arizona [89, 91, 92]. The intensive
measurements conducted in the Phoenix studies established the presence of an urban
CO 2 "dome", a plume of greatly enhanced atmospheric CO 2, generated by fossil fuel
combustion in the city.

7.3.1 Variability in the Phoenix CO 2 dome

Idso et al. [89] improved on an earlier study by the same authors by making addi-
tional measurements of atmospheric CO 2 along four transects in and around Phoenix.
Measurements were made at two meters above the surface and at one mile intervals.
Two transects passed directly through the city center, and two traveled the city
perimeter. Each day for two weeks, runs were initiated at Sam and 2pm. The data
enable several observations: (1) atmospheric CO 2 varies greatly in residential areas,
with differences of ~ O(70ppm) present in the transects traversing the city perimeter.
(2) Greater variability is observed on the transects cutting through the city center,
with concentrations - O(140ppm) higher in the city center than the surroundings.
(3) Morning-afternoon differences as large as ~O(70ppm) were observed with morn-
ing concentrations typically higher, highlighting the importance of diurnal variability
and vertical mixing. (4) The authors note increased mean concentrations on weekdays
compared to weekends near the city center.

Idso et al. [91] followed by making using high frequency (one minute average),
continuous in situ CO 2 measurements from two meters height in a residential backyard
roughly 20 km southeast of the city center. The high frequency, continuous data
enabled the authors to focus on the times of day when the atmospheric CO 2 signal
was most sensitive to urban emissions. The diurnal trend in winter was observed to
differ from that in the summer, with both early morning and late evening peaks in
the winter but only early morning peaks in the summer. The authors estimated that
the urban signal in the city center was ~O(250ppm) and still - O(120ppm) as far as
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20 km away. As in their previous study, Idso et al. noted increased atmospheric CO 2
on weekdays over weekends, but in addition they were able to highlight the times of
day when the shift would be easiest to detect. In the summer, they conclude that the
weekend weekday shift is at most 22.0 ppm at 7:09am, with the mean difference being
positive between 4:15 and 8:30am. In the winter, they conclude that the weekend
weekday shift is at most 35.9 ppm at 7:47am, with the mean difference being positive
between 4:45 and 10:45am. Although the authors did not discuss it, the later peak
shift time in the winter is interesting because of the possible role of daylight savings.

Koerner and Klopatek [92] generated bottom-up estimates of CO 2 emissions in
Phoenix and found that roughly 80% of emissions were attributable to vehicles and
the remainder were primarily due to soil respiration. In total, they estimate total
annual emissions were roughly - 93Mg/yr in 1997.

7.3.2 Estimating the weekend weekday emissions shift in Phoenix,
Arizona

According to the 1990 United States Census Bureau metropolitan area predictions
used by Koerner and Klopatek [93], the population of Phoenix, AZ, was forecasted to
be 3.013 million in 1999 while that of Salt Lake City was forecasted to be just 1.275
million. Phoenix's population in 1990 was approximately 2.238 million. Interpolation
of the Census Bureau data predicts Phoenix's population to have been roughly 2.238+
7/9.(3.013-2.238) ~ 2.8 million people in 1997. Using the vehicle emissions estimates
obtained by Koerner and Klopatek, this implies per capita vehicle emissions of 67.7
MtCO 2yr 1 /2.8 million people ~ 24 tonnes CO 2yr-' per person.

To check that this makes sense, assume the typical gas tank holds about 100 kg
of gasoline (25 gallons x 4 kg per gallon) and that gasoline is three times lighter than
CO 2 (the latter based on the ratio of molecular weights of CO 2 to CH 2.) Then 24,000
kg CO 2 works out to 8,000 kg of gasoline or 80 trips to the gas pump. This means
each person is refilling their gas tank every 4-5 days, which seems reasonable.

Next, consider the shifts detected by Idso et al. [91]. They detect shifts on the
order of 20-35 ppm at a site 20 km away from an estimated urban peak signal of 250
ppm.

Judging by the map provided by Koerner and Klopatek, the Phoenix metropolitan
area was ~800 km 2 at the time of the study. This means a mean vehicular flux
of 6,770x104 tCO2 yr 1 /800km 2 or roughly 80 ktCO 2 km 2 yr-'. This is the average
for the entire year. However, assuming a linear relationship between atmospheric
concentration and vehicular flux, taking 80% of 20-35 ppm (= 16 to 28 ppm) to
represent the weekend weekday shift in atmospheric CO 2 due to traffic, and taking
80% of 250 ppm (= 200 ppm) to be the peak urban plume concentration in the
absence of sources other than traffic during the week when traffic is greatest, we can
solve for the weekend and weekday fluxes of CO 2 by solving the following system of
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equations:

2 5 2
Fwkend+ Fwkday =80 ktCO 2km yr

7 7 (7.14)Fwkaay 200 ppm

Fkend 200 - Ay ppm

where Ay denotes the magnitude of the weekend weekday shift in CO 2 concentra-
tion in ppm. Thus, using the summer-derived shift of 16 ppm, we obtain Fwkend =

75.3 and Fwkda, = 81.9, so the 16 ppm shift translates into a flux change of +6.6
ktCO2km- yr- 1 . Using the larger shift value of 28 ppm associated with the winter
yields Fwkend = 71.7 and Fwkda, = 83.3 for a flux change of +11.6 ktCO2km-yr-1 .
Thus, the weekend weekday "flux" (resulting from increased emissions during the
week) in Phoenix is -10 ktCO 2km- 2yr- 1.

7.3.3 Extrapolating to Salt Lake City, Utah

What size shift can we expect to observe in Salt Lake City, UT? Let us assume that
per capita vehicular emissions are the same in Salt Lake and Phoenix, which based on
the numbers already presented is roughly 24,000 kgCO 2yr-1 per person. According to
the U.S. Census Bureau's latest statistics on metropolitan and micropolitan areas [94],
the population of Salt Lake City is estimated to have grown from about 0.97 million
in 2000 to 1.13 million people in 2009. Furthermore, Salt Lake City is contained in a
valley that is roughly 10km wide x 30km long, giving a total land area of about 300
km 2. Vehicular fluxes can be obtained by taking the population value, multiplying
the result by 24,000 kgCO 2yr-1 per person, and dividing by 300 km 2 . This predicts
an annual vehicular flux in Salt Lake that grows as the population increases from
77.6 to 90.4 kgCO 2km-2yr 1 between 2000 and 2009, respectively. Even though the
population of Salt Lake City is much smaller than that of Phoenix, the vehicular
fluxes are of similar magnitude because Salt Lake City's population is contained in a
much smaller area.

We expect the magnitude of the weekend-weekday shift in CO 2 emissions to be
comparable to that in Phoenix, - 10 ktCO2km-2yr- . Barring any major differences
in transport, this should translate into similarly large enhancements in ambient CO 2
levels. It is therefore expected that (1) the CO 2 plume in Salt Lake City should have
a peak of the similar order of magnitude (0(300) ppm) to the one in Phoenix [91]
and (2) that weekend weekday shifts in atmospheric CO 2 should also be of similar
magnitude (0(30) ppm).

At first glance, the first of the expectations for atmospheric CO 2 appears to be
met - concentrations between 500 and 700 ppm are routinely observed in urban Salt
Lake city. Concentration at the rural site tend to be less extreme, only reaching up
to ~450 ppm. The second hypothesis is less obvious. Figure 7-3 gives 24-hour plots
of hourly mean atmospheric CO 2 at the University site in Salt Lake City. The figure
suggests the presence of upward shifts in CO 2 in some, but not all, months and that
the shift should be more significant in the morning when atmospheric mixing is weak
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but emissions from rush hour traffic are substantial.

7.4 Implications for leak detection for geological
sequestration

The earlier comparison between Phoenix and Salt Lake City suggests the urban
weekend weekday shift detected at Utah is the result of a "flux" of ~ 0(0.01)
MtCO 2km-2yr-'. The biggest scale sequestration projects today like Sleipner in-
ject O(1) MtCO 2yr-1 belowground. Thus, it should be possible to detect a 1%
leak rate7 occurring over 1 km 2, simply by removing the seasonal signal from atmo-
spheric CO 2 concentrations downwind of the source and testing the residuals for an
upward mean shift. Detecting the shift will become difficult the farther the sensor is
from the leak, as illustrated through the Harvard Forest example. Detecting leakage
of smaller magnitude or over larger areas will decrease the signal to noise ratio, and
may require improving models to explain higher frequency, diurnal effects.

7Defined as 1% of the amount stored per year.
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Chapter 8

Procedure for detecting shifts in

Co2

The issues and analysis presented in the previous chapters suggest the following pro-
cedure for monitoring at new sites. First, baseline data are collected and models for
the data proposed. The data are split into two subsets. A training subset is used to
estimate model parameters. The estimates are then used on the validation data set
with a model selection procedure such as DIC to select the best model. The posterior
uncertainty in the detrending parameters and the scale of variability in the residu-
als determine uncertainty in future CO 2 data. The weekend weekday shift detection
approach can be applied to artificial shifts in the data to determine how much data
needs to be collected to detect shifts associated with future leaks at the desired level
of significance. If a single sensor is being used to monitor, then the number of data
samples (N) required to detect and the sampling interval (NAt) dictate the size of
the window to use to analyze for shifts.

Figure 8-1 gives a flow chart for the procedure. The researcher sets a false alarm
rate (a) and chooses a model (M). Simulations of hypothetical leaks from the reser-
voir can be used to provide worst-case scenario estimates of CO 2 shifts Ay; due to
uncertainty in subsurface and atmospheric transport, the shift arriving at the sensor
will be uncertain and can be characterized by a density function f(Ay). The model's
ability to predict past data determines the scale of the model errors (EM + Eobs); un-
certainty in the parameters adds uncertainty to the forecast through the detrending
model (Etheta). The forecast uncertainty, uncertainty about the size shift arriving in
the future (f(Ay)) and the false alarm rate selected by the researcher will determine
the window size (T) used to analyze the data for shifts. Once a window size has
been chosen, new observations for the next T days are gathered. These are tested
for a shift. If no shift exists, then the observations are added to the baseline and the
current time is stepped forward, awaiting the next T days' observations. Otherwise
a shift exists, and steps should be taken to perform remediation. As time progresses,
the processes affecting the observations may change.
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Chapter 9

Conclusions

9.1 The leak detection problem

Carbon capture and sequestration has been proposed as a way to remove CO 2 from
the atmosphere by injecting it into deep saline aquifers. It is important to ensure that
the CO 2 remains underground and does not leak into the atmosphere. Monitoring
and verification are needed for detection and mitigation of potential leaks. A standard
set of tools for monitoring and verifying leaks to the atmosphere does not yet exist.
Important questions remain unanswered. For example, what is the smallest leak
detectable? And how much time is needed to detect a leak?

The ultimate goal for monitoring and verification at geological sequestration sites
is determining when a leak occurs and how its magnitude evolves over time. Many
measurement techniques exist for inferring sources and sinks of CO 2 . Eddy covariance
is useful when the leak occurs within a small footprint of the sensor. Atmospheric dis-
persion methods are useful for inferring fluxes farther upwind based on perturbations
in downwind concentrations. The basic problem is estimating these perturbations.

The most basic form of the leak detection problem is to detect and estimate
upward shifts in CO 2 concentration time series like the Keeling curve. The solution
is complicated because CO 2 varies widely in time and space. Predictive models can
help by enabling forecasts conditioned on knowledge of past trends. When a new
set of observations differs from such a forecast, a leak may be suspected. Mean shift
detection methods can be used to determine if a shift has occurred. If a shift has
occurred, then the population can be alerted and the source mitigated.

The leak detection problem is a mean shift detection problem. Mean shifts arise
under many different names in the literature 123], including observational inhomo-
geneities, change points, and regime shifts. Homogenization is the practice of de-
tecting and then correcting for artificial shifts in time series and is commonly used
in climate science. Regime shift detection methods arise in finance, economics and
ecology where there is interest in issues such as the onset of economic recession and
changes in population dynamics. The changes being sought out can be mean shifts,
shifts in variance, changes in harmonic content, or structural changes in the system
governing the observations [24]. Statistical approaches to detection are useful because
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forecasts are uncertain. Imperfect instrumental calibration, averaging, and complex-
ity of the physical system imply predictions of future CO 2 will always be prone to
error. This error implies uncertainty about future observations. The challenge is
therefore detecting a shift from an uncertain quantity.

Not all statistical mean shift detection methods are applicable to the leak detection
problem. Some of the issues are:

9 The time when a leak arises is unknown, so the time at which CO 2 shifts upward
(t,) is unknown.

o The magnitude of the CO 2 shift we are looking for (Ay) is unknown.

o The model errors may not be Gaussian.

o The model errors may be correlated.

o Gaps are typically present in the data.

Some of the most familiar detection methods, including heuristics like RSS, signif-
icance tests like Student's t-test, and likelihood based tests, are poorly suited for
detecting leaks from geological storage because they are unable to provide a sound
basis for detecting shifts at unknown times. Information theoretic and Bayesian meth-
ods are preferable because they provide a statistically sound basis for detecting shifts
at unknown times and are capable of handling non-Gaussian model errors.

Classical methods like the t-test suffer additionally because they provide poor
control over the false alarm rate when errors are non-Gaussian. This problem is
pronounced when few observations are available for detection. The Central Limit
theorem may not apply, even for relatively large numbers of samples. When errors
are not Gaussian, Bayesian methods should be used instead.

When errors are autocorrelated, standard methods like t-tests experience high
false alarm rates because they tend to overestimate confidence in the sample mean.
If additional systematic effects can be captured by improving the detrending model,
it may be possible to reduce autocorrelation by improving the detrending model.
In general, some degree of autocorrelation will remain due to missing and misrepre-
sented physics in the model and (at minimum) nonzero instrumental response time.
Therefore, when detecting leaks it will be important to use some method capable
of accounting for autocorrelation. Estimation methods like the Yule-Walker method
exist for adjusting uncertainty estimates in the presence of autocorrelation.

Forecast uncertainty can also be affected by choice of estimation method. If er-
rors are Gaussian and the model is linear, standard methods like least squares apply.
However, when few baseline samples are available and errors are not Gaussian, least
squares can misrepresent and may underestimate uncertainty in the model param-
eters. The same problem can be encountered even when the errors are Gaussian if
the model is nonlinear. Bayesian methods are capable of handling both scenarios;
nonlinear least squares is less computationally intensive, however, and is applicable
in the second case. The appropriate choice of estimation method will depend on the
nature of the errors and the model being entertained. The consequence of using linear
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least squares when the model is nonlinear or errors are non-Gaussian is the risk of
increased false alarm rate.

9.2 CO 2 variability and models

Past studies of CO 2 variability and observations from the sites we have considered
confirm the presence of systematic interannual, seasonal and diurnal trends.

Most interannual variability is captured assuming a constant fraction of emissions
from fossil fuel combustion remains airborne. The growing trend is currently ~2 ppm,
and appears to be growing with increasing rates of fossil fuel consumption. Relatively
small deviations occur due to processes that even sophisticated models have difficulty
explaining. Consistent interannual trends are present across sites.

Seasonal cycles are present, moreso in the Northern Hemisphere, which are due
primarily to terrestrial photosynthesis and respiration. The magnitude of the seasonal
cycle tends to grow larger north of the equator with increasing seasonal changes in
sunlight and vegetation. The seasonal amplitude at Mauna Loa is about 5 ppm. The
amplitude in Barrow, Alaska is approximately 15 ppm. Seasonality is minimal south
of the equator, typically 1 ppm amplitude at most. Systematic changes in seasonal
amplitude have been observed at Mauna Loa due to changes in terrestrial sinks and
wind patterns.

Diurnal deviations from seasonal trends tend to be even larger in magnitude than
the seasonal cycles themselves. Both local (-1 km) and regional scale (1 to 100+
km) processes affect diurnal variability. Diurnal trends therefore depend not only on
the direct vicinity of the sensor but also upon the regional context. At Mauna Loa,
local influences are minimal except occasionally at night when downslope winds bring
CO 2 emitted from the volcano's summit. At Harvard Forest, both regional and local
influences are important but regional biotic contributions tend to be bigger. Upwind
combustion can also contribute up to 5 ppm enhancements in the winter. In Salt Lake
City, diurnal variability is dominated by fossil fuel combustion, although respiration
does contribute significantly in the summer. The scale of diurnal variability in Salt
Lake is much greater than at Harvard Forest.

Several physically inspired, correlative models have been introduced for detrend-
ing atmospheric CO 2 data. Slope-intercept and emissions models are introduced to
explain interannual trends. Solar radiation, dynamic leaf, and semi-annual harmonic
terms are introduced to explain seasonal changes of biological origin and deviations
from interannual trends whose origins are more complex.

Given several candidate models for C0 2, how should we choose which one to use?
Clearly there is a need for a model that fits the data well. Methods like RSS can
be used but do not provide clear stopping points because they only value goodness-
of-fit: better fits can always be achieved by adding more terms. Information criteria
(AIC, BIC, and DIC; [33, 31]) and Bayes Factors [95, 96] value fit but also avoid
"overfitting the elephant" [97]. Information criteria are preferable for being easier to
compute. We use AIC and DIC. AIC does not acknowledge uncertainty in the model
parameters. DIC does acknowledge this uncertainty and represents a mix between
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BIC and AIC. When the parameters are extremely uncertain, DIC is preferable from
a Bayesian standpoint. Given the relatively small degree of uncertainty in our forward
predictions, the difference between AIC and DIC is not substantial. Both give the
same answer (model SRO) for Harvard Forest, which is where we expect the models
proposed to perform best.

The seasonal models' inability to capture diurnal variability in the observations
is the biggest contributor to uncertainty in future observations of atmospheric C0 2.
Smoothing the observations by applying moving average filters with widths of at
least T = 1 day can help reduce misfit errors. The biggest downside to using simple
filters is that they cannot account for changes in the physical system. A better
approach would be to improve the model by adding correlative terms linking diurnal
fluctuations in CO 2 at the location of interest to changes in CO 2 at upwind sensors
as well as to ancillary variables such as CO concentration. A worthwhile next step
would be to build and screen new models of diurnal trends. The correlation structure
of atmospheric CO 2 will need to be studied further to determine the typical spacing
required for upwind sensors. This spatial aspect of the network design problem merits
further attention.

9.3 The urban weekend weekday CO 2 shift

The ultimate goal for monitoring and verification is to estimate the magnitude of
leakage. This requires inverting the shift in atmospheric CO 2 to obtain the flux
distribution of the upwind source. In the absence of an actual leak, this can be done
computationally. A different approach is taken here, which is to analyze the data from
Harvard Forest and the University of Utah for real shifts tied to changes in urban
emissions. The hypothesis is that increased urban activity during the workweek will
lead to higher CO 2 concentrations on weekdays than weekends. The first question is
whether this weekend weekday shift is detectable. If it is, the second question is what
magnitude change in emissions (flux) led to the increase. The goal is to quantify what
magnitude leak is detectable, given CO 2 data from Harvard Forest and Utah.

The Winter AM shift at Utah is +7.86 ppm1 . The 95% confidence intervals 2

for the weekend and weekday residuals are -0.81 ± 1.35 ppm and 7.05 ± 0.96 ppm,
respectively. A positive weekend weekday shift is clearly present in Salt Lake City,
Utah.

The Winter AM shift at Harvard Forest is +1.13 ppm. The 95% confidence
intervals for the weekend and weekday residuals are -1.59±0.32 ppm and -0.46±0.22
ppm, respectively, which leads us to believe a positive weekend weekday shift may
also be present at Harvard Forest.

The Winter AM shift at Mauna Loa is +0.019 ppm. The 95% confidence intervals
for the weekend and weekday residuals are -0.027 ± 0.036 ppm and -0.008 ± 0.024
ppm. The weekend weekday shift is not statistically significant, as expected given
Mauna Loa observatory's remote location.

1Obtained as the difference in Mon-Fri and Sat-Sun means, 7.81 ppm -(-0.81) ppm.
2 These are given as mean ± 2 x (standard deviation).
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The above discussion suggests the a shift is not detectable at Mauna Loa, and
that a bigger shift is detectable at the urban University of Utah site than the rural
Harvard Forest site. The signal to noise ratios in Table 7.1 support this trend. The
signal to noise ratios of the weekend weekday shift are greatest (on winter mornings)
for Utah (0.278), smaller for Harvard Forest (0.144), and near zero for Mauna Loa
(0.027).

It is interesting to consider what would happen if all times were considered. The
tendency observed at Harvard Forest and Utah is for signal to noise ratio to decrease.
The reason this occurs is most likely that residuals insensitive to shifts in urban
emissions are being included when the sample mean is calculated. The implication
for leak detection is that by considering all times we might inadvertently dilute the
shift being sought after. Clearly this will hinder our ability to detect a shift. This
issue would not be mitigated by introducing models capable of explaining diurnal
changes in CO 2. It is an issue of sensitivity. The sensitivity of the observations
change as a function of time (of day), leading some times to be better candidates for
detection than others. This issue is not one we have studied in depth and may merit
further attention.

The residuals used to detect the weekend weekday CO 2 shift at Harvard and Utah
failed the normality tests we applied at the 0.001 level of significance. A Bayesian
detection algorithm based on Bayes factors was therefore conceived for testing.

The results from the algorithm suggest time to detection is sensitive to the dis-
tribution assumed for the residuals (empirical versus normal). Since the residuals
are not Gaussian, the results based on empirical distributions should be trusted. The
shift at Harvard was detectable at the 0.05 level of significance in 120-240 samples. As
expected, the shift at Utah was detectable at the same level of significance in fewer
sample (48-120), given the bigger signal to noise ratio at that site. If samples are
recorded hourly, we must sample for at least 2 days at Utah and 5 days at Harvard
Forest to determine whether the weekday CO 2 shift is present.

Comparison of Phoenix and Salt Lake City suggest the urban weekend weekday
shift at the latter should be - 0(0.01) MtCO 2km-2yr- 1 . The biggest scale seques-
tration projects today like Sleipner inject O(1) MtCO 2yr-1 belowground. Thus, it
should be possible to detect a 1% leak rate3 occurring over 1 km2, simply by removing
the seasonal signal from atmospheric CO 2 concentrations downwind of the source and
testing the residuals for an upward mean shift.

Factors affecting the size leak that is detectable include the sensor's distance from
the leak, leak area, and atmospheric stability. Detecting the shift will become difficult
the farther the sensor is from the leak, as illustrated through the Harvard Forest
example. Leakage at lower rate over bigger area will decrease the signal to noise ratio
at the sensor, and may require improving models to explain higher frequency, diurnal
effects for detection.

3 Defined as 1% of the amount stored per year.
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Chapter 10

Future directions

This thesis contributes a statistical framework for combining data, models, and de-
tection algorithms to detect at a given site. The following represents a list of topics
for future research that is needed to ensure monitoring and verification is available
for geological sequestration:

" Spatial variability. This thesis has focused on temporal aspects of the leak
detection problem. One of the key findings is that diurnal variability contributes
most uncertainty in forecasts of CO 2 at sites subject to local influences. An easy
way to deal with such variability would be to use multiple sensors. Since the goal
is to detect perturbations above a baseline, additional sensors should be placed
upwind of the sensor where the leak is to be detected. An obvious question
is, how far away should they be placed? Addressing this will require studying
sub-grid scale CO 2 variability, either through simulation of CO 2 concentrations
or using measurements from the field.

" Optimal network design. Placing additional sensors in the field will help reduce
detection limits, but improved performance will come at some extra cost. This
is just one operational constraint for monitoring and verification. Others in-
clude safety and regulatory constraints. Finding the optimal design for a given
location will require balancing the need to gather more information (for exam-
ple, by adding sensors) against the operational constraints [19]. The following
are some we think might be of future interest:

- Is one design sufficient for most sites, or do alternative approaches need to
be developed at different sites?

- Can cheaper, less precise sensors be used?

- Can ad-hoc wireless networks be used in combination with gas sensors for
monitoring?
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Appendix A

Predictive densities

A.1 Bayesian perspective

Predictive densities represent uncertainty in the model predictions. From a Bayesian
perspective, predictive densities are obtained by marginalizing the joint density of the
observations and unknowns over the unknowns. Thus, Bayesian predictive densities
involve integrals like

f (Y) J f (Y O)7r(6)dO (A.1)

The predictive density in (A.1) is called a prior predictive density because the con-
ditional density of the observations is averaged over the prior knowledge of the un-
knowns. Alternative predictive densities can be constructed by averaging the con-
ditional density of the observations over posterior density functions. Assuming the
predictions YS, are conditionally independent of a subset of the observations Ys,obs,
these alternative densities are defined by

f (YS'|YS,obs) = f (Ysi| 0),7 (0|Ys,obs) dO (A.2)

Table A.1 defines a few useful predictive densities with the help of (A.2).
Note that the predictive densities in (A.1) and (A.2) depend on the chosen model.

They could be written f(YIM 2 ) and f(Y|Yb, M). The meaning is the same, so the
more explicit form will only be used as necessary to remove ambiguity.

A.2 Frequentist perspective

From the frequentist's perspective, 0 is not random and should not be treated as such.
As inconvenient as this perspective is, it does form the basis for many of the most
common methods of inference and model selection. The analogy to (A.1) is achieved
by pretending 0 is known exactly, with some value 00. The prior density is then a
Dirac delta function 6(0, 60) and (A.1) simplifies to

f(Y) = f(Y|0 0) (A.3)
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Table A.1: Alternative forms of predictive densities

Type
Prior

Definition
S = 0

Posterior S = {1,2,...,n} and S' C {1,2,...,n}

Cross- S C {1, 2, ..., n} and S' = {1, 2,..., n}\ S
validation
Forecasting S = {1, 2,..., n} and S' = {n + 1}

Instrinsic S = minimal* and S' = {1, 2, ..., n} \ S

Thus, the predictive density is just the likelihood. Equation (A.3) forms the basis
for classical approaches to model selection like confidence intervals, significance tests
and likelihood ratio tests.
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Notes
The basis for the most
basic form of Bayes
factor. Not useful in
practice because the
prior r(O) is often im-
proper.
Just use all the obser-
vations available.
The basis for pseudo-
Bayes factors.
Useful for forecasting
applications.
* S is a minimal set
required to obtain
a proper posterior

(O|YS,,obs). The basis
for intrinsic Bayes
factors.



Appendix B

The Lomb Periodogram

The gaps that are so often present in CO 2 observations make it difficult to ascertain
whether periodic signals are present. Most methods for testing autocorrelation (for
example, the Breusch-Godfrey and confidence interval tests introduced in the thesis)
assume the samples are spaced at equal time intervals At. Gaps make applying such
tests difficult. The Lomb periodogram is capable of detecting harmonic content when
the samples are unevenly distributed.

Lomb [98, 41] developed a method for estimating power spectra that is better
equipped for detecting harmonic content in unevenly sampled series than FFT meth-
ods. The value of the Lomb normalized periodogram at a given angular frequency W
is defined by

1 [zy (yU - Q) cos wAtj [ (y, - Q) sin wAtJy
PN () 22&2 E cos 2 wAtj E sin 2 wAt(

where yj is the value of the signal being examined at time tj and where y and &2
are the sample mean and variance based on samples j = 1..n. The idea is that
differences from the sample mean that correlate well with a given harmonic lead to
large values of power PN at that frequency. Since the signals being considered are
usually noisy, thresholds are often calculated above which harmonic content is said
to be significant. The idea behind construction of these thresholds is just another
an application of significance testing. The null hypothesis is that the samples yj are
N(y, o-2 ). If the samples are somewhat evenly spaced (which is the case for most of the
data we analyze, with the exception of those times when large gaps may be present),
and the periodogram is generated for a large number of frequencies between 0 and
the Nyquist critical frequency (which is effectively 1/2A where A = (tf - to)/n and
to and tf are the first and last times considered), then the threshold is approximately

Pk ~ In (B.2)

where a is the chosen significance level [41]. The above approximation improves as
alpha -+ 0.
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The Lomb periodograms in this thesis were generated using code by [99]. The
basis for this code is the algorithm outlined by Press [41], which computes (B.1).
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