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Abstract

Many organisms have evolved DNA damage response mechanisms to deal with the
constant damage to DNA caused by endogenous and exogenous agents. These mechanisms
activate cell cycle checkpoints to allow time for DNA repair or, in the case of severely damaged
DNA, initiate cell death mechanisms to maintain genomic integrity. The cell’s response to DNA
damaging agents includes wide spread changes in the transcriptional state of the cell that have
been implicated in cell death or survival decisions. However, we do not fully understand how the
multiple and sometimes opposing transcriptional signals are interpreted to make these critical
decisions. A computational and systems biology approach was taken to study the wide-spread
transcriptional changes induced in human cell lines after exposure to a DNA damaging and
chemotherapeutic agent, 1,3-bis-(2-chloroethyl)-1-nitrosourea (BCNU or carmustine).

Cell lines with extreme sensitivity or resistance to BCNU were identified from a set of
twenty four genetically diverse human lymphoblastoid cell lines using a high-throughput method
that was developed as part of this thesis. This assay has broad applications and can be used to
simultaneously screen multiple cell lines and drugs for accurate measurements of cell
proliferation and survival after drug treatment. The assay has the advantage of having a large
dynamic range that allows sensitivity measurements on a multi-log scale allowing better
resolution of comparative sensitivities.

Temporal transcription profiles were measured in cell lines with extreme BCNU
sensitivity or resistance to generate a large transcription data set amenable to bioinformatics
analysis. A transcriptional signature of 706 genes, differentially expressed between BCNU
sensitive and resistant cell lines, was identified. Network and gene ontology enrichment
identified these differentially expressed genes as being involved in key DNA damage response
processes like apoptosis and mitosis. Experimental evidence showed that the transcription
signature correlated with observed cellular phenotypes. Furthermore, the NF-Y transcription
factor binding motif was enriched in the promoter region of 62 mitosis-related genes down-
regulated in BCNU sensitive but not resistant cell lines. Chromatin immunoprecipitation
followed by sequencing (ChIP-seq) confirmed NF-Y occupancy in 54 of the 62 genes, thus
implicating NF-Y as a possible regulator of the observed stalling of entry into mitosis.

Using experimental and computational techniques we deciphered the functional
importance of differential transcription between BCNU sensitive and resistant cell lines and
identified NF-Y as an important factor in the transcriptional and phenotypic cell response to
BCNU such as the control of entry into mitosis.

Thesis Advisor: Leona Samson
Title: Director, Center for Environmental Health Sciences
Uncas and Helen Whitaker Professor of Biological Engineering and Biology
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Chapter 1: Introduction

1.1 DNA damage and maintenance of genomic integrity

1.1.1 The importance of DNA repair
DNA damaging agents are ubiquitous in our environment and within our bodies. Every day,
these endogenous and exogenous DNA damaging agents generate up to 10° DNA lesions per cell
in our bodies (1). Unrepaired DNA lesions pose a serious threat to our health since they lead to
mutations or premature cell death which could exacerbate life-threatening diseases like cancer
(2), neurodegenerative disease (3,4) and premature aging (5-7). Because of the harmful
consequences of unrepaired DNA lesions, we have evolved DNA repair and damage response
mechanisms that get rid of damaged DNA, thus maintaining genomic integrity and preventing

disease (8,9).

The DNA damaging agents we are exposed to are of many different kinds. They include
radiation from medical x-rays, UV from sunlight, chemical pollutants in the air we breathe, the
food we eat and fluids we drink (10). In addition to these external agents, there are endogenous
sources of DNA damage including nucleotide misincorporation during DNA replication,
chemical instability of DNA (11,12) and most importantly internal processes like metabolism
and the inflammatory response which generates reactive oxygen species that are extremely
detrimental to DNA (13-15). These different sources of DNA damage generate various kinds of
DNA lesions such as mismatches, small or bulky base adducts, single or double stranded breaks

and intra- or inter-strand crosslinks.

To deal with the multitude of lesions seen by a cell at any given point in time, we have numerous

types of repair mechanisms. Mismatches are detected by the mismatch repair complexes
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Chapter 1: Introduction

followed by a single-strand incision that is then repaired and sealed by nucleases, polymerases
and ligases (16). Small adducts can be removed by direct reversal proteins like O°-
methylgaunine methyl transferase (MGMT) and the alkB homolog (ALKBH) proteins. Other
small lesions such as small alkylated or oxidaized base lesions are generally removed by base
excision repair where the base lesion is detected by a DNA glycosylase and removed. DNA is
nicked at the resulting abasic site, followed by processing at the 5’ and 3’ ends which allows the
filling and ligation of DNA (17,18). DNA distorting lesions and intrastrand lesions, such as
pyrimidine dimers generated by UV, are removed by nucleotide excision repair (19), while inter-
strand crosslinks such as those generated by many chemotherapeutics are repaired by the
Fanconi anemia proteins, nucleotide excision repair proteins and homologous recombination
proteins (19,20). Double strand breaks generated by radiation or as an intermediate during the
processing of other lesions can be repaired by non-homologous end joining or homologous
recombination (21-23). There are also translesion polymerases that can replicate DNA past

certain poorly repaired lesions thus allowing cell survival but increasing mutation rates (24-26).

Though DNA repair is vital in maintaining genomic integrity, it does not work in isolation. In
fact, there is a whole array of processes initiated after DNA damage to work in concert with
repair mechanisms to ensure proper restoration and recovery of the cell after DNA damage.

These processes are collectively termed as DNA damage response (DDR) mechanisms.

1.1.2 DNA damage response mechanisms
Following the detection of DNA damage, there are key DDR mechanisms initiated in our cells

that amplify the DNA damage signal, recruit DNA repair proteins and trigger multiple

13



Chapter 1: Introduction

downstream processes that facilitate repair of damaged DNA (27-29). There are two groups of
proteins that are currently thought to be key mediators of the DNA damage response; the
phosphoinositol-3-kinase-like kinases DNA-PK, ATM and ATR, and members of the poly-ADP-
ribose-polymerase (PARP) family, PARP1 and PARP2 (27,30,31). DNA-PK and ATM are
activated in response to double strand breaks depending on the sensors that detect the damage
which varies between cell types and cell cycle phase. If the heterodimer Ku70/Ku80 detects the
double strand breaks, then DNAPK is recruited and preferentially initiates non-homologous end
joining (32). On the other hand, if the double strand break is detected by the MRE11-RADS50-
NBS1 complex (MRN), then ATM is activated, leading to preferential activation of homologous
recombination (33). Single strand breaks are detected by PARP1/2 (31) whereas RPA coated
single-stranded DNA generated during replication stress activates ATR (34,35). Once these
mediators are activated, they in turn activate downstream proteins either by post-translational
modifications of the targets or by recruiting other proteins to make these activating
modifications. For example, PARP adds poly(ADP-ribose) chains to histones to initiate
chromatin remodeling and recruitment of repair factors as well as chromatin modifiers such as
histone deacetylases (31,36). Similarly ATM and ATR were recently shown to phosphorylate
and modify proteins involved not only in repair, but in more general cellular processes like RNA
splicing, metabolic signaling, cell cycle checkpoints, transcription and chromatin remodeling
(37). All of these effects have been shown to be important for cell recovery upon exposure to
DNA damaging agents, and the loss of any one of them results in compromised DNA repair and
recovery. This suggests that the DNA damage response mechanisms are broad in nature and
work hand in hand in a coordinated manner to help the cell recover from being exposed to DNA

damaging agents (Figure 1.1).
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Metabolic RNA splicing
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Figure 1.1: The wide range of cellular processes initiated by the DNA damage response.

The figure is modified from (27) to highlight the wide range of cellular processes initiated after DNA
damage (dotted arrows), the phenotypic outcome of the cell (black boxes) and the possible organism level
consequences of aberrant DNA damage response mechanisms (green boxes)
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The effects and importance of all the numerous and varied signals initiated after DNA damage
are still not completely understood and are areas of active research. Of the numerous targets of
ATM and ATR, CHK2 and CHKI1 are the best studied so far. Once ATM and ATR are
phosphorylated and activated, they phosphorylate CHK2 and CHKI, respectively (27,38,39).
One of the functions of these checkpoint kinases is to phosphorylate and inactivate the Cdc25
phosphatases (40,41). During normal cell cycle, the Cdc25 phosphatases remove the inhibitory
phosphate on their target cyclin dependent kinases thus enabling progression through cell cycle
(42). Therefore, when these phosphatases are inhibited by DNA damage induced CHK2 or
CHKI1 phosphorylation, cells are stalled in G1, S or G2 (43), allowing time for the repair of
DNA lesions, and preventing replication of damaged DNA, entry into mitosis and the

segregation of damaged chromosomes.

In addition to activating cell cycle arrest, ATM and ATR also induce transcriptional changes
through the direct or indirect activation of transcription factors such as P53, NF-kB, E2F1 and
Sp-1 (44-47). These transcription factors induce transcriptional changes such as regulation of cell
cycle checkpoint genes, apoptotic genes or survival genes; these transcriptional responses are
just as critical as DNA repair mechanisms for helping cells recover from exposure to a DNA

damaging agent.

1.1.3 Cell death or survival decisions
The process by which a cell decides to die in the presence of irreparable damage is extremely
important for the maintenance of genomic integrity in multi-cellular organisms. The decision

against death in a cell unable to repair its damaged DNA can lead to mutations or gross
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chromosomal changes that could continue to carcinogenesis. This is often observed as the
increased incidence of cancer in people harboring mutations in DNA repair proteins such as
ATM, BRCAI1 and the Xeroderma Pigmentosum (XP) family of proteins. On the other hand,
premature death of cells that have slow or low levels of DNA repair leads to unwanted cell death
and premature aging for the organism (1,27,48). Therefore proper death or survival decisions at

the cellular level are crucial for the whole organism’s health and survival.

Although we are aware of the significance of accurate cell death or survival decisions and the
many factors that affect these decisions, we do not fully understand how they integrate in the
context of the cell to make these critical decisions. Experimental evidence shows that cell fate
decisions vary greatly depending on the severity of damage and the cell type (49). This could be
due to the intricate interplay and varying efficiencies of DNA repair, cell cycle control and cell
death initiation between different cell types. All of these processes are, at least partially,
regulated transcriptionally by DDR transcription factors. Interestingly, many of these DDR
transcription factors are mutated in cancer. In particular, p53 is mutated in ~50% of all tumors
(50). Other key DDR transcription factors such as E2F1, AP-1 and NF-«xB, are also linked to
expression changes characteristic of human tumors (51-54). These observations suggest that the
transcriptional response to DNA damage may be crucial in making correct cell death or survival

decisions.
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1.2 The role of transcription in cell death or survival decisions

1.2.1 Transcriptional response after exposure to DNA damaging agents
The prominent role of the transcriptional response to DNA damage is seen by the significant
genome-wide transcriptional changes induced upon exposure to DNA damaging agents in yeast
and mammalian cells, not only for genes involved in DNA damage related functions like cell
cycle arrest and apoptosis, but also in other cellular processes such as protein degradation and
metabolism (55-58). Moreover, in addition to the increased incidence of mutated transcription
factors in cancer (59), the increased sensitivity to DNA damaging agents of yeast strains that
were silenced in genes involved in transcription regulation (60,61) shows the importance of
transcriptional control in protecting cells against DNA damaging agents. It is important to note
that many of the DNA damaging agents used in these studies also damage other molecules in the
cell. Therefore the transcriptional responses observed might also be important for the cell’s

response to cell-wide damage.

Some mammalian transcription factors thought to regulate these gene expression changes after
damage include p53, E2F1, NF-xB, AP-1, FKHR, ATF and c-Myc. These are by no means the
only transcription factors involved in the transcriptional control of the DDR but are the few that
have been studied to some extent in the context of DNA damage response. Yet, the temporal
activation and the co-ordination of their targets to elicit the observed phenotype are largely
unknown. Moreover, what is known is confounding; many of these transcription factors can
induce both anti- and pro-apoptotic genes and therefore the outcome of their transcriptional
activation after DNA damage is not easily deducible. These transcription factors also induce or

repress transcriptional activity of each other, further complicating the picture.
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pS3 is activated by many post-translational mechanisms including phosphorylation by ATM,
ATR, Chkl or Chk2. p53 phosphorylation prevents its nuclear export and degradation, and
results in its nuclear accumulation and activation (47,62-65). Activated p53 causes G1/S arrest
by induction of CDKNIA (p21), the product of which is an inhibitor of the cyclin dependent
kinase (CDK)-2 (66). Activated p53 also maintains a G2/M arrest by repressing CCNBI (cyclin
B1) and inducing the CDKI1 inhibitors GADD45A4 and 14-3-30 (67). Apoptosis related genes
such as BCL2 (anti-apoptotic) plus PUMA, NOXA and BAX (pro-apoptotic) are transactivated by
p53. Since p53 induces both pro- and anti-apoptotic genes, the outcome of p53 activation is
difficult to predict (68). Like p53, E2F1 has both pro- and anti-apoptotic arms that require strict
control for normal cell function. E2F1 regulates genes required for progression into S-phase and
is negatively regulated by pRB which is a p53 target. Targets of E2F1 include DNA repair genes
(e.g Rad51), signal transducers (e.g ATM) and pro-apoptotic genes (e.g PUMA and NOXA)
(69,70). E2F1 also induces an anti-apoptotic function through indirect activation of the
PI3K/AKT survival pathway (71,72). Similar to p53 and E2F1, NF-kB is activated in response to
DNA damage by IKK or ATM mediated phosphorylation of IxB (73). NF-kB activates anti-
apoptotic genes in most cases, though in some tissues, pro-apoptotic genes are also induced. NF-

kB has also been shown to repress p53 (74).

Because these DDR transcription factors induce genes involved cell death as well as cell
survival, the process by which cells decide between the survival arm and the death arm is
difficult to comprehend and deduce. This decision process in the presence of two orthogonal

signals is not yet understood, and is an area of active research.
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1.2.2 The possible role of transcriptional Kinetics in cell death or survival
mechanisms

The transcriptional response to DNA damage is inherently dynamic because of the kinetics
implicit in upstream signaling, varying rates of mRNA transcription and translation as well as the
cross-regulation and feed-back loops within transcriptional networks. Moreover, as DNA repair
progresses, the initiating signal - the amount and extent of DNA damage - also changes

dynamically thus altering downstream transcription control.

Because of the dynamic nature of the transcriptional response to DNA damage, the kinetics of
transcription might play an important role in the phenotypic outcome of the cell. For example,
the strength of induction of anti- and pro-apoptotic genes may differ, thus enabling one of the
processes to win out over the other as time progresses. Similarly, there might be a difference in
transcription rates or mRNA degradation rates for genes involved in the two opposing arms of
the cell decision process. Additionally, the level of transcription factor activation may vary
depending upon the severity of the damage present, which, in the presence of active DNA repair,
will also change over time. This could confer different transcript induction patterns at different

times post DNA damage, thus influencing the cell death/survival decision in the cell.

Temporal transcription patterns could also play a role in keeping track of the time elapsed since
damage, an important aspect in the decision between continued cell cycle arrest or cell death. For
example if DNA damage persisted for a long time, the continued induction of apoptotic genes or

continued repression of anti-apoptotic genes, could drive the cell to induce cell death.
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1.3 Studying the role of transcriptional Kkinetics and control in cell
death or survival decisions after DNA damage

The cell death/survival decision process after DNA damage is a complex one, involving many
signaling proteins as well as drastic changes in the transcriptional state of the cell (37,57). Other
complex biological processes, such as signaling cascades affecting cell death or growth in
response to external stimuli, have previously been successfully studied using systems
measurements and computational modeling techniques (75-77). Stimulated by these studies, we
decided to apply a systems-level approach to better understand the temporal transcriptional co-
ordination of various DNA damage response pathways as well as the involvement of a wide

range of cellular processes in cell death/survival decision processes.

With the knowledge that significant genome-wide transcriptional changes occur after DNA
damage, we decided to measure global transcriptional changes in human cells after DNA damage
induced by a chemotherapeutic agent, 1,3-bis-(2-chloroethyl)-1-nitrosourea (BCNU). Our
decision to study transcription was motivated not only by the potential role of transcription in
cell decision processes but also by the fact that, at the beginning of the project, whole genome
microarray technology was the accepted and readily available method available for systems-wide
transcription measurements. Computational methods could then be applied to the large data set
generated in this manner, to extract pertinent information about the transcriptional signatures for
cell death or survival after DNA damage. Additionally, the unbiased nature of genome-wide
measurements would also facilitate the discovery of novel pathways and processes important in

the decision between cell death and survival.
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The approach we took to study the transcriptional control of cell death or survival after DNA
damage was to compare transcriptional kinetics between DNA damage sensitive cells that are
destined to die and resistant cells that are destined to survive in the presence of damage,
anticipating that this might give us insight into temporal gene expression changes related to cell
death or survival. This approach has been used successfully by us and others to identify genes
that can accurately differentiate between distinct populations (78-81). The DNA damaging agent,
cell lines and computational techniques we used to generate a genome-wide transcriptional data
set and study transcriptional kinetics in damage sensitive or resistant cell lines are discussed

below.

1.3.1 BCNU as a DNA damaging agent and a chemotherapeutic agent
1.3.1.1 Cellular reactions of BCNU
BCNU is a member of the chloroethylnitrosoureas (CENUSs), known to generate nucleophilic
chloroethylenium ions in aqueous solutions that react with DNA to produce a wide range of
DNA lesions (82). CENUs also react with and inhibit protein function by carbamylating them at

cysteine residues.

Although BCNU can react with both cellular proteins and DNA, the major biologically and
clinically relevant reactions are thought to be the DNA interstrand crosslinks generated by
BCNU (83). These crosslinks are generated in a multi-step process (Figure 1.2), the first of
which is the formation of the O°-chloroethylguanine DNA lesion (84). This intermediate
undergoes intramolecular rearrangement to form 1-O’-ethanoguanine which in turn reacts with
cytosine in the complementary DNA strand to from a G-C interstrand crosslink (82,84). The final

interstrand crosslinks are hard to repair and contribute to cellular cytotoxicity by BCNU.
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Figure 1.2 Mechanism of BCNU interstrand cross-link formation

The steps in the formation of interstrand cross-links by BCNU. The figure also shows the intermediate
that can be successfully removed by MGMT (modified from 150).
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1.3.1.2 DNA damage response mechanisms initiated by BCNU lesions
Multiple studies have shown that the repair of O°-chloroethylguanine lesions by the O-
methylguanine DNA methyltransferase protein (MGMT) prevents DNA interstrand crosslink
formation. Cells expressing high levels of the MGMT protein are, in fact, resistant to BCNU
treatment (85-87). In the absence of MGMT, the reaction proceeds to completion and interstrand
crosslinks are formed. These ICLs are extremely toxic because they induce severe replication
stress, inhibit transcription and are hard to repair and resolve. The repair mechanisms employed
to remove these ICLs are not known yet but are thought to include nucleotide excision repair and
ICL repair mediated by the Fanconi anemia proteins and homologous recombination (88-90).

Base excision repair is also thought to play a role in protecting cells from BCNU cytotoxicity

91).

1.3.1.3 Chemotherapeutic application of BCNU
The DNA inter-strand cross-links are particularly cytotoxic for cells undergoing frequent
replication due to stalled replication and the formation of double-strand breaks (92,93). Because
of its preferential cytotoxicity for rapidly dividing cells, BCNU is commonly used to treat
glioblastomas. BCNU is lipophilic and can therefore easily cross through the blood brain barrier,
making it more suitable for treating glioblastomas (94,95). Currently, the treatment regimen
includes combination therapy with another DNA alkylating agent, temozolomide, radiotherapy
and surgical resection. Even with these combination therapies, the average survival time of the

patients is about one year (96-98).

One of the drawbacks of BCNU is that tumor cells with functional MGMT are resistant to low

doses of the drug (99,100). These types of tumors have been targeted by administering the
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MGMT inhibitor, O°-benzylguanine, along with BCNU (101). Besides MGMT-mediated
resistance of BCNU, another undesired outcome of BCNU treatment is the drastic side effects it

causes such as myelosuppression (98).

Few studies have measured the effects of BCNU treatment in healthy human cell lines. The DNA
response mechanisms initiated in healthy cells, the mechanisms of cell cycle arrest or cell death
and the factors responsible for the difference in side effects observed between patients in the
clinic are not known. Further study could reveal other factors that may improve BCNU
treatment strategies by identifying tumors that will respond to BCNU treatment and patients that
will have less severe side effects. Moreover, knowledge of factors that render blood and
epithelial cells sensitive to BCNU could potentially identify targets to be inhibited or

manipulated to ameliorate the severe and adverse side effects that currently limit cancer therapy.

With this in mind, in this study, we used a panel of 24 cell lines derived from healthy, ethnically
diverse humans to study factors that affect the sensitivity of healthy cells to BCNU, and to better
understand the difference between cells that are sensitive and resistant in terms of their
transcriptional kinetics, cell death initiation mechanism and cell cycle arrest after BCNU

treatment.

1.3.2 The experimental system - a panel of genetically varied cell lines
A panel of twenty-four genetically diverse cell lines was used for this study in the hope that they
could be used to find novel genes responsible for the cell death/survival decision mechanism.

The 24 cell lines are a subset of a larger set of 450 lymphoblastoid cell lines derived from the
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blood of healthy humans with ancestry from around the globe, and that maintains the genetic
diversity of the panel. These cell lines were developed from B lymphocytes by EBV
transformation. It has been observed that EBV transformation maintains p53 function and does
not induce p53 mutations (102). Therefore, we believe that these cells induce proper DNA
damage response mechanisms. Additionally, these cell lines have varying basal expression levels
of hundreds of genes that could provide new information on novel mechanisms for cell death or

survival after DNA damage.

1.3.2.1 Cell survival of the panel of cell lines to various DNA damaging agents
Previous studies showed that the 24 cell lines showed a wide range of sensitivity spanning from
~10% to ~90% control growth when exposed to the alkylating agent N-methyl-N'-nitro-N-
nitrosoguanidine (MNNG), an alkylating agent (79). By studying the expression of the four most
sensitive and four most resistant cell lines, we found that there was a strong basal gene
expression signature of 48 genes that could accurately predict the sensitivity of the remaining
cell lines to MNNG. The panel of cell lines also showed a broad range of sensitivity to methyl-
methanesulfonate (MMS), another alkylating agent (Figure 1.3). Interestingly, the cell lines do
not maintain order of sensitivity so that cell lines that were considered resistant for MNNG are
not necessarily resistant to MMS treatment and vice versa. These observations show that the
genetic variation present in the panel of cell lines provides an interesting and informative

experimental system in which to study resistance or sensitivity to DNA damage.
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Figure 1.3 : The panel of cell lines shows a wide range of sensitivities to DNA alkylating agents
MNNG sensitivity (79) (top) and MMS sensitivity (Unpublished data, Samson Lab) of the panel of cell
lines. Cell lines are colored according to MNNG sensitivity to show the different order of sensitivity for
MMS.(figure from Leona Samson)
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1.3.2.2 Studying DNA damage recovery in the panel of cell lines
Based on the wide range of sensitivity observed for MNNG and MMS, we hypothesized that the
panel of cell lines would show a similarly broad range of sensitivity to other DNA damaging
agents. In particular we were interested in studying the range of sensitivity of these cell lines to
the clinically prescribed DNA damaging agent, BCNU, used in cancer therapy. If indeed this was
the case, we would have a set of cell lines with extreme BCNU sensitivity or resistance. The
extremely sensitive cell lines would provide a platform to study transcriptional kinetics in cells
that decide to die. Similarly, transcriptional kinetics measured in extremely resistant cells would
provide insight into the decision to survive. With this as our experimental goal, we decided to
screen the panel of cell lines for sensitivity to BCNU, and measure BCNU induced
transcriptional changes in the two most sensitive and two most resistant cell lines to gain insight

into the transcriptional control of cell death or survival after DNA damage.

1.3.3 Computational approaches to better understand cell death/survival
decisions after DNA damage

Our goal was to use computational techniques to mine a large transcriptional data set to better
understand transcriptional kinetics in the presence of DNA damage. A major challenge in
microarray data analysis is the identification of meaningful signals from the confounding noise.
This problem of feature selection has been studied extensively and is an area of active research.
Some proposed methods of feature selection from microarray data include the use of genetic
algorithms (103,104), principle component analysis (105-109), Bayesian methods (110,111) and
numerous other techniques (112-114). These techniques try to identify the minimal subset of

genes that incorporate the maximum information content from the data set.
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Although such minimal subsets have applicability as biomarkers, they are not often sufficient or
necessary to understand all of the important aspects about the biological system. Instead, simpler
techniques such as statistically significant fold-changes are commonly used to identify genes that
are differentially expressed between two biologically distinct conditions. We, and others, have
successfully used this method on data sets consisting of multiple comparable measurements for
each of two conditions (78-81). Some studies have also used statistically significant fold-change
on time-series data to identify genes that are induced or repressed at a particular time-point
between treated and control samples (115,116). Another commonly used technique for gene
selection from time-series data is analysis of variance (ANOVA) (117-120). With ANOVA,

genes that vary across multiple dimensions can be identified and studied in detail.

Once an interesting and meaningful set of genes have been identified, network and enrichment
algorithms are commonly used to identify the underlying pathways and cellular process that are
described by a selected set of genes. For example numerous algorithms have been described that
build networks from gene expression data based on co-expression, mutual information or
biological functions (121-126). Additionally, platforms like Ingenuity Pathway Analysis
(Ingenuity® Systems, www.ingenuity.com) can be used to build networks from data bases
containing curated gene and protein interaction or regulation information. These methods allow
the analysis of selected genes in terms of their underlying biology, thus facilitating a better

understanding of their involvement in the biological system being studied.

Besides gene-set selection and network identification, time-series microarray data is amenable to

analysis by various other computational techniques, the choice of which depends greatly on the
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biological question of interest. For example differential equation models of transcript kinetics
have been used to predict transcription factor activity from gene expression measurements
(127,128). Hidden Markov Models have also been used to build time-series expression trees
separating or clustering together genes with similar expression (129). This and other clustering
techniques give us the power to identify transcripts that follow similar expression patterns across
multiple conditions, thus revealing genes that are co-regulated or that form interconnected
modules involved in DDR. In fact, previous studies have used clustering analyses with
expression data in yeast to identify core stress-response pathways or proteins induced under

various stresses (130-132).

For our data set, we implemented many of the afore-mentioned computational techniques to
understand transcriptional changes upon exposure to a DNA damaging agent. First, we used
statistical techniques to extract meaningful signals from the confounding noise. The statistical
analyses were complemented with network and enrichment techniques to better understand
cellular modules involved in the transcriptional response to DNA damage. These analyses
directed us towards specific pathways that are transcriptionally activated or repressed to a greater

extent in the sensitive cell lines as compared to the resistant cell lines after BCNU treatment.

The transcriptional signature identified from our data was further used to identify transcription
factors that might control expression of genes in the signature set. Transcription factors act as
integrators of signals and are key regulators that can change the state of the cell based on the

signals. Knowledge of possible transcriptional regulators of the transcription signature in our
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data set would give us insight into mechanisms that activate the cell death signature in cells that

decide to die after DNA damage.

Computational techniques have previously been used to predict putative transcriptional
regulation of co-expressed gene sets in yeast as well as human cells (129,133,134). These
techniques have been successful in yeast studies because of simpler transcriptional control in
these single-celled organisms. Transcriptional regulation is more complex in human cells
because of the increased number of transcription factors and the presence of more complicated
and dynamic combinatorial regulatory complexes (135). However, our knowledge about
transcriptional regulation in humans is continuously being improved. Chromatin
immunoprecipitation followed either by microarray hybridization (ChIP-chip) or sequencing
(ChIP-seq) experiments have provided data-sets to identify high confidence transcription factor
binding motifs for many transcription factors in various cell types. These data have been curated
in databases like TRANSFAC (136-139) and JASPAR (140-143), from which high confidence
position weight matrices have been calculated for transcription factors with available data. Many
computational techniques take advantage of these experimentally determined position weight
matrices to predict putative transcription factors that regulate a set of co-expressed genes
(144,145). For our data set, we used one such algorithm, PRIMA, which is built into the
EXPANDER (146-149) package, to identify transcription factors whose binding sites were

enriched within the promoter regions of genes in our signature set.
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These computational techniques allowed the identification and interpretation of a transcriptional
signature for BCNU induced cell death, and also provided a putative model for the

transcriptional control of a subset of the transcriptional signature.

1.4 Goals of the thesis and project design

Using the set of 24 cell lines, DNA damaging agent and computational techniques described, the
goal of this thesis was to identify transcriptional signatures that are characteristic of cell death or
cell survival after DNA damage. This was systematically pursued following the steps below: 1) a
high-throughput assay was developed to measure the sensitivity of lymphoblastoid cell lines to
genotoxic and cytotoxic agents; i1) The panel of 24 genetically varied lymphoblastoid cell lines
were screened for sensitivity to BCNU; 1ii) a multi-dimensional data set was generated by
making temporal transcriptional profile measurements in the two most sensitive and the two
most resistant cell lines after BCNU treatment; iv) computational techniques were used to
identify a biologically meaningful transcriptional signature for cell death after BCNU induced
DNA damage; v) various functions represented in the transcriptional signature were
experimentally shown to explain the phenotypic cell behavior after DNA damage; vi) using
computational and experimental techniques, Nuclear Factor Y was identified as a putative
regulator of a subset of genes in the cell death signature, and a possible model for transcriptional

regulation was proposed.

These steps are described in detail in Chapter 2 (step (i)) and Chapter 3 (steps (ii) to (vi)).
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Chapter2: A High-throughput Survival Assay

2.1 Abstract

We describe a high-throughput method to accurately measure the cytotoxicity induced in
mammalian cells upon exposure to various drugs. Using this assay, we obtain survival data in a
fraction of the time required to perform the traditional clonogenic survival assay, long considered
the gold standard. The dynamic range of the assay allows sensitivity measurements on a multi-
log scale allowing better resolution of comparative sensitivities. Moreover, the results obtained
contain additional information on cell cycle effects of the drug treatment. Cell survival is
obtained from a quantitative comparison of proliferation between drug-treated and untreated
cells. During the assay, cells are treated with a drug and following a recovery period allowed to
proliferate in the presence of bromodeoxyuridine (BrdU). Cells that synthesize DNA in the
presence of BrdU exhibit quenched Hoechst fluorescence easily detected by flow cytometry;
quenching is used to determine relative proliferation in treated versus untreated cells. Finally,
this assay can be used in high-throughput format to simultaneously screen multiple cell lines and
drugs for accurate measurements of cell survival and cell cycle effects after drug treatment.
ABBREVIATIONS

PI- propidium iodide; CEN - chicken erythrocyte nuclei; BCNU — 1,3-bis(2-chloroethyl)-1-
nitrosourea
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Chapter2: A High-throughput Survival Assay

2.2 Introduction

Survival of cells upon exposure to toxic agents is an important phenotypic measure used to
understand the biological importance of certain proteins and pathways in either preventing or
enabling cell survival after toxic stress. For example, key proteins involved in DNA repair or the
DNA damage response have been identified by measuring the effect of silencing or over-
expressing these proteins on cell survival after DNA damage. The gold standard for assessing the
survival of cells after drug treatment in continues to be the clonogenic survival assay that is
extremely sensitive and has a dynamic range of several orders of magnitude. Unfortunately, it
suffers from being very low throughput as well as time and labor intensive. Typically, the
clonogenic survival assay takes 10-14 days and requires a large number of cell culture plates,
thus limiting its practical application to a few cell lines and to a limited number of doses or
agents. Moreover, for cells grown in suspension or, those that fail to form colonies, the
clonogenic survival assay is done by either monitoring growth from single cells or by following
their ability to form colonies in soft agar. These approaches are even more time intensive taking
up to 3-4 weeks to complete a single experiment (1). Currently, the only available high-
throughput techniques for measuring sensitivity involve the correlation of viability to membrane
permeability (trypan blue or propidium iodide exclusion) or measurement of metabolic activity
(MTT assay). Unfortunately, membrane permeability only takes into account cells that undergo
cell death after treatment and fails to identify sensitivity due to activation of a static program
such as arrest or senescence, and metabolic activity primarily reflects mitochondrial function.
Furthermore, changes in metabolic activity do not always correlate well with cell viability after
treatment and also does not differentiate between cytotoxic and static effects after treatment (2).

Moreover, these methods have an inherently limited dynamic range for detection of sensitivity,
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generally less than a single order of magnitude versus three or four orders of magnitude for the

clonogenic survival assay.

In this paper, we describe a high-throughput method for measuring the sensitivity of cells to a
wide variety of agents with a dynamic range comparable to that of the clonogenic survival assay.
In addition to obtaining survival information, it can also be used to deduce cell cycle effects of
drug treatment. This method is based on the fact that the fluorescence of Hoechst, a dye that
preferentially binds AT-rich regions in the DNA, is quenched when bromodeoxyuridine (BrdU),
a thymine analog, is incorporated into AT-rich regions (3,4). Cells that have divided zero, one or
two times in the presence of BrdU can be differentiated based on the level of quenched Hoechst
fluorescence, thus giving a measure of cell proliferation (5). In a previous report, Poot et al. (6)
took advantage of the Hoechst quenching property of BrdU to measure survival of cells after
exposure to a DNA damaging agent. We have extensively modified the technique to be
performed in a multi-well format (96-well plate for suspension cells and 24-well plate for
adherent cells), drastically decreasing the setup time and reducing the number of cells required
for a survival curve to as little 10°-3x10° cells. Furthermore, we have broadened the scope of the
assay to simultaneously be used with different cell types and different cytotoxic agents. The
assay can be completed within half the time taken to perform a clonogenic survival assay while

maintaining high sensitivity and a dynamic range of three to four orders of magnitude.

Figure 2.1 shows a concise representation of the steps involved in the assay. After cells are
treated they are allowed to recover for the duration of two doubling times and subsequently

allowed to proliferate (if they can) for the duration of another two doubling times in the presence
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of BrdU. To make our approach amenable to screening multiple agents with diverse mechanisms
of actions we allow cells two doubling times after treatment for drug toxicity to present itself.
This allows for simultaneous detection of the toxicity of agents that act immediately versus those
that require formation of intermediates to slowly build up in cells. As an example, various DNA
damaging agents are dependent on replication for toxicity to occur, and more than one round of
replication may be needed to generate an observable phenotypic response. The duration of time
prior to BrdU addition can be optimized depending on the agents to be tested. Cells are then
gently lysed to obtain nuclei which are stained with propidium iodide (PI) and Hoechst dye.
Nuclei fluorescence is measured by flow cytometry to quantify the percentage of cells that have
proliferated in the presence of BrdU. The relative proliferation rate of treated samples compared
to untreated controls gives a measure of the sensitivity of cells to treatment. The ease, economy
and efficiency of this assay will enable rapid progress in systematic approaches to understanding
the biological importance of many proteins and pathways whose modulation leads to an observed

phenotype after exposure to cytotoxic agents.

2.3 Materials and methods

2.3.1 Cell culture
The lymphoblastoid cell lines TK6 and two TK6 derivatives (MT1 and TK6+MGMT) were
grown in suspension in RPMI medium supplemented with 10% equine serum, 1% l-glutamine
and 1% penicillin-streptomycin. The adherent U87MG glioblastoma cell line was grown in
DMEM medium supplemented with 15% fetal bovine serum, 1% l-glutamine and 1% penicillin-

streptomycin.
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1h (suspension)
16h (adherent)

Figure 2.1: Experimental set up with anticipated timing
Time line showing key steps in the experimental procedure

2 normal doubling times

2 normal doubling times
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2.3.2 Determining the optimal BrdU concentration
Cells were grown in the presence of different concentrations of BrdU (0-100uM) for a little
longer than one doubling time, then lysed and stained as described below with Hoechst and
propidium iodide for flow cytometry analysis. The optimal BrdU dose was determined as that
which quenched Hoechst fluorescence of G1 cells by half after one doubling time; this dose
allows the effective resolution of cells that have undergone one division after BrdU addition
from those that have undergone none or two divisions after addition. The optimal dose was

determined as 45uM for TK6 and the TK6 derivatives, and 20uM for the US7MG cell lines.

2.3.3 Cell cycle profile analysis by flow cytometry
BrdU is sometimes known to cause a G2/M arrest in cultured human cells. TK6, TK6 derivatives
and US7MG cell lines were grown in the presence of the optimal BrdU concentration for at least
two doubling times, during which samples were collected at multiple time points, washed with
cold PBS and fixed overnight in cold 100% ethanol. Fixed cells were washed with PBS+1%
BSA, resuspended in PBS+1%BSA containing propidium iodide (50 pg/ml) and immediately
analyzed by flow cytometry to obtain cell cycle profiles. None of the cell lines showed a G2/M
arrest when grown in the presence of BrdU. If however such an arrest is observed, the effect can

be overcome by adding deoxycytidine at an equal concentration as the added BrdU.

2.3.4 Drug treatment
Cell lines were treated in duplicate at multiple doses of BCNU (100mM in 100% ethanol). A
maximum of six doses were assayed and therefore 12 wells were used for each survival curve.

Treatment was performed in serum free media for one hour after which the drug was washed
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away and the cells were grown in fresh serum-containing media. This treatment scheme can be
accommodated for cytotoxic agents that require longer exposure times as well as short-lived
agents that do not require to be washed away after treatment. The drug treatment procedure is
described below for suspension or adherent cell lines.

Suspension cells: Before drug treatment, cells were grown to mid-log phase (6x10°cells/ml for
TK6 and its derivatives). 270 pl of cells at a density of 4.5x10°cells/ml were plated in each well
of one row of a round-bottom 96-well plate. If multiple cell lines were assayed, each cell line
was plated in one row of a 96-well plate in serum-free media. The drug was diluted to 10X of the
final dose concentrations in serum-free media in another 96-well plate. 30ul of the 10X drug was
transferred to each well in the 96-well plate containing cells, after which the cells were incubated
at 37°C for 1h. After 1h, cells were spun down at 1200rpm for 5min, drug-containing media was
removed using a multi-channel pipette and the cells were washed with 200ul warm 1XPBS per
well. The cells were then resuspended in 300ul of warm fresh media containing serum,
transferred to a flat-bottom 96-well plate and incubated at 37°C for the duration of two normal
doubling times. If the drug is not to be washed away, the experiment is set up in a flat-bottom
96-well plate at a density of 1.7x10°cells/ml in serum containing media, and the washing step is
omitted.

Adherent cells: Before drug treatment, U§7MG cells were grown to 80% confluence, washed
with warm 1XPBS, trypsinized and diluted to 4x10°cells/ml. 1ml of the diluted cells were plated
in each well of a 24-well plate and cells were allowed to attach overnight at 37°C, 5% CO,. One
such 24-well plate can be set up for each cell line being assayed. At the time of treatment, the
cells were removed from the incubator and the media replaced with 900ul of warm, fresh serum-

free media. The drug was diluted to 10X the final dose concentrations and 100ul of the 10X drug
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was added per well such that there were duplicate wells per dose and six doses, including the
untreated control. The cells were returned to the incubator for the duration of 1h after which the
drug-containing media was replaced with warm serum-containing media. The cells were returned

to the incubator for a period of time equivalent to two doubling times for normally growing cells.

2.3.5 Bromodeoxyuridine Addition
After allowing cells to respond for two doubling times after drug treatment, the cells are
incubated in the presence of BrdU for another two doubling times. The optimal BrdU
concentration was determined to be 45uM for TK6 and its derivatives, and 20uM for US7MG
cells. If the optimal BrdU concentration is greater than 20uM, then BrdU must be replenished
every 12 hours. Therefore, after the first two doubling times, BrdU was added to TK6 and TK6
derivatives at a concentration of 45uM(from a 10mM stock) and replenished by simply adding
BrdU to each well every 12 hours for the duration of two normal doubling times. Similarly BrdU
was added to US7MG cells at a concentration of 20uM. Since cells become photosensitive upon

BrdU addition, care must be taken to keep cells in the dark at all times post BrdU addition.

2.3.6 Nuclei isolation and staining for flow cytometry
At the end of four doubling times after drug treatment, cells were transferred to a v-bottom 96-
well plate. For suspension cells, the cells were transferred directly to a v-bottom 96-well plate
using a multi-channel pipette. For adherent cells, the cell plate was spun down at 1500rpm for
Smin to pull down any unattached cells. The media was removed and replaced with 100ul of
trypsin EDTA. Trypsin was quenched with 200ul of serum-containing media and the cells from

one well in the 24-well plate were transferred to one well in the v-bottom 96-well plate. Once
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transferred, both cell types were spun down at 1500rpm for 5Smin, media was removed with a
multi-channel pipette and cells were washed with cold 1XPBS. The cells were then resuspended
in 300ul of 1X lysis/staining buffer (0.1M Tris HCI pH 7.5, 0.1% Igepal CA-60, ImM CacCl2,
5mM MgCI2, 0.2%BSA (w/v), 1.2ug/ml Hoechst 33258 and 1x10* chicken erythrocyte nuclei
(CEN)/ml) and incubated on ice for 15 minutes after which 6ul of 200pug/ml propidium iodide
was added to each well using a multi-channel pipette. Two wells containing only the
lysis/staining buffer and propidium iodide are also prepared as blanks. Samples were mixed well
using a multi-channel pipette and analyzed on a BD LSR II flow cytometer equipped with a 96-

well plate robot arm.

2.3.7 Data collection
Events were visualized on the side scatter vs. forward scatter plot to gate out debris (Figure
2.2a), and on the PI-height vs. Pl-area plot to exclude doublets that fall below the diagonal
(Figure 2.2b). 30,000 events that passed these two criteria were collected and viewed on a PI-
Area vs. Hoechst-Area plot (Figure 2.2¢). During data collection, the voltages for PI and Hoechst

were adjusted to position CEN at the (30K, 30K) point to facilitate subsequent data analysis.
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Figure 2.2: Data filtering and collection plots
a) Side scatter vs. forward scatter plot shows the position of nuclei, CEN and debris. All events in gate R1
are to be included in the data collection and analysis steps.b) PI-Height vs. PI-Area plot shows the doublet
events below the diagonal that must be excluded. Events in gate R2 are included in the data collection and
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2.4 Results

2.4.1 Detecting cells that have undergone zero, one or two cell divisions
after drug treatment

BCNU is a DNA damaging agent commonly used in the clinic to treat glioblastoma despite the
fact that it can have severe side effects on hematopoietic cells (7,8). We used the multi-well
assay to test the BCNU sensitivity of the human lymphoblastoid cell lines TK6 and TK6
derivatives (MT1 and TK6+MGMT) that grow in suspension and the human U87MG
glioblastoma cell lines that grow attached. All data were analyzed using FlowJo (TreeStar Inc).
For each cell line and drug dose, the debris and doublets were gated out as described in Figure
2.2. The remaining events were observed on a PI-Area vs. Hoechst-Area plot. Figure 2.3
delineates the regions corresponding to cells that are in the first, second or third cell cycle after
treatment, recovery and incubation with BrdU. As seen in Figure 2.3A, Hoechst fluorescence of
cells decreases as they replicate their DNA in the presence of BrdU. Therefore, as the cells
replicate and divide, they move from the region labeled 1st cell cycle leftwards to the region
labeled 2nd cell cycle, and so on. For each sample, gates were drawn as in Figure 2.3C and the

number of events in each gate was determined.

2.4.2 Calculating the fraction of proliferated cells after drug treatment
For each cell type and dose assayed, the number of events in each of the regions corresponding
to the 1st, 2nd or 3rd cell cycle was used to calculate the number of proliferating cells in the
sample as shown in formula 1.
Formula 1

15 *(#events in cell cycle 2/HCEN)+ Yi*(#events in cell cycle 3/#CEN)
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The formula calculates the total number of cells that have divided after drug treatment by halving
the number of cells in the 2nd cell cycle (these cells have undergone one cell division) and
dividing the number of cells in the 3rd cell cycle by four (these cells have divided twice). Since
all samples of equal volume were spiked with the same number of CEN, the number of CEN
counted per sample is proportional to the volume of sample used for flow cytometry data
collection. Therefore the density of proliferating cells is calculated by dividing the total number
of proliferating cells per sample by the number of CEN counted in that sample. Comparing the
density of proliferated cells in a treated sample with that in an untreated sample gives the %
control growth value that is used to plot a survival curve. Example calculations for the survival

curves are shown in Table 2.1.

2.4.3 The multi-well assay has a large dynamic range, yielding log scale
killing for suspension and adherent cell lines treated with a cytotoxic
agent

BCNU’s efficacy as a chemotherapeutic agent arises from its ability to generate extremely
cytotoxic DNA inter-strand crosslinks (9). DNA crosslinks are formed in a multistep process, the
first of which is the formation of O’-chloroethylguanine lesions (10). The O°-methylguanine
methyl transferase (MGMT) protein is known to remove chloroethyl adducts from the O°
position of guanine (11,12). Thus, MGMT provides protection against BCNU-induced
cytotoxicity, and cells lacking MGMT are particularly sensitive to BCNU (13-15). With this in
mind, we used our multi-well assay to measured BCNU sensitivity of cell lines either lacking or

expressing MGMT to determine the range of sensitivity accurately measured by the assay.
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Table 2.1 Example showing the process of calculating % control growth of treated samples.

iﬁ’é}ﬂ'ﬁb CEN CC2 CC3  A=CC2/ICEN  B=CC3/CEN Ng=A/2+B/4 P=100*(Ng/Ng)
MTI1-0 2852 3461 19049  1.21353436 6.67917251  2.27656031 100
MT1-25 11075 602 74 0.05435666 0.00668172  0.02884876  1.26720818
MT1-50 8543 24 0 0.00280932 0 0.00140466  0.06170093
TK6+MGMT-0 2128 10463 8881 4.91682331 417340226 3.50176222 100
TK6+MGMT-25 2106 8950 8183  4.24976258 3.88556505  3.09627255  88.4204113
TK6+MGMT-50 2631 12822 8030  4.87343216 3.05207146  3.19973394  91.3749633

Data for survival curves shown in Figure 2.4. CEN: Chicken Erythrocyte Nuclei; CC2: number of events in cell
cycle 2; CC3: number of events in cell cycle 3; Ng: number of cells that divided; P: percentage of proliferating
cells in a treated versus untreated sample.
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BCNU sensitivity of suspension (TK6 and MT1) and adherent (U87MG) cell lines that lack
MGMT was measured using our multi-well assay. The TK6 and MT]1 cell lines have previously
been shown to be extremely sensitive to BCNU in the clonogenic survival assay as shown in
Figure 2.4A (16). Results from our multi-well assay, shown in Figure 2.4B, are remarkably
similar to those from the colony-forming assay. Additionally, we measured BCNU sensitivity of
the TK6+MGMT cell line (TK6 cell line reconstituted with MGMT) using our multi-well assay
and found that TK6+MGMT cells show extreme resistance to BCNU, as expected (Figure 2.4B).
We also tested the assay on adherent cells by measuring BCNU sensitivity of the adherent
U87MG glioblastoma cell line that lacks MGMT (17). Again, as expected the U87MG cells

showed extreme BCNU sensitivity (Figure 2.4), also with multi-log-scale killing.

2.4.4 The multi-well assay detects cell-cycle effects of drug treatment
Flow cytometry plots obtained using our assay for US7MG cells treated with BCNU show that
with increasing doses of BCNU, there is not only a decrease in the total number of cells but that
this decrease is also accompanied by a steady increase in the fraction of cells in late S and G2/M
phase of the first cell cycle (Figure 2.5). From these observations we can conclude that at higher
BCNU doses, surviving cells are unable to divide during the BrdU pulse and remain in the region
corresponding to the first cell cycle. Moreover, surviving cells are arrested at late S or G2/M for

the entire duration after BrdU addition.
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Figure 2.4: Example of data obtained using the assay
(A) Killing curves for BCNU treatment of TK6 and MT1 cell lines using the traditional clonogenic

survival assay (reproduced from (13)); (B) Killing curves for BCNU treatment of the TK6, MT1 and
TK6+MGMT cell lines using the multi-well assay; (C) Killing curves for BCNU treatment of the US7MG
glioblastoma cell line using the multi-well assay.
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Figure 2.5: Cell cycle effects of BCNU on US7MG cells
US7MG cells show accumulation in late S or G2/M with increasing doses of BCNU. This information is
obtained from the survival data with no additional experiments.
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2.5 Discussion

The use of survival measurements is a key method implemented to determine the effect that a
gene product has on the phenotypic outcome of cell death. The bottleneck in these studies is
usually the method used to measure cell survival. The clonogenic survival assay, long considered
the gold standard in the field, takes 10-14 days and can only be performed for a few cell lines
and few doses at any one time due to the long and laborious setup procedure. Moreover, the
assay becomes troublesome for cells that do not form colonies or that grow in suspension, where
cells must be plated at single cell densities or in soft agar to count colonies (1). To get around
this time-consuming assay, people have resorted to other higher-throughput techniques such as
measuring membrane permeability or metabolic (mitochondrial) activity; while these assays are
quicker, they have limited dynamic range such that cells that with drastically different

sensitivities on a log scale may be considered as only moderately different on the linear scale.

The multi-well assay we describe here produces survival measurements on a multi-log scale
comparable to the clonogenic survival assay. As described in the results section, BCNU
sensitivities of the suspension cell lines TK6 and MT1 are remarkably similar to that measured
by the clonogenic survival assay. Moreover, the TK6+MGMT cell line is identified as being
resistant to BCNU treatment as expected (13,15). These results highlight three important aspects
of our assay: i) The assay can measure sensitivity and resistance equally well, thus yielding
accurate results that reflect those obtained from the clonogenic survival assay; ii) the multi-well
assay is capable of measuring cell sensitivity on a multi-log scale, thus showing the large
dynamic range the assay has in contrast to other available quick assays; iii) the assay can be used

to measure cell survival of both suspension and adherent cell lines to cytotoxic agents, thus
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increasing its applicability. The assay has a reduced setup time and requires fewer cells allowing
one to simultaneously assay a large number of cell lines, doses and agents. This greatly improves
cell survival measurement efficiency to yield results in a fraction of the time and in a less labor-

intensive manner as compared to the clonogenic survival assay.

In addition to inducing cell death, many cytotoxic agents affect regular cell cycle progression,
with cells undergoing arrest either in the G1, S or G2/M phases of the cell cycle. The nature of
the arrest changes with the drug or cell line used, and provides insight into mechanisms of drug
action and possible ways to modify cell sensitivity to a particular drug. Traditional colony-
forming survival assays as well as more recent high-throughput survival assays yield no
information on possible cell cycle arrest from the drug treatment. Any such cell cycle effects
have been determined by separate and additional experiments such as cell cycle profile
measurements. In comparison, results from our multi-well assay are extremely rich in cell-cycle
information, and therefore provide added insight into the long-term cell cycle effects of the drug

treatment.

The data obtained using our assay showed, as seen in Figure 2.5, that the U§7MG glioblastoma
cell lines show a decrease in total number of cells, accompanied by a concomitant arrest in late
S/G2 phase of the cell cycle. Previous studies have shown that US7MG cells show an
accumulation of cells in late S or G2/M after BCNU treatment (18) (assayed by PI staining and
cell cycle profile analysis by flow-cytometry). However, it is important to note that after
determining cell sensitivity to BCNU using the colony forming assay, additional experiments

were needed to determine the cell cycle effect of BCNU in US7MG cells. In contrast, our assay

61



Chapter2: A High-throughput Survival Assay

yields the same observations in addition to the survival measurements with no additional time

and effort.

In conclusion, we have presented a high throughput method that takes advantage of current flow
cytometry technology and properties of proliferating cells to measure the sensitivity of both
suspension and adherent cells to different cytotoxic agents. The flexibility of the method, its
large dynamic range and its broad applicability makes it a powerful tool with great potential in
many different applications including both small and large scale screening of sensitivity of

numerous cell lines to numerous toxic agents.
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3.1 Abstract

In the presence of DNA lesions generated by exogenous and endogenous agents, transcriptional
changes are extremely important for the proper control of cell cycle progression and cell
death/survival decisions. To better understand temporal kinetics and control of transcription after
exposure to a chemotherapeutic agent BCNU, differences in expression kinetics between BCNU
sensitive and BCNU resistant cell lines were studied. This led to the identification of a
transcriptional signature that correlated with the observed cellular phenotype in BCNU sensitive
and resistant cell lines. Furthermore, NF-Y was identified as a putative regulator of mitotic genes
that were down-regulated in BCNU sensitive but not resistant cell lines, and thus implicated in

the observed stalling of entry into mitosis.
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3.2 Introduction

Constant damage to the DNA in our cells from exogenous and endogenous agents elicits DNA
damage response (DDR) mechanisms that include the induction of DNA repair, initiation of cell
cycle checkpoints, chromatin remodeling and activation of transcription. The prominent role of
the transcriptional response to DNA damage is seen by the significant genome-wide
transcriptional changes induced upon exposure to DNA damaging agents in yeast and
mammalian cells, not only for genes involved in DNA damage related functions like DNA
repair, cell cycle arrest and apoptosis, but also in other cellular processes such as protein
degradation and metabolism (1-4). In addition to the increased incidence of mutated transcription
factors in cancer (5), the increased sensitivity to DNA damaging agents of yeast strains that were
silenced in genes involved in transcription regulation (6,7) shows the importance of

transcriptional control in rescuing a cell from DNA damage.

Although cell-wide responses have been observed transcriptionally and are known to be
important for cell decision processes after DNA damage, the mechanisms by which these
decisions are made is not understood well. Moreover, the transcriptional control of these wide

spread gene expression changes is still an area of active research.

In this study, we set out to identify a transcriptional signature that was differentially induced or
repressed over time in cells with extreme sensitivity or resistance to the chemotherapeutic agent
BCNU. We went a step further to confirm that the signature gene set we identified indeed
correlated with the cellular phenotype. We also attempted to identify a mechanism for the

transcriptional regulation of the signature set in the presence of DNA damage.
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3.3 Materials and Methods

3.3.1 Cell culture
Lymphoblastoid suspension cell lines were grown in RPMI medium (Invitrogen) supplemented
with 15% FBS, supplemented with penicillin-streptomycin and L-glutamine. All cell lines were

in the mid-log phase of growth prior to treatment.

3.3.2 Proliferation assay
Survival curves for the panel of 24 cell lines were obtained using the proliferation assay
described in Chapter 2. Briefly, cells were plated in a 96-well plate and treated with 0, 10, 20, 40,
60 and 80uM BCNU for one hour in serum-free media. After this, the drug was washed away
and the cells were resuspended in warm serum-containing media. The cells were allowed to
recover for two normal doubling times and then grown in the presence of BrdU (Sigma-Aldrich
B5002) for another two doubling times. At the end of this, the cells were lysed in lysis buffer
(0.1M Tris HCI pH 7.5, 0.1% Igepal CA-60, ImM CaCI2, SmM MgCI2, 0.2%BSA (w/v),
1.2pug/ml Hoechst 33258, 1x10* chicken erythrocyte nuclei/ml), nuclei were stained with

100pg/ml propodium iodide (Sigma-Aldrich P4170) and data was collected by flow cytometry.

3.3.3 Cell cycle profile analysis
Cells were spun down at 1500 rpm for 5min, washed with cold 1XPBS and fixed in 100% cold
ethanol while vortexing. Cells were fixed overnight at 4°C, after which they were washed twice
with 1XPBS+1%BSA and stained in 1XPBS containing 50pg/ml propidium iodide and Img/ml

RNAseA (Invitrogen). Samples were protected from light and analyzed by flow cytometry.
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3.3.4 Drug treatment
Cells were grown to mid log-phase prior to drug treatment. On the day of treatment, cells were
spun down at 1500rpm for 5min and diluted to 4.5x10°cells/ml in warm serum free RPMI
medium. BCNU (100mM stock in 100% ethanol; Sigma-Aldrich C0400) was added directly to
cells at a concentration of 40uM. Mock-treated samples were set up in the same manner as
treated samples, except that 100% ethanol was added to cells instead of BCNU. After an hour-
long BCNU exposure, the drug was washed away and cells were re-suspended in fresh RPMI
medium supplemented with 15% FBS. Cells were collected at the each time-point following the

appropriate protocol for each assay.

3.3.5 RNA isolation and hybridization
Cell lines 4, 5, 13 and 16 were treated with 40uM BCNU as described. At each time point, two
million cells were collected on ice and lysed in TRIzol® Reagent (Invitrogen). Samples were
stored at -80°C until all samples for the time-course were collected. RNA was isolated using the
Qiagen RNeasy Mini kit and checked for integrity on the Agilent BioAnalyzer 2100. All samples
that passed quality control were prepared using the NuGEN sample preparation procedure, and
hybridized on Affymetrix HG-U133 plus 2.0 arrays. RNA quality control, sample preparation

and array hybridization were performed at the BiomicroCenter, MIT.

3.3.6 Microarray data analysis
Normalization: Affymetrix .CEL files were uploaded to the GenePattern suite (8) and standard
RMA normalization was used to normalize and extract expression values from the data set. Only

probe-sets that were present in at least one sample were included in the analysis. The array data
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was formatted into a three dimensional matrix in MATLAB (Mathworks). Similarly three
dimensional matrices were used to store relevant gene information such as the time-point, drug
dose and whether the expression value was measured in a sensitive or resistant cell line.

Gene-set selection: ANOVA analysis was performed using the anovan function in MATLAB
using the three dimensional matrices for gene expression values, BCNU dose, time-point and
sensitivity. P-values for each of the variables (treatment, time and sensitivity) and for the
different combinations of the variables (e.g treatment X time) were obtained. Probe-sets that
passed a p-value cutoff of p < 0.01 for the treatment X sensitivity or treatment X sensitivity X
time variables were selected for further analysis.

Clustering: The hierarchical clustering module from the GenePattern suite was used to cluster
along the rows of log-normalized data (log, (gene value at time t/gene value at time 0)).
Clustered data were exported and visualized using MATLAB. Similarly, the transcriptional
signature was clustered using CLICK within the EXPANDER platform (9-12) to identify clusters
of up-regulated and down-regulated genes. These clusters were used for the Ingenuity Pathway
Analyses, Gene Ontology Enrichment and transcription factor binding site enrichment.

Ingenuity Pathway Analysis: The set of 984 probe-sets as well as the up-regulated and down-
regulated clusters were analyzed using Ingenuity Pathways Analysis (Ingenuity® Systems,
www.ingenuity.com) for network connectivity and canonical pathway enrichment analysis.
Eligibility settings were chosen to be stringent, only allowing interactions and findings seen in
human cell lines.

Gene Ontology Enrichment: Gene ontology enrichment for biological processes was performed
using the Database for Annotation, Visualization and Integrated Discovery (DAVID v6.7; (13)).

The standard GO-FAT enrichment within DAVID was used, which focuses on enrichment of
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more specific GO terms within the provided gene set by filtering out broader terms that might
over-shadow the lower-level terms.

Gene Set Enrichment Analysis (GSEA): The GSEA algorithm (14) available from the
GenePattern Suite (Broad Institute) was used to check enrichment of genes that are repressed by
p53 acetylation within the set of 984 differentially expressed probe-sets. Gene expression values
at 48hours were used as the input and gene-wise permutations were performed for the

enrichment analysis.

3.3.7 Annexin/7AAD assay for measuring cell death
At each time point, cells were collected (1500rpm, Smin) and washed once in cold Annexin
buffer (10mM HEPES, 140mM NaCl, 2.5mM CaCl,). Cell pellets were then incubated with
7AAD (50pg/ml; Sigma A9400) and PE-AnnexinV (1:20 dilution; Invitrogen A35111) for 15
minutes at room temperature, protected from light. Cells were immediately analyzed by flow-

cytometry.

3.3.8 Phospho-histone H3 for measuring the mitotic fraction
At each time point, cells from mock-treated and treated samples were collected (1500rpm,
Sminutes) and washed once with cold 1xPBS. Cells were then fixed in 4% formaldehyde
(prepared in 1XPBS), at room temperature for 15 minutes. Cells were spun down and washed
once with 1XPBS, after which cell pellets were resuspended in 100% methanol and stored at -
20°C until analysis by flow cytometry. To prepare cells for flow cytometry, samples were spun
down to remove methanol, and washed once in 1XPBS + 1% BSA. Cells were permeabilized by

incubation in 1XPBS + 0.25% Triton for 15 minutes at room temperature. Cells were washed
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once with 1XPBS + 1%BSA, and incubated with 0.75ug of anti-phospho-Histone H3 antibody
(Upstate #06-570) for three hours at room temperature. After this incubation, cells were washed
twice with 1XPBS + 1%BSA, and incubated with goat anti-rabbit IgG Alexa Fluor 647 (1:30
dilution in 1xPBS + 1%BSA; Molecular Probes A21244) for 30 minutes at room temperature
and protected from light. Samples were washed twice with 1XPBS and resuspended in 1XPBS
containing 50pg/ml propidium iodide and 1mg/ml RNAseA. Cells were analyzed by flow

cytometry.

3.3.9 Immunoblot analysis
At each time point, mock-treated and treated samples were collected (1500rpm, Sminutes),
washed with 1XPBS and frozen in liquid nitrogen. Cell pellets were stored at -80°C until lysis.
Cells were lysed for 30 minutes on ice in lysis buffer (10mM Tris-HCI, pHS8.0; 137mM NacCl;
10% glycerol; 1% NP-40; 10mM EDTA; protease inhibitor cocktail; 10mM NaF; ImM DTT;
ImM sodium orthovanadate). The lysate was sonicated (3 times, 2 seconds each at 20%
amplitude) to dissociate chromatin-bound proteins. Debris was pelleted by centrifuging samples
for 10 minutes at maximum speed at 4°C. Whole cell lysates were size-separated on 4-12% Bis-
Tris polyacrylamide gels (Invitrogen) and transferred onto nitrocellulose membrane (BioRad) for
immunoblot analysis. The membrane was probed with the following primary antibodies: total
p53 (Santa Cruz, sc-263), p-p53ser20 (R&D systems, AF2286), p-p53serl5 (R&D systems,
AF1043), acetyl-p53lys373 (Millipore 06-916), beta-actin (Sigma A5441), and vinculin (Sigma
V9131). Appropriate IRDye-conjugated secondary antibodies (Rockland) were used and the

immunoblots were scanned and quantified using the Odyssey system (Licor Biosciences).
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Positive controls were prepared from irradiated cells (10Gy) and cells treated with 50 uM

etoposide (Sigma E1383) and 16.5nM TSA (Sigma T1953) for 12 hours.

3.3.10 Chromatin immunoprecipitation followed by sequencing and peak
calling

Chromatin immunoprecipitation was performed using the Agilent mammalian protocol. Briefly,
cells were cross-linked in 10% formaldehyde for 10 minutes at room temperature after which
Glycine was added to quench cross-linking activity. Cells were washed with 1XPBS, aliquoted
into tubes (10° cells per aliquote) and stored at -80°C. Prior to immunoprecipitation, cells were
permeabilized in lysis buffer (5S0mM Hepes-KOH, pH7.5, 140mM NaCl, ImM EDTA, 10%
glycerol, 0.5% NP-40, 0.25% Triton X and protease inhibitors) for 10 minutes at 4°C, nuclei
were washed and resuspended in sonication buffer (50mM Tris-HCI pH 8, 140mM NaCl, ImM
EDTA, 1% Triton X-100, 0.1% SDS, 0.1% Na-deoxycholate). Nuclei were sonicated to obtain
chromatin fragments <500bp (36 cycles of 20 seconds on and 1 minute off at 45% amplitude). 50
ul of the sonicated chromatin was saved as input control and the rest was incubated overnight
with IgG (Sigma) or anti-NF-YA antibody (Rockland, 200-401-100) bound ProteinA-Dynal
beads (Invitrogen). Beads were washed thrice with sonication buffer and one last time with a
LiCIl wash (20mM Tris pH 8, ImM EDTA, 250mM LiCl, 0.5% NP-40, 0.5% Na-deoxycholate)
and eluted in elution buffer(5S0mM Tris-HCI, pH 8, 10mM EDTA, 1% SDS) at 65°C with
vortexing. Crosslinks were reversed at 65°C for 6 hours, and samples were treated with RNAse

and proteinase K. Following this, DNA was isolated by phenol-chloroform extraction.

Sample preparation, sequencing and preliminary data extraction was performed at the Biomicro

Center, MIT on the Illumina sequencing platform. Aligned sequences from two NF-Y IPs and
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two IgG control IPs were combined for Model-based Analysis of ChIP-Seq (MACS) (15) using a
p-value cut-off of 10"°. The 200 most significant peaks were analyzed using THEME (16) to

identify the enriched motif within this set.

3.4 Results

3.4.1 Determining the optimal BrdU dose for lymphoblastoid cells
The first step in using the proliferation assay (described in Chapter 2) to obtain the dose-response
curve of a cell line to a particular DNA damaging agent was to establish the optimal BrdU
concentration for the cell lines being tested. This optimal concentration is defined as the
concentration of BrdU that quenches Hoechst fluorescence of cells in the G1 phase of the cell
cycle by one half after cells complete one doubling in the presence of BrdU (17-19). Half-
quenching of Hoechst fluorescence in the first cell cycle is necessary for optimal resolution of

cells that have divided once, twice or thrice in the presence of BrdU.

The optimization was performed in the lymphoblastoid cell line TK6 with the assumption that all
lymphoblastoid cell lines would require similar BrdU concentrations to quench G1 Hoechst
fluorescence by half. A range of BrdU doses between 0-100 uM was tested by growing TK6
cells in the presence of BrdU for a little more than one doubling time (16 hours). Figure 3.1
shows the flow cytometry plots obtained for the four BrdU concentrations tested. As is seen in
the figure, 45uM BrdU was enough to quench Hoechst fluorescence by almost half (from ~90K
to ~50K) and any further increase in the BrdU concentration did not significantly increase
quenching. Moreover, doses of BrdU lower than 45uM did not yield enough Hoechst quenching.

Therefore, 45uM BrdU was defined as the optimal concentration for the panel of 24 cell lines.
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Figure 3.1: Determining the optimal BrdU concentration for lymphoblastoid cell lines

Flow cytometry scatter plots of PI fluorescence vs. hoechst fluorescence showing hoechst
quenching for various doses of BrdU. The difference in hoechst fluorescence between G1 cells
of the first (G1”) and second cell cycle (G1°’) is marked along the x-axis.
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3.4.2 Cell lines show no G2/M arrest after BrdU addition
Although most diploid cells show no cell cycle effects from short term BrdU incorporation
(20,21), in some cell types, BrdU is known to induce a G2/M arrest (22). Therefore, a fraction of
the twenty-four cell lines were tested to see whether lymphoblastoid cell lines undergo a G2/M
arrest when grown in 45uM BrdU. For this experiment, cells were grown in the presence of
BrdU for 48 hours. At various time intervals during the BrdU incubation, cells were collected,
fixed in 100% ethanol, stained with propidium iodide (as described in the Materials and Methods
section) and analyzed by flow-cytometry to obtain cell cycle profiles. Figure 3.2 to Figure 3.7
show the cell cycle profiles, fraction of cells in G1 and G2 over time, and the growth of cells in
the presence of BrdU for the cell lines tested. These show that no discernible G2/M arrest or
growth retardation is seen in these lymphoblastoid cell lines grown for a 48 hours in the presence

of BrdU.

3.4.3 The genetically varied panel of cell lines show a wide range of
sensitivities to BCNU

With the optimal BrdU concentration defined as 45uM and the knowledge that this dose did not
induce a G2/M arrest in the lymphoblastoid cell lines, the panel of cell lines were ready to be
screened for BCNU sensitivity. It is important to note that the multi-well proliferation assay used
to ascertain BCNU sensitivity is dependent on the doubling times of the cell lines being assayed.
Based on previously determined doubling times (Samson lab, unpublished data), the panel of cell
lines was divided into four sub-groups. The four sub-groups are shown in Table 3.1,

accompanied by the approximate doubling times defined for each group.
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Figure 3.2: Checking for BrdU dependant G2/M arrest in Cell line 6

Cell cycle profiles for cells grown in the absence (top panel) or presence (middle panel) of 45uM BrdU
for 0, 25 and 48 hours. The bottom, left panel shows fraction of cells in G1 (squares) and G2 (circles) for
cells grown with 0 (open) or 45uM (filled) BrdU. The bottom, right panel shows cell growth for cells
grown in 0 (open) or 45uM (filled) BrdU.
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Cell line 14
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Figure 3.3: Checking for BrdU dependant G2/M arrest in Cell line 14

Cell cycle profiles for cells grown in the absence (top panel) or presence (middle panel) of 45uM BrdU
for 0, 25 and 48 hours. The bottom, left panel shows fraction of cells in G1 (squares) and G2 (circles) for
cells grown with 0 (open) or 45uM (filled) BrdU. The bottom, right panel shows cell growth for cells
grown in 0 (open) or 45uM (filled) BrdU.
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Cell line 16
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Figure 3.4: Checking for BrdU dependant G2/M arrest in Cell line 16

Cell cycle profiles for cells grown in the absence (top panel) or presence (middle panel) of 45uM BrdU
for 0, 25 and 48 hours. The bottom, left panel shows fraction of cells in G1 (squares) and G2 (circles) for
cells grown with 0 (open) or 45uM (filled) BrdU. The bottom, right panel shows cell growth for cells
grown in 0 (open) or 45uM (filled) BrdU.
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Cell line 21
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Figure 3.5: Checking for BrdU dependant G2/M arrest in Cell line 21
Cell cycle profiles for cells grown in the absence (top panel) or presence (middle panel) of 45uM BrdU
for 0, 25 and 48 hours. The bottom, left panel shows fraction of cells in G1 (squares) and G2 (circles) for
cells grown with 0 (open) or 45uM (filled) BrdU. The bottom, right panel shows cell growth for cells
grown in 0 (open) or 45uM (filled) BrdU.
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Cell line 22
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Figure 3.6: Checking for BrdU dependant G2/M arrest in Cell line 22

Cell cycle profiles for cells grown in the absence (top panel) or presence (middle panel) of 45uM BrdU
for 0, 25 and 48 hours. The bottom, left panel shows fraction of cells in G1 (squares) and G2 (circles) for
cells grown with 0 (open) or 45uM (filled) BrdU. The bottom, right panel shows cell growth for cells
grown in 0 (open) or 45uM (filled) BrdU
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Cell line 24
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Figure 3.7: Checking for BrdU dependant G2/M arrest in Cell line 24

Cell cycle profiles for cells grown in the absence (top panel) or presence (middle panel) of 45uM BrdU
for 0, 25 and 48 hours. The bottom, left panel shows fraction of cells in G1 (squares) and G2 (circles) for
cells grown with 0 (open) or 45uM (filled) BrdU. The bottom, right panel shows cell growth for cells
grown in 0 (open) or 45uM (filled) BrdU
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Table 3.1: The partition of the panel of 24 cell lines based on their doubling times

Cell Line CCR Catalog Norm'al doubling Group No. dofbﬁ:'\rg)t(i.me
No. time (h)

(h)

8 GM15510 17 1 18
22 GM15324 19 1 18
21 GM15268 20 2 22
20 GM15242 20 2 22
16 GM15072 21 2 22
24 GM15061 21 2 22
6 GM15224 22 2 22
14 GM15038 22 2 22
1 GM15029 22 2 22
17 GM15144 22 2 22
GM15215 23 2 22

GM15245 24 2 22

15 GM15056 24 2 22
23 GM15386 24 2 22
12 GM15385 25 3 27
13 GM15590 25 3 27
9 GM15213 26 3 27
19 GM15226 27 3 27
GM15236 27 3 27

GM13036 28 3 27

GM15223 30 3 27

11 GM15227 30 3 27
18 GM15216 35 4 37
10 GM15221 40 4 37

The 24 cell lines were ordered based on their normal doubling time, divided into four groups. Cell lines in
each group were assayed based on the approximate doubling time for the group.
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Based on preliminary experiments, the doses chosen for BCNU treatment were 0, 10, 20, 40, 60
and 80 uM BCNU. Cell lines with similar doubling times that belonged to the same sub-group
were assayed on one 96-well plate. The survival curves were obtained using the proliferation
assay (see Materials and Methods). Once the data was collected, all flow cytometry data was
analyzed using FlowJo (TreeStar Inc.) as described in the Chapter 2. Gates were drawn
appropriately and the percentage of proliferating cells was calculated to obtain survival curves
for the 24 cell lines. The survival curves obtained in this manner for the panel of 24 cell lines are

shown in Figure 3.8.

From Figure 3.8, one can see that there is a wide range of sensitivities for the panel of cell lines
exposed to BCNU. The panel of genetically varied cell lines was also previously shown to have a
wide range of sensitivities to other alkylating agents MNNG (23) and MMS (unpublished data).
To identify any correlation between the sensitivities of the cell lines for the three agents, a
correlation coefficient was calculated between the three possible pairs of treatments: (BCNU,
MMS), (BCNU, MNNG) and (MNNG, MMS). As seen in Figure 3.9 , the correlation between
the sensitivity values for the three DNA damaging agents is weak, (R*= 0.15, 0.28 and 0.23
respectively) thus suggesting that the factors that affect the sensitivity of the cell lines to the

three agents are different.
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Figure 3.8: Survival curves for the 24 cell lines after BCNU treatment
Survival curves for the panel of 24 genetically varied cell lines for BCNU doses of 0, 10, 20 .40, 60 and 80
uM. Graphs were obtained using the proliferation assay described in Chapter 2
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Figure 3.9: Correlation between sensitivities of the 24 cell lines to MMS, MNNG and BCNU

The R? for correlation between the sensitivity of the cell lines for the MMS (0.4mM), MNNG (0.5ug/ml)
and BCNU (40uM) was calculated for each of the pairs (BCNU, MMS), (BCNU,MNNG) and (MNNG,

MMS). The values for R* obtained are shown on each plot.
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To identify genes whose basal expression values correlate well with BCNU sensitivity, and
possibly affect the BCNU sensitivity of the cell lines, previously obtained basal expression for
the twenty four cell lines from (23) was used. These basal gene expression values were
correlated with the BCNU sensitivity values of the cell lines at the 40uM dose. Those genes that
had an r > 0.6 or r < -0.6 with a p-value < 0.05 of correlation were selected. 123 probe-sets
corresponding to 94 genes passed these criteria and are shown in Table 3.2 and a heat-map
representation of their expression values is shown in Figure 3.10A. Of these genes, only one
gene, O’-methylguanine DNA methyltransferase (MGMT) is positively correlated with BCNU
sensitivity. This is reassuring since MGMT is known to remove the O’-chloroethyl adduct
generated by BCNU and confer resistance to BCNU treatment in the clinic. All of the other
genes included within this list are negatively correlated with BCNU resistance and most have not
yet been associated with BCNU sensitivity or resistance. Gene ontology enrichment (see
Materials and Methods) shows that the 94 genes are enriched for molecular processes involved in
protein catabolism (see Figure 3.10B), a process yet to be studied in the context of BCNU

exposure.
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Figure 3.10: Genes whose basal expression correlates with BCNU sensitivity

(A) Heat-map of 123 probesets (corresponding to 94 genes) with high positive or negative correlation
with BCNU sensitivity (r > 0.6 or r < -0.6 with p-value < 0.05) ordered according to their correlation. The
top-most gene is MGMT and is the only positively correlated gene; (B) Gene ontology enrichment within
the set of 94 genes obtained using GO-FAT from DAVID (v7.6)
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Table 3.2: 123 probesets with high positive or negative correlation to BCNU sensitivity

probeset Gene 1D Gene name

204880 at MGMT O-6-methylguanine-DNA methyliransferase

223299 at SECI11C SEC11 homolog C (S. cerevisiae)

225674 at BCAP29 B-cell receptor-associated protein 29

201823 s at RNF14 ring finger protein 14

209174 s at QRICHI |glutamine-rich |

203102_s_at MGAT2 mannosyl (alpha-1,6-)-glycoprotein beta-1,2-N-acetylglucosaminyltransferase
223305 at TMEM216 transmembrane protein 216

236254 at VPS13B vacuolar protein sorting 13 homolog B (yeast)

213374 x at HIBCH 3-hydroxyisobutyryl-Coenzyme A hydrolase

1552472 a at ACAP2 ArfGAP with coiled-coil, ankyrin repeat and PH domains 2
1555399 a at DUSPI6 dual specificity phosphatase 16

223835 x at oTP orthopedia homeobox

218487 at ALAD aminolevulinate, delta-, dehydratase

204313 s at CREBI cAMP responsive element binding protein 1

239288 at TNIK TRAF2 and NCK interacting kinase

242943 at STRSIA4 ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 4
201732 s at CLCN3 chloride channel 3

232520 s at NSFLI1C NSFLI1 (p97) cofactor (p47)

203099 s at CDYL chromodomain protein, Y-like

218172 s at DERLI Derl-like domain family, member 1

1552302 _at TMEMI106A hypothetical LOC728772; transmembrane protein 106A
218088 s at RRAGC Ras-related GTP binding C

223569 at PPAPDCIB phosphatidic acid phosphatase type 2 domain containing 1B
201988 s at CREBL2 c¢AMP responsive element binding protein-like 2

225677 at BCAP29 B-cell receptor-associated protein 29

230462 at NUMB numb homolog (Drosophila)

223568 s at PPAPDCIB phosphatidic acid phosphatase type 2 domain containing 1B
201735 s at CLCN3 chloride channel 3

200917 s at SRPR signal recognition particle receptor (docking protein)

222729 at FBXW7 F-box and WD repeat domain containing 7

212542 s at PHIP pleckstrin homology domain interacting protein

228041 at AASDH aminoadipate-semialdehyde dehydrogenase

203758 _at CTSO cathepsin O

225306 s at SLC25A29 solute carrier family 25, member 29

229018 at C120rf26 chromosome 12 open reading frame 26

207124 s at GNBS guanine nucleotide binding protein (G protein), beta 5
235705 _at TRIO triple functional domain (PTPRF interacting)

204562 at IRF4 interferon regulatory factor 4

209913 x at KIAAD415 KIAA0415

229419 at FBXW7 F-box and WD repeat domain containing 7

210653 s at BCKDHB branched chain keto acid dehydrogenase E1, beta polypeptide
230029 x_at UBR3 ubiquitin protein ligase E3 component n-recognin 3 (putative)
235196_at Cde73 cell division cycle 73, Pafl/RNA polymerase 11 complex component, homolog (S. cerevisiae)
213373 s at CASPE caspase 8, apoplosis-related cysteine peptidase

241364 at TMEMS7 transmembrane protein 57

201989 s at CREBL2 cAMP responsive element binding protein-like 2

225644 at CCDC117 coiled-coil domain containing 117

224453 s at ETNKI ethanolamine kinase 1

213483 at PPWDI peptidylprolyl isomerase domain and WD repeat containing 1
228711 _at ZNF37A zine finger protein 37A

222496 s at RBM47 RNA binding motif protein 47

218588 s at FAMI114A2 family with sequence similarity 114, member A2

240410 at -
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Table 3.2 (contd.)
probeset Gene ID Gene name
217906 at KLHDC2 kelch domain containing 2
227980 at ZNF322A zinc finger protein 322A
203567 s at TRIM38 tripartite motif-containing 38
226897 s at ZC3HTA zine finger CCCH-type containing 7A
209207 s at SEC22B SEC22 vesicle trafficking protein homolog B (S. cerevisiae)
CTAGE family, member 5 pseudogene; CTAGE family member; CTAGE family, member 4; CTAGE
215930_s_at CTAGE4 family, member 5
213009 s at TRIM37 tripartite motif-containing 37
222669 s at SBDS Shwachman-Bodian-Diamond syndrome pseudogene; Shwachman-Bodian-Diamond syndrome
221857 s at TIAPI tight junction associated protein 1 (peripheral)
203486 s at ARMCE armadillo repeat containing 8
228242 at N4BP2 NEDD4 binding protein 2
220980 s at ADPGK ADP-dependent glucokinase
203447 at PSMD35 proteasome (prosome, macropain) 265 subunit, non-ATPase, 5
201358 s at COPB1 coatomer protein complex, subunit beta |
206958 s at UPF3A UPF3 regulator of nonsense transcripts homolog A (yeast)
235670 at STX11 syntaxin 11
225927 at MAP3K1 mitogen-activated protein kinase kinase kinase |
201990 s at CREBL2 cAMP responsive element binding protein-like 2
206925 at STESIA4 5T8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 4
218827 s at CEP192 centrosomal protein 192kDa
1554260 a at FRYL FRY-like
226719 at -- --
227915 at ASB2 ankyrin repeat and SOCS box-containing 2
203098 at CDYL chromodomain protein, Y-like
233857 s at ASB2 ankyrin repeat and SOCS box-containing 2
2016359 s at ARL1 ADP-ribosylation factor-like 1
204566 _at PPMID protein phosphatase 1D magnesium-dependent, delta isoform
201384 s at NBR1 neighbor of BRCAIT gene |
212006 _at UBXN4 UBX domain protein 4
201098 at COPB2 coatomer protein complex, subunit beta 2 (beta prime)
203610 s at TRIM38 tripartite motif-containing 38
218456 _at CAPRIN2 caprin family member 2
201559 s at CLIC4 chloride intracellular channel 4
200762 _at DPYSL2 dihydropyrimidinase-like 2
210385 s at ERAPI endoplasmic reticulum aminopeptidase 1
200011 _at TRIO triple functional domain (PTPRF interacting)
218035 s at RBM47 RNA binding motif protein 47
226529 at TMEM106B tr: nbrane protein 1068
221881 s at CLIC4 chloride intracellular channel 4
202809 s at INTS3 integrator complex subunit 3
210609 s at TP5313 tumor protein p33 inducible protein 3
210041 s at PGM3 phosphoglucomutase 3
202318 s at SENP6 SUMO/sentrin specific peptidase 6
230836 _at STESIA4 ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 4
218302 at PSENEN presenilin enhancer 2 homolog (C. elegans)
222787 s at TMEM106B tr; nbrane protein 1068
243507 s at C200rf196 chromosome 20 open reading frame 196
1552303 a_at TMEM106A hypothetical LOC728772; transmembrane protein 106A
203833 s at TGOLN2 trans-golgi network protein 2
212993 at NACC2 NACC family member 2, BEN and BTB (POZ) domain containing
239175 at AFTPH aftiphilin
212239 at PIK3R1 phosphoinositide-3-kinase, regulatory subunit 1 (alpha)
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Table 3.2 (contd.)
probeset Gene 1D Gene name
216986 _s at IRF4 interferon regulatory factor 4
209497 s at RBM4B RNA binding motif protein 4B
205120 s at SGCB sarcoglycan, beta (43kDa dystrophin-associated glycoprotein)
224832 at DUSPI16 dual specificity phosphatase 16
224336 s at DUSP16 dual specificity phosphatase 16
212890 at SLC38A10 solute carrier family 38, member 10
209234 at KIFIB kinesin family member 1B
204000 at GNB3S guanine nucleotide binding protein (G protein), beta 5
233300 _at -- --
218930 s at TMEM106B transmembrane protein 1068
214323 s at UPF3A UPF3 regulator of nonsense transcripts homolog A (veast)
204872 _at TLE4 transducin-like enhancer of split 4 (E(sp1) homolog, Drosophila)
212249 at PIK3R1 phosphoinositide-3-kinase, regulatory subunit 1 (alpha)
212240 s at PIK3R1 phosphoinositide-3-kinase, regulatory subunit | (alpha)
214688 at TLE4 transducin-like enhancer of split 4 (E(sp1) homolog, Drosophila)
217993 s at MAT2ZB methionine adenosyltransferase 11, beta
237034 at -- -
226112 at SGCB sarcoglycan, beta (43kDa dystrophin-associated glycoprotein)
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3.4.4 Cell cycle profiles for cell lines with extreme BCNU
sensitivity/resistance define the time frame for microarray
measurements

From the wide range of sensitivities observed in the panel of 24 cell liens after BCNU treatment,
we chose the two cell lines that were most sensitive to BCNU (cell lines 4 and 5) and the two
that were most resistant (cell lines 13 and 16) for further analyses. Although the proliferation
assay gives a measure of how sensitive a cell line is to BCNU, it provides no information about
the time frame within which key cellular decisions are made after BCNU treatment. To better
gauge the duration after DNA damage within which interesting transcriptional changes might
occur, we measured some phenotypic properties of the four cell lines to gain insight into the
changes that occur in these cell lines after BCNU treatment. Informative time points at which to
measure transcripts were identified. We also chose to use 40uM BCNU for all of the subsequent
experiments since this dose had only a slight effect on the resistant cell lines, while inducing
significant death in the sensitive cell lines, but not so much death that it would be impossible to

harvest cells for RNA isolation.

One well studied property of cells after DNA damage is the initiation of cell cycle checkpoints in
the presence of damage. BCNU has previously been shown to induce late S or G2/M arrest in
glioblastoma cell lines (24). We reasoned that if such an arrest occurs with the set of four cell
lines used here, the time points prior to initiation of the cell cycle arrest, and all the way up to

resolution of the arrest or initiation of cell death would yield informative transcriptional data.

Cell cycle profiles measured at various time points after DNA damage provide information on

whether cell cycle arrest occurs in treated versus mock-treated cells, how long after treatment
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such an arrest occurs, the duration and nature of the arrest, and whether cells are able to resolve
the arrest and resume normal cell cycle progression. The final piece of information that can be
obtained from cell cycle profile measurements is the time, post-treatment, when a sub-Gl
population becomes visible in the sensitive cell lines, thus indicating the possible time point at

which DNA fragmentation begins.

Therefore, with the goal of identifying time points for global transcriptional profiling, cell cycle
profiles were measured for the four cell lines after BCNU treatment. The four cell lines were
treated with BCNU (see Materials and Methods). Cells were collected at multiple time-points all
the way up to 96 hours post treatment for cell cycle profile measurements by flow cytometry (as

described in the Methods section).

Figure 3.11 and Figure 3.12 show cell cycle profiles of the sensitive cell lines 4 and 5
respectively at multiple time-points post BCNU treatment. These cell cycle profiles four
important features - 1) there is an initial accumulation of cells in the S-phase of the cell cycle
slightly visible at 12 hours and more prominent at 24 and 36 hours post BCNU treatment; ii)
there is slow progression of cells through S-phase towards 4N DNA content all the way up to the
48 hour time point, accompanied by a decrease in the G1 population; iii) there is an increase in
the sub-G1 population beginning at 24 hours for the most sensitive cell line (cell line 4) and at
48hours for the other sensitive cell line 5, and increasing all the way up to the 96 hour time point;
iv) the accumulation of cells in G2/M is minimal in the sensitive cells. In contrast to the sensitive
cell lines, the cell cycle profiles of the resistant cell lines16 and 13 (seen in Figure 3.13 and

Figure 3.14) show no obvious differences between treated and mock-treated samples.
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Figure 3.11: Cell cycle progression of the BCNU sensitive cell line 4
Cell cycle profiles for cell line 4 either mock-treated (top panel) or BCNU treated (middle panel) at 12, 24
and 48 hours. The bottom panel shows quantification of sub-G1, G1, S and G2 cell cycle phases at each
time point for mock-treated (open) and BCNU treated (filled) samples.
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Figure 3.12: Cell cycle progression of the BCNU sensitive cell line 5

Cell cycle profiles for cell line 5 either mock-treated (top panel) or BCNU treated (middle panel) at 12, 24
and 48 hours. The bottom panel shows quantification of sub-G1, G1, S and G2 cell cycle phases at each
time point for mock-treated (open) and BCNU treated (filled) samples.
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Figure 3.13: Cell cycle progression of the BCNU resistant cell line 16

Cell cycle profiles for cell line 13 either mock-treated (top panel) or BCNU treated (middle panel) at 12,
24 and 48 hours. The bottom panel shows quantification of sub-G1, G1, S and G2 cell cycle phases at
each time point for control (open) and BCNU treated (filled) samples.
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Figure 3.14: Cell cycle progression of the BCNU resistant cell line 13

Cell cycle profiles for cell line 13 either mock-treated (top panel) or BCNU treated (middle panel) at 12,
24 and 48 hours. The bottom panel shows quantification of sub-G1, G1, S and G2 cell cycle phases at

each time point for control (open) and BCNU treated (filled) samples.

97



Chapter 3: Transcriptional Response to BCNU

3.4.5 Viable cell number measurements for BCNU sensitive/resistant cell
lines show growth inhibition for sensitive cell lines but not resistant
cell lines

To complement the cell cycle profile measurements, viable cell numbers were measured by
trypan blue exclusion to determine the relative growth rates between treated and mock-treated
samples. Figure 3.15 shows the viable cell numbers for the four cell lines. The figure shows that
the two sensitive cell lines show strong growth inhibition after BCNU exposure as compared to
mock-treated samples. In contrast, the viable cell measurements of the resistant cell lines only
showed a slight lag in cell growth. The fact that the cell cycle profile measurements of the
resistant cell lines showed no discernible stalling of cells in any one phase of the cell cycle
suggests that the lag in cell growth in resistant cell lines is not due to a strong cell cycle arrest but

could be due to a fleeting arrest that was either missed or undetectable by the assay used.
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Figure 3.15: Growth inhibition of cell lines showing extreme BCNU sensitivity/resistance

Cell density as measured by trypan blue exclusion for the two sensitive cell lines (left panels) and two
resistant cell lines (right panels) for control (open) and BCNU treated (filled) samples. All cell lines were
treated with 40uM BCNU
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3.4.6 Designing and generating a multi-dimensional transcriptional data set
Taken together, the cell cycle profile and viability measurements for the two most sensitive and
two most resistant cell lines defined the time points at which global transcription profiles should
be measured. The first signs of S-phase accumulation occurred in sensitive cell lines at the 12
hour time-point. However, transcription programs take time to be activated in order to change the
state of the cell. Moreover, any transcript changes that could explain the slight lag in growth of
the resistant cell lines would most likely be observed early in the time course. Therefore, early
time points including 4 hours, 8 hours and 12 hours were chosen to capture any transcript
changes that might be involved in the accumulation of sensitive cells in the S-phase of the cell
cycle and the slower growth of the resistant cell lines. As observed from the late increase in the
sub-G1 population in sensitive cell lines, cell death was a late event, with an increase in the sub-
G1 population only seen after 24-48 hours. Therefore, additional late time-points were measured,
including 24, 36, 48 and 72 hours to capture transcripts that might provide insight into the

observed cell death.

Once the time points for microarray measurements were determined, there was one more
decision to be made regarding the design of the experiment. Since the BCNU treatment involves
an hour-long incubation of cells in serum-free media, we anticipated that serum starvation would
induce a stress response as was observed in (25). It was therefore important to measure transcript
changes in mock-treated samples that also underwent an hour-long incubation in serum-free
media minus BCNU, to ensure correct identification of DNA damage related transcriptional
changes. Therefore, transcript changes were measured in both mock-treated and BCNU treated

samples to discern the BCNU treatment related expression changes.
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With all the parameters, time points and conditions determined, time-series experiments were
performed. Cell lines 4, 5, 13 and 16 were treated with 40uM BCNU as described in the
Materials and Methods section. Cells were collected at 0, 4, 8, 12, 24, 36, 48 and 72 hours post
BCNU treatment and RNA was isolated. The RNA was tested for integrity and hybridized onto

Affymetrix HG-U133 plus 2.0 chips (see Materials and Methods).

3.4.7 Exploring the transcriptional data space
As a first step towards understanding the transcriptional changes after BCNU treatment,
approximately 10,000 probe-sets that varied over time, treatment or cell line were visualized.
These probe-sets are shown in Figure 3.16 and reveal some interesting properties of the data set.
Many probe-sets that show induction or repression in treated samples relative to the Oh time-
point also show similar induction or repression in mock-treated samples over time (examples are
highlighted in the box). Therefore gene expression changes are seen in both mock-treated and

treated samples showing that these changes are not necessarily BCNU dependent.
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Figure 3.16: Transcripts that vary with time, cell line and treatment

The heat-map shows probe-set values (rows) for each array (column). Values are log, ratios as compared
to the Oh time-point. Mock-treated samples are on the left and treated samples are on the right. The black
box marks examples of probe-sets that show expression changes in both mock-treated and treated samples
over time.
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One reason for such varying gene expression in mock-treated samples might be the inherent
expression changes that occur as cells progress from the early log-phase of growth to mid-log
and finally to the stationary phase of growth (26). Other studies have shown that gene-
expression changes with change in proliferation rate, which changes as cells move along the
growth curve (27). In addition to growth-rate induced gene-expression changes, there is another
possible cause for the observed gene expression changes within mock-treated samples in this
particular experiment, namely serum-starvation. Even short exposure to serum-free media has
been shown to induce transcriptional change in certain cell types (25). Regardless of the cause of
gene expression changes over time in the mock-treated samples, we know that these changes are
not related to or in response to BCNU treatment. Therefore, we took the approach of identifying
transcripts that are differentially induced or repressed in the treated versus mock-treated samples

over time to obtain true BCNU-induced transcriptional changes.

A second observation from visualizing the data set in Figure 3.16 is that gene induction and
repression patterns even in the mock-treated samples differ between the two sensitive cell lines
(compare the first and second columns within the box in Figure 3.16). Therefore, there was no
guarantee that the two sensitive cell lines would have similar gene expression responses to
BCNU treatment. However, if we were to identify such a set of genes that behaved similarly in
the two sensitive cell lines but differently between sensitive and resistant cell lines, this signature

could be a strong indicator of key transcriptional changes that affect cell sensitivity to BCNU.
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3.4.8 Identifying a general transcriptional signature for cell death/survival
after DNA damage

From our data set, we wanted to identify genes that were induced or repressed differentially
between sensitive and resistant cell lines but similarly in the two sensitive cell lines, or in the two
resistant cell lines upon BCNU treatment. For example genes induced after BCNU treatment to a
greater extent in the two sensitive cell lines but to a lesser extent in the resistant cell lines might
help us describe transcriptional programs that are induced when cells are destined to die after
DNA damage. Conversely, genes that are induced to a greater extent in treated resistant cell lines
as compared to the sensitive cell lines, might give us insight into any transcripts that protect cells
against DNA damaging agents. Moreover, requiring gene expression changes to follow similar
expression patterns in the two sensitive or two resistant cell lines eliminates any cell line specific

gene expression changes.

In our data set, each gene expression value is associated with three discrete variables — treatment
(0 or 40 uM BCNU), time (0, 4, 8, 12, 24, 36, 48, 72 hours) and sensitivity (sensitive or resistant
cell line). Using 3-way ANOVA in MATLAB, genes that were significantly different in the
treatment and sensitivity variables either at all time-points or at a subset of time-points were
identified (details of the analysis are described in the Materials and Methods section). This
yielded 984 probe-sets representing 706 genes that were differentially induced or repressed
between the sensitive and resistant cell lines. Within this set of 984 probe-sets, differential gene
expression values between sensitive and resistant cell lines at any of the eight time points ranged

from 4.2 to -1.7 when calculated as a log; ratio of sensitive to resistant gene expression value.
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3.4.9 Visualizing the DNA damage induced transcriptional signature
As a first step towards understanding the biological meaning and relevance of the 984 probe-sets
extracted using ANOVA, the probe-sets were clustered to identify striking expression patterns
present within the gene set. A heat-map representing the gene set clustered using hierarchical

clustering (GenePattern suite, Broad Institute) is shown in Figure 3.17.

The heat-map shows that the 984 probe-sets (representing 706 genes) can be divided into two
groups — those that are induced, and those that are repressed to a greater extent in the sensitive
treated cells compared to the resistant treated cells. The concerted induction and repression of
these genes more so in the two sensitive cell lines as compared to the two resistant cell lines
suggests that these genes are most likely relevant for the decision to die rather than survive after
DNA damage. To further investigate the biological context of these 706 genes and the cellular

pathways they are involved in, network analysis was performed on the selected gene sets.

3.4.10 Network and canonical pathway analyses reveal the biological
relevance of the transcriptional signature

The network connectivity within the set of 984 probe-sets was obtained through the use of
Ingenuity Pathways Analysis (Ingenuity® Systems, www.ingenuity.com). Out of the 706 genes,
507 were eligible for functional and pathway analysis and 295 were eligible for network analysis
(only those genes and interactions that were experimentally identified in human cell lines were
considered eligible). The top four significant networks are involved in cell death, cell cycle,

cancer and cell growth proliferation (Figure 3.18A).
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Figure 3.17: Hierarchical clustering of the BCNU transcriptional signature
Each row is a probe-set, and each column one time-point. Values are log ratios as compared to the Oh
time-point. Mock-treated and treated samples for each cell-line are shown next to each other.
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Focus molecules, indicated in bold, are the molecules in our gene set also present in the network.
These four networks are interconnected and form one large network containing 273 of the 295
network eligible genes (Figure 3.18B). What this shows is that a majority of the network eligible
genes from our signature set form interconnected signaling and interaction modules that are

involved in cell death, cell cycle, growth and proliferation.

Looking at sub-networks within the larger network obtained from our gene set, we see examples
of signaling modules that could provide some insight into the pathways utilized by the sensitive
cell lines in the response to BCNU treatment. Figure 3.19 shows an example of a sub-network
containing the tumor suppressor and DNA damage response modulator p53 as the hub node
regulating targets from our selected gene set that are involved in DNA replication, repair and cell
cycle. Identifying p53 related signaling modules and the pathways and networks that control cell
cycle, cell death and proliferation increases our confidence in the selected gene set as a DNA
damage response gene set and provides some insight into possible signaling modules involved in

cell death/survival decisions after BCNU treatment.

In addition to network analyses, canonical pathways that were enriched within our data set were
identified. Canonical pathways, as defined by ingenuity, are predefined and well studied
pathways within the database. Figure 3.20 shows the canonical pathways that are enriched within
our transcriptional signature. p53 signaling, G2/M arrest, aryl-hydrocarbon receptor signaling,
cell cycle regulation and mitotic roles of Polo-like kinase are the most significantly enriched

canonical pathways within the entire gene set. We infer that the transcriptional signature genes
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are involved in key DNA damage response pathways with the exception of the aryl-hydrocarbon

pathway that has not yet been implicated in DNA damage response.

Both the network and canonical pathway analyses confirm that among the set of 706 genes
identified from the ANOVA analysis, a large fraction are meaningful in the response of a cells to
a DNA damaging agent and that they contribute to cell death, survival and cell cycle control.
However, because these analyses were performed with the entire gene set consisting of both up-
regulated and down-regulated genes, the resulting networks were complex and hard to
comprehend. Instead, if it were the case that the up-regulated or down-regulated genes were
involved in functionally separate pathways, the system and transcriptional response might be

easier to understand.
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a Molecules in Network Score Focus Molecy Top Functiens

265 Proteasome, TADRB2, Akt, Apl, +APAFL, +AREG/AREGB, TARLGIPS, TASHIL, +AURKA®, +AUTS2, +AXL, +BTG2, +BTRC, +BUB1B, +(5, 125 108 Cell Death, Cell Cycle, Cancer
TCALCOCOL, TCASPLY, Caspase, +CCNA2, +CCNBL TCCNDL 1(D2, 1(D44, +(DC20, TCDKN1A, TCDKNIC, +CENPE, Collagen(s), Creb,
+CSNK2A1, +(SPG4", +CTNNDL, Cyclin A *DAB2IP, *DPYSL2, E2f, +EIF2S1, +EIF4AL, ‘EIF4E, +EIF4GL, TELF3", ERK, ERKL/2, Estrogen Receptor,
+ETS2, TF2R, TFAS, TFCER1A, TFDXR, tFGFR2, TFGFR3, Fibrinogen, TFOSLL, FSH, TGABL*, *GADD4SA, *GDF15*, +GK", +GORASP2, 1GRM1,
+GRN", h(G, +HDAC2, +HIST4H4 (includes others), Histone h3, Histone hd, +HMMR®, Hsp70, Hsp90, +HSP90AB1, +IGFBP3, 1IGFBP4, +IL1RN,
Interferon alpha, +IRF1, +IIGA3, +ITGA2B, Ink, tKAT2B", +KITLG, *KRT17", *LAMP3, LDL, *LGALSS, Lh, tLTF, *LIPA, *LOCB1691", Mapk,
TMAPK1, *MDM2*, Mediator, *NBPF11 (includes others), +NF2°, NFKB (complex), tNOTCHL, P38 MAPK, p85 (pik3r), *PADI4", PDGF BB, +PDSSA,
PPGF, P3K (complex), Pka, Pke(s), +PLK1, *PLK2, *PML, *PODXL, +PPP2CA, *PRF1, TPTAFR, *PTPRF, tPYHIN1", *RB1, *RBL2, *RGS12,
+RGS16", RNA polymeraze I, *RNF1448°, #SERPINAL, +SERPINEL", + SKP2, +SMADS', +SMC(3, +SMC4, +STK10, #5TK11, SYTLL, +TACRL
+TFDP2, *TNFRSF10B, *TNFRSF10D, 1TPS3RB, +TPX2, +TRIM22, +TUBB2C, +TYMS, +UBE2C, +YLPM1

ABCEL +AIMP2', +ANK1', +ASPM", ATF3, ATM, +BB(3, BCL2L1, BIRCS, #+BTGL, +BUB1", +BUBLB, C100f119, +CAPRINL, CASP2, CASP3, CASPS, |59 ] Cell Cycle, Cell Death, Cellular Growth and Proliferation
CBL, +CCNA2, CCNE2, CCNTL, #(D24, +CDC20, +(D(148, CDC25C, +(DKN1A, CDKN1B, CDT1, +CEACAML (includes others)*, +CENPE, +CENPF",
CHEKL, CHEK2, CIT, COL1AL CRKL, CSF2, Cyclin B, *CYPAF2, +DDB2, *DDX54, +DEPDC1", +DFFA, +EEF1E1", ERBB2, ERCC3, ESRL +EXOSC2,

F Actin, *FADS3", FOSL2, FOX01, FOX03, #GADD45A, GADD4SB, +GDF15", +GMEB1, +GNG4, +GTSEL", H2AFX, HCK, HGF, +HMMR",
+HNRNPAB, HNRNPD, +HNRPDL, HRAS, TIGFBP4, +IGHG1, JAGL, TKAT2B", KHSRP, +KIF14", KIF23, +KIF18A, TKITLG, LOLR, TLIF, LMNA,
#MADILL, MAD2LL, +MCM4, +MCM6, MCM7, +MDM2*, MDM4, *MFGES, MMP2, + MSH6, NCAPG, NDC80, +NEK2, +NUPRL, #+PADI4", +PBK,
4PHLDA3, PIK3CA, +PIK3IP1", PIK3R1, PLAT, +PLKL, #PLK2, +PLXNB1, +PLXNB2", PMS1, +POLH", +PPM1D", PRCL, PRKAA2, +PRKABL", PROCR,
TPRODH, TPTPN22, RBICCL Rsk, SATBL, TSBF2, SFN, SHCL, TSHISAS, SMARCA4, +SMC3, SMPDY, SP1, SPHK2, SREBF1, #SRSF3, STMN1,
+TNFRSF10B, TOPBP1, TP53, TP73, #TPS3I3, +TRIM22, *TRIM32, +USP6, Veaf, WTL WWOX, +XPC

TADCK3, AKT], +ALDH1A3, +AMD1, +APIS, +APLP1, APP, +ARNTL2, ATF1, +ATG16L1, ATG4B, ATP1B1, TATXNS, B2M, +BAG3, BCLILY, +BUB3, |44 59 Cell Death, Cellular Development, Hematological System Development
#C100rf10°, #CAPN2, +CASP1", CASP6, CAVL, +CCDC90B", CCL2, CCL4, +CCT4, CD47, CEACAMS, CELFL, CHILL +CLASPL, Collagen(s), CRP, and Function

+DDR1", +DKC1*, EGRY, ETSL, +ETS2, +F2R, FADD, FANCC, FCERLG, FGF2, TFLOT2, *GABARAP, GADD45B, GAR], *GCH1, + GEMINS, GEMING,
GEMINT, TGM2A*, *GPR1098, GPX4, Hspd0, 1001, IFI6, +TFNAB, IFNBL, IKBKG, IL2, IL13, 1L27, #IL13RAL", IL2RA, IL2RB, IL2RG, +IRFL, [TGAY,
+ITM2B, JAGL, JUNE, KATS, +KITLG, +KLRCL, +KPNAL", LAMA3, LAMC2, +LRDD, LTF, Mapk, mir-122, MMPL, MX1, +NCAML, NFKB2, NFKBIA,
MFKEIE, +NID1, NR3C1, +PAPOLA, +PAPPA’, +PCLO, PIK3CB, +PLEKHFL, +PLXNCL, #PML, PPARG, PRKCA, PRKCB, PRKCE, PSMBY, +PSMD11.
PTPNLL, +RABEPK, RAN, REL, *RHCE/RHD, RIPK2, RUNX1, SAT1, +SDCL", TSERPINEL’, SMNL/SMN2, SMPD1, TSMPD3, SNCA, 150X4", SP100,
SPINTZ, STATL, STATSB, #STOM", +SYNCRIP, TERC, TERT, TIMP3, TNF, #TNFRSF10C*, TNFSF13, TNFSF14, TNIPL, +TORLA, +TP53D3, +TRIM4S",
+TTYH3, $UNCL3A, +USP2, VCP, *WDR12

Actin, ACTL6A, Alpha tubulin, +ANKHD1, +ANLN", ANXA2, BARDY, BEX2, BLOC1S], +BLOC1S2, BLOC1S3, +BUB1B, CANDL, +C(NA2, +C(NB1, a4 59 Cell Cycle, Cancer, Cellular Assembly and Organization
+CCNB2, CONDZ, CONE2, +CCT8, +CDCA3, CDHL, CDH2, CDH1L, CDTL, *CEACAML (includes others)”, +CENPA", +CENPE, CHEK2, CKS18, CLDNY,
CLRNL, CTNNEL, CULL, DDX11/DDX12, DIO2, DISC1, +DLGAPS, DRL, DRAPL, DTNBPL, E2F4, +ECT2, EEFLAL +EPHA2, +EPSBL2", +EWSRL, #F11R,
+FBXW2, FBXWT, FLNA, Gamma tubulin, +GTPBP4, H2AFX, +HIST1H1B, +HJURP, +HMMR®, +HSP90B1, ITGAV, +JRK, KATS, KDMSE, KDM6A,
+KPNA2, LDBL, LMO2, +MINA, +MKI67, +MKI67IP, MLL, MLL2, MMP2, MMP3, MMPT, +MPZL2, MUTED, MYBL2, MYC, MYCN, NEN, NDC80,
+NEK2, #NHLH2, NOPS8, +NUFIP1, PACRG, PAXIPL, +PDE4C", PLDN, PNN, POLR2A, PP2A, PPARG, PRC, +PSME3", +PTPRF", RACGAPL, RADSL,
RAN, TRASGRF1*, RBX1, RNU4-1, RPAP3, RUVBLL, SDCL", +SKP2, +SLC6A2, SNAPIN, +S0(S2, SOX9, +SPOCK1, +SPTBNIL, +SRSF2, +SSB,
#STRAG", +STX6, SUZ12, TAF1A, 4 TAF1B, TAFIC, 4 TCEB1, + TCP1, TFAP2A, TGFBL, + TMPO, TOP2A, +TPS3INPL, #+TPS3TG1", +TRAK1, TUBGCP2,
+TUBGCP3, + TUBGCP4, TUBGCPS, TUBGCPS, UXT, VAMP3, +WDRS, +XPOS, +XYLTL, ZNF143, ZNF217

Figure 3.18: Network connectivity of the transcriptional signature

A) Top four networks obtained from the 295 network eligible genes show enrichment of cell death, cell
cycle and DNA repair functions, Focus molecules (bold) and up-regulated (red) or down-regulated
(green) molecules are marked; B) The four top networks are interconnected and contain 273 of the 295
genes
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Figure 3.19: A p53-centric network with DNA replication, repair and cell cycle genes
A sub-network within the large interconnected network showing a p53-centric network consisting of up-

regulated (red) genes mainly involved in DNA repair and the down-regulated genes (green) mainly
involved in DNA replication and cell cycle.
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Figure 3.20: Canonical pathways significantly enriched in the transcriptional signature
Canonical pathways defined in the Ingenuity database that are enriched within the 507 eligible genes from
the transcriptional signature set.
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3.4.11 The transcriptional signature can be partitioned into two
functionally meaningful subsets

Gene ontology enrichment was performed separately on the set of up-regulated and down-
regulated genes using the Database for Annotation, Visualization and Integrated Discovery
(DAVID v6.7) as described in the methods section. The Gene Ontology (GO) biological
processes enriched within the up-regulated and down-regulated genes in the transcriptional
signature are shown in Figure 3.21. The GO enrichment for the up-regulated genes specifically
identified apoptotic cell death rather than any other cell death mechanism. Similarly, the
repressed subset of genes showed enrichment in genes involved in the mitotic phase of the cell

cycle.

Network analyses were performed separately for the induced and repressed gene sets. The
resulting canonical pathway enrichment is shown in Figure 3.22. p53 signaling is the most
significantly enriched canonical pathway for the induced genes, followed by enrichment in
various cancer signaling pathways. Cell cycle as well as protein and RNA metabolism related
canonical pathways are enriched in the repressed genes. It is interesting to note that the canonical
pathways enriched within the combined set of up and down-regulated genes were distributed

among, rather than appearing in both the induced and repressed gene sets.
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Figure 3.21: Gene Ontology enrichment of the up-regulated and down-regulated gene sets
GO enrichment for the up- and down-regulated genes from the transcriptional signature performed using
DAVID(v.6.7) and the standard GO-FAT algorithm which highlights lower level terms present within the

data set..
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Figure 3.22: Canonical pathway enrichment of the up-regulated and down-regulated gene sets
Canonical pathway enrichment performed separately on the up-regulated and down-regulated genes from
the transcriptional signature.
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Two of the top networks obtained for the up-regulated genes are shown in Figure 3.23. The top
function associated with these networks was cell death (p < 5x10™%) in concordance with GO
enrichment for the up-regulated genes. The nodes within the sub-networks shown in Figure 3.23
that are annotated in the Ingenuity database as being involved in cell death are highlighted in
blue. These sub-networks show that 35/48 focus molecules in Figure 3.23A and 16/31 focus
molecules in Figure 3.23B are involved in cell death. The network shown in Figure 3.23A is also
enriched for cell growth and proliferation (p < 5x107'%; 26/48 focus molecules) and cellular
development (p < 5x107'% 23/48 focus molecules). For the network shown in Figure 3.23B no
other functions besides cell death are enriched past the significance cutoff. In these networks,
nodes are colored based on their expression value in cell line 4, with red nodes showing genes
that are induced, with color intensity representing expression value. (Table 3.3 corresponds to the

networks shown in Figure 3.23)

Figure 3.24 shows two of the top sub-networks obtained for the down-regulated genes. These
two sub-networks are significantly enriched in cell cycle processes (p < 5X107%), again in
concordance with GO enrichment. Nodes that are associated with cell cycle functions in the
Ingenuity database are highlighted in blue. There are18/40 focus molecules in Figure 3.24A and
13/33 focus molecules in Figure 3.24B that are involved in cell cycle functions. The network in
Figure 3.24B is also enriched for cellular assembly and organization (7/33 focus molecules), and
DNA replication, recombination, and repair (7/33 focus molecules). Again the network is
colored based on the expression values of the nodes in cell line 4. (Table 3.4 corresponds to the

networks shown in Figure 3.24)
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Gene Ontology enrichment, network connectivity and canonical pathway analysis highlight the
fact that the transcriptional signature identified here can be split into two coherent groups; a
group of genes differentially up-regulated in BCNU treated sensitive cell lines compared to
resistant cell lines that are suggested to be involved in cell death functions and p53 signaling; and
a second group of genes differentially down-regulated in the sensitive cell lines compared to the

resistant cell lines that are suggested to be involved in cell cycle pathways.
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Figure 3.23: Top networks for the set of up-regulated genes are involved in cell death
Nodes highlighted in blue are annotated in the ingenuity database as being involved in cell death.
Members of the up-regulated set are colored based on their expression value, red indicating up-regulation,

and the intensity indicating expression value. The top network (A) and the second network (B) are shown
(Legend same as for Figure 3.19)
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Table 3.3: Molecules in network A and B from Figure 3.23 for the up-regulated gene set

Molecules in Network

Focus

S Molecules |Top Functions

26s Proteasome, ADRB2, Akt, Apl, AREG/AREGB, AUTS2, AXL, C5,
CALCOCO1, CARD16, CASP1, Caspase, CCND1, CDKN1A, CDKNIC,
Creb, CSPG4, CyclinA, DPYSL2, E2f ELF3, ERK, ERK12, F2R,
FAS, FCER1A, FGFR3, FOSL1, FSH, GDF15, GRM1, GRN, hCG,
Histone h3, Histone h4, Hsp90, IGFBP3, Interferon alpha, IRF1, ITGA3,
Jnk, KITLG, KRT17, LDL, Lh, LIF, Mapk, MAPK1, MDM2, NFkB
(complex), NOTCH1, PADH4, PDGF BB, PI3K (complex), PLK2, PML,
PODXL, PYHIN1, RB1, RBL2, RNF144B, SERPINA1, SERPINE1,

STK11, SYTL1, TFDP2, TLR1, TNFRSF10B, TNFRSF10D, TYMS

Cell Death,
Development

61 48 Cellular Growth and Proliferation,

Cellular

ANK1, B4GALT5, BAP1, BBC3, BHLHE40, BLZF1. BTG1, BTG2,
BUB1, CAV1, CCDC90B, CEACAM1 (includes others) DAB2IP, DBP,
DCLRE1A, DDB2, ERBB2, ETHE1, ETS1, FDXR, FKBP1B, FLOT2,
FOX03, HDAC1, HMG CoA synthase, IL2RB, INPP4A, ITGA2B, KCNJ4,
KRT81, LIPA, LTBP1, MADIL1, MIER1, NEK2, NUPR1, P2RX4,
PADI4, PHLDA3, PLK2, PLXNB1, PLXNB2, POLE2, POLH, PPM1D,
PPP4R2, PRIM1, PRKAA2, PRKAB1, PROCR, PRODH, PTP4A1,
RCHY1, S100A2, SDC1, SHISA5, SNRK, SP1, SPHK2, TOP2B,
TP53, TP73, TPS3AIP1, TP5313, TRIM22, TRIM32, UBE2D1, UNC5B,

XPC. ZNF175

k]| 31 Cell Death

Focus molecules are in bold. Significantly (p < 5x10

-10

) enriched functions are labeled.
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Figure 3.24: Top two networks for the down-regulated genes are involved in cell cycle
Nodes highlighted in blue are annotated in the Ingenuity database as being involved in cell cycle.
Members of the down-regulated set are colored based on their expression value, green indicating down-
regulation, and the intensity indicating expression value. The top network (A) and the second network (B)
are shown (Legend same as for Figure 3.19)
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Score

Focus Mo

Table 3.4: Molecules in network A and B from Figure 3.24 for the down-regulated gene set
1D |[Molecules in Network

Top Functions

AIMP2, ANLN, AURKA, BDP1, BRD2, BRF1, BUB1B,
CCDC76, CCNA2, CDC20, CDH1, CENPA, CENPE, CENPF,
CSNK2A1, DKC1, DLEU2, E2f E2F4, EEF1A1, Estrogen
Receptor, EXOSC8, GEMIN5, GORASP2, GTPBP4, HGF,
Histone h3, HJURP, HMMR, HOXA11, HSP90B1, JRK, KPNA2,
MINA, MKI67, MKI6TIP, MLL, MNT, MTHFD1, MYC, NBN,
NUFIP1, NUSAP1, PAPOLA, RABEPK, RAN, REL, RPS6KA3,
RUVBL1, SAFB, SKP2, SMC4, SMN1/SMN2, SNRPE,
SPTBN1, SRSF2, SSB, SYNCRIP, TAF15, TAF1B, TAF1C,
TERT, TIAM1, TMEM126A, TMPO, TPX2, UBE2C, WDRS,
XP0OS5, ZNF143

40

Cell Cycle

ASPM, BHLHE40, BUB1, BUB3, BUB1B, C100rf119, CALCR,
CAMK4, CAPRIN1, CASP3, CASP8, CCNB1, CCNB2, CCT4,
CDCA3, CENPF, CSF2, DEPDC1, DFFA, DLGAPS, ECT2,
EGR3, EIF2B1, EMILIN2, ERBB2, EWSR1, EXOSC2, FOXO1,
FUBP1, GK, GMEB1, GTSE1, HNRNPAB, HNRNPD, HNRPDL,
HSP90AB1, IFNB1, KDM5B, KHSRP, KIF18A, LDLR, MAD1L1,
MADD, MAPK13, MAPKSIP3, MCM4, MCM6, MSH6, NCAPG,
NDCB80, NEK2, NOL3, PBK, PDS5A, PINK1, PLXNB2, POLEZ,
PRIM1, PSME3, RAE1, RALB, RPS6KA3, SERPINB5, SMC3,
SRSF3, STAG1, STAG2, THRB, TP53, Trail-R

33

Cell Cycle, Cellular Assembly and Organization,
DNA Replication, Recombination, and Repair

Focus molecules are in bold. Significantly (p < 5x10') enriched functions are labeled.
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3.4.12 BCNU sensitive cell lines induce cell death by apoptosis
The functional enrichment of the transcriptional signature showed a strong induction of genes
involved in apoptosis in the sensitive cell lines 4 and 5 upon BCNU treatment. Previous studies
showed that BCNU induces growth inhibition and cell killing in glioblastoma and other
cancerous cell lines (24,28,29). The few studies that explored BCNU induced cell death
mechanisms in human cells showed that some glioblastoma cell lines induce apoptosis upon
BCNU treatment (30-32) whereas in other cases BCNU had a caspase inhibitory activity (33).

Additionally, in the lymphoblastoid cell line TK6, BCNU was seen to induce apoptosis (34).

Although we knew that BCNU induced strong growth inhibition in cell lines 4 and 5 as seen
from the proliferation assay and viability measurements (Figure 3.8 and Figure 3.15), we did not
know the mechanisms of cell death induction in these particular cell lines. However, the
induction of apoptotic genes within out transcription data, combined with previous evidence that
BCNU induced cell death by apoptosis in TK6 cell lines suggested that the sensitive cell lines 4

and 5 most likely induce apoptosis when exposed to BCNU.

To confirm this, we used the AnnexinV/7AAD assay to measure cell death in cell lines 4, 5, 16
and 13 after BCNU treatment. During early apoptosis, phosphatidylserine (PS), usually located
in the cytoplasmic side of the cell membrane, is flipped and exposed on the external surface of
the cell (35). AnnexinV can bind PS with high affinity (36). Therefore, AnnexinV tagged with a
fluorophore (such as phycoerythrin —PE) can be used to detect cells that have initiated apoptosis
by flow cytometry. However, PE-AnnexinV can also permeate and stain cells that are already

dead and that have compromised cell membrane integrity. Therefore, to distinguish AnnexinV
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staining in early apoptotic versus dead cells, an additional dye, 7AAD, that only stains dead cells
with compromised cell membranes is used. This yields flow cytometry plots as seen in Figure
3.25 with cells falling within one of four quadrants — 1) the lower left quadrant contains
AnnexinV and 7AAD negative live cells with intact cell membranes and PS on the cytoplasmic
side of the membrane; ii) the lower right quadrant contains AnnexinV positive and 7AAD
negative early apoptotic cells with exposed PS but intact membranes; iii) the upper right
quadrant contains AnnexinV and 7AAD positive dead cells that have lost cell membrane
integrity and iv) the upper left quadrant contains AnnexinV negative and 7AAD positive cells

that induce cell death by mechanisms other than apoptosis, or dead cells that have lost all PS.

The four cell lines with extreme BCNU sensitivity/resistance were treated with 40uM BCNU as
described in the methods section. At each of 12, 24, 48 and 72 hours, cells were collected,
incubated with 7AAD and PE-AnnexinV (see Materials and Methods) and immediately analyzed
by flow cytometry. Figure 3.25 shows an example of plots obtained for the four cell lines at
48hours post BCNU treatment. We see that there is a visible increase in the early apoptotic
population after BCNU treatment in the two sensitive cells lines as compared to the resistant
cells lines. Figure 3.26 shows the quantified data from all time-points for the four quadrants. The
data show a significant increase, over time, in the early apoptotic and dead cell populations and a
significant decrease in the live cell population for the two sensitive cell lines. Note that we do not
see direct migration of cells from live cell quadrant to the upper left quadrant thus confirming
that the major path to cell death after BCNU treatment occurs through apoptosis. Another point
to note is that among the two sensitive cell liens, the extent of apoptosis and cell death is greater

in the most sensitive cell line 4 and lesser in the cell line 5, as is expected from the survival data.
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Figure 3.25: Annexin V/ 7AAD plots for the four cell lines at 48h post BCNU treatment

Flow cytometry scatter plots of Annexin V vs. 7AAD for cell lines 4, 5, 16 and 13 at 48h post BCNU
treatment. The top panel shows mock-treated samples and the bottom panel shows BCNU treated
samples. The four quadrants are marked as live, apoptotic, dead and necrotic as described in the text.
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Figure 3.26: Quantification from AnnexinV/7AAD plots at multiple times post BCNU treatment
Plots of live, apoptotic, dead and necrotic populations as quantified from flow cytometry scatter plots at 0,
12, 24, 48 and 72 hours post BCNU treatment.
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3.4.13 BCNU sensitive cell lines stall mitotic entry
Cell cycle profiles obtained from initial experiments (Figure 3.11 and Figure 3.11) had shown
sensitive cells accumulating in late S more so than in the G2 phase of the cell cycle after BCNU
treatment. Genes involved in mitosis are known to slowly accumulate during S phase of the cell
cycle and peak in the G2 phase of the cell cycle immediately prior to mitosis. Therefore,
although treated cells had a higher fraction of S-phase cells, and at least an equal fraction of G2
cells as compared to mock-treated samples, we observed a decrease in the mitotic genes. This

suggested that BCNU treated cells failed to enter mitosis.

To confirm that BCNU treated cells failed to enter mitosis after BCNU treatment, we used flow
cytometry based detection of histone H3 phosphorylation as a marker for mitotic cells (37).
Histone H3 is phosphorylated during early mitosis (38). Therefore using an Alexafluor
conjugated antibody against phosphorylated histone H3, we can detect the fraction of cells
undergoing mitosis after BCNU treatment by flow cytometry. For this assay, cells were treated
with 40uM BCNU, collected at 12, 24, 48 and 72 hours post BCNU treatment and fixed in
paraformaldehyde and stored at -20° C. Before analysis by flow cytometry, cells were incubated
with anti-phosphorylated Histone H3 antibody and propidium iodide (see Materials and

Methods) and analyzed by flow cytometry.

Figure 3.27 shows a snap shot of mitotic cells at 48hours post BCNU treatment where the mitotic
population is almost completely absent in the sensitive cell lines but not in the resistant cell lines
compared to mock-treated samples. Figure 3.28 shows the quantified mitotic fraction over time

for the four cell lines. The drop in the mitotic population seen in sensitive cell lines occurs prior
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to the 12 hour time point and remained low up to the 72 hour time-point. However no significant
changes were seen in the resistant cell lines. These results show that the transcriptional down-
regulation of mitotic genes correlates with a concomitant decrease in the mitotic population in

treated, sensitive cell lines.

3.4.14 p53 is activated to a greater extent in sensitive cell lines as compared
to resistant cell lines

Canonical pathway analysis showed that the gene set that was induced in BCNU treated,
sensitive cell lines was enriched for p53 signaling. p53 is known to be activated after BCNU
treatment in glioblastoma cell lines and p53 status affects the sensitivity of cells to BCNU
(24,39,40). The standard mode of p53 activation involves its phosphorylation and accumulation
which we expected to see happening to a greater extent in the two sensitive cell lines than in the
resistant cell lines. To test this, we used immunoblot analysis with antibodies against total and
phosphorylated p53 at serine 20 and serinel5. Cells were treated with 40uM BCNU as described
in the Materials and Methods section and cells were collected at 12, 24, 48 and 72 hours post
BCNU treatment, for immunoblot analysis. Whole cell lysate was probed with antibodies against
total p53 and p53 phosphorylated at serine 20 or serine 15 (see Materials and Methods). Figure
3.29 and Figure 3.30 shows the immunoblots and their quantified values respectively, for total
and phosphorylated p53 (ser20) levels in sensitive and resistant cell lines in both the mock-
treated and BCNU treated samples. Figure 3.31 and Figure 3.32 show the same for
phosphorylated p53 (serl5). There is a significant increase in total and phosphorylated p53 for
the most sensitive cell line 4. The other cell lines also show a similar trend of p53 activation, but

not with statistical significance.
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Figure 3.27: Phospho-histone H3 at 48h post BCNU treatment
Flow cytometry plots showing DNA content vs. Phopho-histone H3 for cell lines 4, 5, 13 and 16 at 48

hours post BCNU treatment. The population representing mitotic cells is highlighted.
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Figure 3.28: Quantified mitotic fraction at multiple time-points post BCNU treatment
Sensitive cell lines show a significant drop in the mitotic population after BCNU treatment as compared

to the resistant cell lines.
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Figure 3.29: Immunoblots probed for phosphor-p53 (ser20)

Immunoblots for BCNU and mock treated cells from cell lines 4, 5, 16 and 13 probed with antibodies

against phosphorylayted p53 (ser 20), p5S3 and B-actin (loading control).
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Figure 3.30: Total and phosphorylated p53 (Serine 20) as measured by immunoblot for BCNU
treated samples

Quantitated data from immunoblot analysis of mock-treated and treated samples at 0, 12, 24, 48 and
72hours post BCNU treatment for cell lines 4, 5, 16 and 13 using antibodies against total p53 and p53
phosphorylated at Serine 20. All values were normalized to b-actin as a loading control and scaled to a
positive IR control.
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Figure 3.31: Immunoblots probed for phospho-p53 (ser15)
Immunoblots for BCNU and mock treated cells from cell lines 4, 5, 16 and 13 probed with antibodies
against phosphorylayted p53 (ser 15), p53 and B-actin (loading control).
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Figure 3.32: Total and phosphorylated p53 (Serine 15) as measured by immunoblot for BCNU
treated samples

Quantitated data from immunoblot analysis of mock-treated and treated samples at 0, 12, 24, 48 and
72hours post BCNU treatment for cell lines 4, 5, 16 and 13 using antibodies against total p53 and p53
phosphorylated at Serine 15. All values were normalized to b-actin as a loading control and scaled to a
positive IR control.
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Figure 3.33: Expression of canonical p53 targets from transcriptional profiles

Expression values of canonical p53 targets in cell lines 4, 5, 16 and 13 in mock-treated (blue) and treated
(red) samples at 0, 4, 8, 12, 24, 36, 48 and 72hours post BCNU treatment from microarray measurements.

Values are log, ratios of the expression at each time point compared to the zero hour time point.
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To confirm p53 activation in the cell lines, we also looked at the gene expression of canonical
pS3 targets in the four cell lines from the microarray data set. Figure 3.33 shows induction of
P21, GADD45A4, XPC and DDB2, all known to be canonical targets of p53. Therefore, although
only moderate p53 accumulation and phosphorylation was observed after BCNU treatment in the
sensitive cell lines, this level of activation seems to be sufficient to activate expression of p53

targets.

3.4.15 Computational promoter sequence analysis shows that a subset of
down-regulated genes are enriched for NF-Y binding motifs and
predicted to be novel NF-Y targets

We used the EXPANDER (9-12) package and its built-in transcription factor enrichment
platform PRIMA to identify transcription factors with motif matchces that are enriched within
the promoter regions (-1000 to 200bp region around the transcription start site) of either the up-
regulated or down-regulated genes (see Materials and Methods section). As shown in Figure
3.34, the down-regulated genes showed significant enrichment for binding sites for four
transcription factors- Nuclear Factor Y (NF-Y), Aryl Hydrocarbon Receptor (AhR), GA binding
protein (GABP) and Nuclear respiratory factor 1 (Nrf-1). The genes whose promoter regions
have binding motifs for these transcription factors are shown in Table 3.5, Table 3.6, Table 3.7
and Table 3.8. On the other hand, within the -1000 to 200bp region around the transcription start

site, there were no significant transcription factors identified for the up-regulated genes.

To check whether the up-regulated genes contained transcription factor binding motifs outside of
the -1000 to 200bp region, a larger range spanning the -3000 to 200bp region around the

transcription start site (the maximum range allowed in EXPANDER) was searched for
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transcription factor binding site enrichment. Table 3.9 shows the motifs enriched for various
ranges of the promoter region analyzed. For the down-regulated genes, as the promoter range
analyzed is increased, significance for enrichment is lost for Nrf-1 followed by GABP and
finally AhR. The only motif enriched for all ranges tested is that of NF-Y, further increasing our
confidence in the list of predicted NF-Y targets. For the up-regulated genes, performing the
enrichment analyses for the -2000 to 200bp region as well as the -2500 to 200bp region yields
enrichment in the p53 binding motif. This enrichment is no longer significant when the region is
increased to the -3000 to 200bp region, or decreased to the -1500 to 200bp region. Searching the
-2500 to -1500 bp region of the promoters of the up-regulated genes alone does not yield
significant enrichment for p53 binding motifs, therefore, the region between -1500 to 200bp
around the transcription start site is required for the enrichment of p53 motifs. The list of genes

containing the p53 binding motif is shown in Table 3.10.
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Figure 3.34: Transcription Factor Binding Site enrichment in the down-regulated cluster using

EXPANDER

The figure shows significance of enrichment for the binding sites of four transcription factors within the
promoter regions (-1000 to 200bp region around the transcription start site) of the down-regulated genes
(190). The percentage of genes in the down-regulated gene-set also enriched for the binding site of each
transcription factor is shown on each bar. NF-Y (Nuclear Factor Y), AhR (Aryl Hydrocarbon Receptor),
GABP (GA binding protein) and Nrf-1 (Nuclear respiratory factor 1).
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Table 3.5: Genes from the down-regulated gene set that are predicted to be NF-Y motif targets

Gene Symbol Probe-set Gene Name

AIMP2 202138 x_at aminoacyl tRNA synthetase complex-interacting multifunctional protein :
ARHGAP11A 204492 at Rho GTPase activating protein 11A

ASPM 239002 _at asp (abnormal spindle) homolog, microcephaly associated (Drosophila
AURKA 204092_s_at aurora kinase A; aurora kinase A pseudogene 1

BUB1 233445 at budding uninhibited by benzimidazoles 1 homolog (yeast’
BUB3 201456_s_at budding uninhibited by benzimidazoles 3 homolog (yeast’
C13orf34 219544 at chromosome 13 open reading frame 34

C2orf67 1554791 _a_at chromosome 2 open reading frame 67

CCNAZ 203418 at cyclin A2

CCNB1 214710 s at cyclin B1

CCNB2 1560161 at cyclin B2

CCNF 204826 _at cyclin F

CDC20 202870 s at cell division cycle 20 homaolog (5. «

CDCA3 221436_s_at cell division cycle associated 3

CENPA 2( 2 5 at cer ytein A

CENPF 207828 s at centromere protein F, 350/400ka (mitosin)

DEPDC1 2202595 x_at DEP domain containing 1

DLGAPS 203764 at discs, large (Drosophila) homolog-associated protein &
ECT2 219787 s _at epithelial cell transforming sequence 2 oncogene

EEF1E1 204905 s _at eukaryotic translation elongation factor 1 epsilon 1
EIF4A1 201530 x_at eukaryotic translation initiation factor 44, isoform 1
EXOSC2 209527 at exosome component 2

GK 207387 s_at glycerol kinase

GTPBP4 218238 _at GTP binding protein 4

GTSE1 204315 s at G-2 and 5-phase expressed 1

H2AFV 202487 s_at H2A histone family, member V

HMMR 1562677 _at hyaluronan-mediated motility receptor (RHAMM:
HMNRNPAB 201277 s at heterogeneous nuclear ribonucleoprotein A/E

HMNRPDL 1554678 s at heterogeneous nuclear ribonuclecprotein D-like
HSPS0B1 200598_s_at heat shock protein 90kDa beta (Grp94), member 1

KIF14 206364 _at kinesin family member 14

KIF20A 218755 _at kinesin family member 20A

LTV1 225748 at LTV1 homolog (S. cerevisiae)

MCM4 212141 at minichromosome maintenance complex component 4
MCME 201930 at minichromosome maintenance complex component €
METAP2 209861 _s_at methionyl aminopeptidase 2

MSHE 211449 at mutS homolog 6 (E. coli)

NEK2 204641 at NIMA (never in mitosis gene a)-related kinase 2

NF2 204991 s at neurofibromin 2 (merlin)

NUDCD2 1558124 at NudC domain containing 2

ODF2 210415 s _at outer dense fiber of sperm tails 2

PIP4K2B 1553047 at phosphatidylinositol-5-phosphate 4-kinase, type lI, betz
PKP4 201927 s_at plakophilin 4

PLK1 202240 at polo-like kinase 1 (Drosophila)

PRMTS 1564520 s at protein arginine methyltransferase S

PSME3 200987 _x_at proteasome (prosome, macropain) activator subunit 3 (PA28 gamma; Ki
PSRC1 201896 s _at proline/serine-rich coiled-coil 1

SFRS2 200753_x_at splicing factor, arginine/serine-rich 2

S5GOL2 230165 _at shugoshin-like 2 (S. pombe)

SMC3 1556925 at structural maintenance of chromosomes 3

STAG3L3 221191 at stromal antigen 3-like 3

TAF15 202840 _at TAF15 RNA polymerase Il, TATA box binding protein (TBP)-associated factor, 68kDz
TAF1B 214690 _at TATA box binding protein (TBP)-associated factor, RNA polymerase |, B, 63kDz
TCEB1 202823 at similar to elongin C; transcription elongation factor B (SIIl), polypeptide 1 (15kDa, elongin C
TCP1 208778 s _at t-complex 1

THADA 1554492 at thyroid adenoma associated

TMPO 203432 at thymopoietin

TPX2 210052 s at TPX2, microtubule-associated, homolog (Xenopus laevis)
TUBB2C 208977 x_at tubulin, beta 2C

UBE2C 202954 at ubiquitin-conjugating enzyme E2C

WDR37 1554869 _at WD repeat domain 37

ZMYM4 202049 s at zinc finger, MYM-type 4

Genes highlighted in red are transcriptionally regulated by NF-Y and genes in blue have been shown to

have NF-Y promoter occupancy (56,89-91).
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Table 3.6: Genes from the down-regulated gene set that are enriched for the AhR motif

Gene ID

Gene Name

BUB1B

budding uninhibited by benzimidazoles 1 homolog beta (yeast)

C130RF34

chromosome 13 open reading frame 34

CCT4

chaperonin containing TCP1, subunit 4 (delta)

CCT5

chaperonin containing TCP1, subunit 5 (epsilon)

CCT8P1

similar to chaperonin containing TCP1, subunit 8 (theta)

CDC20

cell division cycle 20 homolog (S. cerevisiae)

CDCA3

cell division cycle associated 3

DCUN1D5

DCN1, defective in cullin neddylation 1, domain containing 5 (S. cerevisiae)

DDAH1

dimethylarginine dimethylaminohydrolase 1

DKC1

dyskeratosis congenita 1, dyskerin

DLAT

dihydrolipoamide S-acetyltransferase

DLGAPS

discs, large (Drosophila) homolog-associated protein 5

EIFAA1P4

similar to eukaryotic translation initiation factor 4a

ESF1

ESF1, nucleolar pre-rRNA processing protein, homolog (S. cerevisiae)

EXOSC2

exosome component 2

GTPBP4

GTP binding protein 4

HEATR1

HEAT repeat containing 1

HMMR

hyaluronan-mediated motility receptor (RHAMM)

HNRPDL

heterogeneous nuclear ribonucleoprotein D-like

KIF18A

kinesin family member 18A

KIF20A

kinesin family member 20A

MAP1D

methionine aminopeptidase 1D

MCFD2

multiple coagulation factor deficiency 2

MCM4

minichromosome maintenance complex component 4

MKI67

antigen identified by monoclonal antibody Ki-67

MLLT10

myeloid/lymphoid or mixed-lineage leukemia (trithorax homolog, Drosophila)

MSH6

mutS homolog 6 (E. coli)

NUDCD2

NudC domain containing 2

NUP35

nucleoporin 35kDa

PAPOLA

poly(A) polymerase alpha

PDS5A

PDS5, regulator of cohesion maintenance, homolog A (S. cerevisiae)

PSRC1

proline/serine-rich coiled-coil 1

PWP1

PWP1 homolog (S. cerevisiae)

SEPHS1

selenophosphate synthetase 1; similar to selenophosphate synthetase 1

SYNCRIP

synaptotagmin binding, cytoplasmic RNA interacting protein

TCEB1

transcription elongation factor B (Slll), polypeptide 1 (15kDa, elongin C)

TUBB2C

tubulin, beta 2C

TUBGCP3

tubulin, gamma complex associated protein 3

UTP11L

UTP11-like, U3 small nucleolar ribonucleoprotein, (yeast)

XPO5

exportin 5
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Table 3.7: Genes from the down-regulated gene set that are enriched for the GABP motif

Gene ID Gene Name

ADSL adenylosuccinate lyase

ANLN anillin, actin binding protein

ARHGAP11A Rho GTPase activating protein 11A

AURKA aurora kinase A; aurora kinase A pseudogene 1

BUB1 budding uninhibited by benzimidazoles 1 homolog (yeast)
C130RF34 chromosome 13 open reading frame 34

C21orf59 chromosome 21 open reading frame 59

C7orf44 chromosome 7 open reading frame 44

CAPRIN1 cell cycle associated protein 1

CCNF cyclin F

CCT8P1 chaperonin containing TCP1, subunit 8 (theta)

CSNK2A1 casein kinase 2, alpha 1 polypeptide pseudogene; casein kinase 2, alpha 1 polypeptide
DLGAPS discs, large (Drosophila) homolog-associated protein 5
EIF251 eukaryotic translation initiation factor 2, subunit 1 alpha, 35kDa
EIF4E eukaryotic translation initiation factor 4E

EIF4G1 eukaryotic translation initiation factor 4 gamma, 1

ETS2 v-ets erythroblastosis virus E26 oncogene homolog 2 (avian)
FBXW2 F-box and WD repeat domain containing 2

G2E3 G2/M-phase specific E3 ubiguitin ligase

GFM1 G elongation factor, mitochondrial 1

GMEB1 |glucocorticoid modulatory element binding protein 1
GPRASP2 I_golgi reassembly stacking protein 2, 55kDa

GTSE1 G-2 and S-phase expressed 1

HNRPDL heterogeneous nuclear ribonucleoprotein D-like

HSP90B1 heat shock protein 90kDa beta (Grp94), member 1

ING1 inhibitor of growth family, member 1

KIF14 kinesin family member 14

LIG3 ligase Ill, DNA, ATP-dependent

MLLT10 myeloid/lymphoid or mixed-lineage leukemia (trithorax homolog, Drosophila)
MRPL30 mitochondrial ribosomal protein L30

MSHE mutS homolog 6 (E. coli)

NF2 neurofibromin 2 (merlin)

NOL10 nucleolar protein 10

ODF2 outer dense fiber of sperm tails 2

PAPOLA poly(A) polymerase alpha

PIPAK2B phosphatidylinositol-5-phosphate 4-kinase, type |, beta
PSRC1 proline/serine-rich coiled-coil 1

RABEPK Rab9 effector protein with kelch motifs

RGOMTD1 RNA (guanine-9-) methyltransferase domain containing 1
RPF2P brix domain containing 1 pseudogene; brix domain containing 1
SGOL2 shugoshin-like 2 (S. pombe)

SKP2 S-phase kinase-associated protein 2 (p45)

SYNCRIP synaptotagmin binding, cytoplasmic RNA interacting protein
TAF15 TAF15 RNA polymerase Il, TATA box binding protein (TBP)-associated factor, 68kDa
TCP1 t-complex 1

TFB2ZM transcription factor B2, mitochondrial

TMPO thymopoietin

TUBB2C tubulin, beta 2C

TUBGCP3 tubulin, gamma complex associated protein 3

TUBGCP4 tubulin, gamma complex associated protein 4

UCHLS ubiquitin carboxyl-terminal hydrolase L5

VPS13B vacuolar protein sorting 13 homolog B (yeast)

WDR37 WD repeat domain 37

WDRS WD repeat domain 5

XPOS5 exportin 5
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Table 3.8: Genes from the down-regulated gene set that are enriched for the Nrf-1 motif

Gene ID Gene Name

ANLN anillin, actin binding protein

AURKA aurora kinase A; aurora kinase A pseudogene 1

CAPRIN1 cell cycle associated protein 1

CCDCY99 coiled-coil domain containing 99

CCNAZ cyclin A2

CCNB1 cyclin B1

CCNB2 cyclin B2

CCNF cyclin F

CCTS chaperonin containing TCP1, subunit 5 (epsilon)

CCT8 chaperonin containing TCP1, subunit 8 (theta)

CENPF centromere protein F, 350/400ka (mitosin)

DKC1 dyskeratosis congenita 1, dyskerin

DLAT dihydrolipoamide S-acetyltransferase

EIF251 eukaryotic translation initiation factor 2, subunit 1 alpha, 35kDa
EIF4G1 eukaryotic translation initiation factor 4 gamma, 1

ESF1 ESF1, nucleolar pre-rRNA processing protein, homolog (5. cerevisiae)
EWSR1 Ewing sarcoma breakpoint region 1

EXOSC2 ex0some component 2

FARSE phenylalanyl-tRNA synthetase, beta subunit

GMEB1 glucocorticoid modulatory element binding protein 1
GTPBP4 GTP binding protein 4

GTSE1 G-2 and S-phase expressed 1

HMMR hyaluronan-mediated motility receptor (RHAMM)
HNRNPAB heterogeneous nuclear ribonucleoprotein A/B

HNRPDL heterogeneous nuclear ribonucleoprotein D-like

ING1 inhibitor of growth family, member 1

KIF14 kinesin family member 14

LIG3 ligase Ill, DNA, ATP-dependent

LYAR Lyl antibody reactive homolog (mouse)

MAP1D methionine aminopeptidase 1D

MCM4 minichromosome maintenance complex component 4
MCMB minichromosome maintenance complex component &
MLLT10 myeloid/lymphoid or mixed-lineage leukemia (trithorax homolog, Drosophila)
MRPL15 mitochondrial ribosomal protein L15

MTPAP mitochondrial poly(A) polymerase

NAALS NMDA receptor regulated 1

NANP N-acetylneuraminic acid phosphatase

NF2 neurofibromin 2 (merlin)

NOLC1 nucleolar and coiled-body phosphoprotein 1

NUDCD1 NudC domain containing 1

NUDCD2 NudC domain containing 2

PAPOLA poly(A) polymerase alpha

PDP2 pyruvate dehyrogenase phosphatase catalytic subunit 2
PNO1 partner of NOB1 homolog (S. cerevisiae)

PSRC1 proline/serine-rich coiled-coil 1

PWP1 PWP1 homolog (S. cerevisiag)

SEC24D SEC24 family, member D (S. cerevisiae)

SEPHS51 selenophosphate synthetase 1; similar to selenophosphate synthetase 1
SFRS2 splicing factor, arginine/serine-rich 2

SKP2 S-phase kinase-associated protein 2 (p45)

SNRPAL small nuclear ribonucleoprotein polypeptide A'

SRPK1 SFRS protein kinase 1

SSB Sjogren syndrome antigen B (autoantigen La)

SYNCRIP synaptotagmin binding, cytoplasmic RNA interacting protein
TAF1B TATA box binding protein (TBP)-associated factor, RNA polymerase |, B, 63kDa
TFB2ZM transcription factor B2, mitochondrial

TPX2 TPX2, microtubule-associated, homolog (Xenopus laevis)
TTLLA tubulin tyrosine ligase-like family, member 4

TUBB2C tubulin, beta 2C

TUBGCP3 tubulin, gamma complex associated protein 3

TUBGCP4 tubulin, gamma complex associated protein 4

UCK2 uridine-cytidine kinase 2

UTP11L UTP11-like, U3 small nucleolar ribonucleoprotein, (yeast)
WDR12 WD repeat domain 12

WDR5 WD repeat domain 5

XPO5 exportin 5

ZFYVE20 zinc finger, FYVE domain containing 20

ZMYM4 zinc finger, MYM-type 4
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Table 3.9: Transcription factor binding motif enrichment for different promoter ranges for the up-
and down-regulated genes

RANGES
-600 to 200 -1000 to 200 -1500 to 200 -2000 to 200 -2500 to 200 -3000 to 200
Upregulated genes
p33 N/A N/A N/A 8.59E-05 4.40E-05 N/A
Downregulated genes

NF-Y 1.53E-09 3.22E-09 6.42E-09 7.24E-08 3.82E-07 1.13E-06
AhR 4.30E-06 5.02E-06 4.35E-05 8.54E-05 N/A N/A
GABP 6.72E-06 4.00E-05 6.41E-05 N/A N/A N/A
Nrf-1 1.03E-05 4.79E-05 N/A N/A N/A N/A
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Table 3.10: Up-regulated genes containing p53 motifs in their promoter region

Gene ID

Gene name

ABHD4

abhydrolase domain containing 4

ADRB2

adrenergic, beta-2-, receptor, surface

APAF1

apoptotic peptidase activating factor 1

BBC3

BCL2 binding component 3

BTG2

BTG family, member 2

C100rf10

chromosome 10 open reading frame 10

C100rf99

chromosome 10 open reading frame 99

Cl12orf54

chromosome 12 open reading frame 54

Clorf183

chromosome | open reading frame 183

CDKNI1A

cyclin-dependent kinase inhibitor 1A (p21, Cipl)

CEL

carboxyl ester lipase (bile salt-stimulated lipase)

DCP1B

DCP1 decapping enzyme homolog B (S. cerevisiae)

DQXI

DEAQ box RNA-dependent ATPase 1

DSE

dermatan sulfate epimerase

E2F7

E2F transcription factor 7

El24

etoposide induced 2.4 mRNA

FAMI49A

family with sequence similarity 149, member A

FDXR

ferredoxin reductase

FRMDS

FERM domain containing 8

FXYD2

FXYD domain containing ion transport regulator 2

GRMI

glutamate receptor, metabotropic |

HPX

hemopexin

ICAM4

intercellular adhesion molecule 4 (Landsteiner-Wiener blood group)

IGFBP3

insulin-like growth factor binding protein 3

LAMP3

lysosomal-associated membrane protein 3

LCEIB

late cornified envelope 1B

LCEIE

late cornified envelope 1E

LCNI15

lipocalin 15

LRDD

leucine-rich repeats and death domain containing

MRPL49

mitochondrial ribosomal protein L49

NTN4

netrin 4

NUP62CL

nucleoporin 62kDa C-terminal like

PANKI1

pantothenate kinase |

PHLDA3

pleckstrin homology-like domain, family A, member 3

PLEKHAS

pleckstrin homology domain containing, family A member 8

PLXNB2

plexin B2

PON2

paraoxonase 2

PPMID

protein phosphatase 1D magnesium-dependent, delta isoform

PPPIR14C

protein phosphatase 1, regulatory (inhibitor) subunit 14C

PPY

pancreatic polypeptide

RAP2B

RAP2B, member of RAS oncogene family

RBI

retinoblastoma |

SCN4B

sodium channel, voltage-gated, type IV, beta

TCEA3

transcription elongation factor A (SII), 3

TFDP2

transcription factor Dp-2 (E2F dimerization partner 2)

TLRI

toll-like receptor |

TP5313

tumor protein p53 inducible protein 3

TRIM32

tripartite motif-containing 32

UPBI

ureidopropionase, beta

ZBTB4

zinc finger and BTB domain containing 4
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The role of NF-Y (most significantly enriched binding motif in the down-regulated genes) in the
transcriptional DNA damage response was explored further. The set of predicted NF-Y targets
consisted of 62 genes shown in Table 3.5, including three known NF-Y transcriptional targets
CCNBI1, CCNB2 and CCNA2. Although some of the 62 genes have been shown to have NF-Y
promoter occupancy, a majority of the genes identified from our data set as having binding sites

for NF-Y in their promoter regions are novel predicted NF-Y targets.

The presence of bona-fide NF-Y targets CCNBI, CCNB2 and CCNAI among the set of 62
predicted targets improved our confidence in the set of predicted NF-Y targets. The known NF-Y
targets contain an additional motif called the cell cycle homology region (CHR) within their
promoter regions. Knowing that true NF-Y targets have a CHR motif within their promoter
regions, we checked to see whether the novel predicted NF-Y targets had such a CHR motif in
their promoter region as well. The promoter regions of the predicted NF-Y target genes (1000 bp
upstream of the transcription start site) were scanned for the presence of the CHR motif. 53/62
genes had both CHR and NF-Y motifs (p-value < 1x10”, calculated using a hypergeometric

distribution).

3.4.16 Chromatin immunoprecipitation followed by sequencing (ChIP-seq)
confirm NF-Y occupancy for novel predicted NF-Y targets

To experimentally validate promoter occupancy of NF-Y for the computationally predicted,
novel NF-Y targets, ChIP-seq was performed on log-growing cells from the most sensitive cell
line 4. Briefly, cells were crosslinked in formaldehyde, and the chromatin was isolated, sonicated
and immunoprecipitated with antibodies against NF-Y A. The crosslinks were reversed and DNA

was isolated and sequenced (see Materials and Methods). The sequencing results were analyzed
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using Model-based Analysis of ChIP-Seq (MACS) (15) as described in the methods section.
Together, the two separate sequencing runs yielded 17 million unique reads for chromatin from
the NF-YA ChIP and 16 million unique reads from the control IgG ChIP. For a p-value cut-off of
1X10™", there were 3100 peaks called for the NF-YA ChIP as compared to the IgG control. At
the same p-value cut-off, there were only 39 peaks called in the IgG control as compared to the

NF-YA ChIP.

Remarkably, of the 62 genes predicted as having NF-Y promoter occupancy, 54 were positive by
ChIP-seq. 48 genes pass the stringent p-value cut off of p < 10™"°. Three more genes pass a p-
value cut-off of p < 10" and an additional three pass a p-value cut-off of p<10~. The remaining
8 genes are negative for peaks (see Table 3.11). The four genes with the lowest p-value for peaks
from the NF-Y ChIP are shown in the Figure 3.35. The four genes with the highest p-value for
peaks from the NF-Y ChIP are shown in the Figure 3.36 and four genes with no significant peaks
are show in Figure 3.37. The top 200 peak sequences were analyzed using the THEME algorithm
(16) as a check to confirm that the peaks obtained are indeed from an NF-Y ChIP. As expected

top motif enriched in this analysis was the NF-Y motif.
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Table 3.11: Peaks called using MACS near the genes predicted to be NF-Y targets

GeneSymbol ch Start End pvalue Fold enrichment | FDR(%) DB:::::::'“ Map type | Map subtype
1/coca3 6830277 6832274 107" 133.46 0 52 promoter
2|EIF4AL 7416194 7417066 10770 98.47 0 374 gene exon
| CENPA 2686172 2 19 10 357.1 119 promoter
BE2C 3963 4 10 189.8 . 106 promoter
s|nF2 28328924 28329626 10710 207.48 0 -169 promoter
6|HNRNPAB 177563834 | 177564331 10 *° 157.05 0 55 promoter
7|Tcp1 160130386 | 160131899 107 165.58 0 -680 promoter
8|H2aFv 44853892 | 44854815 107°% 279.53 0 -236 promoter
9|tussac 139254881 | 139255771 107 147.98 0 -143 promoter
10|HSPIOB1 102847729 | 102849232 10 84.88 0 -127 promoter
11{TCEB1 75046603 | 75047587 1077 103.87 0 -280 promoter
12|DLGAPS chrld 54727553 | 54728442 1072 89.51 0 60 gene exan
13| CENPF chrl 213 B 212843¢ 10 135.48 62 promote
14|BUB1 chr2 111152001 111152385 107 96.99 0 -67 promoter
15{TM™MPO chr12 97432860 | 97433928 107 92.84 0 63 promoter
16|WDR37 chr10 1084560 1085801 107 52.78 0 -6975 promoter
17|c130rf34 chr13 72199423 | 72200309 10" 96.68 0 63 promoter
18|ASPM chrl 195382123 | 195383026 107" 76.61 0 -199 promoter
19|8UB3 chrlo 124903292 | 124904119 107" 66.29 0 57 promoter
20{ccnB2 chr15 57184020 | 57184859 10°*# 58.88 0 -41 promoter
21]eeF1E1 chré 8047134 8048233 1072 83.25 0 3 gene exon
22[ecT2 chr3 173950943 | 173951675 107" 51,94 0 34 promoter
23|HMMR chrs 162819148 | 162820880 10 69.25 0 -115 promoter
24|nUDCD2 chrs 162819148 | 162820880 10 69.25 0 -402 promoter
25|CCNF chr16 2418701 2419591 10 66.41 0 -185 promoter
26[TPx2 chr20 29790249 | 29791400 16 59.23 0 135 gene exon
27|cenaz chrd 122964064 | 122964809 0> 51.94 0 12 promoter
28|KIF14 chrl 198856063 | 198856881 10 49.04 0 26 promoter
29|PRMTS chri4 22468027 | 22469036 10% 35.23 0 -48 promoter
30| AURKA chr20 54400496 | 54401368 107" 35.32 0 37 gene exon
31|ccnBl chrs 68498277 68499142 107" 35.62 0 20 gene exon
32|MCMB chr2 136350264 | 136351023 107" 59.69 0 -84 promoter
33|CDC20 chrl 435 23 4 7632 (] 46.45 1) 3C F ote
34|GTSE1 chr22 45070875 45071614 10 56,65 0 -57 promoter
35TV chr7 5014891 6015656 10 28.76 0 56 promoter
36| THADA chr2 43675898 | 43677160 10 48.71 0 58 promoter
37|5GOL2 chr2 201098742 | 201099527 10 27.5 0 -73 promoter
38|NEK2 chrl 209915283 | 209915904 10+ 37.59 0 -37 promoter
39|GTPBP4 chrl0 1024053 1024592 10 32.7 0 -37 promoter
a0|Mcma chrg 49035555 | 49036113 107 33.4 0 -87 promoter
a1|kiF204 chrs 137542165 | 137542913 10 14.28 0 -133 promoter
42|TAF15 chr17 31159774 | 31160773 10 19.27 0 -99 promoter
43|PKP4 chr2 159021410 | 159021947 107" 26.84 0.04 -171 promoter
1PLKL chrlg 23 23598099 10 19.68 0.04 1 p
45|DEPDCL chrl 68734941 | 68735804 107 20.84 0.04 31 promoter
46|EX05C2 chrg 132558483 | 132559321 10" 15.23 0.07 -118 promoter
47|00F2 chrg 130257948 | 130258450 10" 19.28 0.18 92 promoter
48|LTV1 chré 144205514 144206524 10°% 14,87 0.28 -12 promoter
49|5FRS2 chr17 72244755 | 72245501 10" 9.05 3.85 -140 promoter
50{c20rf67 chr2 210744295 | 210744689 0 13.68 5.76 -139 promoter
51{smc3 chr10 112316678 | 112317404 10" 10.46 134 -408 promoter
52]ARHGAP11A chr15 30694567 30695284 10~ 1t 25,02 15 gene exon
53|TAF1B chr2 9900532 9901360 10° 31.67 -132 promoter
54[pSME3 chr17 38238437 | 38239313 10° 6.01 98.53 57 promoter
55[2MYM4
56[PSRC1
57|METAP2
58|PIPaK2B
59|MSHE
60[HNRPDL
61[GK
62[STAG3L3

Genes predicted as NF-Y targets were examined for highly significant peaks. Genes are ordered based on
their p-value, with white rows having high significance, and grey rows containing low-confidence or no
peaks. Genes highlighted in red are transcriptionally regulated by NF-Y. Genes in blue have been shown
to have NF-Y promoter occupancy. (56,89-91).
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Figure 3.35: Highly significant peaks from MACS analysis of NF-Y ChIP-seq data

The figure shows peaks with the lowest p-value within the down-regulated genes obtained from the NF-Y
ChIP-seq. For each gene, the top panel shows reads from the NF-Y IP and the bottom panel shows reads
from the negative IgG control. The arrow indicates the direction of transcription

146



Chapter 3: Transcriptional Response to BCNU

L ! ll.mn..m it} | oy e b aeanl,
o||||“|ﬂhil.lu.l|mu HmeJﬂMiMiIMh alasl | ok |11 o I B
‘§ 0 li‘hhhh“ MIMMhwuL:L.MM o wkdBl L LA I.I.lll I w ||-.L
kv e e

Figure 3.36: Weakly significant peaks from MACS analysis of NF-Y ChIP-seq data

The figure shows peaks with the highest p-value within the down-regulated genes obtained from the NF-
Y ChIP-seq. For each gene, the top panel shows reads from the NF-Y IP and the bottom panel shows
reads from the negative IgG control. The arrow indicates the direction of transcription
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Figure 3.37: Genes with no significant peaks from MACS analysis NF-Y ChIP-seq data

The figure shows peaks with the highest p-value within the down-regulated genes obtained from the NF-
Y ChIP-seq. For each gene, the top panel shows reads from the NF-Y IP and the bottom panel shows
reads from the negative IgG control. The arrow indicates the direction of transcription
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3.4.17 Gene Set Enrichment Analysis (GSEA) shows enrichment of acetyl-
p53 repressed genes within the transcription signature

p53 acetylation has been shown to be important for inhibition of NF-Y transcriptional activity.
68 genes were identified as being repressed upon p53 acetylation at lysine 373 in (41). The 984
probesets identified from our transcription data were analyzed for enrichment in p53 acetylation
mediated gene repression using GSEA (see Materials and Methods). This analysis shows that the
transcriptional signature is indeed enriched for genes repressed by p53 acetylation, with 14/68
genes present within the transcriptional signature (FDR 0.3%). The enrichment plot is shown in
Figure 3.38A with the enrichment score shown in green and the black lines showing the location
of the 14 genes along the ranked list of genes within the transcriptional signature. 13/14 genes
repressed after p53-acetylation were also repressed in sensitive cell lines after BCNU treatment
as seen by the skewing of the black lines towards the blue region of the enrichment plot. Figure
3.38B shows the 14 genes that are repressed after p53 acetylation and present within the
transcriptional signature set. 11 out of these 14 genes have strong NF-Y promoter occupancy and

are marked in Figure 3.38B.

3.4.18 Immunoblot analysis shows no significant p5S3 acetylation in BCNU
treated cells

To check whether BCNU induced p53 acetylation at lysine 373 in the BCNU sensitive or
resistant cell lines, cells were treated with 40uM BCNU and collected at 0, 12, 24, 48 and 72
hours for immunoblot analysis with antibodies against total pS3 and acetyl p53 (lysine 373) (see
Materials and Methods). Figure 3.39 shows that the antibody used detects p53 acetylation
induced by etoposide treatment in cell line 16. The immunoblots for cell lines 4, 5, 13 and 16
treated with BCNU are shown in Figure 3.40 and the quantified values are shown in Figure 3.41.

We see no significant differences in p53 acetylation between mock-treated and treated cell lines.
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Figure 3.38: GSEA of the transcriptional signature shows enrichment of genes repressed upon p53
acetylation

Genes repressed upon p53-acetylation (list of 68 obtained from (41)) were enriched in the 984 probe-sets
(FDR 0.3%) in the transcriptional signature. A) Enrichment plot showing the position of the 14 of the 68
genes —black lines- within the 984 probe-sets, ranked based on expression (red — high in sensitive cell
lines, blue- low in sensitive cell lines). B) List showing these 14 genes and the promoter occupancy from
NF-Y ChIP-seq (y — yes)
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Figure 3.39:Etoposide treated samples probed with the antibody against acetyl-p53 (lys373)

(A) Immunoblots for cell lysate from cell line 16, treated with 50uM etoposide (see Materials and
Methods) probed with antibodies against acetyl-p53 (lys 373), p53 and vinculin; (B) Barchart showing the
average fold-change in acetyl-p53 (lys373) for etoposide treated samples over untreated samples.

151



Chapter 3: Transcriptional Response to BCNU

Oh 12h 24h  48h 72h -
untreated 'R Etoposide
= o = ok = o -+ (10gy)  (50uM)
e Sy W S w— - == wm= ac-p53-lys373
O 4 E--,-q-- —— — — e - p53
.2 — —— ———— C—— — !- vinculin
-
%)
: uﬁ-—-‘--—-.,--v--_—"‘ . W R -
Q s = - - — = WY 3c-p53-lys373
w D | w w s v ——— W — —. - 053
- — ——— — we== Vvinculin
LW g WA e e @ o0 p53-lys373
2 16| " wwerrermpprr TETT == = g o
S — N S iy — — — G Ci—y  — — —\inculin
%)
- p—
8 - . T — A —— — _— . —~———
e e e ac-p53-lys373
T e —— — p—
% 13 Sat F oo - - 53
:—‘—:gggi-i —_—— — =t ouge Vinculin

Figure 3.40: Immunoblot probed for acetyl-p53 (lysine 373)

Immunoblots for cell lines 4, 5, 16 and 13 at various time points after 40uM BCNU treatment
probed with antibodies against acetyl-p53 (lys373), p53 and vinculin (loading control). Cell
lysate from untreated, IR (10gy) treated and etoposide (50uM) treated samples from cell line 16
were used as controls for each blot and for comparison across blots.
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Figure 3.41: pS3 acetylation as measured by immunoblot after BCNU treatment

Acetylated p53 (top) and total p53 (bottom) levels in cell lines 4, 5, 16 and 13 in mock-treated and BCNU
treated samples at multiple time-points. All values are normalized to the loading control vinculin and
scaled to a positive IR control..
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3.5 Discussion
The goals of this study were: 1) to identify a transcriptional signature that cell lines that are
resistant or sensitive to BCNU treatment; and ii) to find putative transcriptional regulators of this

transcription signature.

The wide range of BCNU sensitivity observed in the panel of twenty four genetically varied cell
lines allowed the identification of cell lines with extreme BCNU sensitivity or resistance. The
706 genes identified as being differentially expressed between sensitive and resistant cell lines
after BCNU treatment reveal interesting properties about the BCNU induced transcriptional
differences between these cell lines. Genes within the transcriptional signature have visibly
stronger gene induction or repression upon BCNU treatment in the sensitive cell lines as
compared to the resistant cell lines. The muted transcriptional response in the resistant cell lines
might suggest that the resistant cell lines induce DNA damage response pathways through
mechanisms other than transcription. Additionally, since the ANOVA analysis enforced a
differential gene expression signature between sensitive and resistant cell lines, it might also be
the case that the transcripts induced or repressed in resistant cell lines are also induced and
repressed to similar extents in the sensitive cell lines and therefore not included in the

transcriptional signature.

The transcriptional signature was partitioned into two sub-groups with different biological and
functional annotation that correlated with cellular phenotype. We infer that two major and
distinct processes are initiated in the BCNU treated sensitive cell lines. The first is the induction

of apoptotic cell death as suggested by gene ontology enrichment of apoptosis within the up-
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regulated set, networks enriched in cell death related genes and the experimental observation of
apoptotic cell death. The second process initiated in BCNU treated sensitive cell lines is the lack
of entry into mitosis as suggested by gene ontology enrichment of the mitotic phase of the cell
cycle within the down-regulated set, networks enriched in cell cycle related genes and
experimental observation of a decreased mitotic population. Taken together, these results suggest
either that the sensitive cell lines don’t reach mitosis or that they initiate a protective program
that prevents the entry of cells into mitosis or even both. All of these stall proliferation of cells
containing BCNU induced DNA damage. This also suggests that sensitive cell lines
simultaneously initiate cell death mechanisms most likely to eliminate cells that are unable to

repair the BCNU induced damage.

The other observation from the transcriptional data set was the enrichment of the p53 signaling
canonical pathway within the up-regulated set of genes using network building algorithms,
which was also seen experimentally. Note that although the p53 signaling pathway was enriched
only in the up-regulated gene set, p5S3 appears as a hub node in networks generated for both the
up-regulated and down-regulated gene sets (Figure 3.23B and Figure 3.24B). This discrepancy
arises from the definition of the canonical p53 signaling pathway that mostly include only those
p53 targets that are transactivated as seen in Figure 3.23, but not those targets that are repressed
or inhibited by p53 as seen in Figure 3.24. Therefore, although p53-mediated repression
interactions are included in the Ingenuity database and seen in Figure 3.24B, they have not been

incorporated into the p53 canonical pathway.
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In addition to this, there are other assumptions made in the use of such network analysis
techniques. Using curated knowledge to understand the gene set of interest assumes that
transcript levels correctly depict protein levels. This, however, is not necessarily true, and genes
that seem to be induced at the transcript level might still be lacking at the protein level due to
rapid degradation of the protein or poor translation of the transcript (42-44). The other
assumption with these analysis techniques is the generality of the curated data. Certain reactions,
interactions, induction and repression are often specific to the particular cell type or condition
being studied while being irrelevant for the system under consideration. Moreover, the quality of
interactions in the database might vary greatly depending on what experimental techniques were
used to identify the interactions. Nevertheless, using known biological interactions can help us
identify pathways that are possibly activated or repressed within our data set, and produce a
better understanding of the meaning of our transcriptional signature in the context of DNA
damage. For example, the network and functional analysis not only suggested a role for p53 in
the BCNU induced transcriptional response but also suggested the induction of apoptosis and the

absence of entry into mitosis, both of which were also seen experimentally.

Significant binding site enrichment of the transcription factors NF-Y, AhR, GABP and Nrf-1
within promoter regions of the down-regulated genes suggested that these transcription factors
might control the expression of genes involved in mitosis. The fact that the NF-Y motif was
enriched for all ranges of the promoter region tested improved our confidence in the predicted
targets of NF-Y. The only transcription factor binding site enrichment identified for the up-
regulated set of genes was that of p53. This is in concurrence with the induction of canonical p53

targets (Figure 3.33) suggesting p53 transcriptional activation of a sub-set of up-regulated genes.
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However, the lack of other significantly enriched transcription factor binding site enrichment
within promoter regions of the up-regulated genes could be due to several reasons. One could be
that the binding motifs might occur outside the search range possible in EXPANDER. Another
reason could be that our knowledge of binding motifs for transcription factors is incomplete and
so the motif enriched within the up-regulated set might still be unknown and absent in the
TRANFAC data base that the motif-searching algorithm relies. Moreover, the set of up-regulated
genes with the same expression patterns might be activated by different transcription factors,
thus diluting out the enrichment for any one particular transcription factor within the set of up-

regulated genes.

Further exploration of BCNU induced transcriptional repression of mitotic genes was pursued
with the most significantly enriched transcription factor, NF-Y. The second most significant
transcription factor, AHR was not explored because examination of its list of predicted targets
did not include canonical AHR targets such as the CYP/ family of genes. Moreover, the
transcription factor motif for AHR is often identified as a false positive in computational
promoter sequence analyses (personal communication, Shao-shan Huang). Furthermore,
literature review of the transcription factors suggested an interesting role for NF-Y in the control

of mitotic genes after DNA damage.

Nuclear Factor Y (NF-Y) is a trimeric complex composed of NF-YA, NF-YB and NF-YC (45,
46). NF-Y has been shown to bind to promoter regions of, and transactivate multiple genes in a
CCAAT motif dependent manner. The CCAAT motif is over-represented in promoter regions of

the human genome, with ~30% of promoters containing this pentanucleotide sequence (47). In
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line with this, NF-Y has been shown to bind and transactivate genes showing a wide range of
expression patterns including ubiquitously expressed genes, cell cycle dependent genes and
stress responsive genes (48-50). Moreover, NF-Y has been shown to recruit and increase binding
affinity of other transcription factors at promoter regions (50-53). These facts suggest a complex
and combinatorial regulation of NF-Y targets. Over the past decade, NF-Y has emerged as an
important regulator of cell cycle progression, cell cycle checkpoints and chromatin remodeling

under both non-stressed and DNA damage conditions (54-56).

Bioinformatic analyses of promoter sequences have implicated NF-Y as a regulator of a large set
of mitotic cell cycle genes due to the presence of the CCAAT motif in these promoter sequences
(12,57). A few of these genes (CCNBI, CCNB2, CCNA2 and CDC25C) have been shown
experimentally to be transcriptionally regulated by NF-Y (56). These known NF-Y mitotic
targets have varied expression levels for different phases of the cell cycle, with low or no
expression during G1, expression beginning during S-phase, with transcript levels accumulating
all the way up to the end of G2. Such gene expression regulation is dependent on a motif present
within the promoter regions of the mitotic genes, referred to as a cell cycle homology region
(CHR) (58-61). In the absence of CHR elements in the promoter region, constitutive expression
of mitotic genes has been observed (62,63). The exact mechanism of transcriptional repression of
mitotic genes via the CHR motifs is not well understood, but thought to involve multi-protein
complexes (64,65). The significant enrichment of the CHR motif within the promoter regions of
the predicted NF-Y targets within our data set further improved our confidence in the predicted
set of novel NF-Y targets, and suggested similar expression regulation for these new putative

NF-Y targets. Moreover, significant promoter occupancy of NF-Y for 54 (p<10®) of the 62
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predicted target genes implies NF-Y regulation of these mitotic genes and a possible role for NF-

Y in a G2 arrest after BCNU treatment.

Previous studies showed that human cells treated with BCNU induce a late S or G2/M arrest
(28,40,66). However, the transcriptional control in the initiation of such an arrest after BCNU
treatment has not been studied yet. G2/M arrest after DNA damage is thought to be initiated
mainly through the regulation of CDK1 activity through multiple processes including an increase
in its inhibitory phosphorylation by WEEI (67-70), inhibition of its activating phosphatase
CDC25C (71-73), exclusion from the nucleus and sequestration of its binding partner CCNB1
(74,75). Additional transcriptional control of the G2/M arrest has been suggested by the p53 (76-
80) and E2F family of transcription factors (81-85). Few studies have also implicated NF-Y in

DNA damage induced G2/M arrest.

Protein levels of mitotic proteins such as CCNBI1 and CDK1 drop during DNA damage induced
G2/M arrest. This drop in protein level is partially attributed to protein degradation and partially
attributed to transcriptional repression of the CCNB1 and CDKI1 genes (76). These genes have
CCAAT motifs in their promoter regions (84,86) and NF-Y has been shown to regulate
expression from the promoters of these genes. NF-Y activity at the promoter regions of these
mitotic genes is reduced upon DNA damage (54) thus explaining the decreased expression of
CCNBI1 and CDKI1 during G2/M arrest after DNA damage. Moreover, cells lacking NF-YA or
NF-YB show cell cycle defects, in particular the induction of a G2/M arrest with concomitant
decrease in the expression of mitotic genes (55,87). This shows that NF-Y transcriptional control

of cell cycle genes is important for proper control of G2/M both in the absence and presence of
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DNA damage. In the context of these findings, our study adds to the list of mitotic genes with
NF-Y promoter occupancy, that are most likely repressed during a G2/M arrest with the same
mechanisms of repression seen for the key mitotic gene CCNBI. This also suggests a role for

similar transcriptional control of a G2/M arrest in the sensitive cell lines after BCNU treatment.

One mechanism proposed for transcriptional inactivation of the NF-Y after DNA damage is the
inhibition of NF-Y by acetylated p53 (88). p53 has been shown to localize to promoter regions of
mitotic genes especially after DNA damage (89). Biochemical analysis revealed that this occurs
through the interactions of p53 with the NF-YC component of trimeric NF-Y. Mutational
analysis identified that the C-terminal regions of p53 is required for the p53-NF-Y interaction
(88). Moreover, p53 acetylation at the C-terminal region of p53 was shown to be important for
the repression of NF-Y activity after DNA damage. In addition to this, p53 acetylation alone was
shown to induce transcriptional changes and G2/M arrest (41). The enrichment within our
transcriptional signature (especially in the down-regulated set) for genes that are repressed by
p53 acetylation suggested a similar mechanism of transcriptional control for the set of down-
regulated mitotic genes. However, immunoblot analysis showed a lack of p53 acetylation after
BCNU treatment in cell lines 4 and 16. This outcome could result from one of many possible
reasons. One possibility is that p53 is not acetylated in these cell lines after BCNU treatment, at
least at the site probed (lysine 373). In this case, it could be that lymphoblastoid cell lines used in
this study employ mechanisms other than p53 acetylation for the repression of NF-Y bound
mitotic genes. Another possibility is that the amounts of acetylated p53 might be too low to be
detected using the technique we used. It could also be that acetylation might be occurring at

lysines other than the site probed that might also be able to inhibit NF-Y. Therefore, we were
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unable to prove or disprove the role of p53 acetylation in mediating the repression of NF-Y

mitotic targets after DNA damage.

Taken together, our results suggest transcriptional control of the observed G2 arrest in the BCNU
treated sensitive cell lines by NF-Y possibly mediated by p53 acetylation or some as yet
unknown mechanism as shown in Figure 3.42. The model suggests that under normal cell cycle
progression, NF-Y transcriptionally regulates a large panel of mitotic genes. In the presence of
DNA damage, the transcriptional activity of NF-Y on this panel of mitotic genes is inhibited,
possibly by acetylated p53 or some other novel mechanism. This model also suggests a possible
link between DNA damage signaling and control of cell cycle thus facilitating constant

monitoring of the presence of damaged DNA.

To conclude, we identified a transcriptional signature of genes differentially expressed between
sensitive and resistant cell lines after BCNU treatment that was informative of two major and
distinct processes initiated by sensitive cell lines after BCNU treatment — the stalling of entry
into mitosis and the initiation of cell death by apoptosis. Furthermore, we identified NF-Y as a
possible regulator of BCNU induced G2/M arrest and also identified novel NF-Y targets that are
part of the transcriptional response for a G2 arrest after BCNU treatment. Finally, the lack of p53
acetylation in the cell lines used here suggests that these cell lines might use mechanism other
than the known mechanism of p53 acetylation for the repression of NF-Y mitotic target genes

after BCNU treatment.
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Figure 3.42: Model for repression of NF-Y mitotic targets mediated by p53 acetylation
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There are a few key ideas that provided the vision for, and formed the core of this thesis. The
first idea was the use of computational and systems biology techniques to study the complex
biological components of the transcriptional response of human cells to DNA damaging agents.
The design of the experimental system and the choice of the measurement techniques were key
decisions that allowed the generation of a multi-dimensional and information-rich data set
amenable to computational analyses. Moreover, the use of computational tools enabled us to
identify a biologically meaningful transcriptional signature and further to propose a mechanism
for the transcriptional control of a subset of that signature, both of which would be difficult to
identify otherwise. The interweaving of experimental and computational techniques that
enhanced and complemented one another was an essential part of this project. The experimental
and computational techniques chosen at each point of the project were motivated by the
biologically relevant question at that step (see Figure 4.1) and yielded more insight into the
transcriptional response to DNA damaging agents. For example, once the transcriptional
signature was identified, bioinformatics analysis was used to determine the functions enriched
within the gene set, which in turn led to the experimental measurement of cell death and mitosis
in the cell lines. Similarly, computational identification of NF-Y as the transcription factor
possibly regulating the mitotic genes led to the experimental measurement of NF-Y promoter

occupancy for these genes.

Another important idea that was explored in this thesis was the identification of a common
signature for cell death/survival after exposure to a DNA damaging agent. Identifying genes with
similar expression patterns in two separate cell lines (although in this case they were both

lymphoblastoid cell lines) allowed us to exclude transcriptional changes that were specific only
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to one particular cell line and not essential for BCNU sensitivity; this would not have been
possible if only one sensitive or one resistant cell line were compared. Therefore, this project
suggests that such common signatures specific for cell death could be identified. A crucial next
step is to use a similar approach to identify transcriptional signatures for cell death across

different DNA damaging agents.

The third important point in this thesis was the power of using an exploratory approach. Many of
the genes that fall within the transcriptional signature have not been previously identified as
affecting sensitivity to DNA damaging agents. Therefore, if we had performed this same study
with preselected sets of genes or transcription factors, we would have missed the identification of
the signature. Moreover, without the signature gene set, we would not have identified the

transcription factor NF-Y as playing a role in DNA damage response.

171



Chapter 4: Conclusions and Future Directions

Range of BCNU sensitivity

DNA damage induce
transcriptional signature
for cell death/survival

'4

Screen for BCNU sensitivity

Time series transcription
profiles

Statistical analysis for gene
set selection

Network and functional
enrichment

Transcription Factor
Binding site enrichment

GSEA for enrichment of
p53-acetylation targets

Cell Death measurements

Mitotic fraction measurements

NF-Y ChiP-seq

P53-acetylation

immunoblots

Functional relevance of

Transcriptional control of

DNA damage induced

gene signature gene signature mechanism for gene signature

Figure 4.1: Experimental and computational techniques driven by biologically motivated questions
The experimental (red solid boxes) and computational (blue solid boxes) techniques used within this

thesis are shown. The biologically relevant question that motivated these techniques are highlighted in
black open boxes
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The ideas, design and techniques implemented in this thesis yielded some important scientific
contributions. The multi-well proliferation assay developed as part of this thesis is an efficient
way to perform large scale screens to measure effects on proliferation of various types of drugs
and treatments. Using this assay, high resolution measurements of survival can be obtained even
for usually hard-to measure suspension cell lines. The assay enabled the otherwise impractical
measurement of survival curves for the panel of 24 genetically diverse lymphoblastoid cell lines
(grown in suspension) to BCNU sensitivity. More importantly, the technique has potential for
use in a wide variety of projects, with a wide variety of cell lines and chemicals or toxic agents.

In the second part of the thesis, the transcriptional response after BCNU treatment in sensitive
resistant cell lines was explored. This led to the identification of a transcriptional signature that
suggested the activation of two important processes in the sensitive, BCNU treated cell lines; the
induction of apoptosis and the stalling of entry into mitosis. Furthermore, the transcription
signature correlated well with the observed cell phenotype which showed that these two
processes were indeed occurring in the BCNU sensitive cell lines. This gene set was important in
understanding the processes initiated in the sensitive cell lines after exposure to BCNU. Whether
these genes behave similarly in response to other DNA damaging agents is not yet known and

might be interesting to study.

From the transcriptional signature, NF-Y was identified as an important regulator for the
transcriptional control of genes involved in the mitotic phase of the cell cycle after BCNU
induced DNA damage. Although NF-Y has previously been implicated in the transcriptional
repression of a few G2 genes, it had neither been observed in response to BCNU, nor to the

extent observed here. Moreover, BCNU has been shown to induce a G2/M arrest in glioblastoma
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cell lines, but the transcriptional control of mitotic entry and the role of NF-Y in such an arrest
have not been previously identified. NF-Y mediated repression of a few mitotic genes has been
observed in multiple cell lines treated with different types of DNA damaging agents. This
suggests that the control of G2 arrest by NF-Y could potentially be a general mechanism used by

cells after DNA damage.

The control of the G2/M checkpoint is important in the treatment of tumors since many of the
DNA damaging agents used in the clinic induce a G2/M arrest. This arrest is thought to act as a
protective mechanism, allowing time for the tumor cells to repair damage. Our results suggest
that NF-Y could play an important role in the protective mechanisms employed by tumors
against chemotherapy. However, our results also showed that the induction of apoptotic genes
can overshadow the protective effects of a G2 arrest since the G2 arrest we observed in our
sensitive cell lines did not ultimately protect them from BCNU induced cell death. Moreover,
there was no G2 arrest observed in the resistant cell lines confirming that a G2 arrest is not
required for resistance to DNA damaging agents and that other mechanisms such as induction of
DNA repair proteins could also confer resistance, as has been seen in the clinic. These results
suggest to some extent, an ordering of the effects of DNA repair, induction of apoptosis and cell
cycle arrest on the cells’ survival after exposure to DNA damaging agents. These ideas could be
exploited for use in combination therapy in the clinic, where multiple effective strategies such as
inhibition of repair and cell cycle arrest and acceleration of apoptosis might sensitize some

resistant tumors.
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To this end, understanding the mechanism of NF-Y mediated repression in the control of the
G2/M arrest after DNA damage could provide possible avenues for enhanced or more efficient
chemotherapy. p53 acetylation has been suggested as a possible mechanism that controls the
repression of NF-Y targets after DNA damage. However, the lack of p53 acetylation observed in
the sensitive cell line after BCNU exposure could suggest that alternate mechanisms are more
important for NF-Y repression in these lymphoblastoid cell lines than what has been studied so
far. Other mechanisms for NF-Y regulation have also been suggested, including post-
translational modification of NF-Y and changes in chromatin structure. It would be interesting to
explore which, if any, of these mechanisms are responsible for the observed NF-Y repression
seen in BCNU treated cells. Interactions of NF-Y with varying partners and protein complexes
have also been suggested as a method for the transcriptional control of NF-Y target genes. The
identity of these interacting partners and protein complexes both in the absence and presence of
DNA damage could also shed some light on other mechanisms of NF-Y mediated transcriptional

control.

As a result of this thesis, experimental and computational techniques suitable for extracting
general gene signatures for cell death/survival after DNA damage were identified. The next step
would be to apply these techniques to other DNA damaging agents to determine whether a drug
independent signature for cell death can extracted using this technique. Such as study would, for
example, reveal whether the G2 arrest controlled by NF-Y in BCNU treated cells is activated or
important in the response to other chemotherapeutic agents. Preliminary results for the sensitivity
of the BCNU sensitive/resistant cell lines to other DNA damaging agents used in the clinic are

shown in Figure 2. The results show that the cell lines have different sensitivities to
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Temozolomide, but not to cisplatin and ionizing radiation. However, it is yet remains to be seen
whether the panel of twenty four cell lines will indeed show a range of sensitivities to IR and

cisplatin, and whether a G2 arrest is induced in treated cells.

If NF-Y dependent transcription is observed in cell lines after treatment with the other DNA
damaging agents, this would be an important step forward in understanding the common
mechanisms for cell death/survival after DNA damage. The presence of such a common
signature that is not dependent on the DNA damaging agent, and is unaffected by genetic
variation across a population, would have the potential to improve current modes of
chemotherapy by sensitizing treatment resistant tumors or by protecting sensitive non-tumor

cells.
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Figure 4.2: Survival curves for cell lines 4, 5, 13 and 16 for four clinically used cancer treatments
Survival curves for cell lines 4 (blue), 5 (green), 13 (red) and 16 (yellow), when treated with ionizing
radiation (IR), BCNU, Cisplatin and Temozolomide as measured using the proliferation assay.
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Contribution: Partial Least Squares Regression analysis and statistical analyses for significance

of the identified gene set.
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sion that predicts susceptibility with 94% accuracy.
Modulating transcript levels for two member genes, MYH
and C210RF56, confirmed that their expression does in-
deed influence alkylation sensitivity. Many proteins en-
coded by these genes are interconnected in cellular net-
works related to human cancer and tumorigenesis.

Supplemental material is available at http://www.genesdev.org.

Received April 24, 2008; revised version accepted August 7,
2008.

The interindividual differences in disease susceptibility,
responsiveness to chemotherapeutics, and susceptibility
to environmental exposures across human populations
are influenced by a combination of gene-environment
interactions. Over the past few years, studies aimed at
dissecting the genetic basis underlying human pheno-
typic variation have built off of the dense genotyping

|Keywords: DNA damage susceptibility; alkylating agents; prediction]
*These authors contributed equally to this work.

"Present address: Lawrence Berkeley National Laboratory, Berkeley, CA
94720, USA.

SCorresponding author,

E-MAIL lsamson@mit.edu; FAX (617) 253-8099.

Article published online ahead of print. Article and publication date are
online at http://www.genesdev.org/cgi/doi/10.1101/gad.1688508. Freely
available online through the Genes & Development Open Access option.

established by the HapMap Consortium. A wealth of ge-
nome-wide association studies (GWAS) have described
how human genetic variation, at the level of single
nucleotide differences, is linked to such complex dis-
eases as diabetes and breast cancer (Hunter et al. 2007;
Zeggini and McCarthy 2007). In addition, GWAS have
also linked DNA polymorphic variants to gene expres-
sion variation across populations (Cheung et al. 2005;
Stranger et al. 2005, 2007; Dixon et al. 2007).

However, while it is known that human lymphoblas-
toid cells derived from different healthy individuals dis-
play considerable variation in their transcription profiles
(Cheung et al. 2003, 2005; Stranger et al. 2005, 2007;
Dixon et al. 2007), the influence this variation has on the
response to environmental and chemotherapeutic agents
is unknown. In this study, a panel of 24 cell lines previ-
ously derived from unrelated, healthy individuals with
diverse ancestry (Collins et al. 1998) was tested for varia-
tion in sensitivity to the DNA damaging agent, N-meth-
yl-N'-nitro-N-nitrosoguanidine ([MNNG). MNNG in-
duces a variety of alkylated DNA bases, among which
O%methylguanine (O°MeG) is known to be particularly
toxic as well as mutagenic because it pairs with thymine
during replication. O°MeG can be repaired by the
MGMT DNA repair methyltransferase (Pegg 1990,
2000), but left unrepaired, the ensuing O°MeG:T base
pair can be processed by the DNA mismatch repair
(MMR) pathway, and such processing actually triggers
apoptotic cell death and cytotoxicity (Kaina et al. 1997;
Hickman and Samson 1999, 2004). Therefore, cells defi-
cient in MGMT but proficient for MMR are extremely
sensitive to MNNG-induced killing, whereas cells defi-
cient in both MGMT and MMR are extremely resistant
or tolerant to MNNG, but at the cost of increased mu-
tation (Karran 2001). While MGMT and MMR status are
thus known to be associated with alkylation sensitivity,
we questioned whether the expression level of these two
repair pathways is sufficient to explain interindividual
variation in alkylation sensitivity.

We show that there is extensive interindividual varia-
tion in the response of cell lines derived from a healthy,
genetically diverse population upon exposure to the
DNA alkylating agent MNNG. The differences in sus-
ceptibility to MNNG were associated with variation in
gene expression to identify genomic predictors of cellu-
lar sensitivity. A set of 48 genes was identified that can
predict, with a remarkable 94% accuracy, differences in
cellular sensitivity to MNNG in a test population. The
basal gene expression, rather than MNNG-treated ex-
pression level, was found to be the better predictor of
cellular sensitivity. To validate the computational mod-
els, the expression level of two members of the predic-
tive gene set, C210ORF56 and MYH, were modulated and
shown to alter cellular sensitivity to MNNG. These
findings may have profound implications in the clinical
setting, where the collective set of 48 genes may be used
as predictors and modulators of cellular sensitivity to
cancer chemotherapeutics.

Results and Discussion

To assess the range of interindividual differences in sen-
sitivity to a DNA alkylating agent, we used a high-
throughput growth inhibition assay (percentage of con-
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Figure 1. A considerable range of interindividual sensitivity to a

DMNA alkylating agent. (A) The percentage of control growth of the
cell lines at 72 h after treatment with MNNG (0.5 pg/mL) using a
growth inhibition assay. The division between high and low sensi-
tivity among the cell lines is demarcated at 53% with a red dotted
line. |B) The percentage of survival of cell lines 6 and 7 was deter-
mined 10 d after treatment with MNNG and compared with three
control cell lines [TK6, TK6 + MGMT, and MT1) using a killing
curve assay. |C) Fold increase in caspase-3 activity was determined
72 h post-treatment with MNNG across the cell line panel.

trol growth) across the panel of cell lines. Control cell
lines with very high MNNG sensitivity (TK6) or very
low sensitivity [TK6 + MGMT, MT1) were included (Kat
et al. 1993). The panel of cell lines displayed MNNG
sensitivities spanning the entire range between the con-
trol cell lines (Fig. 1A). These large differences were even
more apparent when measured by the lower throughput
killing curve assay that has a greater dynamic range (Fig.
1B). Importantly, the MNNG sensitivities of the cell
lines are not associated with individual differences in
growth characteristics (e.g., cell doubling time) (Supple-
mental Fig. S1). We also monitored MNNG-induced ap-
optosis in the cell lines (by caspase-3 activation) and
found a positive correlation with MNNG sensitivity
(Fig. 1C). Thus, the growth inhibition, survival, and ap-
optosis assays each underscore the extensive range of
interindividual responses to MNNG among genetically
diverse cells.

To determine whether transcriptional profiles could
predict cellular response to MNNG, a two-class predic-
tion algorithm was applied to the gene expression pro-
files of the 24 cell lines under both untreated (basal) and
MNNG-treated conditions. The cell lines were divided
into two classes with either high sensitivity or low sen-
sitivity, with a cut point of 53% control growth based on
the midpoint between the most sensitive and least
sensitive cell line (Fig. 1A, lines 6,7). For the two-class
prediction model, a training population composed of
the four most sensitive and the four least sensitive cell
lines was selected and analyzed to identify genes that
were not only differentially expressed but also showed
significant positive or negative correlation with increas-
ing MNNG sensitivity. Three alkylation sensitivity-as-
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sociated (ASA) gene sets were identified as follows: (1) a
set of 48 genes derived from basal gene expression (the
BASA set), (2) a set of 39 genes derived from treatment-
to-basal expression ratio ({the TRASA set), and (3) a set of
121 genes derived from treatment-induced expression
(the TASA set) (Supplemental Tables 1-3). The expres-
sion patterns of the ASA gene sets across the training
population and the test population (i.e., the 16 cell lines
not included in the training population) are visualized in
Figure 2A.

The ability of the three ASA gene sets to predict
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Figure 2. Identification of ASA genes that predict interindividual
differences in alkylation sensitivity. [A) Three ASA gene sets were
identified from a training population comprising the four most sen-
sitive and the four least sensitive cell lines including (1) 48 genes
derived from basal gene expression (the BASA set), (2) 39 genes de-
rived from treatment-to-basal expression ratio (the TRASA set), and
(3) 121 genes derived from treatment-induced expression (the TASA
set). Expression patterns for the gene sets are shown for both the
training and the test populations of cell lines. Expression values are
mean centered with high relative expression indicated in red and
low relative expression indicated in blue. (B) The sensitivity of the
test population of cell lines to MNNG was predicted using three
algorithms: SVM, NC, and PLSR. The two-class prediction algo-
rithms were used with each of the three ASA gene sets as well as the
MGMT transcript alone. Correct prediction is indicated with a
white box; incorrect prediction, with a black box. (C] MGMT ex-
pression level is plotted versus the percentage of control growth of
the cell lines treated with MNNG. Red circles indicate cell lines of
the training population, and blue circles indicate cell lines of the
test population. () O%MeG DNA methyltransferase activity was
determined in protein extracts derived from cell lines 4, 7, 20, 12, 22,
and 8. Methyltransferase activity is plotted versus the baseline ex-
pression level of MGMT in each cell line. (E) Methyltransferase ac-
tivity is plotted versus the percentage of control growth for the same
cell lines as in (D).

180



Appendix A: Interindividual Differences in response to DNA Damaging Agents

MNNG sensitivity was assessed using the support vec-
tor machine (SVM) algorithm. The TRASA and TASA
gene sets predicted the MNNG sensitivity of the test
population with 75% accuracy (Fig. 2B). Remarkably, the
BASA gene set accurately predicted sensitivity in 15 of
16 cell lines (94% accuracy), with only cell line 19 mis-
classified (Fig. 2B); note that cell line 19 falls on the
boundary of the cut point between high and low sensi-
tivity (Fig. 1A). To validate the SVM results, we applied
two other prediction algorithms, namely, a nearest cen-
troid (NC) and a partial least squares regression (PLSR)
model (Fig. 2B). For all algorithms, the BASA gene set
provided maximal prediction of MNNG sensitivity, with
SVM providing the highest accuracy (Fig. 2B). The lack of
prediction of the TRASA and TASA gene sets may be a
result of time point selection, a feature that a more glob-
al assessment of temporal responses would potentially
capture. That basal gene expression is the most accurate
predictor of alkylation sensitivity bodes well for trans-
lating these findings to a clinical setting; for example, to
predict whether a tumor will respond to alkylation che-
motherapy.

The BASA gene set contained two genes that showed
positive association of expression with lower MNNG
sensitivity; namely, MGMT and the C21ORF56 (Supple-
mental Table S1). MGMT efficiently repairs O°MeG
(Pegg 1990, 2000), and its activity is known to vary
among individuals (Vahakangas et al. 1991; Margison et
al. 2003). Likewise, we identified considerable variation
in the expression level of MGMT across the 24 cell lines,
and we demonstrate a positive association of MGMT ex-
pression with lower MNNG sensitivity (Fig. 2C). Al-
though MGMT expression level was positively associ-
ated with MGMT activity (Fig. 2D), and activity was
positively associated with MNNG resistance (Fig. 2E),
the correlations were relatively weak. This likely ex-
plains why MGMT expression alone is not as strong a
predictor of alkylation sensitivity as the set of 48 tran-
scripts together (Fig. 2B).

MGMT silencing is currently being used as a prognos-
tic indicator of successful alkylation chemotherapy for
gliobastoma (Hegi et al. 2005); our results suggest that
expression levels for the 48 genes described here may
prove a more accurate indicator. It should be mentioned
that MGMT is the only member of the BASA gene set
previously known to influence alkylation sensitivity. In-
terestingly, upon testing each member of the BASA gene
set independently for predictive capacity, genes with
equal or greater accuracy than MGMT were identified
(Supplemental Table S1). However, while some genes
showed higher prediction accuracy than MGMT, it was
the collective set of 48 transcripts that provided the
maximal prediction of 94% accuracy. The probability of
48 transcripts chosen at random from the pool of ex-
pressed genes predicting MNNG sensitivity with such
accuracy is <0.002.

In addition to MGMT, the only other member of the
BASA gene set with positive association of expression
with lower MNNG sensitivity was C210RF56 (Sup-
plemental Table S1). The C210RF56 protein exists in
two isoforms that are highly conserved across mammals
and show homology with SPATCI (spermatogenesis
and centriole-associated protein 1) (Supplemental Fig.
S2A,B). Supporting our finding of the variation in the
expression level of C2IORF56 in these cell lines, its
expression has been documented as highly wvariable

Genomic predictors of DNA damage susceptibility

across four separate populations of cell lines. Specifi-
cally, C210ORF56 showed variation in expression level
across three of the four HapMap populations, namely,
the populations of European (CEU|, Chinese (CHB|, and
Japanese (JPT) origin (Stranger et al. 2005, 2007) and in a
separate population of British descent (Dixon et al. 2007).

Given the significant association of C210RF56 gene
expression with MNNG sensitivity across the cell line
panel, our analysis suggested that C210RF56, like
MGMT, might play a role in protecting cells against
MNNG-induced killing. To confirm the role of
C210RF56 in modulating alkylation sensitivity, we
show that TK6 cells with 80% knockdown of the
C210RF56 transcript show greatly increased MNNG
sensitivity relative to control cells expressing a nontar-
geting control shRNA (Fig. 3A). In addition, using an
alternate C210RF56-targeting shRNA, an empty vector
control, and individually established clones with differ-
ential expression of C210ORF56, we show that decreased
expression of C210ORF56 is associated with increased
sensitivity to MNNG (Supplemental Fig. S3). These re-
sults wvalidate the computational prediction that
C210RF56 expression modulates the response of human
cells to alkylating agents.

The gene with the most significant positive associa-
tion of expression with alkylation sensitivity in the
BASA gene set was MYH (Supplemental Table S1), a
DNA glycosylase that initiates base excision repair by
removing adenines mispaired opposite 8-oxoguanine le-
sions (Slupska et al. 1996; Parker and Eshleman 2003)
and not previously known to modulate alkylation sensi-
tivity. In support of our finding of high variance of MYH
expression across a genetically diverse population, its ex-
pression levels were found to vary among individuals of
a separate population (Dixon et al. 2007). Importantly,
however, to date no link between the variation in ex-
pression level of MYH and interindividual differences in
sensitivity upon exposure to a DNA alkylating agent has
been made.

As MYH expression was higher in the more sensitive
cells, we hypothesized that MYH deficiency might con-
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Figure 3. Modulation of C210RF56, MYH, and Myh influences
MNNG sensitivity. [A) TK6 cells expressing a control shRNA (WT)
or shRNA specifically targeting the C210ORF56 transcript (v1), or
the MYH transcript (v1), were assessed for the percentage of survival
after exposure to MNNG. The inset shows the percentage of tran-
script remaining C210RF56 and MYH in knockdown cells. (B) Per-
centage of survival of Myh™'~ or wild-type MEFs determined after
treatment with MNNG.
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fer resistance, in much the same way that MMR defi-
ciency confers MNNG resistance (Kaina et al. 1997;
Karran 2001). This was tested by decreasing the expres-
sion of MYH in TK6 cells. The MYH knockdown cells
were indeed significantly less sensitive than the parent
TKG6 cells expressing a control shRNA to cell killing (Fig.
3A). In addition, using an alternate MYH-targeting
shRNA, an empty vector control, and individually estab-
lished clones with differential expression of MYH, we
show that increased expression of MYH is associated
with MNNG sensitivity (Supplemental Fig. S3). Impor-
tantly, the influence of Myh in modulating MNNG sen-
sitivity was further established in mouse cells by show-
ing that Myh”’/~ mouse embryonic fibroblasts (MEFs)
were much less sensitive than wild type to MNNG-in-
duced cell killing (Fig. 3B). These results indicate that
MYH expression indeed correlates with increased alkyla-
tion sensitivity. Likewise, MYH expression was also sig-
nificantly higher in the alkylation-sensitive TK6 cell
line relative to the much less sensitive MT1 cell line
(Fig. 1A,B; data not shown) compatible with the trend
seen across the panel of genetically diverse cell line (Fig.
1A]. Interestingly, although not known to repair damage
induced by MNNG, MYH is known to interact with the
MutSa heterodimer (Gu et al. 2002) that binds O°MeG
mispairs in DNA to initiate the triggering of apoptotic
cell death (Ceccotti et al. 1996; Hickman and Samson
2004). It remains to be determined whether MYH influ-
ences alkylation sensitivity via its

et al. 2004; Said et al. 2004). Contained within the large
interacting network are subnetworks that integrate 18
BASA transcripts (including MGMT and MYH), and
these subnetworks are enriched for proteins that are as-
sociated with tumorigenesis and cancer predisposition
(Fig. 4C,D; Supplemental Tables S1, S6). In general, the
expression level of the tumorigenesis-associated tran-
scripts showed elevated basal expression in the cell lines
with high MNNG sensitivity. Finally, by analyzing the
promoter regions of the ASA genes for enriched tran-
scription factor-binding sites, we find evidence for a
common regulatory factor, namely, the octamer-binding
transcription factor, Oct-1 (Supplemental Table S7).
Oct-1 is known to respond to DNA alkylation damage
(Zhao et al. 2000) and is a known regulator of stress re-
sponses (Tantin et al. 2005). Here we find Oct-1-binding
sites significantly enriched in transcripts with elevated
basal expression in cell lines with high MNNG sensitiv-
ity as well as in tumorigenesis-associated proteins that
show higher basal expression in cells with high sensitiv-
ity to MNNG (P = 2.05 x 10-%) (Fig. 4D).

To conclude, our findings may have profound impli-
cations in the clinical setting, where the expression of
the 48 transcripts encompassing MGMT, C210RF56,
MYH, and many others may not only predict interindi-
vidual responses to alkylating agents but could be modu-
lated to affect cancer treatment response. Furthermore,
as cell lines derived from different individuals indeed

interaction with the MMR ma-
chinery. Finally, it was surprising
that no MMR transcripts were rep-
resented in the BASA gene set. It
turned out that the differences in
expression for MSH2, MSH6, and
MLH1 did not exceed 1.5-fold,
eliminating them from the gene
set; however, all three transcripts
were in fact higher in the most

sensitive versus the least sensitive

A28 proleins

cell line (data not shown).

To gain a more comprehensive
view of the various pathways that
influence alkylation sensitivity,
all genes that were differentially
expressed under basal conditions
between cell lines with the highest
and lowest MNNG sensitivity
(this time not imposing a require-

ment for trend significance) were
analyzed for network properties
(Fig. 4A; Supplemental Table S4).
For the 240 genes identified as dif-
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ferentially expressed, 148 gene

products are found in the Ingenu-
ity database, and a remarkable
~85% of these are contained in a
single significant interacting net-
work (P <107'°) (Fig. 4B; Supple-
mental Tables S5, S6). It thus
seems that proteins likely to play a
role in determining interindividual
differences in alkylation sensitiv-
ity are highly connected, a phe-
nomenon previously observed in
Saccharomyces cerevisiae (Begley
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Figure 4. Basal expression networks associated with interindividual differences in sensitivity
to MNNG. (A) A heat map of the 240 basally differentially expressed genes identified between
two classes of the training population, those with highest and lowest MNNG sensitivity.
Expression values are mean centered with high relative expression indicated in red and low
relative expression indicated in blue. (B) Of the 240 genes from A, 148 were present in the
Ingenuity database. These 148 proteins were analyzed for significant enrichment of molecular
interactions. A significant (P < 107'%) interactome of 328 total proteins containing 125 of the
148 proteins was identified. (C) The most significant subnetwork (P < 10-*°) of ASA proteins.
(D) The second most significant subnetwork (P < 10°*] of ASA proteins. Proteins in red are
encoded by transcripts with high basal expression in cells with low MNNG sensitivity, and
proteins in green are encoded by transcripts with high basal expression in cells with high
MNNG sensitivity; proteins in white are associated with these ASA proteins. Tumorigenesis-
associated proteins (TAPs) are indicated with an asterisk and TAP proteins containing Oct-1-
binding sites are indicated with two asterisks.
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preserve genetic diversity at the level of gene expression
(Cheung et al. 2003; Correa and Cheung 2004; Morley et
al. 2004, they serve as an ideal tool for establishing in-
terindividual differences in DNA damage responses. We
propose that upon exposure of these cell lines to other
environmental toxicants and cancer chemotherapeutics
we will discover more genes of hitherto unknown func-
tion responsible for interindividual differences in sensi-
tivity to DNA damaging agents.

Materials and methods

Cell line panel, drug treatment, and RNA extraction

The 24 lymphoblastoid cell lines, established using EBV transformation,
were obtained from the Coriell Institute (New Jersey) and were designat-
ed 1-24 as follows: #1 (GM15029), #2 (GM15036), #3 (GM15215), #4
(GM15223), #5 (GM15245), #6 (15,224), #7 (GM15236), #8 (GM15510), #9

(GM15213), #10 [GMI15221), #11 (GMI15227), #12 (GMI15385), #13
[GM15590), #14 (GMI15038), #15 (GM15056), #16 (GMI15072), #17
(GM15144), #18 (GMI15216), #19 (GM15226), #20 (GM15242), #21
(GM15268), #22 (GM15324), #23 (GM15386), and #24 (GM15061). Per-

centage of control growth was measured using logarithmically growing
cells. Cells were treated with 0.5 pg/ul MNNG or untreated, and viable
cells were counted 72 h after treatment using a coulter counter coupled
with trypan blue staining (total number of viable treated cells/total num-
ber of viable untreated cells). Percentage of survival was determined us-
ing a killing curve assay counted 10 d after treatment with MNNG as
described (Furth et al. 1981). Total RNA was isolated from log phase cells
according to the mammalian cell protocol (Qiagen) and labeled according
to the Affymetrix protocol. RNA was hybridized to HGU133 Plus 2.0 full
genome human arrays in technical duplicate totaling 96 arrays.

Microarray data analysis

Data were normalized using a PLIER algorithm and filtered for nonex-
pressed transcripts across all arrays as described in Fry et al. (2007), re-
sulting in a reduction of the probesets from the original 54,675 to 19,290.
ASA gene sets were determined as follows. The four cell lines with high-
est MNNG sensitivity and four cell lines with lowest MNNG sensitivity
were used as a training population. For the ASA sets, genes with differ-
ential expression between the two groups were identified with (1) sig-
nificant fold change (=1.5 or =-1.5, P < 0.05 t-test), and (2] a significant
positive or negative trend for association of gene expression with in-
creasing growth inhibition (percentage of control growth) using a corre-
lation measurement (r = 0.7 or =-0.7, P < 0.01 Trend) calculated using a
linear regression model in S-PLUS 7.0 (http://www.insightful.com). For
the fourth gene set (Fig. 4), a P for trend was not imposed. Three methods
for two-class prediction were used, including SVM algorithm carried
out using Gene Pattern Software (version 2.0.1) (htep://www.broad. mit.
edu), the NC algorithm based in R, and PLSR analysis programmed in
MATLAB (Mathworks, Inc.) and adapted from Geladi et al. (1996). Net-
work and gene ontology analysis was performed using Ingenuity software
[http://www.ingenuity.com). Cancer and tumorigenesis-associated pro-
teins were identified using the Ingenuity database as well as the Ge-
nomica module analysis (http://genie.weizmann.ac.il). Transcription fac-
tor-binding site analysis was performed as described (Fry et al. 2007)
using the EXPANDER program. Microarray data have been deposited in
the Gene Expression Omnibus repository (http://www.ncbi.nlm.nih.gov/
geo| under accession number GSE10313.

Sequence analysis

Orthologs of human C210RF56 (NM_032261) were identified by com-
paring Homo sapiens protein sequence to those existing sequences cur-
rently available in the University of California at Santa Cruz Genome
Browser [http://genome.ucse.edu). Sequences were aligned using ClustalX.

Caspase 3 activation

After treatment with MNNG, caspase-3 activity was measured using a
caspase activity assay kit (Promega). Cells were resuspended in PBS and
incubated for 45 min with the proluminescent caspase-3 substrate con-

Genomic predictors of DNA damage susceptibility

taining the DEVD sequence. Luminesence was measured with a lumi-
nometer.

MGMT activity assay

Lymphoblastoid cells in log phase growth were resuspended in MTase
buffer (50 mM HEPES at pH 7.8, 10 mM DTT, 1 mM EDTA, 5% glycerol),
sonicated, and lysate cleared by centrifugation. Protein concentration
was determined using the Pierce Better Bradford assay. MTase activity
for each cell line was determined using calf thymus DNA methylated in
vitro with [*H] MNU as described (Glassner et al. 1999).

MEF colony forming assay

MEFs were cultured in DMEM media (10% fetal bovine serum, 1% peni-
cillin, and streptomycin). Cells were seeded at 200 cells per 10 mL of
culture in 100-mm dishes. Media was replaced 24 h after seeding, and
cells were preincubated with O®benzylguanine (10 mM] for 2 h. Cells
were then treated with MNNG (0-3 pg/mL) and colonies counted 5 d
after treatment.

shRNA knockdown cell line generation and treatment

shRNAs expressed in a lentiviral plasmid [pGIPZ) were purchased from
Open Biosystems to target the C2IORF56 transcript (v1:#RHS4430-
98844079 and v2:#RHS4430-98477469) or the MYH (v1:#RHS4430-
98904053 and v2:#RHS4430-99140608) transcript. Knockdown cells were
compared with TK6 cells expressing a nontargeting shRNA (#RHS4346)
or an empty vector control (#RHS4349). Virus was generated in 293T
cells using packaging plasmids (psPAX2, pMD2.G Addgene). The TK6
cell line was infected with virus and stable clones selected using Puro-
mycin. The percentage of survival was measured using a killing curve
assay 14 d after treatment with MNNG as described (Furth et al. 1981).
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Introduction changed the expression of genes involved in cell prolifer-
ation, stress, and cell-cell communication that are evident

Arsenic is a ubiquitous environmental pollutant and a even when the offspring reach adulthood. These results have
known human carcinogen [1]. Chronic arsenic exposure is an profound implications suggesting that in utero arsenic
important public health hazard around the world, with exposure may result in epigenetic changes that persist

millions of people exposed to drinking water with levels far through the life of the organism, ultimately impacting health
status. A landmark study in mouse models shows that, indeed,
in utero exposures via the maternal diet can cause permanent

gene expression changes in the offspring that affect suscept-

exceeding the guideline of 10 pgl/l established by the WHO.
Exposure to arsenic-contaminated drinking water is alarm-
ingly high in many countries, most notably Bangladesh, where
=25 million people are chronically exposed to extreme | i ! -

i i e g ibility to disease in the adult [7].
arsenic levels. Arsenic contamination is also a significant ]
health concern in the United States, with numerous public
water supplies measuring above the WHO limit [2].

Given the implications of prenatal exposure on human
health and the known public health hazard of chronic arsenic
exposure, we set out to establish the extent to which maternal
arsenic exposure in a human population impacts newborn

Epidemiological studies indicate that chronic arsenic
exposure in drinking water is associated with increased risk
of skin, bladder, lung, liver, and kidney cancer [1]; in 1987, gene expression. Additionally, these studies were aimed at
arsenic was classified as a Group 1 carcinogen by the understanding exactly how arsenic affects biological systems
International Agency for Research on Cancer. Although the
mechanism of arsenic-induced carcinogenesis is not clearly
established, it has been attributed to genotoxicity associated
with reactive oxygen species [3]. Arsenic is also implicated in
other human diseases such as vascular disorders, peripheral Copyright: © 2007 Fry et al. This is an open-access article distributed under the

terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author

Editor: Vivian G. Cheung, University of Pennsylvania, United States of America
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neuropathy, bronchiecstasis, and diabetes [1].

The long-term health consequences of prenatal arsenic and source are credited.
exposure in human populations are pronounced, with Abbreviations: FDR, false discovery rate; GSEA, Gene Set Enrichment Analysis;
increased mortality rates caused by prenatal and early WHO, World Health Organization
childhood exposures [4]. The detrimental health impact of * To whom correspondence should be addressed. E-mail: lsamson@mit.edu;
prenatal arsenic exposure has also been shown in rodent mathuros@cri.or.th
models where in utero arsenic exposure resulted in a striking @ These authors contributed equally to this work.
carcinogenic response (5-fold increase in hepatocellular 1 Current address: Lawrence Berkeley National Laboratory, Berkeley, California,
carcinomas) among offspring; in utero arsenic exposure also United States of America
et
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Author Summary

Arsenic is an environmental pollutant and known human carcino-
gen. Chronic exposure to arsenic-contaminated water is an
important public health hazard around the world, including the
United States, with millions exposed to drinking water with levels
that far exceed World Health Organization (WHO) guidelines. Given
the implications of prenatal exposure on human health and the
known public health hazard of chronic arsenic exposure, this study
was aimed at establishing the extent to which maternal arsenic
exposure in a human population affects newborn gene expression.
The authors show that prenatal arsenic exposure in a human
population results in alarming gene expression changes in newborn
babies. The gene expression changes monitored in babies born to
mothers exposed to arsenic during pregnancy are highly predictive
of prenatal arsenic exposure in a subsequent test population. The
study establishes a subset of just 11 transcripts that captured
maximal predictive capability that could prove promising as genetic
biomarkers of prenatal arsenic exposure. Pathway analysis of the
genome-wide response in the babies exposed to arsenic in utero
indicates robust activation of an integrated network of pathways
involving NF-xB, inflammation, cell proliferation, stress, and
apoptosis. This study contributes to our understanding of biological
responses to arsenic exposure.

and identifying genes that could be used as predictors, and
therefore potential biomarkers, of prenatal arsenic exposure,

Results

Our study was based in the Ron Pibul and Bangkok districts
of Thailand (Figure S1). The first case of arsenicosis (arsenic
poisoning) in Thailand was reported in 1987 from the Ron
Pibul district [8]. Rather than natural leaching of arsenic from
geologic sources, Ron Pibul arsenic contamination is attrib-
uted to tin mining that took place from the 1960s to the
1980s. Arsenic concentrations in groundwater and shallow
wells have been classified at a mean level of 503.5 pg/l, about
50 times higher than WHO guidelines [9].

Using a population of arsenic-exposed and -unexposed
mothers (as defined by WHO standards of chronic exposure
to ~10 pgfl arsenic), we set out to identify gene expression
changes in the cord blood of newborns significantly associ-
ated with the extent of prenatal arsenic exposure. Cord blood
is derived almost exclusively from the fetus; therefore, gene
expression changes assessed in cord blood are representative
of the newborn [10]. For this study, exposure classification
was based on arsenic concentration in the mother’s toenails,
as this is representative of long-term arsenic accumulation
[11,12]. Toenail samples were taken from a population of 32
volunteer subjects to quantify arsenic exposure in the
mothers. A level of 0.5 pglg toenail arsenic corresponds to
chronic consumption of water with ~10 pg/l (see Materials
and Methods), which is the official WHO maximum recom-
mended concentration of arsenic in drinking water [11,12].
For the purposes of this study, women with toenail arsenic
levels of <0.5 pglg were considered unexposed, and women
with toenail levels of =0.5 pglg were considered exposed. The
levels of toenail arsenic across the 32 pregnant women ranged

from 0.1 to 68.63 pglg (Figure 1A). Given the paucity of

available unexposed newborn cord blood from Ron Pibul, the
experimental design required additional utilization of un-
exposed newborn cord blood samples from Bangkok.

@E PLoS Genetics | www.plosgenetics.org
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Gene Expression Signatures Highly Predictive of Arsenic
Exposure

We set out to determine whether gene expression changes
in a set of infants born to arsenic-exposed women versus
unexposed women (as judged by WHO guidelines) could be
used to predict arsenic exposure in a test population. For
these analyses, two-class prediction was employed, where a
training population was used to derive gene sets that were
then tested as predictors of exposure in a separate
population. The analyses were carried out in two phases: (i)
where the training population was selected at random and
the analyst “blinded” to arsenic exposure level in the test
population and (ii) where all arsenic exposure levels of the
population were revealed and used to define new training
populations.

The first training population comprised 13 newborn
subjects selected at random from the 32 newborns (Figure
1A). Specifically, RNA was extracted from cord blood of
newborns 1-13, and hybridized to whole human genome
arrays (Materials and Methods). To identify genes whose
expression was associated with prenatal arsenic exposure, we
used an approach that combined differential expression
testing between the populations, plus a positive or inverse
correlation of expression with increasing arsenic exposure
(Materials and Methods). From the 13 newborn subjects, we
identified the first expression signature (first gene set, Figure
1B) composed of 170 genes (Table S1) that differentiated the
unexposed newborns (subjects 1-6) from the arsenic-exposed

newborns (subjects 7-13). This prenatal arsenic exposure
expression signature of 170 genes was then used to predict
prenatal exposure in the remaining population of 19
newborns (subjects 14-32). The percent accuracy of class
prediction was determined post-analysis by revealing the
arsenic exposure of the test population to the analyst.
Expression of these 170 genes accurately predicted prenatal
arsenic exposure in 15 of 19 (79%) of the newborns (Figure
1B).

When the arsenic levels of the entire population were
revealed, it became apparent that the first training popula-
tion was composed of newborns with a wide range of
exposure levels distributed over almost the entire range
(Figure 1B). We hypothesized that a training population
based on extreme exposures might yield higher predictive
capacity. To assess this, arsenic-associated genes were
identified using newborns at the extremes of arsenic
exposure (i.e., the lowest versus the highest exposures) as
the second training population (Figure 1A, second training
population). Six newborns comprised the low-exposure
population (subjects 1, 14, 15, 2, 16, and 3), and six newborns
comprised the high-exposure population (subjects 29, 30, 12,
13, 31, and 32) (Figure 1A). As with the first gene set,
differential expression testing and correlation analysis
identified an expression signature, this time composed of
38 genes (Table S2) that differentiated infants born to
mothers with very low and very high arsenic exposure levels
(Figure 1A). These 38 genes were used to predict arsenic
exposure in the remaining test population of 20 newborns.
Even though the gene set was smaller (38 versus 170),
prediction was just as high as that of the first gene set, with
prenatal arsenic exposure accurately predicted in 16 of 20
(80%) of the newborns (Figure 1B, second test population).
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Figure 1. Gene Expression Signatures Predict Arsenic Exposure in Test Populations

(A) A population of newborns (subjects 1-32) born to mothers with varying levels of arsenic exposure was used to establish arsenic-associated gene
expression signatures. Arsenic exposure levels were determined by maternal toenail arsenic concentration (ug/g). Babies born to unexposed (yellow) or
arsenic-exposed mothers (green) were classified based on WHO guidelines with the cut point demarcated by the red dotted line. Subjects used in the
populations to establish arsenic-associated gene sets are indicated with a white box. For two-class prediction, those subjects not included in the
training population comprise the test population and are indicated with a black box.

(B) Three arsenic expression signatures (gene sets) were derived from populations spanning the range of arsenic exposure (first gene set), at the
extremes of exposure (second gene set), or a combined population of the previous two (third gene set). To be included in the gene set, the transcript
had to not only be differentially expressed (on average) between the exposed and unexposed groups, but also display a significant trend across
increasing arsenic exposure levels. Expression values are mean centered with high relative expression indicated in red and low relative expression
indicated in blue. The three derived gene sets (170 genes, 38 genes, or 11 genes) were used to predict prenatal arsenic exposure in test populations

where correct classification is indicated by a red number.
doi:10.1371/journal.pgen.0030207.g001

We next determined whether a training population derived
from a combination of all of the training samples used to
generate the first and second gene set would yield an
expression signature with higher predictive capacity. This
third training population was composed of nine unexposed
newborns and 11 exposed newborns (Figure 1A). Differential
expression testing and correlation analysis identified an
expression signature of 11 genes (Figure 1B) that could
predict prenatal arsenic exposure in 10 of 12 (83% accuracy)
of the remaining newborn test population (Figure 1B). It is
noteworthy that with only 11 genes, the power of prediction
is as high as the first and second gene sets.

Many of the genes in the third gene set were represented in
the gene sets derived from the first and second training

@ PLoS Genetics | www.plosgenetics.org 2182

populations. Specifically, five of the 11 were identified in the
first gene set and all 11 were present in the second gene set
(Table 1). Given the high predictive capacity of these 11
genes, we hypothesize that these are key genes involved in the
prenatal response of babies to arsenic and represent
potential biomarkers of arsenic exposure. The potential
arsenic biomarker set is composed of transcripts for the
CXLI, DUSPI, EGR-1, IER2, JUNB, MIRN21, OSM, PTGS2,
RNF149, SFRS5, and SOC3 genes (Table 1). The dose response
of expression level of each of the identified biomarkers is
evident when plotted versus arsenic exposure across the
population (Figure S2). Furthermore, to substantiate the
association of the expression of the biomarkers with arsenic
exposure, a multivariate model was employed (Materials and
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Table 1. Potential Gene Biomarkers of Prenatal Arsenic Exposure—Third Gene Set

Gene Description Representative Affymetrix *Present in First *Present in Second
Public ID Probeset ID Gene Set Gene Set
cXcL1 chemokine (C-X-C motif) ligand 1 NM_001511 204470_at O
DUSP1 dual specificity phosphatase 1 NM_004417 201041_s_at * *
EGR1 early growth response 1 NM_001964 201694 s_at - -
IER2 immediate early response 2 NM_004907 202081 _at . -
JUNE jun B proto-oncogene NM_002229 201473 _at =
MIRNZT microRNA 21 BF674052 224917 _at * *®
osm oncostatin M AI079327 230170_at * L
PTGS2 prostaglandin-endoperoxide synthase 2 NM_000963 204748 _at ]
RNF149 ring finger protein 149 Al640483 235536_at O
SFRSS splicing factor NM_006925 203380_x_at -
50C3 suppressor of cytokine signaling 3 BG035761 206359_at o

Genes with expression significantly associated with prenatal arsenic exposure in a training population were identified and are highly predictive of arsenic exposure in a test population.

doi:10.1371/journal.pgen.0030207.t001

Methods). The model was employed to determine significance
of association of expression with two factors: (i) arsenic
exposure and (ii) geographic source of samples (Materials and
Methods). Geographic source was determined to be a
nonsignificant factor for the expression level of the bio-
markers (= 0.11), whereas arsenic exposure was determined
to be a highly significant factor (p= 1.3 % 10~"), Furthermore,
for the set of biomarkers, the two factors of arsenic exposure
and geographic source were not associated (p = 0.77).

Notably, associated molecular functions for the 11 gene
products include stress response and cell cycle regulation.
The zinc finger DNA binding transcription factor EGR-1
(early growth response 1) is related to cell proliferation and is
induced by mitogens such as EGF [13]. EGR-1 regulates both
proinflammatory cytokine activation and p53 transcription
[14,15]. Not surprisingly, as EGR-I is known to activate
cytokines, such signaling molecules are present in the arsenic
biomarker gene set; namely, OSM (oncostatin M), a member
of the interleukin-6 (IL-6) family of cytokines known to
control cell cycle progression [16], CXLI (chemokine ligand
1), and SOC (suppressor of cytokine signaling 3). Additionally,
DUSPI (dual specificity phosphatase 1) is involved in cell cycle
regulation and is known to modulate cytokine expression
[17,18]. An inflammation-activated acute phase response is
indicated by the presence of the JUNB transcription factor,
and [ER2 (immediate early response 2) transcripts in the
biomarker set.

Genome-Wide Changes Associated with Prenatal Arsenic
Exposure Are Robust

For a more global assessment of the impact of prenatal
arsenic exposure on fetal gene expression, all biological
pathways modulated in response to arsenic exposure were
identified by studying the ontology of all the genes differ-
entially expressed between the exposed and unexposed
newborns across the entire population. For these analyses,
the entire newborn population was used (the fourth
population, Figure 1A) to define the fourth gene set that
was differentially expressed between the two populations: the
21 newborns whose mothers were exposed to arsenic and the
11 newborns whose mothers were unexposed. It should be
noted that for this analysis of global changes between the
populations, the requirement for correlation with increasing

@ PLoS Genetics | www.plosgenetics.org

arsenic exposure was not imposed (Materials and Methods).
This analysis identified 447 genes differentially expressed
between the two populations of newborns, of which 404
(90%) were upregulated (Figure 2A; Table 53). Gene ontology
enrichment analysis was performed to classify the genes
modulated by prenatal arsenic exposure (Materials and
Methods). This analysis identified ten gene ontology catego-
ries that were significantly enriched in the list of 447 genes
(Table 2). Among the gene ontology categories that are
significantly enriched are immune and inflammatory re-
sponse (p < 0.001) (Table 2).

As an alternative approach to determine if groups of genes
with common function are differentially expressed between
the two newborn populations (arsenic exposed or unex-
posed), we have employed the knowledge-based Gene Set
Enrichment Analysis (GSEA) (Materials and Methods). GSEA
identified significant enrichment (false discovery rate [FDR]
g-value << (L.01) of ten expression signatures with common
biological function that are differentially expressed between
the unexposed and exposed newborns. The groups of genes
include three that represent stress-response signatures and
three that represent tumorf/cancer signatures (Table 3). The
GSEA results also highlight that genes associated with
estrogen receptor signaling are differentially expressed
between the unexposed and exposed newborn populations
(Table 3).

Arsenic-Modulated Networks Represent Numerous
Biological Processes

We next determined whether known molecular interac-
tions exist among the proteins encoded by the arsenic
modulated transcripts. Of the 447 arsenic modulated tran-
scripts, 285 gene products were identified in the Ingenuity
knowledge base and overlayed with known human molecular
interactions (Materials and Methods). Among these proteins,
we identified the presence of a large arsenic-modulated
interacting network of proteins (Figure 2B). Specifically, we
identified a large interacting network comprised of 105
human proteins encoded by arsenic-modulated transcripts
(indicated as red and green nodes) (Figure 2B; Table S4). The
probability of finding 105 arsenic-modulated transcripts that
encode for a protein network of this size by chance is p <
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Table 2. Gene Ontology Enrichment

Figure 2, Prenatal Arsenic Exposure Results in Robust Genome-Wide
Changes

(A) Heat map of the 447 differentially expressed genes identified
between two newborn populations, those born to unexposed or arsenic
exposed mothers. The cut point of exposure is indicated with a red
dotted line. Unlike Figure 1, the differentially expressed transcripts did
not have to display a significant trend with increasing arsenic exposure.
Expression values are mean centered with high relative expression
indicated in red and low relative expression indicated in blue,

(B) The 285 arsenic-modulated gene products existing in the Ingenuity
database were analyzed for significant enrichment of molecular
interactions. A significant (p < 107°%) interactome containing 105
arsenic-modulated gene products was identified. Proteins in red
represent arsenic-induced transcripts, proteins in green represent
arsenic-repressed transcripts.

doi:10.1371/journal pgen.0030207.g002

107°%, Of the 105 proteins, 96 (91%) had transcripts that were
upregulated in response to arsenic exposure.

Further analysis identified three highly significant (p <
107°%) sub-networks embedded within the large interacting
network (Figure 3A-3C). The first sub-network centers
around the nuclear transcription factor NF-kB and the pro-
inflammatory interleukin 1 family member IL1-f (Figure 3A).
This network integrates two members of the potential
biomarkers; namely, SOC3 and CXCL1 (Figure 3A). Note
that transcripts for all proteins directly associated with NF-xB
in this sub-network are upregulated in infants born to
arsenic-exposed mothers (Figure 3A).

@E PLoS Genetics | www.plosgenetics.org

Gene Ontology Gene Ontology FDR
Category Number g-Value
Immune response GO:0006955 p = 0001
Inflammatory response GO:0006954 p < 0001
Response to stress GO:0006950 p < 0.001
Response to other organism G0:0051707 p =< 0.00
Response to pest, pathogen, or parasite GO:0009613 p < 0001
Response to wounding GO:0009611 p = 0001
Response to biotic stimulus GO:0009607 p = 0001
Response to external stimulus GO:0009605 p =< 0.001
Cytokine activity GO:0005125 p = 0,001
Cell death GO:0008219 0.0008
arsenic "unexposed” ! arsenic "exposed” I
(<0.5 pg/g) (>0.5 pglg) —‘-I. sD +1 36 Genes diff ially exp i b 1 arsenic unexposed and exposed newborns were
lyzed for significant enrichment of gene ontology categories.
doi:10.1371/journal pgen.0030207.1002
B » + p<105 S

The second sub-network integrates biomarker member
DUSP1 with two stress-activated transcription factors;
namely, signal transducer and activator of transcription
(STAT1) and hypoxia inducible factor-1 o (HIF-1o) (Figure
3B). Transcripts for both STATT and HIF-1o were upregulated
in infants with arsenic-exposed mothers (Figure 3B). STATI is
involved in cytokine signal transduction and is known to be
activated by arsenic [19]. HIF-1o activation and resultant
tumorigenesis has been linked to chronic arsenic exposure
[20].

The third sub-network integrates four of the 11 potential
arsenic biomarkers; namely, EGR-1, OSM, PTGS2, and JUNB
(Figure 3C). These arsenic biomarker gene products are
highly integrated with proteins known to be involved in cell
cycle regulation, including JUN and FOS, as well as stress-
response proteins such as interleukin-8 (IL-8) (Figure 3C). An
overlay of molecular processes represented in this sub-
network highlights the finding that prenatal arsenic exposure
modulates numerous biological processes including stress
response, signal transduction, cell adhesion, and transcrip-
tion (Figure 3C).

Using network analyses, we also established that there are
known molecular interactions among the 11 potential arsenic
biomarker genes. Eight of the 11 biomarker gene products
(exclusive of SFRS5, MIRN21, and RNF149) are highly
integrated with tumor necrosis factor-o (TNF-2), another
proinflammatory cytokine (Figure 3D). TNF-a is involved in
the control of both cell proliferation and apoptosis [21].
Here, we identify TNF-o activ

ation in newborn cord blood
upon exposure to prenatal arsenic.

Evidence for Arsenic-Activated Transcriptional Control of
Prenatal Responses

In an effort to uncover potential regulatory mechanisms
underlying the transcription of the arsenic-modulated gene
sets, we performed transcription factor binding site analysis
within the promoters of the arsenic-modulated genes
(Materials and Methods). Promoter region comparisons for
the arsenic-modulated genes identified significant enrich-
ment (p < 0.05) for two transcription factor binding sites
across all four gene sets. Specifically, binding sites for NF-xB
and serum response factor (SRF) are enriched in all four
arsenic-modulated gene sets (Table 4). Moreover, metal
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Table 3. GSEA

Gene Set Gene Set Name (Molecular Signatures Database) FDR g-value
Hypoxia/stress response signature Hypoxia_Review 4.74E-03
Breast cancer/estrogen signature Breast_Cancer_Estrogen_Signaling 3.00E-03
Transcription factor-induced signature Gery_Cebp_Targets 233E-03
Hypoxia/stress response signature Hypoxia_Reg_Up 371E-03
UV-induced signature UVB_Nhek1_Up 2.97E-03
Trichostatin-A-induced signature Tsa_Panc50_Up 267E-03
Tumor promoter signature Tpa_Sens_Early_Up 248E-03
Tumor progression signature Emt_Dn 247E-03
Cytokine-induced signature Croonquist_IL6_Stroma_Up 5.10E-03
Butyrate-induced signature Hdaci_Colon_But2hrs_Up 8.88E-03

GSEA was performed; gene sets from the Molecular Signatures Database were identified as significantly enriched.

doi:10.1371/journal. pgen.0030207.t003

response element binding sites (MREs) for the metal-
responsive transcription factor-1 (MTF1) are enriched in
three of the four gene sets (sets 1, 3, and 4) (Table 4). The
MTFI binding site enrichment was highest for the third gene
set with five of the 11 genes containing the MRE element
(Figure 3D). Notably, the enrichment for MTF1 in the second
gene set only narrowly misses the enrichment p < 0.05 cutoff,
at p=0.054 (Table 4). MTF1 was shown to be activated upon
arsenic exposure in animal models [23,24]. It is noteworthy
that gene targets for a known arsenic-inducible transcription
factor are found among the transcripts modulated in the cord
blood of infants born to arsenic exposed mothers.

NF-kB and Inflammation Signaling Identified in Arsenic-
Exposed Newborns from Ron Pibul and Common Arsenic-
Induced Stress Signaling across Species

As the unexposed samples utilized in this study were
obtained from two different locations and could confound
expression testing, we have used an alternative approach to
substantiate the identified arsenic-induced pathways. Differ-
ential expression testing was performed between the cord
blood of exposed and unexposed newborns from Ron Pibul
(Materials and Methods). These analyses identified 321 genes
that were differentially expressed between the arsenic-
unexposed and -exposed newborns (Table S5). Notably, a
direct comparison of gene expression changes identified
considerable overlap between the transcripts differentially
expressed between the newborns from Ron Pibul and
transcripts differentially expressed across the whole popula-
tion (fourth gene set) (Table S5).

To identify the biological pathways modulated by prenatal
arsenic exposure, the proteins encoded by the 321 transcripts
were analyzed for significant enrichment of molecular
networks (Materials and Methods). Three highly significant
protein sub-networks (p < 107 were identified (Figure 53).
As with the network findings from the entire population of
newborns, the networks identified here integrate proteins
known to be involved in cell cycle regulation including JUN,
as well as stress-response proteins such as interleukin-8 (IL-8),
the pro-inflammatory interleukin 1 family member IL1-f, and
hypoxia inducible factor-1 o (HIF-1a) (Figure S3). Further-
more, the NF-kB protein is integrated into the sub-networks
and found to be activated in the cord blood of newborns

@ PLoS Genetics | www.plosgenetics.org

exposed to arsenic within the Ron Pibul population (Figure
S3).

Finally, our analyses included comparisons of the gene
expression changes identified in this study with arsenic-
induced gene expression changes reported in the literature in
mouse models as well as a separate arsenic-exposed human
population. Our results were compared with (i) expression
changes in livers of mice treated with arsenic [24], (ii)
expression changes identified in arsenic-induced tumors
resulting from in utero exposures to arsenic in mice [6],
and (iii) expression changes in blood from a human
population from Taiwan exposed to arsenic [253]. These
comparisons identify overlap of similarly modulated tran-
scripts in response to arsenic exposure that include: BCL6 (B-
cell CLL/lymphoma 6), CDI4 (CD14 antigen), CXCLI (chemo-
kine ligand 1), EGR1 (early growth response 1), FOS (v-fos FB]
murine osteosarcoma), FOSB (FB] murine osteosarcoma viral
oncogene homolog B), GADD45B (growth arrest and DNA
damage inducible beta), IFNGR1 (interferon gamma receptor
1), ILIB (interleukin 1 beta), ILIR! (interleukin 1 receptor 1),

JUN (v-jun sarcoma virus oncogene), MAPK6 (mitogen-

activated protein kinase 6), MTIX (metallothionein 1X),
RAD23B (RAD23 homolog B), and TOPI (topoisomerase
DNA 1) (Tables S3 and S5). These results highlight the
modulation of stress related transcripts in both mice (acute
and in utero exposures) and a separate adult human
population in response to arsenic exposure,

Discussion

Globally, millions of people are at risk for the detrimental
effects of chronic arsenic exposure with drinking water levels
far exceeding the WHO guideline [1]. Prenatal arsenic
exposure in human populations has been associated with
pronounced long-term health consequences [4]. Here, we
address the impact of maternal arsenic exposure on fetal
gene expression in a human population. Our goals were 2-
fold: first, to establish the extent to which chronic arsenic
exposure in mothers impacts newborn gene expression, and
second, to identify genes that could be used as potential
biomarkers of prenatal arsenic exposure and targets for
remedial therapy.

Differential expression testing of training populations of
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Figure 3. Sub-networks of Prenatal Arsenic-Modulated Gene Products
(A) A sub-network that integrates NF-xB and IL1-P with SOC3 and CXCL1
was identified. Note that SOC3 and CXCL1 are among the 11 potential
gene biomarkers for arsenic exposure shown in Table 1.

(B) A sub-network that integrates STAT1 and HIF1-u with DUSP1.

(C) An EGR-1, OSM, JUNB focused sub-network highlights numerous
biclogical processes modulated in response to arsenic. Proteins encoded
by 11 potential gene biomarkers for arsenic exposure are indicated with
a red asterisk.

(D) TNF-z-associated network composed of eight core members of the
potential gene biomarkers for arsenic exposure. Biomarker genes with
binding sites for MTF transcription factor are indicated. Proteins in red
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represent arsenic-induced transcripts, proteins in green represent
arsenic-repressed transcripts.
doi:10.1371/journal.pgen.0030207.9003

newborns whose mothers had varied exposures to arsenic
identified three arsenic-associated gene expression signatures
comprised of 170, 38, and 11 genes. Analysis of the predictive
capacity of each of these gene sets using the Support Vector
Machine two-class prediction algorithm showed that each of
these gene sets is highly predictive of arsenic exposure in a
test population. Notably, even the smallest gene set com-
prised of 11 genes was powerful, with 83% accuracy in
predicting prenatal arsenic exposure in the test population.
The 11 potential biomarkers of prenatal arsenic exposure
include CXLI, DUSPI, EGR-1, IER2, JUNB, MIRN21, OSM,
PTGS2, RNFI49, SFRS5, and SOC3. The set of 11 genes show a
striking dose response to prenatal arsenic exposure. Stress
response and cell cycle regulation are associated molecular
functions of the potential biomarker set. Arsenic exposure is
known to activate stress-related transcripts in yeast, animal
models and human subjects [24-26]. Here, we find that stress-
response genes are differentially expressed among a pop-
ulation of newborns whose mothers were exposed to varying
levels of arsenic.

To assess the genome-wide impact of prenatal arsenic
exposure on newborn gene expression, we identified all
transcripts that showed differential expression between two
populations; the 21 newborns whose mothers had been
exposed to arsenic versus the 11 newborns whose mothers
were unexposed. These analyses identified ~450 genes
differentially expressed between the two populations, of
which 90% had expression levels that were increased (rather
than decreased) by arsenic exposure. Clearly, there is a robust
genome-wide response to prenatal arsenic exposure with
~3% of the expressed genes significantly altered in the
newborn. Gene ontology and GSEA highlight the activation
of stress-related transcripts in the cord blood of infants
exposed prenatally to arsenic.

Furthermore, integration of the gene products of the ~450
transcripts with known molecular interactions identified the
existence of a large arsenic-modulated interacting network of
105 proteins. Embedded within this large interacting network
are three sub-networks that highlight that prenatal arsenic
exposure activates inflammation-related molecules. Specifi-
cally, the first of the sub-networks centers around NF-xB and
IL1-B. NF-kB regulates a large number of genes critical for
apoptosis, as well as inflammation-related molecules such as
cytokines (interleukins). IL1-f belongs to the class of acute
phase proteins known to be increased in response to
inflammation. Links between prenatal arsenic exposure and
the activation of a stress response are also evident in the
second and third sub-networks. Prenatal arsenic exposure
resulted in the induction of the stress-related transcription
factors STAT1 and HIF-1a, both of which are known to be
activated by arsenic in model systems [19]. Here, we identify
STAT1 and HIF-1o activation in newborn cord blood upon
prenatal arsenic exposure. The activation of stress-response
proteins such as interleukin-8 (IL-8) in response to prenatal
arsenic exposure is also evident in sub-network three. The
gene expression signatures identified here as modulated by
prenatal arsenic exposure were compared to arsenic-induced
gene expression changes in the mouse model and also with a
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Table 4. Transcription Factor Binding Site Enrichment

Transcription Description Gene Set p-Values

Factor First (170 Genes) Second (38 Genes) Third (11 Genes) Fourth (447 Genes)
SRF Serum response factor 846 % 107 0.008 17 % 10°°

NF-k8 Nuclear factor-xB 139 x 107 0011 852 x 10 °

MTF-1 Metal transcription factor 0.0173 0.007 0.021

Four arsenic-associated gene sets were analyzed for significant enrichment of transcription factor binding sites. Binding sites for three transcription factors were identified as enriched (p-

values for significance are shown).
doi:10.1371/journal. pgen.0030207.t004

separate human population. These comparisons highlight the
common pattern of activation of stress-related transcripts in
response Lo arsenic exposure.

Additionally, eight of the 11 biomarker gene products were
found to have significant interactions with the proinflamma-
tory cytokine TNF-a. Several studies in animal models have
shown that arsenic exposure results in TNF-a stimulation [27-
29]. In this study, TNF-a activation is identified in newborn
cord blood upon prenatal arsenic exposure. Taken together,
the network findings underscore that a mother's arsenic
exposure results in a robust response in the fetus, indicative of
a systemic inflammatory response along with the modulation
of numerous other biological processes including apoptosis,
signal transduction, cell adhesion, and transcription.

We further show that the extensive genome-wide newborn
response to prenatal arsenic exposure may be regulated by at
least three transcription factors. Analysis of the promoter
regions of the arsenic-modulated genes showed enrichment
for NF-kB and SRF in all four arsenic-modulated gene sets.
SRF transcriptionally activates the expression of immediate
early response genes, including C-FOS and EGR-1 [30], two
members of the potential arsenic biomarker set. Moreover,
binding sites for the metal-responsive transcription factor-1

(MTF1) are enriched in three of the four gene sets (sets 1, 3,
and 4). MTF1 was shown to be activated upon arsenic
exposure in animal models [23,24]. That gene targets for a
known arsenic-inducible transcription factor are found
among the trans

ripts modulated in the cord blood of infants
born to arsenic exposed mothers supports our conclusions
that the transcriptional changes reported here are likely due
to prenatal arsenic exposure.

Our findings clearly demonstrate the robust impact of a
mother's arsenic consumption on gene expression in utero as
evidenced by transcript levels in the newborn’s cord blood.
More specifically, our data suggest that prenatal arsenic
exposure acts as an inflammatory stimulus that activates the
NF-kB signaling cascade. NF-xB activation plays a critical role
in inflammation-driven tumor progression [31], and thus key
players in tumor progression are modulated in the blood of
newborns exposed to arsenic. To determine the extent to
which these exposures and the resultant expression changes

are associated with susceptibility to disease in later life, the
health status of these children is currently being followed.

Conclusions

In summary, class prediction algorithms identified gene
expression signatures that predict arsenic exposure in a test
population with about 80% accuracy. Notably, by integrating

@ PLoS Genetics | www.plosgenetics.org

training populations with varied exposures, a highly pre-
dictive potential biomarker gene set composed of just 11
genes was identified. These genes are promising as genetic
biomarkers for prenatal arsenic exposure. Currently, we
cannot eliminate the possibility that the gene expression
signatures identified here are not absolutely specific for
arsenic; they may also be predictive of other environmental
exposures, e.g., exposure to other heavy metals. Nevertheless,
this study underscores that there is a robust prenatal
response that correlates with arsenic-exposure levels that
could modulate numerous biological pathways including
apoptosis, cell signaling, the inflammatory response, and
other stress responses, and ultimately affect health status.
Arsenic contamination of the drinking water in the Ron Pibul
area of Thailand is representative of that seen in many other
areas of South East Asia, most notably Bangladesh [9],
suggesting that prenatal exposures are likely to be endemic
in these areas. Moreover, arsenic contamination of the Ron
Pibul drinking water is roughly the same as that known to be
present in many of the western United States [2,9], suggesting
that prenatal arsenic exposure may also be a problem in the
United States. These data contribute to our understanding of
biological responses upon arsenic exposure, and show that
prenatal exposure in humans results in measurable pheno-
typic responses in the newborn.

Materials and Methods

Study locations and subjects. The study was conducted in Bangkok
and the Ron Pibul District of the Nakhon Thammarat Province
located in the southern peninsula of Thailand (Figure S1).
villages in the Ron Pibul district were selected for the study loca

: high level arsenic contaminated ar
icosis has not |
specifically Bangkok, where arsenic
concentrations in water and soil have been determined 1o be very low
[8]. The study subjects consisted of 32 pregnant women (20-40 y old).
All subjects were healthy, pregnant volunteers undergoing vaginal
childbirth without birth stimulation or anesthesia. Twenty-three
pregnant women living in the Ron Pibul District and nine women
living in Bangkok for at least 1 y were recruited for the study. Women
from both sites we ional level, and socioeconomically
matched. Qu
obtain persona formation regarding 3
history and potential confounding factors, birth and pregnancy
information (number of births, abortions or complications), use of
community drinking water and well water, plus water and food
consumption habits. Cord blood samples were collected from January
2004 to December 2005 in the Ron Pibul Hospital (Ron Pibul District)
and the Rajvithi Hospital (Bangkok). This study was conducted
according to the recommendations of the Declaration of Helsinki
(World Medical Association 1989) for international health research.
All subjects gave written informed consent to participate in this
study.
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Sample collection and arsenic measurement. Pregnant participants
were asked o provide toenail samples during pregnancy for analysis
of total arsenic concentration, which was determined by Inductively
Coupled Plasma-Mass Spectrometry (ICP-MS) (Agilent 7500¢). After
collected into a PAXgene
> expression. All cord blood

samples were kept at =70 °C until analys

Microarray analysis. Total RNA was isolated from 32 cord blood
samples according to the PAX ge protocol and Qiagen RNA
extract labeled using a globin reduction protocol
(Affymetrix) and hybridized to HGU133 Plus 2.0 full genome human
arrays in technical duplicate for a total of 64 arrays. Data were first
normalized using Robust Multi-Chip Average (RMA) [32] and filtered
for expressed transcripts across all arrays (+2 standard deviations
above mean background) resulting in reduction of the probesets from
the original 54,675 to 15,265. A mean absolute expression value was
calculated from technical duplicates of the arrays for all expressed
transcripts. Differential gene expression and association with
increasing arsenic concentration was calculated as follows. The
samples comprising the training sets were separated into two groups
based on arsenic exposure level. The two groups were unexposed
(maternal toenail <0.5 pglg) or exposed (maternal toenail =0.5 pglg).
The two-class exposure designation is based on the WHO standards
for expos nic of 10 pgll arsenic. A mean toenail arsenic
concentration of 0.5 pglg corresponding to chronic consumption of
drinking water at 10 pg/l arsenic was derived from two studies
associating arsenic toenail concentration and drinking water in a
population from Bangladesh [12] and the United States [11]. Differ-
ential expression was determined as a significant difference in the
expression of a gene (exposed versus unexposed) where the average
fold change was greater than +—1.5 and p < 0.05 (t-test). Additionally,
significant association of gene expression and i mcrcasmg arsenic ]c\cl
was determined by correlation measurements (r~ t { —{).6;
0.01) calculated using the linear regression mndcl in S PLUS :U
(hutp:iwww.insightful.com). The two-class prediction model used for
assessing arsenic exposure in test populations was Support Vector
Machine, carried out in Gene Pattern Software (version 2.0.1) (hup:/l
www.broad.mit.edu). Multivariate analysis was performed as follows:
the expression values (¥) for each gene were modeled using Y=, + i,
ars (arsenic) + |3 loc (geographic location), where toenail arsenic
concent a continuous variable and location is binary.
Statistical significance was determined by subjecting Bo and By to -
statistics. A x‘ test for dependence t.mocmutm) of the two factors
(e.g., arsenic and geographic location) was performed for the set of

arsenic biomarkers. A Fisher's exact test was employed to determine
overrepresentation of the biomarkers within the genes significantly
associated with either geographic source or arsenic exposure <

0.01). Network analyses were performed using the Ingenuity sofiware
(http:diwww.ingenuity.com). Gene ontology enrichment analysis was
performed using GO Miner [33]. GSEA [34] was pe rformed using the
GSEA desktop software [35], with a fa ¢ very rate correction
{(Benjamini-Hochberg) employed. Microarray data have been depos-
ited 1o the Gene Expres: Omnibus repository.

Transcription factor binding site analysis. T1 iption factor
binding site analysis was performed using Expander software [36] and
Genomatix softw, (httpellwww.genomatix.de). For both analyses,
Affymetrix probesets were linked to sequence data for regions 1,000
base pairs upstream and 200 base pairs downstream of the tran-
scription start sites, and these were analyzed for significant enrich-
ment of transcription factor binding sites. Significance (p < 0.05) was
calculated where significance is the probability of obtaining an equal
or greater number of sequences with a model match in a randomly
drawn sample of the same size as the input sequence set,

Supporting Information

Figure S1. Map of Study Location

nducted in Bangkok
Thammarat Province located in the
peninsula of Thailand. Study locations are indicated with red circles.

Found at doi:10.137 Hjournal pgen. 0030207 sg001 (6.3 MB Al).
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Significant sub-networks of arsenic-modulated gene products were
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of Ron Pibul.
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