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We consider a localized impurity atom that interacts with a cloud of fermions in the paired state. We develop
an effective scattering length description of the interaction between an impurity and a fermionic atom using their
vacuum scattering length. Treating the pairing of fermions at the mean-field level, we show that the impurity
atom acts like a magnetic impurity in the condensed matter context, and leads to the formation of a pair of Shiba
bound states inside the superconducting gap. In addition, the impurity atom can lead to the formation of deeply
bound states below the Fermi sea.
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Magnetic impurities in superconductors are known not
only to alter the BCS ground state by introducing potential
scattering, but also to be at the origin of the pair-breaking effect
leading to elementary excitations fundamentally different from
those present in pure superconductors. Their presence serves
to attenuate superconductivity by formation of in-gap Shiba
bound states [1]. In fact, at high concentrations magnetic im-
purities induce gapless superconductivity [2]. While magnetic
impurities in a superconductor have often been discussed as
one of the simplest models that exhibit interplay between
superconductivity and magnetism, the consequences of this
interplay are still not fully understood.

The experimental realization of paired states in ultracold
atom systems has shed new light on many problems in
superconductivity. In particular it has been instrumental
in prompting a better understanding of the Bose-Einstein
condensate (BEC)-BCS crossover [3–14], including the case
of pairing in systems with large spin imbalance [15,16]. It has
also prompted a new generation of research on the subject of
the dynamics of these systems [17,18].

Combining magnetic impurities and ultracold atom sys-
tems can have rich physical consequences, some of which
we explore in the present paper. In particular, introducing
magnetic impurities into fermionic superfluids would help
in understanding the interactions between magnetism and
superfluidity, and could help to resolve long-standing problems
such as how superconductivity becomes gapless.

Alternatively, instead of studying how the system changes
in response to magnetism, one can use localized magnetic
impurities as a form of local probe. As an example, in the
setting of high-temperature superconductors, detection of the
modulation of the local density of states by a magnetic impurity
via scanning tunneling microscopy (STM) was used to great
advantage to probe the nature of quasiparticle states of these
materials both in the superconducting and pseudogap phases
[19–21].

Although STM-based spectroscopy is not currently possible
in the ultracold atom setting, radio frequency (RF) spec-
troscopy [22,23] could be used to probe the nature of the
superconducting state in the vicinity of the magnetic impurity.
Combining a magnetic impurity with RF spectroscopy can
be used to directly probe the size of the superconducting

gap, eliminating the uncertainty due to effects like Hartree
shifts [24,25]. Further, we envision that additional information
from momentum-resolved RF spectroscopy [26] in the vicinity
of a magnetic impurity could provide data on the symmetry of
the gap and its nodal structure [27].

In this paper we propose and investigate theoretically a
scheme for introducing localized magnetic impurities into the
ultracold atom fermionic superfluid. The impurity is formed
by an atom of a different species (from the species making
up the superfluid) that is localized by a deep optical lattice
potential. The laser frequency is chosen such that the optical
lattice interacts only weakly with the two atomic species, |↑〉
and |↓〉, that make up the superfluid (i.e., |↑〉 and |↓〉 do not
become localized). The magnetic character of the impurity
originates in the different interaction strengths between the
impurity atom and |↑〉 and |↓〉 atoms, which we describe by a
pair of effective scattering lengths a↑ and a↓.

The main input into our theory of impurity localized states
is the description of the atom scattering on a localized impurity.
(1) We begin by showing that, under rather general conditions,
we can describe the interaction between a localized impurity
and the free atoms via an effective s-wave scattering length.
(2) As pointed out by Shiba, due to the sharpness of the
BCS density of states, the magnetic impurity always results
in the formation of a pair of localized bound states, called
the Shiba states. Indeed, we find that as long as a↑ �= a↓,
the impurity atoms always induce a pair of bound states
inside the superconducting gap. (3) Interestingly, we find that
the Shiba state is not related to the under-sea bound state. By
the under-sea bound state we mean the natural extension to the
case of a filled Fermi sea of the Feshbach bound state formed
between a fermion and a localized impurity in the absence of
a Fermi sea when the effective scattering length is positive.
Indeed, if the Feshbach bound state exists, it becomes the
under-sea bound state when the Fermi sea is filled, remaining
completely separate from the Shiba state. (4) We show that
both the under-sea bound states and the Shiba bound states
can be resolved via RF spectroscopy.

This paper is organized as follows. In Sec. I we relate the
bare scattering length between a pair of atoms in vacuum
to the effective scattering length when one of the atoms is
localized by a parabolic confining potential. In Sec. II we use
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the effective scattering lengths to find the under-sea as well
as the Shiba bound states of the magnetic impurity. Next, we
describe RF spectroscopy of the ultracold atom system with
bound states in Sec. III. We discuss possible experimental
realizations and atom species that could be used in Sec. IV,
discuss the outlook in Sec. V, and draw conclusions in Sec. VI.

I. EFFECTIVE SCATTERING LENGTH

The goal of this section is to show that the scattering
of a fermionic atom off of a confined impurity can, under
reasonable conditions, be described by a single quantity: the
effective scattering length. The problem of scattering on a
confined impurity was previously studied in Refs. [28,29]; here
we review the basic arguments and summarize the results.

We begin by assuming that the impurity-fermion scattering
in vacuum can indeed be defined by a single scattering length
for the s-wave scattering process. This condition means that the
effective range r0 of the impurity-fermion interaction potential
is much smaller than the typical fermion wavelength 1/kF ,
and thus we can treat r0 as being essentially zero. Since
we want the fermion-impurity interaction to be tunable, we
shall be primarily interested in operating in the vicinity of
a wide Feshbach resonance (i.e., a resonance that meets the
condition r0 � 1/kF ). If the effective range condition is not
satisfied for the case of a free impurity (e.g., for the case of
a narrow Feshbach resonance), it will not be satisfied for the
case of a localized impurity, necessitating a more complicated
description of the effective scattering process. Although, we
do not treat the more complicated case in the present paper, we
expect that the qualitative features, including the Shiba bound
states, of a system with a narrow impurity resonance will be
similar to those of a system with a wide resonance.

In the problem with a confined impurity we have two
important energy scales: the typical kinetic energy of a
scattering fermion, which in our case is set by the Fermi energy
scale εF , and the level spacing of the impurity atom which we
label h̄ωi . We begin by pointing out that the scattering is elastic
in the regime εF � h̄ωi . Further, in order for the scattering
to be dominated by an s-wave channel, we demand that the
ground-state wave function of the impurity must have a length
scale

√
h̄/miωi that is much smaller than the wavelength of

the scattering particle h̄/
√

2mαεF (here mi stands for the mass
of the impurity and mα for the mass of the scattering fermion).
The two conditions are identical, up to a ratio of the masses.
That is, we demand that max(1,mα/mi)εF � h̄ωi .

Having derived the conditions for s-wave scattering we can
write the resulting T matrix for the scattering atom in the form

T (ω) = 1
mα

2π

(
1
aα

+ i
√

2mω
) . (1)

It is important to point out that since the impurity is localized,
the T matrix features the fermion mass as opposed to the
reduced mass µ = (m−1

i + m−1
α )−1 and an effective scattering

length aα instead of the vacuum scattering a0,α . In order to
relate the effective scattering length to the vacuum scattering
length, we must solve the scattering problem. In general the
scattering problem is complicated, and requires a numerical
solution. In the Appendix, we state the scattering problem
and derive an analytic solution for the special case of weak

impurity-fermion interactions using a Born-Oppenheimer type
approximation.

II. IMPURITY BOUND STATES

In this section, we study the conditions for the existence of
impurity bound states both in the normal (single-component,
noninteracting Fermi gas) and in the superconducting case.
Our strategy is to obtain the T matrix for scattering off of an
isolated impurity in the presence of the Fermi sea. Having the
T matrix, we can find the energies of the bound states from
its poles. Further, we can also find the spectral function of the
fermions, which we shall use in the next section to compute
the RF spectra.

In general, we can express the effect of the impurities on
Green’s function of the clean system G0(k,ω) via an expansion
in the impurity density [30]

G(k,ω) = G0(k,ω) + niG
0(k,ω)T (ω)G0(k,ω) + O

(
n2

i

)
,

(2)

where G(k,ω) is Green’s function of the dirty system, T (ω)
is the T matrix, and ni is the impurity density. In this paper
we shall always work in the dilute impurity limit, and thus
drop terms of order O(n2

i ) and higher. The resulting equation
is represented diagrammatically in Fig. 1(a). T (ω) is obtained
from the Lippmann-Schwinger equation

T (ω) = V + V G0(ω)T (ω), (3)

which relates the T matrix to the impurity-fermion interaction
potential V and the momentum-integrated Green’s function of
the clean system

G0(ω) =
∫

d3k
(2π )3

G0(k,ω). (4)

The Lippmann-Schwinger equation is illustrated diagrammat-
ically in Fig. 1(b); it can be formally solved for the T matrix
by inversion

T −1(ω) = V −1 − G0(ω). (5)

Having specified the Lippmann-Schwinger equation, we
first apply it to the case of an impurity in a one-component
noninteracting Fermi gas. This trivial case serves as an
exercise that demonstrates (1) regularization of point contact
interactions, (2) properties of the T matrix, and (3) relation
between Feshbach molecules and under-sea states. Having

FIG. 1. Diagrammatic representation of (a) Eq. (2) and
(b) Eq. (3). Thin lines represent the clean (unperturbed) Green’s
functions [G0(k,ω)], the thick lines the impurity-perturbed Green’s
function (Gk), and the dashed line the interaction of these fermions
with the impurity (V ).
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learned how to use the Lippmann-Schwinger equation in this
context, we apply it to the T matrix of the BCS state.

A. Impurity in a one-component noninteracting Fermi gas

We first consider a fixed impurity interacting with a one-
component Fermi sea, the interaction being described by the
scattering length a. Since the Fermi sea is noninteracting and
the impurity is static, we can proceed simply by finding the
one-particle eigenstates in the vicinity of the impurity potential
and filling them up to the Fermi energy. For negative a, all
eigenstates are part of the continuum, and there are no localized
bound states on the impurity. As a becomes positive, a single
state, the Feshbach molecular state, with energy −1/(2ma2)
peels off the continuum and becomes localized by the impurity
(henceforth, the mass of the impurity no longer features and
therefore we will use m for the mass of the fermion). When
we fill the Fermi sea, the Feshbach molecular state appears as
an under-sea bound state.

In this section, we show how to recover this simple picture in
the T -matrix language. In the absence of impurity, the fermions
are described by the following Green’s function [30]:

G(k,ω) = 1

ω − ξk + i0+sgn(ω)
, (6)

where ξk ≡ εk − εF ≡ h̄2k2

2m
− εF and εF is the Fermi energy.

In order to cancel the divergence of the integral of Green’s
function in the Lippmann-Schwinger equation we must use a
renormalized interaction potential [31,32]

1

V
= 2m

4πh̄2a
− 2m

h̄2

∫
d3k

(2π )3

1

k2
. (7)

As described in Sec. I, because the impurity atom is confined
in the expression for the interaction potential we must use the
fermion mass m and the effective scattering length a instead
of the reduced mass and the vacuum scattering length. The
momentum-integrated Green’s function G0, which enters the
Lippmann-Schwinger equation, can be obtained via contour
integration

G0(ω) =
∫

d3k
(2π )3

1

εk
− i

(2m)3/2

4π

√
ω + εF . (8)

The divergence in G0(ω) is perfectly canceled by the renor-
malized interaction to yield the T matrix

T (ω) = 1
m
2π

(
1
a

+ i
√

2m(ω + εF )
) . (9)

Unsurprisingly, the T matrix has the same form as the vacuum
T matrix, but with frequency shifted by εF . This reflects the
fact that energies must be measured with respect to the Fermi
energy. The bound states of the system introduced by the
presence of the impurity are defined by the poles of the T

matrix. We thus find that a bound state exists only for positive
values of the scattering length, with an energy

ωb = −εF − 1

2ma2
. (10)

B. Impurity in BCS state

In this section, we generalize the results of the previous
section to the case of a localized impurity atom immersed in an
ultracold BCS gas. We shall describe the BCS state at the mean-
field level. Since BCS quasiparticles involve mixing particles
and holes, it is convenient to use Nambu’s four-dimensional
spinor basis [1,33,34]

�k =

⎛
⎜⎜⎜⎜⎝

ck↑
ck↓

c
†
−k↑

c
†
−k↓

⎞
⎟⎟⎟⎟⎠ . (11)

In this formalism, the BCS Hamiltonian becomes

HBCS =

⎛
⎜⎜⎜⎝

ξk 0 0 −�

0 ξk � 0

0 � −ξk 0

−� 0 0 −ξk

⎞
⎟⎟⎟⎠ , (12)

where � is the BCS order parameter. The BCS Green’s
function of the clean system is

G0(k,ω) = 1

ω − ξkρ3 − �σ2ρ2
= ω + ξkρ3 + �σ2ρ2

ω2 − ξ 2
k − �2

≡ 1

ω2 − ξ 2
k − �2

×

⎛
⎜⎜⎜⎝

ω + ξk 0 0 −�

0 ω + ξk � 0

0 � ω − ξk 0

−� 0 0 ω − ξk

⎞
⎟⎟⎟⎠ . (13)

Here, {σ1,σ2,σ3} and {ρ1,ρ2,ρ3} are two sets of Pauli matrices,
the first one operating on the spin space and the second on the
particle-hole space.

The interaction potentials between each of the two species
that make up the BCS state and the impurity atom have the
same form as the interaction potential in the single-component
case

1

V↑(↓)
= 2m

4πh̄2a↑(↓)
− 2m

h̄2

∫
d3k

(2π )3

1

k2
. (14)

Here a↑ corresponds to the effective scattering length between
a |↑〉 atom and the localized impurity, while a↓ between a
|↓〉 atom and the impurity. In Nambu basis, the interaction
potential becomes

V =
(

1
V1

0

0 1
V2

)
⊗ ρ3 =

⎛
⎜⎜⎜⎜⎝

1
V1

0 0 0

0 1
V2

0 0

0 0 − 1
V1

0

0 0 0 − 1
V2

⎞
⎟⎟⎟⎟⎠ . (15)

Substituting G0(k,ω) and V into the T -matrix equation (5)
we see that the four-dimensional Nambu space reduces into a
pair of two-dimensional subspaces that can treated separately:
the outer (or first) subspace acts on the first and fourth Nambu
components, whereas the inner (or second) subspace acts on
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the second and third components. From this point, we will
limit ourselves to one of them, say, the first one.

To use the Lippmann-Schwinger equation in order to yield
the T matrix, our first step is the calculation of G0, which can
be written as the sum of a regular part G0

r (ω) and a diverging
part, as

G0(ω) = G0
r (ω) −

∫
d3k

(2π )3

1

εk
ρ3. (16)

From this definition, the regular part is

G0
r (ω) =

∫
d3k

(2π )3

[
1

ω2 − ξ 2
k − �2

(
ω −�

−� ω

)

+
(

ξk

ω2 − ξ 2
k − �2

+ 1

εk

) (
1 0
0 −1

) ]
. (17)

G0
r (ω) can be expressed as a function of two integrals

I1(ω) =
∫ ∞

0

κ2dκ

ω2 − �2 − (κ2 − εF )2
, (18)

I2(ω) =
∫ ∞

0

dκ

ω2 − �2 − (κ2 − εF )2
, (19)

where we have used the notation κ = k/
√

2m. Both integrals
can be evaluated using contour integration to give

I1(ω) = 1

4π
√

�2 − ω2

× [

√
εF + i

√
�2 − ω2 +

√
εF − i

√
�2 − ω2], (20)

I2(ω) = 1

4π
√

�2 − ω2

×
√

εF + i
√

�2 − ω2 +
√

εF − i
√

�2 − ω2√
ε2
F + �2 − ω2

. (21)

Using the fact that√
εF + i

√
�2 − ω2 +

√
εF − i

√
�2 − ω2

= 2

(εF +
√

ε2
F + �2 − ω2

2

)1/2

, (22)

we find

G0
r (ω) = −i

m3/2(εF + �)1/2

2π
√

ω2 − �2
sgn[Re(ω)Im(ω)]

×
(

ω + (εF − �) −�

−� ω − (εF − �)

)
, (23)

where � = √
ε2
F + �2 − ω2, and the sgn function ensures that

we take the correct branch of the square roots. Once more, the
two diverging integrals in G0 and V −1 cancel, and Eq. (5)
yields

T −1(ω) =
( m

2πa↑
0

0 − m
2πa↓

)
− G0

r (ω). (24)

Having solved the Lippmann-Schwinger equation, we can look
at the properties of the resulting T matrix. In particular, we

want to consider two regimes: bound states inside the gap and
bound states outside the gap.

1. Under-sea states

Aiming to recover the Feshbach molecule-like bound state
that we found to exist under the Fermi sea in the case of a one-
component gas, we make the approximation that � 
 0. The
bound state must correspond to a frequency ω = ωb + i0+,
where ωb � −εF . Within this approximation,

T −1(ω) ≈
( m

2πa↑
0

0 − m
2πa↓

)
−

√
2 m3/2

2π

×
(√−εF − ω 0

0 −i
√

εF − ω

)
. (25)

We find that the T matrix only has a pole [i.e., det T −1

(ω) = 0] when the effective scattering length a↑ is positive.
The frequency of the pole is

ωb = −εF − 1

2ma2
↑
. (26)

By looking at the complimentary 2 × 2 Nambu subspace, we
find that another bound state exists for positive values of a↓
with frequency ωb = −εF − 1/2ma2

↓.
If we relax the approximation � 
 0, we find that the under-

sea state only becomes a sharp bound state in the limit ωb →
−∞. If the binding energy is not very large, then the under-sea
bound state can serve as a Kondo impurity. However, detailed
analysis of this possibility is beyond the scope of the present
article.

2. Shiba states

We now turn to the in-gap bound states predicted by Shiba,
that is, |ω| < �. For weakly enough interacting BCS gases,
we can make the approximation |ω| < � � εF . Within this
approximation,

T −1(ω) ≈
( m

2πa↑
0

0 − m
2πa↓

)
+ m3/2

√
2εF

2π
√

�2 − ω2

(
ω −�

−� ω

)
.

(27)

The form of the T matrix in the complimentary Nambu
subspace can be obtained from this one by making the
substitutions � → −�, a↑ ↔ a↓. The poles of the T matrix
are defined by the equation

ω√
�2 − ω2

= ±1 + kF a↑kF a↓
kF a↓ − kF a↑

, (28)

where the + sign corresponds to the first Nambu subspace and
the − sign to the second Nambu subspace. From Eq. (28),
we see that as long as a↑ �= a↓ there is exactly one pole
of the T matrix in each of the two subspaces. The two
poles have opposite frequencies and correspond to the two
Shiba states. We can interpret the negative frequency pole
as a bound state for the quasiparticle of the gas, and the
positive frequency solution as a bound quasihole. In Fig. 2,
we split the {1/kF a↑, 1/kF a↓} plane into two domains: the
blue (grey) domain corresponds to negative pole being in the
first subspace, and the white domain to the negative pole in the
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−4 −2 2 4

1

a1

−4

−2

2

4

1

a2

FIG. 2. (Color online) Representation of the sign of the solutions
given by the first and second subspaces as a function of 1/kF a↑ and
1/kF a↓. In the blue (grey) domain the solution given by the first
subspace is negative, while in the white domain the one given by the
second subspace is negative.

second subspace. The corresponding frequencies of the two
Shiba states are plotted as a function of 1/kF a↑ and 1/kF a↓
in Fig. 3.

From Eq. (28) and Fig. 3, we see that the bound states are
located inside the gap only for nonzero values of a↑ − a↓. This
fact can be quite straightforwardly interpreted: the interaction
between the Cooper pairs and the impurity can be analyzed as
the sum of a “magnetic” term proportional to a↑ − a↓ and a
nonmagnetic term proportional to a↑ + a↓. The impurity can
break Cooper pairs and give rise to in-gap states only when the
magnetic term is finite. We note that when the nonmagnetic
term becomes zero, we recover the formula established by
Shiba for a spin impurity in an electronic superconductor.

Finally, we comment on the approximation that went into
Eq. (28). In Fig. 4 we compare the frequency of the Shiba state

FIG. 3. (Color online) Energies of the two in-gap (Shiba) bound
states as a function of 1/kF a↑ and 1/kF a↓. Here we use the
approximation of Eq. (28), we took � = 0.2εF , and ω is measured
in units of εF .

− 4 − 2 0 2 4

− 0.2

− 0.1

0.0

0.1

0.2

1/kFa1

ω

1/k f a2=−0.5

FIG. 4. (Color online) Comparison between the approximate
analytical solution (blue dashed curve) and the exact numerical
solution (black curve) for the frequency (in units of εF ) of the in-gap
bound state (of the first Nambu subspace) as a function of 1/kF a↑,
with � = 0.2εF and 1/kF a↓ = −0.5.

(of the first Nambu subspace) calculated using Eq. (28) and
numerical solution of Eq. (24). We see excellent agreement
between the approximate and exact answers, which persists to
surprisingly large values of gap, � <∼ 0.5εF .

3. Discussion of bound states

We underline that the Shiba and under-sea bound states
are not related to each other. For example, if both scattering
lengths are negative but unequal, then the two Shiba states are
still present while the under-sea states are not. On the other
hand for two positive and unequal scattering lengths there is
a pair of under-sea bound states in addition to the two Shiba
states. Finally if one scattering length is positive and the other
is negative then there are again two Shiba states but only one
under-sea state.

III. RF SPECTROSCOPY

We suggest that radio-frequency spectroscopy could be
a good experimental probe for reading out properties of
the Shiba as well as under-sea bound states. Basic tools
for understanding RF spectroscopy are given in [31]. RF
spectroscopy works by converting |↑〉 (or equivalently |↓〉)
atoms to a third hyperfine state labeled |3〉 by irradiating the
system with photons of frequency ωRF that bridges the energy
difference between |↑〉 and |3〉 states. The bound states show up
as edges in the spectra of transferred atoms when ωRF matches
the bound state energy.

In the following, we begin by reviewing Fermi’s “golden
rule” formula, in terms of |↑〉 Green’s function, for the |↑〉 →
|3〉 transition rate as a function of ωRF. Next, we apply the
formula first to the case of one-component gas and second to
the BCS case.

A. General formula for the RF transition rate

We assume that the Hamiltonian of the system, subject to
RF drive, may be written in the form

H = Hgas,impurity + H3 + HRF, (29)

where Hgas,impurity describes the fermion gas and the impurity,
H3 describes the Fermions in the |3〉 hyperfine state, and HRF
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describes the action of the RF radiation. In writing H in this
form, we make the standard assumption that fermions in the
|↑〉 and |↓〉 hyperfine states do not interact with fermions in
the |3〉 hyperfine state except through the action of HRF. Our
goal is to calculate the RF current (i.e., the transfer rate of
atoms from state |↑〉 to state |3〉) that is induced by HRF,
which we do in second-order perturbation theory (Fermi’s
golden rule).

The RF drive can be described by the Hamiltonian

HRF = �RF

∫
d3k

(2π )3
(e−iωRFt c

†
3,kc↑,k + eiωRFt c

†
↑,kc3,k), (30)

where �RF and ωRF are the intensity and frequency of the RF
drive; c

†
3,k (c3,k) and c

†
↑,k (c↑,k) are the creation (annihilation)

operators for fermions in the |↑〉 and |3〉 hyperfine states. Since
RF photons have a very small momentum (large wavelength)
we neglect the momentum imparted on the atoms by the
photons. Atoms in |3〉 hyperfine state are treated as free
fermions and are described by the Hamiltonian

H3 =
∫

d3k
(2π )3

(ω3 − εF + εk)c†3,kc3,k, (31)

where ω3 is the splitting between the |↑〉 and |3〉 states in
vacuum. Since the bottom of the |↑〉 band is shifted by εF ,
we perform the same shift to the (empty) |3〉 band. This way,
for a noninteracting |↑〉 Fermi sea the transition remains at
ωRF = ω3 as opposed to being shifted to ωRF = ω3 + εF . The
corresponding (Matsubara) Green’s function for |3〉 fermions
is

G3(k,iωn) = 1

iωn − (εk + ω3 − εF )
. (32)

The golden rule formula states that current from |↑〉 to |3〉
is [30]

I (ωRF) = 2�2Im[D(iωn → ωRF + i0+)], (33)

where

D(iωn) =
∫

d3k
(2π )3

1

β

∑
iω1

G↑(k,iω1)G3(k,iω1 + iωn), (34)

and ω1 and ωn are fermionic and bosonic Matsubara frequen-
cies, respectively. Our golden rule formula gives the transition
rate per unit volume. To obtain the transition rate per particle,
we must divide I (ωRF) by density [we shall use units where
the density is set to k3

F /(6π2) = √
2/(3π2)]. We restate the

golden rule formula in the more familiar real time version

I (ωRF) = �2
∫

d3k
(2π )3

dε

2π
A↑(k,ε)A3(k,ε + ωRF)nF (ε), (35)

where Aσ (k,ω) = −2ImGσ (k,ω + i0+) are the spectral func-
tions for σ = {↑ ,3} fermions, nF (ε) is the Fermi function
for the ↑ fermions, and we have assumed that the 3 band
is empty. Using the fact that the |3〉 state is noninteracting, we

can simplify this expression

I (ωRF) = �2
∫

d3k
(2π )3

A↑

(
k,

k2

2m
+ ω3 − εF − ωRF

)

× nF

(
k2

2m
+ ω3 − εF − ωRF

)
. (36)

Adding the assumptions that we are working at zero tempera-
ture and the system has spherical symmetry, we can simplify
the expression for the current even further

I (ωRF) = �2
∫ √

2m(ωRF−ω3+εF )

0
dk

k2

2π2

×A↑

(
k,

k2

2m
+ ω3 − εF − ωRF

)
. (37)

To apply Eq. (37) to the impurity problem, we separate the
spectral function into that of the clean system A0(k,ω) and
corrections that depend on the impurity density �A(k,ω) :

A0(k,ω) = A0(k,ω) + ni[�Ac(k,ω) + �Ai(k,ω)]. (38)

Here, we have further separated the impurity contribution
�A(k,ω) = �Ac(k,ω) + �Ai(k,ω) into a coherent part that
corresponds to the spectral weight of impurity bound states and
an incoherent part that corresponds to the broadening of the
continuum states by impurity scattering. We apply the same
criteria to separate the RF transition rate

I (ω) = I0(ω) + ni[�Ic(ω) + �Ii(ω)], (39)

where I0(ω) corresponds to the transition rate of a clean
system, while �Ic(ω) and �Ii(ω) are the coherent and
incoherent corrections due to the impurities.

B. RF spectrum of a one-component gas with an impurity

Suppose that the atom cloud is composed of a single,
noninteracting, fermionic species in the hyperfine state |↑〉.
To understand the RF induced transition rate, and how it is
affected by an impurity, it is useful to begin by describing
the spectral function of the |↑〉 fermions. The clean spectral
function has the form A0(k,ω) = 2πδ(ω − k2/2m + εF ). The
impurity induced corrections to this spectral function �A(k,ω)
are plotted in Fig. 5(a). These corrections move spectral weight
away from the clean dispersion and can be separated into
an incoherent part that corresponds to the broadening of the
continuum band by impurity scattering and a coherent part that
corresponds to the impurity bound states.

In Fig. 5(b), we plot a slice through �A(k,ω) at fixed
k = 0.5kF . In the slice we see three main features. First,
we see a negative δ function feature, the location of which
coincides with the positive δ function in A0(k,ω) (feature
1a). This feature corresponds to the depletion of spectral
weight from A0(k,ω). The spectral weight is transferred into
two regions: to the under-sea bound state, which appears
as a positive δ function in �A(k,ω) (feature 2), and to the
vicinity of the negative δ-function feature, which corresponds
to the broadening of the sharp dispersion of the clean system
(feature 1b). Within our classification system, features 1a and
1b correspond to incoherent spectral weight, while feature 2
corresponds to coherent spectral weight. Finally, we point out
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FIG. 5. (Color online) Impurity induced correction to the spectral
function �A(k,ω) of the one-component Fermi gas for the case
akF = 0.5 (white – increase of spectral weight, blue – no change,
red – decrease). (a) �A(k,ω) as a function of momentum and
frequency. The dashed white line indicates the position of the Fermi
energy. �A(k,ω) shows a depletion of spectral weight along the
clean dispersion line k2/2m − εF (indicated by the red line), an
under-sea bound state at ω = −3εF , and excess spectral weight in
the vicinity of the continuum band which corresponds to the impurity
induced broadening. (b) �A(k,ω) as a function of frequency only with
momentum fixed at k = 0.5kF [slice is indicated by the green line
in (a)]. The spectral function can be decomposed into three (labeled)
features: (1a) a δ function corresponding to the depletion of spectral
weight along the clean dispersion line; (1b) part of the depleted weight
is transferred into the vicinity of the clean dispersion line resulting in
its broadening; (2) the remaining weight is transferred to a δ function
corresponding to the under-sea bound state. We note that although
the part labeled “Broadening” is divergent in the impurity density
expansion, its frequency integral remains finite, and the spectral
function fulfills the frequency sum rule.

that although feature 2 is divergent, its frequency integral is
finite. Indeed, the full spectral function satisfies the frequency
sum rule, which means that the corrections satisfies

0 =
∫ ∞

−∞

dω

2π
�A(k,ω) (40)

for all k. Having sorted out the spectral function, we move on
to the question of transition rate.

Since the dispersions of the |↑〉 hyperfine state and |3〉 state
match, the clean part of the transition rate is sharply peaked at
ω = ω3 and has the form

I0(ωRF) = �2 k3
F

3π
δ(ω3 − ωRF). (41)

At this point we pause to remark about the effects of the
trapping potential. It is important to focus the RF radiation on
the center of the trap in order to avoid the spatial smearing
(due to shift of the Fermi energy), as discussed in Ref. [31].

Next, we come back to the effects of the impurity. For
positive scattering length, there is an impurity bound state
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FIG. 6. (Color online) Correction to the RF transition rate
obtained for the one-component gas due to the presence of impurities
as a function of the drive frequency ω, with kF a = −0.5 (top) and
kF a = 0.5 (bottom). The RF spectrum for the clean case is sharply
peaked at ω − ω̃3 ∼ 0 with the width set by either trap properties
and temperature. The impurities have two main effects: (1) Since
momentum is no longer a good quantum number, the impurities
broaden the sharp absorption peak at ω − ω̃3 ∼ 0. This broadening
is composed of the depletion of the δ function indicated by the blue
arrow together with population of nearby-in-frequency states. (2) If
there is a bound state, it induces an edge in the spectrum of transferred
atoms followed by a broad feature indicated in pink (grey). The
broadening correction cannot be accurately captured in an expansion
in impurity density. In fact at first order in impurity density we find that
the correction is divergent but integrable. Therefore, in the figure we
cut it off with a wavy line. While feature (1) is present independently
of the sign of the scattering length, feature (2) which corresponds to
the coherent part of the transition rate correction (i.e., the bound state
induced part) is present only for positive scattering length.

which results in a coherent correction to the transition rate

�Ic(ωRF) = �2 2

√
2ma2(ωRF − ω3) − 1

ma2(ωRF − ω3)2
. (42)

In addition to this coherent correction there is also an
incoherent correction, which occurs regardless of the sign of
the scattering length, and results in the broadening of the sharp
transition rate of the clean state. We plot the impurity induced
corrections to the transition rate in Fig. 6 for both negative and
positive scattering length. For the positive scattering length
case, we highlight the coherent part of the transition rate,
given by Eq. (42), with pink (grey) shading. The incoherent
part of the transition rate correction is composed of a negative
δ-function feature (indicated by an arrow in Fig. 6) and a broad
positive feature. The δ-function feature corresponds to feature
1a discussed above: the depletion of spectral weight (and thus
transition rate) from the clean spectral function. On the other
hand the broad positive feature corresponds to feature 1b: the
broadening of the dispersion curve of the clean system. Since
feature 1b is divergent, we cut it off with a wavy line. As
discussed above, this divergence is a spurious consequence of
the expansion in impurity density, and we do not expect to see
it in experiment.
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C. RF spectrum of a BCS gas with an impurity

In the clean BCS system, the fermion spectral function (for
both species of fermions) has the form

A0,σ (k,ω) = π

Ek

[(Ek + ξk)δ(ω − Ek)

+ (Ek − ξk)δ(ω + Ek)], (43)

where Ek =
√

ξ 2
k + �2. The main feature of this spectral

function is the superconducting gap in the density of states
around the Fermi surface. As before, the action of the impurity
is to modify the clean Green’s functions and consequently the
spectral functions.

We begin by investigating how this spectral function
is modified by the presence of the impurity atom, i.e.,
we compute −2ImG0(k,ω + i0+)T (ω + i0+)G0(k,ω + i0+).
We plot the change in the spectral function for both species of
fermions induced by a magnetic impurity having kF a↑ = 0.5
and kF a↓ = −0.5 in Fig. 7. Similar to the case of the single-
component gas, we see that the impurity has two effects. First,
it induces a broadening of the continuum states. Second, it
induces the formation of bound states. For the |↑〉 fermions
it induces a Shiba state just under the Fermi energy, while
for |↓〉 fermions it induces a Shiba state just above the Fermi
energy. In addition, as a↑ is positive, the impurity induces an
under-sea state for the |↑〉 fermions that is analogous to the
under-sea state of the one-component gas.

The RF spectrum for the clean BCS system is plotted in
Fig. 8(a), and the impurity induced corrections for the up and
down atoms are plotted in Figs. 8(b) and 8(c), respectively. The
corrections to the RF spectrum due to the magnetic impurity
are strongest for the |↑〉 to |3〉 transition, depicted in Fig. 8(b).
These consist of (1) a dramatic filling of the gap, i.e., transitions
to the left of the threshold frequency for the clean system,
associated with the Shiba state below the Fermi energy, and
(2) an edge in the spectrum that appears to the right of the main
peak for the clean system associated with under-sea bound
state. In the next three sections we give analytical expressions
for the RF spectrum of the clean system and the corrections
due to under-sea and Shiba bound states.

1. RF spectrum of the clean system

Using Eqs. (37) and (43) we find that the transition rate for
the clean system is

I0(ω) = �2
m3/2�2

√
(ω − ω3 + εF )2 − �2 − ε2

F

2π (ω − ω3)5/2
. (44)

We note that by dividing our expression by the particle density
we recover the transition rate per particle established by
Ketterle and Zwierlein [31]. We plot this transition rate in
Fig. 8(a). The sharp onset at low frequencies corresponds to
exceeding the threshold frequency

ωth ≈ ω3 + 1

2

�2

εF

, (45)

associated with the band bottom.

FIG. 7. (Color online) Impurity induced correction to the spectral
function of (a) the |↑〉 atoms and (b) |↓〉 atoms as a function of
momentum and frequency for the case a↑kF = 0.5, a↓ = −0.5, and
�/ε = 0.4 (white – increase of spectral weight, gray – no change,
gray over white – decrease). The dashed white line indicates the
position of the Fermi energy. Both Ani ,↑(k,ω) and Ani ,↓(k,ω) show
a depletion of spectral weight along the dispersion curve of the clean
system indicated by the red line. Ani ,↑(k,ω) shows an under-sea bound
state at ω ≈ −3εF as well as a Shiba state at ω ≈ −0.13εF , while
Ani ,↓(k,ω) shows only a Shiba state at ω ≈ 0.13εF . In addition, there
is spectral weight in the vicinity of the dispersion curve of the clean
system which corresponds to impurity induced broadening.

2. Under-sea states

We follow the approximations of Sec. II B 1, ω � −εF ,
� ≈ 0, and use the approximate T matrix of Eq. (25). Around
the pole ωb = −εF − 1

2ma2
1
, the T matrix takes the asymptotic

form

T (ω ≈ ωd ) ≈ 1

ω − ωb

(
2π

a1m2 0

0 0

)
. (46)

We recognize that in the vicinity of the bound state, the
singularity of the [1,1] component of the T matrix has the same
form as the singularity of the T matrix in the single-component
gas case, Eq. (9). Thus, within our approximation � ≈ 0, the
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FIG. 8. (Color online) (a) RF transition rate for BCS state as
a function of the drive frequency ω. Corrections to the transition
rate for the |↑〉 atoms (b) and |↓〉 atoms (c). (d) Total transition
rate (clean+corrections) for 10% concentration of impurities, with
divergences smoothed out. Throughout we have used a↑kF = 0.5,
a↓ = −0.5, and �/ε = 0.4. In (b) the coherent part of the transition
rate correction, i.e., the part induced by the Shiba and the under-sea
bound states, is indicated by pink (grey) shading, with the peak on the
left corresponding to the Shiba state and the peak on the right to the
under-sea state. Similar to the case of the single-component Fermi
gas, the incoherent part of the transition rate correction is divergent
at this order in impurity density (see Fig. 6). Therefore, the total
transition rate correction plotted in (b) and (c) is also divergent, and
we cut it off with wavy lines, as before.

coherent part of the RF spectrum due to an under-sea bound
state is identical to that of the single-component gas, Eq. (42).
This contribution is indicated by the pink (grey) shaded region
on the right of Fig. 8(b).

3. Shiba states

Following the assumption of Sec. II B 2 (|ω| < � � εF )
and using the T matrix of Eq. (27) we compute the coherent
contribution to the RF transition rate from a Shiba bound state.
For the coherent contribution we focus solely on the pole

located at ω = ωb < 0, which exists in either the first or second
subspace of the T matrix depending on which domain of the
{ 1

a1
, 1
a2

} plane we are working, see Fig. 2. We assume that we
are working at sufficiently low temperature so that only the
negative frequency Shiba state is filled, and focus on the case
of the negative frequency pole being in the first subspace. If it is
in the second subspace, then the filled Shiba state corresponds
to a |↓〉 atom, and thus to detect it we must use the RF transition
|↓〉 → |3〉 instead of |↑〉 → |3〉.

Around the pole ωb, the asymptotic form of the T matrix is
found to be

T (ω 
 ωb) 
 2π

mkF

1
kF a1

− 1
kF a2(

1
kF a1

− 1
kF a2

)2
+

(
1 + 1

kF a1kF a2

)2 , (47)

1

ω − ωb

(
ωb − 1

kF a2

√
�2 − ω2

b −�

−� ωb + 1
kF a1

√
�2 − ω2

b

)

= 1

ω − ωb

R, (48)

where we define R to be the regular part of the T matrix in the
vicinity of the pole. The coherent contribution to the spectral
function must come from the above pole of the T matrix.
Combining the above form of the T matrix with the clean
BCS Green’s function Eq. (13) and the golden rule formula
Eq. (42) we obtain

�Ic(ω) = �2 mkw

π
[G0(kwωb) · R · G0(kw,ωb)]11, (49)

where kw = √
2m(ω + ωb − ω3) and · indicates a matrix

product and []11 indicates the [1,1] component of the matrix.
From this expression, we see that for a Shiba state the threshold
frequency for RF transition is ωth = ω3 − ωb. The coherent
contribution of the Shiba state to the RF spectrum is indicated
by the pink (grey) shaded region on the left of Fig. 8(b). From
the spectrum we see that most of the weight in the coherent
part of the RF spectrum occurs at frequencies significantly
higher than ωth. This is due to the fact that the Shiba state
has most of its spectral weight concentrated at momenta
∼ kF . Momentum-resolved RF spectroscopy, as done in
experiments by Stewart et al. [26], should provide even more
detailed information about the character of Shiba states.

IV. EXPERIMENTAL REALIZATION

In this section, we turn to the experimental realization of
such a system. In a typical dilute ultracold atomic gas, the
Fermi wave vector will be on the order of kF ∼ 1/4000a0,
where a0 is the Bohr radius. The typical order of magnitude
of the scattering length, in the absence of Feshbach resonance,
is given by the van der Waals interaction, a ∼ 50a0–100a0.
In this regime, the kF (a↑ − a↓) and kF (a↑ + a↓) amplitudes
always remain smaller than unity. Thus, in the absence of the
resonance, the fermion-impurity (FI) scattering lengths a↑ and
a↓ have roughly the same background values. As a result, the
magnetic character of the interaction is vanishingly small, and
thus the Shiba states are too close to the gap edges to lead to
observable results.
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The experimental conditions shall thus be chosen such as
these two scattering lengths have widely different values, that
is, close to an interspecies Feshbach resonance corresponding
to one of the FI interactions. Simultaneously, we wish to stay
close above the fermion-fermion (FF) Feshbach resonance in
order to maintain the large negative value of the associated
scattering length. In conclusion, the impurity atom must be
chosen to have a Feshbach resonance with one of the fermion
hyperfine levels for a magnetic field slightly superior to
the FF resonant value. In addition to the requirement for
Feshbach resonances, it is necessary to be able to confine
the impurity very tightly in an optical lattice, while the
fermions should still be relatively free. This would favor using
a light fermion and a relatively heavy impurity atom and
employing a wavelength for the optical lattice that is near-
detuned with respect to the optical transition of the impurity
atom.

One possible choice of fermion atoms are the two lowest
hyperfine states of 6Li, which have a Feshbach resonance
at B0 = 834 G. In order to achieve a BCS state, we want a
“slightly superior” magnetic field, which means here that the
difference between B and B0 shall be kept within the range
of the Li-Li resonance width, which is approximately �B ∼
300 G. Among the few easily trapped bosons or fermions that
could form a stable ultracold mixture with 6Li, the boson 23Na
seems to fit rather well he above condition. Several Feshbach
resonances have been observed between the 23Na hyperfine
ground state and the ground state |1〉 of 6Li, at magnetic fields
close to the broad 6Li-6Li Feshbach resonance [35]. From
these data, Gaesca, Pellegrini, and Côté deduce in Ref. [36] the
existence of further resonances between Na and 6Li in states |1〉
and |2〉 between 834 and 1500 G. A complete list of predicted
resonances is presented by Stan in Refs. [35,37], along with a
discussion of whether each corresponding hyperfine mixture
may or may not be stable toward losses due to spin-exchange
collisions. For sodium-lithium mixtures, a possibility is to use a
green lattice laser at 532 nm. The effective mass for the sodium
and lithium atoms as a function of lattice depth is plotted
in Fig. 9(a). For a lattice beam with ∼120 µm waist, and a
potential depth of about 4 lithium recoil energies, the sodium
tunneling is essentially switched off (with an effective mass of
m∗ = 1000m), while lithium is still forming an itinerant Fermi
sea (with an effective mass of m∗ ∼ m).

Another interesting combination are the lithium-rubidium
interspecies resonances that were found in Ref. [38]. Here,
there is a very interesting resonance at 882 G which is 1.3 G
wide, not far from the 834 G resonance in lithium, and—as
required for the assumptions in the paper—on the BCS side.
The advantage of using the 882 G Rb-Li resonance over any of
the Na-Li resonances is technical: the 882 G Rb-Li resonance
has a width of 1.3 G while the Na-Li resonances have widths
of ∼300 mG. However, depending on the Li density, the 882 G
Rb-Li resonance may lie in the BEC-BCS crossover regime as
opposed to the BCS regime. We suspect that the Shiba states
will continue into the crossover regime; however, determining
their properties requires extending our theory. Alternatively,
there is a Rb-Li resonance at 1067 G, which is wide (10.6 G),
but lithium is then less strongly interacting, making it more
difficult to attain a superfluid. For lithium-rubidium, one could
use a laser tuned to about 820 nm [see Fig. 9(b)]. As rubidium

FIG. 9. (Color online) (a) Effective mass m∗ of lithium and
sodium atoms in a 532 nm lattice as a function of the lattice depth
(measured in lithium recoil energies). Using a potential depth of
∼4 ER,Li it is possible to localize the sodium atoms (that serve as
impurities) while lithium atoms remain itinerant. (b) Effective mass
for lithium and rubidium atoms in a 820 nm lattice. Lattice depths
between about 0.5 and 4 ER,Li can be used to localize the Rb atoms
while Li remains itinerant.

is so heavy compared to lithium, it makes for a very good
localized impurity.

V. OUTLOOK

We suggest that the “implantation” of magnetic im-
purities into ultracold atom systems could lead to many
exciting possibilities. As already mentioned, one class of
possibilities involves leveraging the interaction of mag-
netism and superconductivity. This class includes the ap-
plication of magnetic impurities as local probes, which is
the subject of the present paper. Another possibility is to
study how the pair-breaking effect of the magnetic impu-
rities leads to the destruction of superconductivity under
various conditions. In three dimensions, one would hope
to realize the transition from gap-full to gapless super-
conductivity. On the other hand, in one and two dimen-
sions, the pair-breaking effect of the magnetic impurities
is predicted to drive the superconductor-insulator transi-
tion.

Another class of possibilities involves the Kondo effect.
We already see a precursor to the Kondo level in the under-
sea bound state. The nature of this under-sea bound state
should undergo a dramatic transformation as we turn on the
Kondo effect by changing the fermion-fermion interactions
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from attractive to repulsive. Significantly, using an optical
lattice to localize the impurity atoms naturally invites the
experimental realization of the Kondo-lattice model in the
setting of ultracold atoms. The Kondo-lattice model is, in
turn, a stepping stone on the path of studying itinerant
magnetism.

One significant difficulty in seeing magnetism in the setting
of ultracold atoms has been the issue of achieving sufficiently
low temperature. Perhaps magnetism without an underlying
lattice could be technically advantageous. That is, perhaps it
will be easier to achieving the Kondo temperature by avoiding
the lattice induced losses that feature prominently in the quest
to achieve a magnetic transition (e.g., Néel temperature) in
lattice systems.

VI. CONCLUSIONS

We have investigated the possibility of introducing a
magnetic impurity into a cloud of ultracold fermions. In
particular we have focused on the realization of a localized
impurity atom that is immersed in a one- or two-component
Fermi gas. Our work is complimentary to that of Ref. [39]
which considered a mobile impurity in a fermionic superfluid.
To understand the action of the impurity atom on the
fermions, we have argued that it can be described by an
effective scattering length, at least for the case of a broad
resonance with a sufficiently tight impurity confining potential,
which we relate to the impurity-fermion scattering length in
vacuum.

Using the effective scattering length description, we find
the effects of the impurity on the free Fermi gas as well as
a two-component BCS condensate. In both cases we find
that if there is a positive effective scattering length, then
the impurity forms an “under-sea” bound state. In addition
impurity scattering breaks translational invariance and thereby
broadens the spectral function of the clean system. Finally, for
the BCS state if the impurity-fermion scattering lengths are
different, then the impurity always induces a pair of Shiba
bound states inside the gap of the superconductor.

We demonstrate that the impurity bound states appear
as additional features in RF spectroscopy that should be
detectable experimentally. Specifically, we suggest that the 6Li
BCS condensate with 23Na impurities could be a potentially
fruitful experimental system for studying magnetic impurities.
We speculate that beyond the study of bound states of dilute im-
purities, the same setup in combination with RF spectroscopy
could be useful for studying gapless superconductivity, Kondo
effect, Kondo lattices, and other problems that combine
localized moments and itinerant fermions.

Note added. Recently, we became aware of a similar
proposal by Pu and co-workers [41].

ACKNOWLEDGMENTS

The authors thank Y. Nashida for useful discussions of
the scattering problem. They also acknowledge support from
a grant from the Army Research Office with funding from
the DARPA OLE program, CUA, NSF Grants No. DMR-07-
05472 and No. PHY-06-53514, AFOSR-MURI, the AFOSR

Young Investigator Program, the ARO-MURI on Atomtronics,
and the Alfred P. Sloan Foundation.

APPENDIX: SCATTERING PROBLEM

In this appendix, we state the scattering problem for the
case of a confined impurity, and provide an analytic solution
under special circumstances. We describe the scattering of a
single fermion off of the trapped impurity by the Hamiltonian

H = p2
i

2mi

+ p2
α

2mα

+ Vi−α(ri − rα) + 1

2
miω

2
t r

2
i , (A1)

where pi , ri , and mi stand for the momentum, position, and
mass of the impurity; pα , rα , and mα for the momentum,
position, and mass of the scattering fermion; and Vi−α is a
pseudopotential that describes scattering of the fermion off of
the impurity in vacuum. Equation (A1) completely defines the
scattering problem. However, in general, the equation must be
solved numerically [28,29]. For the experimentally interesting
case of a heavy impurity and light fermion, it was found
that there are a number of confinement induced Feshbach
resonances on the repulsive side of the “vacuum” resonance.
Due to its simplicity, we shall focus on the opposite case of a
light impurity and heavy Fermion as discussed in Ref. [28].

For the sake of achieving a quantitative answer, we make
additional assumptions. First, we assume that the effective
range of the pseudopotential Vi−α is much narrower than
the spatial extent of the harmonic oscillator ground state√

h̄/mωi . Combining this assumption with the assumption
that the typical collision energy scales h̄ωi are much smaller
than the characteristic resonance scale h̄2

µa2
0,α

, we can replace

the interaction potential by a δ function Vi−α(ri − rα) =
2πa0,α

µ
δ(ri − rα).

Finally, to obtain an analytical answer we make the frozen
impurity orbital approximation. That is, we first assume that
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FIG. 10. (Color online) Effective scattering length a that de-
scribes the scattering of a free fermion of mass mα on an impurity
of mass mi localized in a harmonic potential of frequency ωi

as a function of the fermion-impurity atom interaction strength
(scattering length in vacuum a0,α) computed in the frozen impurity
approximation. For small a0,α , a depends linearly on a0,α , Eq. (A4).
However, for large a we see a deviation from linear law. For large
negative a it is possible to form bound states of the fermion,
which result in Feshbach resonances at (4mαa0,α/µ)

√
miωi/π ≈

{−2.6, − 17.8, . . .}.
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we can write the wave function for the fermion and the impurity
in a product form

�(ri,rα) = ψi(ri)ψα(rα), (A2)

and then we assume that ψi(ri) is frozen to be the impurity
ground-state wave function. This approximation is similar in
spirit to the Born-Oppenheimer approximation that a heavy
fermion is moving in the field of a light (and therefore fast)
impurity, with the additional assumption that the interaction
between the two is sufficiently small that the impurity wave
function is only weakly effected by the fermion. The approx-
imation is valid for a0,α � (µ/mi)

√
h̄/miωi . The product

wave function and the frozen impurity wave function ap-
proximations often appear in scattering theory. A particularly
analogous problem where these approximations have been
extensively used is the elastic scattering of a low-energy
electron from a hydrogen atom [40]. In this example, the
role of the confinement potential is played by the electrostatic
potential of the nucleus, which serves to localize the electron of

the hydrogen atom. Within the frozen impurity wave-function
approximation, the effective potential that the fermion feels is
defined as

Veff(r) = 2πa0,α

µ
|ψ0(r)|2, (A3)

where ψ0(r) = (miωi/πh̄)3/4e−mωir
2/2h̄ is the ground-state

wave function of the impurity. The effective scattering length,
for small a0,α , is given by

aα = a0,αmα

µ

[
1 + O

(
2 a0,αmα

√
miωi

µ

)]
. (A4)

We note that even within our simple approximation, we
find “geometric” resonances that are induced by bound states
of Veff . These resonances can be clearly seen in the plot of the
effective scattering length as a function of a0,α in Fig. 10. We
expect that some of these resonances would survive in a more
complete theory of the scattering process, and could be used
in an experiment to tune the “magnetism” of the impurity.
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