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Abstract

One of the key performance measures in queueing systems is the exponential
decay rate of the steady-state tail probabilities of the queue lengths. It is known
that if a corresponding fluid model is stable and the stochastic primitives have
finite moments, then the queue lengths also have finite moments, so that the tail
probability P(· > s) decays faster than s

−n for any n. It is natural to conjecture
that the decay rate is in fact exponential.

In this paper an example is constructed to demonstrate that this conjecture
is false. For a specific stationary policy applied to a network with exponentially
distributed interarrival and service times it is shown that the corresponding fluid
limit model is stable, but the tail probability for the buffer length decays slower
than s

− log s.

1 Introduction.

A key performance measures in queueing models is the decay rate of the queue length
distribution in steady state [9, 8, 6, 13]. Except in trivial cases, the decay rate is at
best exponential for networks with a finite number of servers. Moreover, an exponen-
tial decay rate can be verified in many queueing models either by direct probabilistic
arguments such as Kingman’s classical bound for the G/G/1 queueing system, using
Lyapunov function type arguments [15, 11, 7] (see in particular Sections 16.3 and 16.4
of [16]), using large deviations techniques [19], and even specialized techniques based
on a fluid limit model [14, Theorem 4].
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Figure 1: Rybko-Stolyar network

Except in special cases, such as single-class queueing networks [7], verifying the
existence of an exponential tail is non-trivial precisely because verifying stability of a
multi-class network is no longer straightforward. It is now well known that the standard
load condition ρ• < 1 is not sufficient for stability. This was demonstrated in the two
seminal papers of Kumar and Seidman [10] and Rybko and Stolyar [18], based on the
network depicted in Figure 1, henceforth called the KSRS network.

Motivated in part by these examples, over the past ten years new methods have
been developed to verify stability. The most general techniques are based on the
fluid limit model (recalled below equation (5)) starting with the work of Malyšev and
Men′šikov [12] and Stolyar [20]. This was extended to a broad class of multiclass
networks by Dai [2].

Dai showed that stability of the fluid limit model together with some mild condi-
tions on the network implies positive Harris recurrence for a Markovian state process,
which implies in particular the existence of a unique steady state for the underlying
queueing network. This result was extended in Dai and Meyn [3] where it is shown
that the queue lengths have finite moments in steady state up to order p if the stochas-
tic primitives of the network (interarrival and service time distributions) have finite
moments up to p+ 1.

As a direct implication of the main result of [3], if the stochastic primitives have
an exponential moment, and if the fluid limit model is stable, then the decay rate of
the queue length distribution in steady state is faster than than any polynomial, in the
sense that, for any p ≥ 1,

(1) lim
s→∞

r(s)P{‖Q(0)‖ ≥ s} = 0,

where r(s) = sp, and the probability is with respect to a stationary version of the
queue.

It is then natural to conjecture that an exponential bound holds, so that (1) holds
with r(s) = eθs for some θ > 0, provided the stochastic primitives possess exponentially
decaying tails. The purpose of this paper is to construct a particular stationary policy
and a particular network to demonstrate that this conclusion in fact does not hold.
Moreover, a polynomial rate is about the best that can be attained: In the example it is
found that (1) cannot hold for any sequence {r(s)} satisfying lim infs→∞ r(s)/slog(s) > 0.
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The example is a particular instance of the KSRS model in which the interarrival
and service times have exponential distributions. The scheduling policy is stationary,
and the corresponding fluid limit model is stable, yet the queue length process has
heavy tails in steady-state. The policy is based on carefully randomizing between a
stable policy, and the unstable policy introduced by Rybko and Stolyar.

The remainder of the paper is organized as follows. In the following section we
describe the model and the main result. In Section 3 we present a short proof of
the earlier result of [3] in the special setting of this paper. The construction of the
counterexample is provided in Section 4. The details of the proof of the main result
are contained in Sections 5 and 6. Some technical arguments are placed in an appendix.

We close the introduction with some notational conventions: The ith unit vector
in R

N is denoted ei for 1 ≤ i ≤ N . The L1-norm, always denoted ‖ · ‖, is defined by
‖a‖ =

∑

1≤i≤N |ai| for a ∈ R
N . Given two positive real valued functions f(x), g(x), the

notation f = O(g) stands for f(x) ≤ Cg(x) for some constant C > 0 and all x ≥ 0.
Similarly, f = Ω(g) means f(x) ≥ Cg(x) for all x ≥ 0 and f = Θ(g) means f = O(g)
and f = Ω(g) at the same time. Given a Markov chain or a Markov process Z defined
on a space Z and given a probability measure ν on Z, we let Pν(Z(t)) denote the law of
Z(t) initialized by have Z(0) distributed according to ν. Specifically, for every x ∈ Z,
Px(Z(t)) is the law of Z(t) conditioned on Z(0) = x. The notations Eν [·],Ex[·] have
similar meaning corresponding to the expectation operator.

2 Model description and main result

The model and the definitions of this paper follow closely those of [3]. We consider a
multiclass queueing network consisting of J servers denoted simply by 1, 2, . . . , J . Each
customer class is associated with an exogenous arrival process which is assumed to be a
renewal process with rate λi. Here N denotes the number of classes. It is possible that
λi = 0 for some of the classes, namely, no external arrival is associated with this class.
We let λ = (λi), 1 ≤ i ≤ N . Each server is unit speed and can serve customers from
a fixed set of customer classes i = 1, 2, . . . , N . The classes are associated with servers
using the constituency matrix C, where Cij = 1 if class i is served by server j, and
Cij = 0 otherwise. It is assumed that each class is served by exactly one server, but the
same server can be associated with many classes. Each class is associated with a buffer
at which the jobs are queued waiting for service. The queue length corresponding to
the jobs in buffer i at time t is denoted by Qi(t), and Q(t) denotes the corresponding
N -dimensional buffer.

It is assumed that routing is deterministic: The routing matrix R has entries equal
to zero or one. Upon service completion, a job in class i proceeds to buffer i+, where
i+ denotes the index satisfying Ri i+ = 1, provided such an index exist. In this case
buffer i is called an internal buffer. If no such index exists, then this is an exit buffer,
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and the completed job leaves the network. The network is assumed to be open, so that
RN = 0.

For the purpose of building a counterexample we restrict to a Markovian model:
The arrival processes are assumed Poisson, and the service times have exponential
distributions. It is also convenient to relax the assumptions above and allow infinite
rates for service at certain queues. That is, the corresponding service time is zero. For
this reason it is necessary to show that the main result of [3] can be extended to this
setting.

We can express the evolution of the queue length process as

(2)
Q(t) = Q(0) +

N
∑

i,j=1

[−ei +Rij ]Di(t) + A(t)

= Q(0) + [−I +RT]D(t) + A(t),

where Ai is the cumulative arrival process to buffer i, and Di is the cumulative depar-
ture process from buffer i. The second equation is in vector form with R equal to the
routing matrix, and D(t), A(t) the N -dimensional vectors of departures and arrivals.

If the service rate µi is finite, then the departure process can be expressed,

Di(t) = Si(Zi(t)), i = 1, . . . , N, t ≥ 0,

where Si is a Poisson process with rate µi, and Zi(t) is the cumulative busy time at
buffer i. All of these processes are assumed right continuous.

The following assumptions are imposed on the policy that determines Z: It is
assumed throughout the paper that the policy is stationary. In this setting, for buffers
with finite service rate this means that d

dt
Zi(t) is piecewise constant, and when the

derivative exists it can be expressed as a fixed function of the queue-length process,
d
dt
Zi(t) = φi(Q(t)). Moreover, for each i satisfying µi = ∞ there is a fixed set of values

Ξi ⊂ Z
N
+ such that the contents of buffer i are drained at the instant Q(t) ∈ Ξi.

We also considered randomized stationary policies. In this case φi is a randomized
function of Q(t), and the draining of a buffer with infinite service rate occurs with some
probability depending upon the particular value of Q(t) ∈ Ξi observed at time t.

It is assumed that the policy is non-idling : For each station we have
∑

d
dt
Zi(t) = 1

when
∑

Qi(t) > 0, where the sum is over i at the given station.
Throughout much of the paper we restrict to the KSRS model in which the routing

and constituency matrix are expressed,

RT =









0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0









C =

[

1 0 0 1
0 1 1 0

]

The network is symmetric: The two non-null arrival processes are independent Poisson
processes with rates λ2 = λ4 > 0, and the service rates at buffers 2 and 4 are finite
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and equal, µ2 = µ4 < ∞. The service rates at buffers 1 and 3 are infinite. Hence, for
example, if at any moment priority is given to buffer 1, then all of the contents pass
instantly to buffer 2.

The transition semigroup for Q is denoted,

P t(x,A) = P{Q(t) ∈ A | Q(0) = x}, x ∈ Z
n
+, t ≥ 0, A ⊂ Z

N
+ ,

and Px( · ) the probability law corresponding to the initial stateQ(0) = x. A probability
measure π on the state space Z

N
+ is invariant if Q is a stationary process when initialized

using π. This is equivalently expressed by the invariance equations,

π(y) =
∑

x

π(x)P t(x, y), y ∈ Z
N
+ , t ≥ 0.

We say that π has an exponential tail if for some θ > 0,

∑

x

π(x)eθ‖x‖ <∞.

The Markov process is called exponentially ergodic if π exists, and for some θ > 0 and
each x, y,

(3) lim
t→∞

eθt|Px(Q(t) = y) − π(y)| = 0.

Exponential ergodicity implies an exponential tail. The proof of Proposition 2.1 is
provided in Section 3.

Proposition 2.1. Consider the network (2) in which µi < ∞ for each exit buffer.
Assume that the network is controlled using a stationary policy. If Q is exponentially
ergodic, then it has an exponential tail.

We now construct the fluid limit model associated with the network (2). To empha-
size the dependence on the initial state Q(0) = x we denote the queue and allocation
trajectories by Q(·, x), Z(·, x). The scaled initial condition is defined for κ > 0 by,

(4) xκ :=
1

κ
⌊κx⌋, x ∈ R

N
+ ,

and the scaled processes are defined for t ≥ 0 via,

(5) qκ(t; xκ) :=
1

κ
Q(κt; κxκ), zκ(t; xκ) :=

1

κ
Z(κt; κxκ).

Observe that xκ ∈ R
N
+ satisfies κxκ ∈ Z

N
+ for each κ. For each x ∈ Z

N
+ and ω ∈ Ω we

let Lx(ω) denote the set of all possible fluid limits,
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Lx(ω) =
{

u.o.c. subsequential limits of {qκ(t; xκ, ω), zκ(t; xκ, ω)}
}

,

where ‘u.o.c.’ means that convergence is uniform on compact time intervals as κi → ∞
for some subsequence {κi}. The fluid limit model is the union L :=∪x∈Z

n
+
Lx. It is clear

that any fluid limit must satisfy the fluid model equation,

(6) q(t) = q(0) + [−I +RT]z(t) + λt,

in which (z, q) satisfy assumptions analogous to (Z,Q) [2, 13].
The fluid limit model L is said to be stable if there exists Ω0 ⊂ Ω satisfying

P{Ω0} = 1, and T0 > 0 such that q(t) = 0 whenever t ≥ T0, ω ∈ Ω0, q ∈ L(ω) and
‖q(0)‖ = 1.

Naturally, the fluid limit model as well as the conditions for stability may depend
on the scheduling policy. In many cases (such as the G/G/1 queue) the set of fluid
limits Lx is a deterministic singleton for each x.

The following is the key motivating result for our paper.

Theorem 2.2. Consider the network model (2) controlled using a stationary non-idling
policy. Suppose that µi <∞ at each exit buffer, and that the fluid limit model is stable.
Then,

(i) Q is aperiodic and positive Harris recurrent: There is a unique invariant
measure π such that the distributions converge in total variation norm for each
initial condition x ∈ Z

N
+ ,

lim
t→∞

(

sup
y∈Z

N
+

|Px(Q(t) = y) − π(y)|
)

= 0.

(ii) The invariant measure has polynomial moments: For each p ≥ 1,

∑

x∈Z
N
+

π(x)‖x‖p <∞.(7)

Theorem 2.2 asserts that the model (2) is positive Harris recurrent with polynomial
moments of order p for every integer p when the interarrival and service times are
exponentially distributed. This suggests that π will have an exponential tail, so that
Eπ[eθ′‖Q(0)‖] < ∞ for some θ′ > 0. We now show that this conjecture does not hold
true.

Theorem 4.1 of [3] considers general models with renewal inputs, and also estab-
lishes rates of convergence to stationarity and other ergodic theorems for the model. In
Theorem 2.2 we have extracted the part that is most relevant to the counterexample
described next.
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Theorem 2.3. Consider the Rybko-Stolyar model described by the Markovian model
(2) as follows,

(8)
Qi(t) = Qi(0) + Ai(t) −Di(t), i = 1, 3

Qi(t) = Qi(0) +Di−1(t) −Di(t), i = 2, 4.

There exist network parameters and a stationary policy satisfying,

1. The interarrival and service times are mutually independent with exponential dis-
tribution.

2. The fluid limit model is stable (hence there exists a unique invariant measure π.)

3. The invariant measure π satisfies

Eπ[Ψ(‖Q(0)‖)] = ∞,(9)

where Ψ(s) = slog s for s > 0, and Ψ(0) = 0. In particular, the invariant measure
π does not have an exponential tail and the Markov process is not exponentially
ergodic.

Theorem 2.3 establishes that the result (7) of Theorem 2.2 is nearly tight, modulo
the log term in the exponent.

The proof of Theorem 2.3 is technical. It is simplified substantially through our
adoption of a relaxation in which the service rates at buffers 1 and 3 are infinite. The
resulting process violates the assumptions of Dai and Meyn [3], but we show in the
following section that these results carry over to this more general setting to yield
Theorem 2.2.

3 Stability of Markovian networks

In this section we establish some general properties of the model (2). In this section
only we consider the embedded chain obtained via uniformization. It is known that
geometric ergodicity1 of this chain is equivalent to exponential ergodicity of the process
[5].

Uniformization must be applied with care when service rates can be infinite. We
define sampling times {τn, n ≥ 0} corresponding to jumps of a Poisson process derived
from the arrival-service process {A,S}. This is commonly interpreted as sampling
at arrival epochs and (real or virtual) service completions. However, in sampling we
restrict to non-zero length service completions to avoid sampling twice at the same
instant!

Right-continuity implies that Q(τn) = Q(τ+
n ) for each n.

1The definition of g. ergodicity is precisely (3) in discrete time.
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It is in fact simplest to ignore most of the network structure, and consider a general
Markov chain denoted X on Z

N
+ satisfying a version of the so-called skip-free property

[16] along with a standard irreducibility condition.
The skip-free condition is defined with respect to the L1 norm. Under the as-

sumption that the service rate at any exit buffer is finite it follows that the increments
∣

∣‖X(t + 1)‖ − ‖X(t)‖
∣

∣ are bounded in the network model (2) when {X(t) := Q(τt) :
t ∈ Z+}. Note that the increments of the norm ‖X(t+ 1)−X(t)‖ are not bounded in
a queueing model that allows instantaneous transfer of buffer contents.

The following result establishes Proposition 2.1.

Theorem 3.1. Suppose that X is a Markov chain on Z
N
+ satisfying the following

(i) It is skip-free in the sense that for some constant b0 and every initial condi-
tion,

(10) − b0 ≤ ‖X(t+ 1)‖ − ‖X(t)‖ ≤ b0, t ≥ 0.

(ii) The chain is 0-irreducible, in the sense that

(11)
∑

t

P t(x, 0) > 0 for each x.

(iii) X is geometrically ergodic

Then π has an exponential tail.

Proof. The proof proceeds in two steps.
Denote the moment generating function by hθ(x) = Ex[e

θτ0 ], θ > 0, x ∈ Z
n
+, where

τ0 is the first hitting time to the origin. Theorem 15.2.4 and Theorem 16.3.2 of [16]
imply that π(hθ) <∞ for sufficiently small θ > 0.

The second step is to compare hθ with the function gθ(x) = eθ‖x‖, θ > 0, x ∈ Z
N
+ .

The skip-free assumption implies the bound,

(12)
∣

∣‖X(t)‖ − ‖X(0)‖
∣

∣ ≤ b0t, t ≥ 0,

so that τ0 ≥ b−1
0 ‖x‖ with probability one when X(0) = x. Hence gθ/b0(x) ≤ hθ(x) for

all x. We conclude that,

Eπ

[

e(θ/b0)‖X(0)‖
]

=
∑

π(x)gθ/b0(x) ≤
∑

π(x)hθ(x) <∞.

The definition of the fluid limit model is defined for any Markov chain exactly as
in the network model via (5).
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Theorem 3.2. Suppose that X is a Markov chain on Z
N
+ satisfying (i) and (ii) of

Theorem 3.1. Suppose moreover that the fluid limit model is stable, in the sense that
for some T0 > 0 and a set Ω0 ⊂ Ω satisfying P{Ω0} = 1,

lim
κ→∞

1

κ
‖X(κt; κxκ)‖ = 0, ‖x‖ ≤ 1, t ≥ T0, ω ∈ Ω0.

Then X is positive Harris recurrent, and its unique invariant measure π satisfies
∑

π(x)‖x‖p <∞ for each p ≥ 1.

Proof. In Proposition 3.3 we establish a Lyapunov drift condition of the form: For each
p ≥ 1 we can find a function V and positive constants b and ǫ such that,

(13) PV (x) = E[V (X(t+ 1)) | X(t) = x] ≤ V (x) − ǫV 1−δ(x) + b ,

where δ = (1 + p)−1. Moreoever, the function V is equivalent to ‖x‖p+1:

(14) 0 < lim inf
r→∞

(

inf
‖x‖=r

V (x)

rp+1

)

≤ lim sup
r→∞

(

sup
‖x‖=r

V (x)

rp+1

)

<∞.

It follows from the Comparison Theorem of [16] that the steady-state mean of V 1−δ is
finite, with the explicit bound π(V 1−δ) ≤ b/ǫ. This implies that the pth moment of X

is finite since 1 − δ = p/(p+ 1).

The drift criterion (13) was introduced in the analysis of general state-space Markov
chains in [4]. Under this bound polynomial rates of convergence are obtained on the
rate of convergence to steady state. Using different methods, polynomial bounds on
the steady-state buffer lengths and polynomial rates of convergence were obtained in
[3] for stochastic networks based on a general result of [21]. The proof is simplified
considerably in this countable state space setting.

To establish (13) we take V = Vp with,

(15) Vp(x) = E

[

‖x‖T
∑

t=0

‖X(t)‖p
]

, x ∈ Z
N
+ ,

where T ≥ 1 is a sufficiently large fixed integer. The growth bounds (14) are suggested
by the approximation,

(16)
1

κp+1
Vp(κx

κ) ≈ E

[

∫ ‖x‖T

0

‖xκ(t; xκ)‖p dt
]

, x ∈ R
N
+ , κ > 0,

with xκ defined as in (5) via xκ(t; xκ) := κ−1X(κt; κxκ).

Proposition 3.3. The following hold under the assumptions of Theorem 3.2: for each
p = 1, 2, . . . the function V defined in (15) satisfies the drift condition (13) and the
bounds (14) with δ = (1 + p)−1.
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To prove the proposition we first note that stability of the fluid model implies
convergence in an Lp sense. The proof of the almost sure limit in Proposition 3.4
uses equicontinuity of {xκ(t; xκ) : t ≥ 0}, and the Lp limit is obtained using the
Dominated Converence Theorem since L is a bounded sequence. Recall that T0 and
Ω0 are introduced in the definition of stability for the fluid limit model.

Proposition 3.4. Suppose that the fluid model is stable. Then it is uniformly stable
in the following two senses,

(i) Almost surely: For T ≥ T0 and ω ∈ Ω0,

lim
κ→∞

sup
‖x‖=1

‖xκ(T ; xκ, ω)‖ = 0.

(ii) In the Lp sense: For T ≥ T0,

(17) lim
κ→∞

sup
‖x‖=1

E[‖xκ(T ; xκ)‖p] = 0.

Proof of Proposition 3.3. Before proceeding it is helpful to review the Markov property:
Suppose that C = C(X(0), X(1), . . . ) is any random variable with finite mean. We
always have,

EX(n)[C] = E[ϑnC | X(0), . . . , X(n)] = E[ϑnC | X(n)],

where Fn := σ{X(0), . . . , X(n)}, n ≥ 0, and ϑnC denotes the random variable,

ϑnC = C(X(n), X(n+ 1), . . . )

We apply the Markov property with n = 1 and C =
∑‖X(0)‖T

t=0 ‖X(t)‖p. In this case we
have,

ϑ1C =

‖X(1)‖T
∑

t=1

‖X(t)‖p

so that the Markov property gives,

Vp(X(1)) = EX(1)

[

C
]

= E

[

‖X(1)‖T
∑

t=1

‖X(t)‖p | F1

]

.

Applying the transition matrix to Vp gives PVp(x) = Ex[Vp(X(1))], so that

PVp (x) = Ex

[

‖X(1)‖T
∑

t=1

‖X(t)‖p
]

, x ∈ Z
N
+ .
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The sum within the expectation on the right hand side is almost the same as used in
the definition of Vp. However, instead of summing from 0 to T‖X(0)‖, we are summing
from 1 to T‖X(1)‖. Consequently, writing y = X(1), we have the expression,

(18) PVp(x) = Vp(x) − ‖x‖p + Ex

[

‖y‖T
∑

t=‖x‖T+1

‖X(t)‖p
]

, x ∈ Z
N
+ ,

where the sum is interpreted as negative when ‖x‖ ≥ ‖y‖. Under the assumption that
L is a bounded sequence we obtain the bound PVp ≤ Vp − ‖x‖p + bp, where bp is the
supremum over x on the expectation on the right hand side of (18). We now argue
that bp < ∞. Recall that under assumption (10) the increments of X are bounded,
|‖x‖T − ‖X(1)‖T | ≤ b0T . This combined with (17) implies that bp is indeed finite.

To complete the proof we now establish (14). For this we apply (12), which implies
that Vp satisfies the pair of bounds,

‖x‖T
∑

t=0

‖(x− b0t)+‖
p ≤ Vp(x) ≤

‖x‖T
∑

t=0

‖x+ b0t‖
p, x ∈ Z

N
+ .

This implies (14).

4 Scheduling policy

The remainder of the paper is devoted to establishing the main result, Theorem 2.3.
Throughout the remainder of the paper we restrict attention to the KSRS model (8) in
continuous time. The network is assumed symmetric with λ1 = λ3 = 1, µ1 = µ3 = ∞,
and µ2 = µ4 finite. The traffic intensity of each server is denoted,

ρ1 := λ1µ
−1
1 + λ3µ

−1
4 = µ−1

4

ρ2 := λ1µ
−1
2 + λ3µ

−1
2 = µ−1

2

To prove Theorem 2.3 we construct a particular non-idling stationary policy.
The proofs of Lemmas 4.1 and 4.2 are contained in the Appendix. Recall that the

function Ψ is defined in Theorem 2.3.

Lemma 4.1. For each constant c > 1, the function Ψ(cs)/Ψ(s) is a strictly increasing
function. Moreover,

∑

1≤m<∞

m2
[ Ψ(mη)

Ψ(cmη)

]
1

4

<∞,

for any η satisfying,

η >

√

12

log(c)
(19)
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Throughout the remainder of the paper we fix µ2, µ4 so that the conditions specified
in Lemma 4.2 are satisfied.

Lemma 4.2. Define β1 = 1
4
γ24 and β2 = 4γ24 with,

γ2 =
ρ2

1 − ρ2
, γ4 =

ρ1

1 − ρ1
, γ24 = γ2γ4, γ = γ4 + γ24.

The parameters µ2, µ4 can be chosen so that ρi ∈ (1/2, 1) for i = 1, 2, β2 > β1 > 1,
and the condition (19) is satisfied with c = β1 and η = log(β1)/ log(β2).

We define for s, n ≥ 1,

(20)
Ψ∗(s) = (Ψ(β1s

η)/Ψ(sη))
1

4

ψ(n) = Ψ∗(n)/Ψ∗(n + 1).

By Lemma 4.1, Ψ∗ is a strictly increasing function, so ψ(n) ∈ (0, 1). The scheduling
decisions are parametrized by ψ = {ψ(n)} and are made only at the sampling instances
{τn, n ≥ 0} introduced in Section 3.

The scheduling decisions for server 1 at time τn are defined as follows:

(i) If only one of the two buffers at server 1 contain jobs (buffer 1 or buffer 4), the
server works on the first job in the non-empty buffer. That is, the policy is
non-idling.

(ii) If both buffer 1 and buffer 4 are non-empty, and buffer 2 is also non-empty,
then buffer 1 receives strict priority at server 1. Since µ1 = ∞, all of the Q1(τn)
jobs are instantly sent to buffer 2.

(iii) If both buffer 1 and buffer 4 are non-empty, and buffer 2 is empty then the
scheduling decision depends on whether τn corresponds to an arrival into buffer
1 or not. If it does not correspond to an arrival into buffer 1, then server 1
works on the first job in buffer 4.

(iv) The policy is randomized if both buffer 1 and buffer 4 are non-empty, buffer 2
is empty, and τn corresponds to an arrival into buffer 1. In this case, with prob-
ability ψ(m) the server works on the first job in buffer 4, and with probability
1 − ψ(m) it works on the jobs in buffer 1. This choice is made independently
from any other randomness in the network. In the second case, since the service
rate is infinite, all of the jobs in buffer 1 are instantly sent to buffer 2.

The scheduling decisions in server 2 are defined analogously.
With a slight abuse of notation we denote this scheduling policy by ψ. We denote

by Q = (Q(0), µ2, µ4, ψ) the queueing network together with the scheduling policy ψ
and the initial state Q(0).

The conclusions of Proposition 4.3 are immediate from the discussion in Section 3.

12



Proposition 4.3. Under the scheduling policy ψ the process Q and the embedded pro-
cess {X(n) :=Q(τn)} are Markovian. The chain X satisfies the skip-free property (10)
as well as the irreducibility condition (11). If X possesses an invariant measure π then
it is necessarily unique, and satisfies π(x∗) > 0 with,

(21) x∗ := (0, 0, 0, 1)T.

The following result is used to translate properties of invariant measures to the
process level properties in the network.

Proposition 4.4. Suppose the queueing network Q is such that an associated invariant
measure π exists, and π(Ψ) is finite. Then for every constant δ > 0.

lim sup
s→∞

Ψ(δs)Px∗(
‖Q(s)‖

s
> δ) <∞.(22)

Moreover, for every constant δ > 0

lim sup
s→∞

Ψ(.5δs)Px∗(sup
t≥s

‖Q(t)‖

t
> δ) <∞.(23)

Proof. By Proposition 4.3, we have π(x∗) > 0. Applying Markov’s inequality gives,

Ψ(δs)Px∗(‖Q(s)‖ > δs) = Ψ(δs)Px∗(Ψ(‖Q(s)‖) > Ψ(δs))

≤ Ex∗ [Ψ(‖Q(s)‖)]

(∗)

≤ π−1(x∗)
∑

y

Ey[Ψ(‖Q(s)‖)]π(y)

= π−1(x∗)Eπ[Ψ(‖Q(0)‖)],

where in (∗) we simply use 1 = π−1(x∗)π(x∗) ≤ π−1(x∗)
∑

y π(y). Then (22) follows
immediately.

We now establish (23). Fix δ > 0 and let δ̂ = δ/4. Consider any s > 0 and let
sk = (1 + δ̂)ks, k ≥ 0. We use the following obvious identity,

sup
sk≤t≤sk+1

‖Q(t)‖

t
≤

‖Q(sk)‖

sk
+
A1(sk, sk+1) + A3(sk, sk+1)

sk
,

with Ai(sk, sk+1) denoting the arrivals to buffer i in the interval (sk, sk+1]. Hence,

P(sup
t≥s

‖Q(t)‖

t
> δ) ≤

∑

k≥0

P(
‖Q(sk)‖

sk

≥ δ/2) +
∑

k≥0

P(
A1(sk, sk+1) + A3(sk, sk+1)

sk

≥ δ/2).

To complete the proof it suffices to show that
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lim sup
s→∞

Ψ(.5δs)
∑

k≥0

P(
‖Q(sk)‖

sk
≥ δ/2) <∞,(24)

lim sup
s→∞

Ψ(.5δs)
∑

k≥0

P(
A1(sk, sk+1) + A3(sk, sk+1)

sk
≥ δ/2) <∞,(25)

Applying (22), we have that

∑

k

Px∗(
‖Q(sk)‖

sk
≥ δ/2) = O

(

∑

k

[Ψ(.5δsk)]
−1

)

= O
(

∑

k

[Ψ(.5δ(1 + δ̂)ks)]−1
)

= O
(

∑

k

(

.5δ(1 + δ̂)ks
)− log(.5δ(1+δ̂)ks)

)

Now for all s such that .5δs > 1 we have
∑

k

1

(.5δ(1 + δ̂)ks)log(.5δ(1+δ̂)ks)
≤

∑

k

1

(.5δs)log(.5δ(1+δ̂)ks)

=
∑

k

1

(.5δs)log(.5δs)+k log(1+δ̂)

= (.5δs)− log(.5δs) 1

1 − (.5δs)− log(1+δ̂)

= Ψ−1(.5δs)
1

1 − (.5δs)− log(1+δ̂)
.

Since the limit of the second component of the product above is equal to unity, we
obtain that (24) holds.

We now establish (25). Using the large deviations bound given by Lemma A.1 in
the Appendix, we have

P(A1(sk, sk+1) ≥ (δ/2)sk) = P(A1(sk, sk+1) − (sk+1 − sk) ≥ (δ/2)sk − (sk+1 − sk))

≤ P(A1(sk, sk+1) − (sk+1 − sk) ≥ (
δ

2δ̂
− 1)(sk+1 − sk))

= P(A1(sk, sk+1) − (sk+1 − sk) ≥ (sk+1 − sk))

≤ exp(−Ω(sk+1 − sk))

≤ exp(−Ω(δ̂(1 + δ̂)ks))

We also have
∑

k≥0

exp(−Ω(δ̂(1 + δ̂)ks)) ≤ exp(−Ω(s)).

Since Ψ grows slower than exponentially we conclude that (25) holds.
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5 Stability of the fluid limit model

The goal of this section is to establish stability of the fluid limit model obtained from
the scheduling policy ψ. Specifically, we establish the following result which is Part 2
of Theorem 2.3.

Theorem 5.1. There exists a constant c0 > 0 such that for every ǫ > 0

lim sup
‖x‖→∞

Px

(‖Q(c0‖x‖)‖

‖x‖
> ǫ

)

= 0.

Proof. The result is obtained by combining Proposition 5.3 with Lemma 5.4 that follow.

The proofs in this section rely on regeneration arguments, based on the stopping
times defining the first emptying times for the four buffers in the network,
(26)
Ti = inf{t ≥ 0 : Qi(t) = 0} T̄i = inf{t ≥ 0 : Qj(t) = 0 for all j 6= i, i = 1, . . . , 4}.

The following feature of the model is crucial to obtain regenerative behavior: Although
the policy is not a priority policy, its behavior at buffers 4 and 2 is similar. For example,
since the policy is non-idling and the service rate at buffer 1 is infinite we can conclude
that buffer 4 receives full capacity while this buffer is non-empty.

Lemma 5.2 follows from these observations, and the specification of the policy that
gives priority to jobs in buffer 3 while buffer 4 is non-empty.

Lemma 5.2. Under the policy ψ with Q4(0) ≥ 1, the contents of buffer 4 evolves as
an M/M/1 queueing system with arrival rate 1 and service rate µ4, until the first time
Q4 becomes zero.

Proposition 5.3 concerns the special case in which all the jobs are initially in
buffer 4.

Proposition 5.3. Let xn = (0, 0, 0, n) = nx∗ and τ = 1/(µ4 − 1). For every ǫ > 0

lim
n

Pxn

(

‖Q(τn)‖ ≤ ǫn
)

= 1.

Proof. We begin with an application of Lemma 5.2 to conclude that Q4(t) corresponds
with an M/M/1 queueing system up to time T4. Applying Lemma A.2 we obtain for
every ǫ > 0

lim
n

Pxn

(

|T4 −
n

µ4 − 1
| ≤ ǫn

)

= 1.(27)

We now analyze the queue-length processes in buffers 1 and 2 during [0, T4). For
each k ≥ 1, with probability (1 − ψ(k))

∏

1≤i≤k−1 ψ(i), priority is given to jobs in
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buffer 4 up until the time of the k-th arrival. At this time the k jobs at buffer 1 are
immediately transfered to buffer 2. While buffer 2 is non-empty, full priority is given
to jobs in buffer 1 over jobs in buffer 4, so that any new arrivals are sent to buffer 2
instantaneously. At the first instance τ2(1) < T4 that the buffer 2 empties (assuming
one exists), this process repeats.

Hence the policy ψ induces the following behavior: there is an alternating sequence
R1, L1, R2, L2, . . ., where Rl corresponds to time-intervals before T4 when buffer 2 is
empty, and Ll corresponds to time-intervals before T4 when buffer 2 is non-empty. The
sequences Rl, l ≥ 1 and Ll ≥ l are i.i.d., and the length of Rl is independent from
Rl′ , Ll′, l

′ ≤ l − 1.
Let τl =

∑

j≤l(Rj + Lj). The queue length in buffer 1 at the end of the time
period corresponding to Rl (that is at time τl−1 + Rl) is equal to k with probability
(1−ψ(k))

∏

1≤i≤k−1 ψ(i). Let Xl represent this queue length Q1(t) at time t = τl−1+Rl.
We have

E[X2
l ] =

∑

k≥1

k2(1 − ψ(k))
∏

1≤i≤k−1

ψ(i)

<
∑

k≥1

k2
∏

1≤i≤k−1

ψ(i)

=
∑

k≥1

k2Ψ∗(1)

Ψ∗(k)

Applying the second part of Lemma 4.1, this sum is finite, namely Xl has a finite second
moment. Then Rl has finite second moment as well since, conditioned on Xl = k, it is
a sum of k i.i.d. random variables with Exp(λ) distribution. Conditioning on Xl = k,
the length of Ll represents the time to empty an M/M/1 queueing system with k initial
jobs, arrival rate 1, and service rate µ2. Hence E[L2

l |Xl = k] = O(k2) by Lemma A.2.
Since Xl has a finite second moment, so does Ll. We conclude that τl − τl−1 = Rl +Ll

has a finite second moment.
Assume now that T4 = ∞ by placing infinitely many jobs in buffer 4. Given any

positive t > 0, let l∗(t) be the unique index such that t ∈ [τl∗(t)−1, τl∗(t)]. Applying
Smith’s Theorem for regenerative processes (see Theorem 3.7.1. in Resnick [17]), for
every m ≥ 0

lim
t→∞

P(Q1(t) +Q2(t) ≥ m) =
E[

∫ τ1
0

1{Q1(t) +Q2(t) ≥ m}dt]

E[τ1]
,

where τ1 = R1 + L1. Applying the Cauchy-Schwartz inequality we obtain,
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E[

∫ τ1

0

1{Q1(t) +Q2(t) ≥ m}dt ≤ E[1{ sup
0≤t≤τ1

Q1(t) +Q2(t) ≥ m}τ1]

≤
√

P( sup
0≤t≤τ1

Q1(t) +Q2(t) ≥ m)E[τ 2
1 ]

≤
√

P(A1(τ1) ≥ m)E[τ 2
1 ],

Observe that A1(τ1) = X1 + A(R1, τ1). Conditioning on X1 = k and applying
Lemma A.2 gives E[A(R1, τ1)] = O(k), and since the mean of X1 is finite, E[X1] <∞,
we obtain E[A1(τ1)] <∞.

Markov’s inequality, gives the bound P(A1(τ1) ≥ m) = O(1/m), and since E[τ 2
1 ] <

∞ we conclude,

lim
t→∞

Px∞(Q1(t) +Q2(t) ≥ m) = O(
1

m
).

Now we recall (27) and use independence of interarrival and service times to conclude
that

lim
n

Pxn(Q1(T4) +Q2(T4) ≥ m) = O(
1

m
).

Since Q3(T4) +Q4(T4) = 0, we obtain an apparently weaker result that for every ǫ > 0

lim
n

Pxn

(

‖Q(T4)‖ ≤ ǫn
)

= 1.

It remains to relate ‖Q(T4)‖ to ‖Q( n
µ4−1

)‖. We use the fact that the difference between

‖Q( n
µ4−1

)‖ and ‖Q(T4)‖ is at most the total number of arrivals and departures during
the time interval between n

µ4−1
and T4. Using the large deviations bound Lemma A.1

applied to arrival processes to buffers 1 and 3 and service processes in buffers 2 and 4,
and combining with (27), we obtain

lim
n

Pxn

(
∥

∥Q
( n

µ4 − 1

)
∥

∥ ≤ ǫn
)

= 1.

We now assume that x is not of the form (0, 0, 0, n) and complete the proof of
Theorem 5.1 by establishing the following lemma.

Recall that {T̄i} are defined in (26), given Q(0) = x. We let T denote the minimum,

T = min(T̄2, T̄4).

Lemma 5.4. For some constants c1, c2 > 0,

lim inf
‖x‖→∞

Px

(

T ≤ c1‖x‖ and ‖Q(T )‖ ≤ c2‖x‖
)

= 1.

17



Proof. To obtain bounds on the probability in the lemma we claim it is enough to
consider the special case in which one of the servers has no jobs at time t = 0.

Suppose both of the servers are initially non-empty, let x = Q(0), and consider
the following cases. If Q4(0) = 0 then this violates the right-continuity assumption
since we then have Q1(0) > 0, and all of the jobs in buffer 1 proceed immediately to
buffer 2. In the second case Q4(0) > 0, and we can apply Lemma 5.2 to deduce that
T4(x) = O(‖x‖) with probability approaching unity for large ‖x‖. At time T4 buffer 3
is empty and all of the jobs in buffer 1 immediately proceed to buffer 2. Once again
we arrive at a state Q(T4) corresponding to an empty server.

In the remainder of the proof we assume that one server is empty at time t = 0;
Without loss of generality this is server 2, so that x2 + x3 = 0. Again, if in addition
x4 = 0 then only buffer 1 is non-empty, and all the jobs in buffer 1 are sent to buffer 2,
giving T = 0.

Otherwise, suppose that x2 +x3 = 0, x4 > 0, and consider the queue length process
at buffer 4. Applying Lemma 5.2 we conclude that buffer 4 evolves as an M/M/1
queueing system, and Lemma A.2 implies that the emptying time T4 for buffer 4 is less
than c1‖x‖, with probability approaching unity as n → ∞, for some constant c1. At
t = T4 buffer 3 is empty as well and all the jobs in buffer 1 (if any) instantly proceed
to buffer 2. Hence buffers 1,3 and 4 are all empty at time T4, so that T = T4.

This gives a uniform bound on the probability Px

(

T ≤ c1‖x‖
)

for initial conditions
corresponding to one empty server. To obtain a uniform bound on Px

(

{T ≤ c1‖x‖} ∩
{‖Q(T )‖ ≤ c2‖x‖}

)

for some c2 we apply the large deviations bound of Lemma A.1 to
the arrival processes along with the bound ‖Q(t)‖ ≤ ‖x‖ + ‖A(t)‖.

6 Lower bounds on the tail probability

The goal of this section is to prove Part 3 of Theorem 2.3. In light of Theorem 3.1 it
suffices to establish (9), and then the lack of exponential ergodicity will follow.

Recall the definition of the first emptying time T4 from (26). We fix a constant
ǫ > 0, and define the following events given Q(0) = x,

E4 = 1
{(1 − ǫ)x4

µ4 − 1
≤ T4 ≤

(1 + ǫ)x4

µ4 − 1

}

,

E1 = 1
{(1 − ǫ)2x4

µ4 − 1
≤ Q2(T4) ≤

(1 + ǫ)2x4

µ4 − 1
∧Qi(T4) = 0, i 6= 2

}

.

Like Lemma 5.4, the following result compares an emptying time for the stochastic
model with the emptying time for a fluid model.

Lemma 6.1. Consider a non-zero initial state x = (x1, x2, x3, x4) satisfying xi = 0, i 6=
4. Then for any 0 < ǫ < 1/10

Px(E4 ∩ E1) ≥ Θ((Ψ∗(2γ4x4))
−1).(28)
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Proof. Consider first a modified scheduling policy ψ̃ that always gives priority to jobs
in buffer 4 in server 1 and buffer 3 in server 2. For the policy ψ̃ we let {T̃i} denote the
draining times for the four buffers. For this policy all jobs in buffer 3 are transfered to
buffer 4 instantaneously so that buffer 4 operates as an M/M/1 queueing system for
all t ≥ 0. Applying the bound (39) from Lemma A.2, the stopping time T̃4 satisfies,

P

((1 − ǫ)x4

µ4 − 1
≤ T̃4 ≤

(1 + ǫ)x4

µ4 − 1

)

≥ 1 − exp(−Ω(x4)).(29)

Let m1(x) denote the number of arrivals to buffer 1 before buffer 4 becomes empty for
ψ̃. That is,

m1(x) = A1(T̃4).

Using Lemma A.1 applied to the arrival process, combined with (29), we obtain

P

((1 − ǫ)2x4

µ4 − 1
≤ m1(x) ≤

(1 + ǫ)2x4

µ4 − 1

)

≥ 1 − exp(−Ω(x4)).(30)

Now we return to the original scheduling policy ψ. For every m, conditioned on
m1(x) = m, the probability that at every arrival instance the priority was given to jobs
in buffer 4 is

∏

1≤i≤m ψ(i) = (Ψ∗(m))−1. If it is indeed the case that at every arrival
into buffer 1 the priority was given to buffer 4 for all arrivals up to the m1(x)-th, then
T4 = T̃4 and Q1(T4) = m1(x). If in addition m = m1(x) satisfies the bound

m ≤
(1 + ǫ)2x4

µ4 − 1
=

(1 + ǫ)2ρ1x4

1 − ρ1
< 2γ4x4,

then, by monotonicity of Ψ∗, we have (Ψ∗(m))−1 ≥ (Ψ∗(2γ4x4))
−1. If during the time

interval [0, T4] server 1 is processing only jobs in buffer 4, then at time T4 server 2 is
empty. Since at time T4 buffer 4 also becomes empty, all the Q1(T4) jobs in buffer 1
instantly arrive into buffer 2 at time T4, and all the other buffers become empty at T4.
That is Qi(T4) = 0, i 6= 2 and Q2(T4) = m1(x). These arguments combined with (29)
and (30) give,

Px(E4 ∩ E1) = (Ψ∗(2γ4x4))
−1 − 2 exp(−Ω(x4)) = Θ((Ψ∗(2γ4x4))

−1),

where the last equality follows from subexponential decay of Ψ∗. This completes the
proof.

Define the stopping time,

(31) T24 = inf{t > T4 : Q2(t) = 0},

and for a given x = Q(0) consider the events,
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E42 = 1
{ (1 − ǫ)3x4

(µ4 − 1)(µ2 − 1)
≤ T24 − T4 ≤

(1 + ǫ)3x4

(µ4 − 1)(µ2 − 1)

}

,

E13 = 1
{ (1 − ǫ)4x4

(µ4 − 1)(µ2 − 1)
≤ Q4(T24) ≤

(1 + ǫ)4x4

(µ4 − 1)(µ2 − 1)
∧Qi(T24) = 0, i 6= 4

}

.

Lemma 6.2. Consider a starting state x = (x1, x2, x3, x4) satisfying xi = 0, i 6= 4.
Then for every ǫ > 0

Px(E42 ∩ E13 ∩ E4 ∩ E1) = Θ((Ψ∗(4γ24x4))
−2).(32)

Proof. The event E1 is equivalent to {Q(T4) = (0, z, 0, 0) for some z ∈ S4}, where S4 is
the set of integers,

S4 = {z ∈ Z+ :
(1 − ǫ)2x4

µ4 − 1
≤ z ≤

(1 + ǫ)2x4

µ4 − 1
}.

Consequently,

P

(

E42 ∩ E13 ∩ E4 ∩ E1

)

=
∑

z∈S4

P

(

E42 ∩ E13 ∩ (Q(T4) = (0, z, 0, 0)) ∩ E4

)

=
∑

z∈S4

P

(

E42 ∩ E13

∣

∣Q(T4) = (0, z, 0, 0)
)

P

(

Q(T4) = (0, z, 0, 0) ∩ E4

)

,

where in the second equality we use the Markovian property of the scheduling policy
ψ. Applying Lemma 6.1 but interchanging buffer 4 with buffer 2 and buffer 3 with
buffer 1, we obtain for every z.

P

(

E42 ∩ E13

∣

∣Q(T4) = (0, z, 0, 0)
)

≥ Θ((Ψ∗(2γ2z))
−1).

For every z ∈ S4, given the bound ǫ < 1/10, we have z ≤ 2γ4x4. By monotonicity of
Ψ∗ and the definition γ24 = γ2γ4 we obtain [Ψ∗(2γ2z)]

−1 ≥ [Ψ∗(4γ24x4)]
−1.

Finally, we note that,

∑

z∈S4

P

(

{Q(T4) = (0, z, 0, 0)} ∩ E4

)

= P

(

E1 ∩ E4

)

which is at least Θ((Ψ∗(2γ4x4))
−1) by Lemma 6.1. Now ρ2 > 1/2 implies γ2 > 1 which

gives γ24 = γ2γ4 > γ4. Combining these bounds we obtain the desired bound (32).

Lemma 6.3. Given a state x such that xi = 0, i 6= 4, there exists a random time T
such that,

P

(γx4

2
≤ T ≤2γx4 ∧

γ24

2γ
≤
Q4(T )

T
≤

2γ24

γ
∧ Qi(T ) = 0, i 6= 4

)

≥ Θ((Ψ∗(4γ24x4))
−2).
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Proof. The event E4 ∩ E42 implies

((1 − ǫ)γ4 + (1 − ǫ)3γ24)x4 ≤ T24 ≤ ((1 + ǫ)γ4 + (1 + ǫ)3γ24)x4,

the event E13 implies

(1 − ǫ)4γ24 ≤ Q4(T24) ≤ (1 + ǫ)4, γ24

and the bound ǫ < 1/10 implies that 1/2 < (1−ǫ)4

(1+ǫ)4
< (1+ǫ)4

(1−ǫ)4
< 2. The result is obtained

from Lemma 6.2 and using γ := γ4 + γ24.

We now use Lemma 6.3 is used to obtain the following bound.

Proposition 6.4. There exist constants 0 < α < 1, δ > 0 such that for every n ∈ Z+

Px∗

[

sup
t≥βn

1

‖Q(t)‖

t
> δ

]

≥ αn
∏

1≤m≤n

(Ψ∗(βm+1
2 ))−2.(33)

Proof. For every n ≥ 1 denote by En the event that the event described in Lemma 6.3
occurs n times in succession starting from the state x = x∗. For each m let σm is the
length of the time interval corresponding to the m-th event, and let Sn =

∑n
m=1 σm.

The random time Sn is only defined on the event En.
Using Lemma 6.3, the event En implies that γ

2
≤ σ1 ≤ 2γ, and for each 2 ≤ m ≤ n,

(34)

γ

2
Q4(

∑

j≤m−1

σj) ≤ σm ≤ 2γQ4(
∑

j≤m−1

σj),

γ24

2γ
σm ≤ Q4(

∑

j≤m

σj) ≤
2γ24

γ
σm.

Combining, we obtain

σn ≥
γ24

4
σn−1 ≥

γ2
24

42
σn−2 ≥ · · · ≥

γn−1
24

4n−1
σ1 ≥

γn−1
24

4n−1

γ

2
,(35)

and

σn ≤ 4γ24σn−1 ≤ (4γ24)
2σn−2 ≤ · · · ≤ (4γ24)

n−1σ1 ≤ (4γ24)
n−12γ,(36)

The chain of inequalities (35) implies in particular that

Sn ≥ σn ≥
γn−1

24

4n−1

γ

2
.(37)

Since β1 = γ24/4 > 1 by Lemma 4.2, the same chain of inequalities implies
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Sn =
∑

m

σm ≤ σn

∑

m≤n

γ
−(n−m)
24

4−(n−m)
≤ σn

∞
∑

j=1

γ−j
24

4−j
=

σn

1 − 4
γ24

.(38)

Also the event En implies

‖Q(Sn)‖

σn

≥
γ24

2γ
,

Then from (38) we obtain

‖Q(Sn)‖

Sn
≥
γ24

2γ
(1 −

4

γ24
).

Recalling the bound (37), we conclude that the event En implies

sup{t−1‖Q(t)‖ : t ≥
γ

2
(
γ24

4
)n−1} ≥

‖Q(Sn)‖

Sn
≥
γ24

2γ
(1 −

4

γ24
).

We have β1 = γ24/4 < γ/2 and conclude that the event En implies

sup
t≥βn

1

‖Q(t)‖

t
> δ :=

γ24

2γ
(1 −

4

γ24

).

It remains to obtain the required lower bound on Px∗ [En]. We first obtain a bound on
Px∗ [Em|Em−1], m = 2, 3, . . . , n. For convenience we set E0 = 1{Q(0) = x∗}. For each
1 ≤ m ≤ n the event Em−1 via (36) and (34) implies

Q4(
∑

j≤m−1

σj) ≤
2

γ
σm ≤

2

γ
(4γ24)

m−12γ = 4mγm−1
24 .

Let α > 0 be a constant hidden in the Θ(·) notation in Lemma 6.3. Then, from
Lemma 6.3, we obtain

Px∗ [Em|Em−1] ≥ α(Ψ∗((4γ24)4
mγm−1

24 ))−2 ≥ α(Ψ∗((4γ24)
m+1))−2.

Since this holds for every n ≥ m ≥ 1 and E1 ⊃ E2 ⊃ · · · ⊃ En we obtain

Px∗ [En] ≥ αn
∏

1≤m≤n

(Ψ∗((4γ24)
m+1))−2.

This concludes the proof of the proposition by substituting β2 for 4γ24.

We are ready to conclude the proof of the final part of Theorem 2.3.
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Proof of Part 3 of Theorem 2.3. Using the expression (20) for Ψ∗ we have

∏

1≤m≤n

(

Ψ∗(βm+1
2 )

)2

=
∏

1≤m≤n

(Ψ(β1β
η(m+1)
2 )

Ψ(β
η(m+1)
2 )

)
1

2

=
∏

1≤m≤n

(Ψ(βm+2
1 )

Ψ(βm+1
1 )

)
1

2

< Ψ
1

2 (βn+2
1 ).

¿From Proposition 6.4, we obtain that for all n,

(1/α)nΨ
1

2 (βn+2
1 )Px∗

[

sup
t≥βn

1

‖Q(t)‖

t
> δ

]

≥ 1.

Using βn
1 = s and finding a constant η2 > 0 such that (1/α) = βη2

1 , we obtain

lim inf
s→∞

sη2Ψ
1

2 (β2
1s)Px∗

[

sup
t≥s

‖Q(t)‖

t
> δ

]

≥ 1.

Now

sη2Ψ
1

2 (β2
1s) = sη2(β2

1s)
.5 log(β2

1
s) = exp(.5 log2 s+ 2 log β1 log s+ 2 log2 β1 + η2 log s).

Observe, that the righ-hand side, as a function of s is

o(elog
2(.5δs)) = o(Ψ(.5δs))

since the leading term in the first term is e.5 log2 s and in the second term is elog
2 s. We

conclude

lim inf
s→∞

Ψ(.5δs)Px∗

[

sup
t≥s

‖Q(t)‖

t
> δ

]

= ∞.

Applying the second part of Proposition 4.4 we obtain (9). The proof of Theorem 2.3
is complete.

A Appendix

In this section we provide proofs of some of the elementary results we have used above.
Some of the results are well known.

Proof of Lemma 4.1. We have

Ψ(cs)

Ψ(s)
=

(cs)log(cs)

slog s
= clog(cs)slog c,
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which is a strictly increasing function for every c > 1. Now suppose η > 0 is such that
(19) is satisfied. Then

∑

1≤m<∞

m2
[ Ψ(mη)

Ψ(cmη)

]
1

4

=
∑

1≤m<∞

m2 m
1

4
η log mη

(cm)
1

4
η log(cm)η

=
∑

1≤m<∞

m2

c
1

4
η2 log cmm

1

4
η2 log c

.

The condition (19) implies 1
4
η2 log c− 2 > 1, which implies the result.

Proof of Lemma 4.2. We fix a small δ > 0 and let µ2 = µ4 = 1 + δ. Then ρ2 = ρ1 =

1/(1 + δ), γ2 = γ4 = 1/δ, γ24 = 1/δ2, β2 = 4/δ2, β1 = 1/(4δ2), η = log(1/δ2)+4
log(1/δ2)−4

, c = β1 =

1/(4δ2). Then

η2 log c =
( log(1/δ2) + 4

log(1/δ2) − 4

)2

log(
1

4δ2
).

As δ → 0, η → 1, c→ ∞ and the condition (19) is satisfied for sufficiently small δ > 0.
All the other constraints are satisfied trivially.

We use in this paper very crude large deviations type bounds. Of course in most
cases far more refined large deviations estimates are available [19], but those are not
required for our purposes.

Lemma A.1. Let N(t) be a Poisson process with parameter ν > 0. Then for every
constant ǫ > 0

P(|N(t) − νt| > ǫt) = exp(−Ω(t)).

Here the constants hidden in Ω include ǫ.

Lemma A.2. Consider an M/M/1 queueing system with parameters λ, µ, ρ = λ/µ < 1.
Let Q(t) denote the queue length at time t and let T = inf{t : Q(t) = 0}. Then
E[T |Q(0) = n] = O(n) and E[T 2|Q(0) = n] = O(n2). Moreover

P(
T

nµ(1 − ρ)
∈ (1 − ǫ, 1 + ǫ)) = 1 − exp(−Ω(n)).(39)

Proof. These are well known results from queueing theory. One quick way to establish
them is to observe that T =

∑

1≤j≤n Tj , where Tj is the first passage time from j
to j − 1. That is Tj = inf{t : Q(t) = j − 1|Q(0) = j}. The sequence Tj is i.i.d.
with the distribution equal to the distribution of the busy period, which is known
to satisfy E[exp(sTj)] < ∞ for some s > 0, and has the first moment 1/(µ(1 − ρ)).
We immediately obtain E[T |Q(0) = n] = n/(µ(1 − ρ)) and E[T 2|Q(0) = n] = O(n2)
(actual value is easy to compute but is not required for our purposes). Applying large
deviations bound [19] to the i.i.d. sequence Tj we obtain (39).
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