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Abstract

This thesis focuses on understanding task-constrained natural language commands,
where a person gives a natural language command to the robot and the robot infers
and executes the corresponding plan. Understanding natural language is difficult
because a system must infer the location of landmarks such as "the computer cluster,"
and actions corresponding to spatial relations such as "to" or "around" and verbs such
as "put" or "take." each of which may be composed in complex ways. In addition,
different people may give very different types of commands to perform the same
action.

The first chapter of this thesis focuses on simple natural language commands such
as "Find the computer." where a person commands the robot to find an object or
place and the robot must infer a corresponding plan. This problem would be easy if
we constrained the set of words that the robot might need to reason about. However,
if a person says, "find the computer," and the robot has not previously detected a
"computer," then it is not clear where the robot should look. We present a method
that uses previously detected objects and places in order to bias the search process
toward areas of the environment where a previously unseen object is likely to be
found. The system uses a semantic map of the environment together with a model
of contextual relationships between objects to infer this plan, which finds the query
object with minimal travel time. The contextual relationships are learned from the
captions of a large dataset of photos downloaded from Flickr. Simulated and real-
world experiments show that a small subset of detectable objects and scenes are able
to predict the location of previously unseen objects and places.

In the second chapter, we take steps toward building a robust spatial language
understanding system for three different domains: route directions, visual inspection,
and indoor mobility. We take as input a natural language command such as "Go
through the double doors and down the hallway," extract a semantic structure called
a Spatial Description Clause (SDC) from the language, and ground each SDC in a
partial or complete semantic map of the environment. By extracting a flat sequence
of SDCs, we are able to ground the language by using a probabilistic graphical model
that is factored into three key components. First, a landmark component grounds
novel noun phrases such as "'the computers" in the perceptual frame of the robot by
exploiting object co-occurrence statistics between unknown noun phrases and known



perceptual features. These statistics are learned from a large database of tagged
images such as Flickr, and build off of the model developed in the first component of
the thesis. Second, a spatial reasoning component judges how well spatial relations
such as "past the computers" describe the path of the robot relative to a landmark.
Third, a verb understanding component judges how well spatial verb phrases such as
"follow". "meet", "avoid" and "turn right" describe how an agent moves on its own
or in relation to another agent. Once trained, our model requires only a metric map
of the environment together with the locations of detected objects in order to follow
directions through it. This map can be given a priori or created on the fly as the
robot explores the environment.

In the final chapter of the thesis, we focus on understanding mobile manipula-
tion commands such as, "Put the tire pallet oii the truck." The first contribution
of this chapter is the Generalized Grounding Graph (G3 ), which connects language
onto grounded aspects of the environment. In this chapter, we relax the assumption
that the language has fixed and flat structure and provide a method for constructing
a hierarchical probabilistic graphical model that connects each element in a natural
language command to an object. place., path or event in the environment. The struc-
ture of the G3 model is dynamically instantiated according to the compositional and
hierarchical structure of the command, enabling efficient learning and inference. The
second contribution of this chapter is to formulate the problem as a discriminative
learning problem that maps from language directly onto a robot plan. This prob-
abilistic model is represented as a conditional random field (CRF) that learns the
correspondence of robot plans and the language and is able to learn the meanings of
complex verbs such as "put" and "take," as well as spatial relations such as "on" and
"to."

Thesis Supervisor: Nicholas Roy
Title: Associate Professor
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Chapter 1

Introduction

Imagine for the moment the capabilities of the robots in Figure 1-1: a robotic
wheelchair could help patients in hospitals and homes regain independence, a micro-
air vehicle could aid soldiers in the surveillance of hostile areas or help maintenance
workers inspect faulty equipment, a humanoid robot could help rescuers find victims
during disasters or aid them in performing chores in the home, and a robotic forklift
could help warehouse staff move supplies more efficiently. Although each of these
scenarios may sound decades from application, we currently have prototype systems
in the laboratory that are beginning to achieve these tasks. Even still, real-world

interfaces to systems in the field are still very basic: an operator has to be highly
trained, often sits at a laptop or desktop computer and commands the robot by giving
it low-level commands that manipulate individual joints or motors. What we would
really like is for an operator in the field to be able to give high-level commands to

the robot and to be able to keep his hands and eyes free so that they might be able

to achieve other tasks.
This is the promise of speech, which is a natural, flexible and intuitive way for

humans to command complex systems. This is evidenced by the human-computer
interaction literature, where Ochsman and Chapanis [1974] have found that speech

provides speed benefits in human-human teams on collaborative tasks that compared
written, typed, speech, and fully-expressive communication modalities. The key dif-

ference in the speed at which subjects achieved the task came with the introduction of

the speech modality. Building on this result Martin [1989] gave both a review article

and a set of experiments that showed significant speed advantages to using speech
for a wide range of human-computer interaction domains. Further, speed is not the

only important criterion. Rudnicky [1.993] found that there was a strong preference

for speech even when other modalities, such as a scroller. keyboard, and mouse, were

available.
However, most of these results have been from the human-computer interaction

literature, whereas the goal is to determine when human-robot interaction can benefit

from speech interfaces. Since robots have limited interfaces and operators often need

to keep their hands and eyes free for other tasks, one would expect a robust language

understanding system to be the preferred interface. Craparo [2004] has studied a

natural language interface for controlling unmanned aerial vehicles (UAVs) in an air-



(a) Humanoid Robot (b) Robotic Helicopter (c) Robotic Forklift (d) Robotic Wheelchair

Figure 1-1: Robot platforms that can take advantage of the ability to understand
natural language commands.

traffic control tower. She focused on setup, ingress, re-targeting, and egress tasks
for the UAV and found that not only was speech preferred for many of the tasks,
there was also consistent decrease in mental workload, physical demand and effort,
indicating that operators are also able to achieve more tasks in a smaller amount of
time.

Given the evidence that human-robot teams could benefit in a significant way
from the introduction of a speech interface, why have we not seen a greater growth
in speech interfaces to robotic systems?

1.1 The Grounding Problem

Certainly there are many reasons that speech is difficult, but in this thesis I argue
that at least one reason we have not seen wider use of language to command robots
is because the grounding problem is extremely challenging. The grounding problem,
which addresses the symbol-grounding problem [Harnad, 1990], refers to the tenuous
connection that logical systems in artificial intelligence (AI) have with the environ-
ment, often leading to systems that have little or no connection to perceptual features
of the physical world. In this work we will refer to the grounding problem as the prob-
lem of taking natural language input and converting it into a plan that the robot can
execute in the environment. This conversion requires mapping from linguistic terms
for objects such as "the doors" or "the elevators," places such as "on the truck," paths
such as "past a whiteboard" or events such as "put the tire pallet on the truck," onto
the corresponding object, place, path or event (plan) that executes the language. For
example, a command to follow a route might be:

With your back to the windows, walk straight through the door near
the elevators. Continue to walk straight, going through one door until you
come to an intersection just past a whiteboard. Turn left, turn right, and



enter the second door on your right (sign says "Administrative Assistant").

This conversion requires the robot to reason not only about the spatial and se-
mantic features of real-world environments, but also the meaning of its own actions,
even when there is a high degree of perceptual and physical complexity. This is
challenging, because we want robots to operate in environments like the one below:

There is additional complexity introduced if we put few constraints on the lan-
guage, which is necessary if we want to be flexible to the different ways that people
give commands. In this thesis, we have constrained people only by the task. For ex-
ample, if you ask people to give commands that can enable another person to achieve
a goal destination in the environment (route following), then you get a wide variety of
responses. Each command will refer to different objects or places in the environment
and different ways that the agent can achieve the goal. In Table 1.1, we can see the
variety of commands people give for the same route.

Toward this end, we study commands from five different domains. The first three
(object finding, route following, and visual inspection) can reasonably be captured
under the title route commands, each of which include commands that move a robot
from one location to another in the environment. The other category (indoor mobility
and mobile manipulation) can be captured by the title general commands, which
include understanding and reasoning about action verbs such as meet, bring, put or
pick up, and which may not only require reasoning about the path of an agent and
static objects, but also about other dynamic agents and the motions of objects over
time. Examples from four of these domains can be seen in Table 1.2.

1.2 The State of the Art

Enabling robots to understand natural language commands requires taking text, con-
verting it into a structure that represents the components of the command, and
converting each element in the structure into an action that the robot can execute.
This requires 1) a structure, 2) the specification of the conversion process from the
command onto this structure, 3) a conversion from the structure onto a set of actions,



Commands for the same route.

-Look for a long corridor, travel down it until you reach a wall (dead
end) take a left down a corridor until you reach a wall / office, turn
right, stop at second opening on left, enter door, you have arrived.

-Stand beside the spiral staircase. turn to face the three nearby
elevators. Notice the double doors immediately to the right of where
you're facing. Go through them and walk straight down the hall. There
is a gray door in front of you and stairs to your left. Go through the
door and take the first left through the blue double doors. Go
straight. You should pass a supply room on your right. Turn right
around the corner, following the hall, and go straight until you pass
the wall folders on the left. Opposite the whiteboard on the right is
room 36-872.

-Walk thru glass doors, continue forward approximately 30 feet, passing
bathroom and continue till get to door with phone, walk thru door.
Take 5 steps forward, will see nitrogen tank, take left. Keep tan
walls on your right, continue forward 9 steps. Make right. First
blue door on left. Stop.

Table 1.1: Commands from the route following corpus that are given by different
people, but have the exact same start and end location.

and 4) a set of actions that the robot can execute. In this thesis, we build on the
state of the art in two significant ways.

First, we provide a flexible semantic structure that enables our systems to un-
derstand unconstrained spatial natural language commands. The representation is
inspired both by the structure of spatial language [Denis et al., 1999] and by the need
to keep a flexible representation that still has the ability to capture the breadth of the
language in cases where the language is un-grammatical or challenging to parse. The
semantic structure presented in this work builds on the work of Jackendoff [1983],
Landau and Jackendoff [1993]. Tversky and Lee [1998] and Talmv [2005], providing a
computational instantiation of their formalisms. Further, we automatically learn the
mapping from the language onto this semantic structure.

Secondly, we provide models that learn the mapping from the semantic structure
onto an unconstrained action space, which enables the system to reason about a wide
variety of spatial language. Inspired by Regier [1992], who learned a specific set
of spatial relations words like "to" or "toward," we expand the set of applicability
to spatial discourse. The models described in this thesis predict the state sequence
of the robot (e.g., its path) given a natural language command, which means that
an action specification is no longer in symbolic form as in previous work [Ge and
Mooney, 2005. Dzifcak et al.. 2009]. The specification of an action is now in terms of
the language and states of the robot (e.g., "to" in "to the kitchen," means that the
physical path of the robot ends near the kitchen), which enables the system to learn
the meanings of words in terms of spatial and semantic aspects of the environment,



Commands from the corpus

Route Following

Visual Inspection

Indoor Mobility

Mobile Manipulation

With your back to the windows, walk straight through

the door near the elevators. Continue to walk straight, going

through one door until you come to an intersection just past

a white board. Turn left, turn right, and enter the second

door on your right (sign says "Administrative Assistant").
Go forward until you are able to make a left. Then move ahead

until you reach the opposite wall, then make a right. Go

straight, past one staircase and to the next staircase. At the

top of this staircase you will find a fire alarm on your left at

approximately 7ft up.
Follow the person to the kitchen. Then move toward the

bathroom. Next go down the hall to the lounge.

Pick tip the pallet of boxes in the middle and
place them on the trailer to the left.

Table 1.2: Example commands from each of the corpora we have collected.

instead of abstracting actions into a fixed. discrete set.
Finally, taking inspiration from Bugmann et al. [2004] and Levit and Roy [2007],

we take an empirical approach by evaluating our system on corpora of commands,
enabling us to quantify the robustness of the system.

1.3 Technical Approach

The general approach that we take to understanding language from these domains

is to take as input the language and a map of the environment, and compute the

minimum cost plan for the robot. More formally, if we have a set of directions Z:

With your back to the windows, walk straight through the door near

the elevators. Continue to walk straight, going through one door until you

come to an intersection just past a whiteboard. Turn left, turn right, and

enter the second door on your right (sign says "Administrative Assistant").

and we have a map of the environment m, then the goal is to find the lowest cost

plan, F, for the robot to execute:

(1.1)argmin C(F IZ, m)
r

The first thing that you might notice is that given language of the type described

above, it is not at all clear how to compute this cost function C. Mapping from

arbitrary spatial language seems as if it might require arbitrary dependencies between

terms. One of the key ideas of this thesis is to decompose the problem according to

the linguistic structure of the command and learn a cost function over robot plans



that is likely to correspond to a specific natural language command given to the robot.
At training time, we will assume access to a corpus of language paired with robot
plans, while at inference time, we will take advantage of the structure of the problem
in order to find the corresponding robot plan.

1.4 Environmental Semantics

In this thesis, we want to work in real-world environments. In order to map from
language onto structures that the robot can reason about, there must be overlap
between the representations that humans use and those that robots use. In this
work, we assume that a robot is able to acquire semantics about the environment:
in this case the name (e.g., "monitor") and geometric location/shape of an object or
place (e.g. a polygon representing the physical shape of the object). This is not an
unreasonable assumption, since computer vision techniques as a part of the PASCAL
Visual Object Classes (VOC) challenge [Everingham et al., 2010] and the Semantic
Robot Vision Challenge [Meger et al., 2008] have shown promising results on very
challenging datasets and in real-world environments.

We have explored several methods for obtaining these semantics. The first method
is to visually detect objects and then place them into a map of the environment.
We have used a visual object detector from Felzenszwalb et al. [2008], which uses
a mixture of multiscale deformable parts models and has been shown to represent
highly variable object classes and achieves state-of-the art results on the PASCAL
object detection challenges.

However, the object names that are extracted from a visual object classifier may
not give a human-centric conceptualization of the environment. In order to ex-
plore more human-centric conceputalizations. we have also explored a second method,
which involves giving the robot a tour of the environment [Hemachandra et al., 2011].
In this scenario, a robot follows a person, who tells the robot the names of spaces in
the environment. By correlating spoken place names with a space in the map, we can
acquire the human-centric conceptualizations of space such as "CSAIL Headquarters"
instead of specific object types (e.g., "monitor"). Others have been working to extract
human-centric semantics from the environment by extracting text from signs [Posner
et al., 2010]. We have also annotated the semantic map of the environment with the
location and name of objects and places.

The resulting map of the environment along with the semantics is called a semantic
map (Figure 1-2). The semantic map consists of an occupancy grid map of the
environment [Thrun et al., 2008] along with the detections (textual names) and spatial
layout of each of the objects or regions.

1.5 Thesis Statement

Inferring the mapping between spatial language commands and robot actions is best
expressed as the minimization of a cost function that is represented as a learned
probabilistic graphical model.



Figure 1-2: A semantic occupancy grid map that contains the locations and names
of some objects that a robot can detect using a visual object detector.

1.6 Contributions and Organization of Chapters

The remainder of this thesis is organized as follows:

Chapter 2

In Chapter 2 we discuss background work on human-computer interaction using
speech. We find that speech has been shown to increase speed, is often preferred
to other interfaces and can reduce workload on people in human-robot interaction
domains.

We identify grounding as one of the missing components to enabling robust speech
interfaces and describe the grounding problem. We categorize previous work on
grounding into three categories in the context of human-robot interaction. The first
approach is to define a procedural specification of robot action primitives. These ap-
proaches tend to focus on the parsing of language into an intermediate representation
that can then be converted into action primitives. Most do not involve learning. The
second approach is to perform grounding directly in the sensorimotor space of the
robot, which requires. learning directly from language input correlated with the mo-
tor control system of the robot. A final approach is to use learning either as a method
to convert from language into a symbolic representation (which would enable flexible
language to be used) or to learn the mapping from linguistic clauses into the action
space of the robot or perceptual features of the environment (or the environment



itself)

Chapter 3

In Chapter 3, we focus on simple natural language commands such as "Find the
computer." where a person commands the robot to find an object or place and the
robot must infer a corresponding plan. This problem would be easy if we constrained
the set of words that the robot might need to reason about. However, if a person says,
"find the computer," and the robot has not previously detected a "computer," then
it is not clear where the robot should look. We present a method that uses previously
detected objects and places in order to bias the search process toward areas of the
environment where a previously unseen object is likely to be found. The system uses
a semantic map of the environment together with a model of contextual relationships
between objects to infer this plan, which finds the query object with minimal travel
time. The contextual relationships are learned from the captions of a large dataset
of photos downloaded from the Flickr photosharing website.

Simulated and real-world experiments are performed, showing that a small subset
of detectable objects and places can be used to predict the location of previously
unseen objects or places. We also show that the system generates better plans than
a greedy approach for finding certain objects or places.

Chapter 4

In Chapter 4, we take steps toward building a robust spatial language understanding
system for three different domains: route directions, visual inspection, and indoor
mobility. We take advantage of the structure of spatial language in order to break
a command into clauses, and to decompose those clauses into components. For the
command, "Go through the double doors and down the hallway," the component
clauses include "go through the double doors" and "go down the hallway," each of
which further breaks down into fields of a semantic structure. This decomposition
enables the system to understand each component independently, in order to build a
plan for the robot.

A key contribution of this section is to learn the mapping between the language
and robot plans. Instead of pre-specifying the meaning of words such as "the doors,"
"to," or "follow" in the robot's representation, we learn the mapping between the
two. This allows people to use arbitrary combinations of words in order to command
the robot and does not require pre-specification of word meaning. In this section, a
human teacher shows a robot examples of how to perform a task such as "go through
the doors," and the robot learns the mapping between this language and a robot plan.

The learning in this chapter takes the form of a probabilistic graphical model
that is factored into three key components. The first component grounds novel noun
phrases such as "the computers" in the perceptual frame of the robot by exploiting
object co-occurrence statistics between unknown noun phrases and known perceptual
features using the model from Chapter 3. Second, a spatial reasoning component
judges how well spatial relations such as "past the computers" describe the path of the



robot relative to a landmark. Third, a verb understanding component judges how well
spatial verb phrases such as "follow", "meet", "'avoid" and "turn right" describe how
an agent moves on its own or in relation to another agent. Once trained, our model
requires only a metric map of the environment together with the locations of detected
objects in order to follow directions through it. This map can be given a priori or
created on the fly as the robot explores the environment. We have demonstrated our
system on both a robotic wheelchair and a micro-air vehicle.

Chapter 5

In the final chapter of the thesis, we focus on understanding mobile manipulation
commands such as, "Put the tire pallet on the truck." The first contribution of this
chapter is the Generalized Grounding Graph (G3), which connects language onto

grounded aspects of the environment. Unlike Chapter 4, we relax the assumption
that the language has fixed and flat structure and provide a method for constructing
a hierarchical probabilistic graphical model that connects each element in a natural
language command to an object., place. path or event in the environment. The struc-
ture of the G3 model is dynamically instantiated according to the compositional and
hierarchical structure of the command, enabling efficient learning and inference.

The second contribution of this chapter is to formulate the learning problem as a
discriminative learning problem that maps from language directly onto a robot plan.
Because standard parameterizations of the plan space would lead to an environment-
specific model, we instead formulate the learning problem as one of determining
whether the language and plan correspond. This probabilistic model is represented
as a conditional random field (CRF) that learns the correspondence of robot plans
and the language and is able to learn the meanings of complex verbs such as "put"
and "take," as well as spatial relations such as "on" and "to." We have demonstrated
the system on a corpus collected for a robotic forklift, and run demonstrations on a
robotic forklift platform.

Chapter 6

Chapter 6 concludes with the contributions of the thesis and future directions for the
work.

Appendix A

Appendix A gives a review and comparison of the task-constrained corpora that

we have collected, along with the structure of spatial language that is contained

in these corpora for route following, visual inspection, indoor mobility and mobile

manipulation commands.
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Chapter 2

Related Work

This thesis draws on rich basis of work in robotics. machine learning, natural language
processing, cognitive science and artificial intelligence.

2.1 Speech for Human-Robot Interaction

Speech has a strong advantage over other interaction modalities since humans do
not need special training and operators can keep their hands and eyes free for other
tasks. In the human-computer interaction literature, Cohen and Oviatt [1995] char-

acterized the situations where speech can benefit an operator. He listed five main

scenarios: when the operator's hands and eyes are busy, when only a limited interface
is available, when the operator is disabled, when pronunciation is the matter of coin-

puter use, and when natural language interaction is preferred. With the exception
of the fourth criterion, all of these could be said to apply to robots. He proposes a

research direction which applies to this thesis particularly well: "How to select rel-

atively 'closed' domains, for which the vocabulary and linguistic constructs can be
acquired through iterative training and testing on a large corpus of user input." In
this thesis, we have collected four sets of corpora in relatively closed domains.

The benefits of using speech to interact with a computational system go back to

Ochsman and Chapanis [1974], who found that speech has a significant advantage over
typing and that its introduction is the critical component to speeding collaborative

tasks between humans. When pairs of people were working to achieve a task via

typing, video, voice, or a "communication rich" mode, the biggest improvement in

speed to problem solution came with the introduction of voice. Building on this

work, Martin [1989] found that, when compared to other human-computer interfaces,
speech input was both faster than typed input and that it increased user productivity
by providing an additional response channel. Further, subjects were able to complete
more tasks when speech input was available, and typing increased by 30% the time to
execute a command sequence. In addition to efficiency, Rudnicky [1993] showed that

speech can also be a preferred interface to achieve a task, even when other modalities

(scroller, keyboard, or mouse) are present and could achieve the task more efficiently.
However. for many of these early studies, the authors were comparing text to



speech. For speech interfaces to be applied in practice, they must provide a more
intuitive or flexible interface than the alternative: a graphical user interface. In these
domains, speech has faced challenges; Cohen et al. [2000] hypothesized that this is
because people are being asked to speak when other modalities of communication
may be more appropriate. To address this they evaluated a multi-modal interface
that takes advantage not only of speech, but also of other input modalities, and
found a 3.5-fold speed improvement in the interaction time.

It seems that applying these insights to robotics should be straightforward; robots
have limited interfaces, operators often need to keep their hands and eyes free for other
tasks, and one would expect a robust language understanding system to be preferred
to other interfaces. Craparo [2004] focused on the growing need to provide air-traffic
controllers a natural language interface to unmanned aerial vehicles (UAVs). For this
domain, she focused on setup, ingress, re-targeting, and egress tasks for the UAV. In
experiments with a prototype system, she found that there was a consistent decrease
in mental workload, physical demand and effort ratings for controlling UAVs with
speech.

This leads to the conclusion that speech is a promising interface for humans to
interact with robots. In this thesis. we explore the grounding problem in the context
of spatial language understanding. In this thesis, we use the term spatial language
to refer to language where all parts can reasonably be grounded in some aspect of
the environment. To make this more concrete, spatial language will include the
domain of route directions (commands to move from one location in an environment
to another) in conjunction with motion verbs that involve reasoning about the action
of other agents (e.g., "meet") and verbs that require reasoning about action sequences
involving other objects (e.g., "put").

2.2 The Grounding Problem in Human-Robot In-
teraction

Mapping from language onto spatial, semantic, and perceptual features is often
termed the grounding problem, because it addresses the symbol-grounding prob-
lem [Harnad, 1990]. The symbol-grounding problem occurs when meaning is rep-
resented symbolically: a symbol is defined in terms of other symbols, which leads to
circular definitions of the meanings of words or concepts. To make this idea more
concrete, Harnad [1990] uses Searle's Chinese Room Experiment experiment to ask
the question: If a person is only given a Chinese/Chinese dictionary and is asked to
learn Chinese, could they do so? This person would be able to start at one word
in the dictionary and move to the next. However, eventually there would be a set
of foundational words that a person could not understand without reference to the
environment. In this case, the person would pass endlessly from one meaningless
definition to another, never being able to grasp the perceptual meaning of any of the
words. The perceptual aspect is the critical missing piece for these systems; each of
the words (symbols) must be converted onto different aspects of the environment.



There are broadly three different ways that researchers generally perform language
grounding for robotics. The first is to convert the natural language text into a se-
mantic representation (by a pre-specified grammar), which is then manually mapped
to pre-specified robot actions and environmental features. For example, in Levit and
Roy [2007], the authors defined "to," to be:

TO: in a straight line, approach the closest point of a reference object.

This means that anytime a robot sees the word "to" in the language, it should use
this template to define the meaning of "to." In addition, on the language side Dzifcak
et al. [20091 specify a grammar for spatial commands, assuming that the instructions
are complete, grammatical and in the robot's lexicon.

A second approach is to perform grounding directly in the sensorimotor space
of the robot. This entails giving the robot examples of a sensorimotor task paired
with language and learning a controller that achieves a given task. For example,
Sugita and Tani [2005 treat words as a sensory input along with the joint angles of
the robot and learn a recursive controller for the meaning of certain actions in the
space of words and motor primitives. Although this approach shows the promise of
providing a perceptual representation of language thereby enabling a robot to connect

language directly to sensory aspects of the world, these approaches tend not leverage
the linguistic regularities of spatial language.

A final approach is to perform grounding by learning how to extract the basic

clauses from the command and learning the meaning of each clause in the perceptual
representation of the robot. This has the advantage both that the space of commands
need not be pre-specified and that the symbols are grounded in perceptual features
of the environment. At the same time, the learning tends not to be in the direct
sensorimotor space of the robot, but instead in a representation of the physical world,
which enables the system to take advantage of the linguistic regularities while at the

same time abstracting away from the "blooming buzzing confusion" of direct sensory
input.

In the next few sections, we give an overview of systems that have implemented
each of these approaches to understanding spatial language. Many of the papers are
discussed here, but the interested reader may want to consult the following references
as well [Roy and Reiter, 2005, Roy, 2005].

2.2.1 Procedural Approaches to Grounding

Beginning with SHRDLU [Winograd, 1970]. a computational system that provided

a dialog interface to a simulated manipulator robot, researchers have dreamed of a

system where humans could command robots via natural language. At an abstract

level SHRDLU performed reasoning in much the same way as modern systems: lan-

guage is input to the system, is converted onto a semantic structure that represents

the relevant meaning for a robot, and this semantic structure is manually mapped
to robot actions. Even though the mechanism of SHRDLU was fairly complex, it

was one of the most promising Al systems of the time. Even the Lighthill report,



which was particularly critical of Al, cited it with great optimism as a very promis-
ing demonstration of the potential of artificial intelligence [Lighthill, 1973]. However,
there were concerns about the generality of the approach, which led Winograd to
start a new research direction based on a completely different approach [Wilks. 1974].

One of the main challenges of applying logical systems to understand language is
to map between each symbol in the representation and some element of the physical
environment (the symbol-grounding problem). Often, very sophisticated language
understanding systems are created that map onto a pre-defined or fixed action space.
In this section, we focus on systems that take strong advantage of the structure of spa-
tial language, but at the same time use little or no learning, little perceptual feedback,
and often have a fixed action space. These approaches usually involve specifying an
action for each new word or phrase that is present in the natural language command.

Action Primitives for Spatial Language

A number of authors have focused on defining action primitives that, when available,
will enable a robot to execute natural language commands. M5ller et al. [2000]
presents a system that breaks a command down into a starting point, reorientation
commands, path/progression landmarks, and finally the goal. The authors focus not
on translating route directions as given by people, but on route specifications. For
each component in the specification, there is a fixed mapping from each component of
the intermediate representation onto a behavior module that achieves the command.
If the route specification is a landmark, then the behavior is to go straight and not
branch into other rooms. If it is a reorientation component, then the system looks
for the orientation action to execute (e.g., "turn right"). When there are no more
elements in specification, then the goal is assumed to have been reached.

Bugmann et al. [2004] identify 15 sensorimotor primitives in a corpus of spo-
ken natural language directions such as "go," "location-is." "go-until," and "en-
ter-roundabout, " that a robot must have in order to follow route directions. A
corresponding program that enabled the robot to execute the action was implemented
for each primitive. The authors found that their primitives are not a closed class,
which means that more action primitives would need to be written for any new terms.

Roy et al. [2003] and Hsiao et al. [2003] describe a system in which each word,
such as "blue" is defined by hand in a fuzzy way as a scalar value that indicates
how strongly the color of the object matches the expected canonical value of blue.
Similarly, "touch" is defined as the reaching gesture that terminates when the touch
sensors are activated and the visual system reports that the target is in view. Building
on this, Levit and Roy [2007] performed an analysis of verbal commands in terms of
elementary semantic units, and created a set of navigational informational units NIUs,
that break down instructions into components. NIUs include moving around objects,
moving in absolute directions, turning and verifying closeness to a specific landmark.
They manually design prototypes for each rule corresponding to an NIU, which are
handcrafted structures combined with data-driven parameter adaptation.



Natural Language and Formal Approaches

There are also a set of approaches that focus more on the language aspect of the

grounding problem. In particular, some will either convert onto a semantic structure
or will convert the problem to a temporal logic representation for planning. In par-
ticular. Craparo [2004] proposed a natural language interface for air traffic controllers
to coordinate unmanned aerial traffic in the area surrounding an airport. They take
a natural language query, parse it using a context free grammar and then use verb
frames to give each command a semantic representation that is specific to the air-
traffic control domain (e.g., the generated verb frames output headings based on the
verb) and then use a pre-defined mapping from each element onto a database that
contains the current state of the system (rejecting any inconsistent action).

Kruijff et al. [2007] focus on the task of labeling the spatial organization of the
environment (e.g., human-augmented mapping). The authors do this by representing
the spatial organization using spatial entities (e.g., rooms, areas and floors), spatial
aspects (e.g., connected areas). and functional aspects (e.g., a kitchen is used for
cooking). Each command is parsed into a combinatorial categorical grammar (CCC),
and each element in the CCG is mapped onto a set of behaviors that the robot knows
how to execute.

Kress-Gazit et al. [2008] provide a system that converts from "structured" En-
glish onto low-level robot controllers that can execute the corresponding command
by converting language into linear temporal logic via hand-designed rules. The log-
ical representation can then be converted into a hybrid controller for the robot by
assuming that the robot has perfect sensors and access to all necessary information.

Dzifcak et al. [2009] focus on understanding natural language commands by infer-
ring two meanings for each command: the specification of goal states and the means of
achieving the goal state. They develop an incremental parser that takes lexical items
from English with syntactic annotations from a CCG and semantic annotations from
a temporal and dynamic logic and maps them onto dynamic logic expressions that
represent the goals and actions specified by the natural language directive. To convert
from the goals and actions into a plan, the authors, "had an annotated map of the
whole environment and were able to associate locations like 'breakroom' with par-
ticular areas on the map." In addition, they assume that instructions are complete
and grammatical and are in the robot's lexicon, so that words that do not appear
in the logic are unable to be understood. Cantrell et al. [2010] builds on the work
of Dzifcak et al. [2009] by incrementally extracting both goals and actions at the same
time incrementally.

Integrated Approaches

There have been systems that take advantage of both linguistic structures and action
primitives to provide an integrated approach to following commands. The first such
system. MARCO, is an agent that is able to follow free-form natural language route

instructions [MacMahon et al., 2006, MacMahon, 2007]. MARCO consists of six
components: a syntax parser models the surface structure, a content framer interprets



the surface meaning, an instruction modeler combines information across phrases
and sentences, an executor acts to gain knowledge about the environment, a robot
controller executes an action and the view description matcher checks the expected
model with the observed model. When the content framer must convert from the
surface meaning of the instruction onto a procedural specification of the command,
each verb frame in the content frame is associated with a hand-coded procedure based
on the frame arguments and idioms, which is then translated via the executor to a
corresponding plan. Each action is executed via the robot controller using the simple
actions of move, turn, verify, and declare-goal, plus a set of pre- and post-conditions.
For landmarks, a view description models the object's type and location (which side
and how far) within the view relative to the observer, which is matched to a symbolic
representation of that object.

Skubic et al. [2004] focus primarily on a dialog between the robot and a person
about the spatial structure of the environment instead of inferring a plan for the
robot given a natural language command. Spatial modeling is accomplished using a
histogram of forces, which represents the relative spatial position between an object
and the robot. These histograms are converted into a set of features, which are
then converted via a set of hand-designed rules into a three-part linguistic spatial
description: a primary direction, a secondary direction and an assessment of the
description, along with a fourth part which describes the Euclidean distance between
the robot and object.

2.2.2 Sensorimotor Approaches to Grounding

The opposite perspective on grounding language is that language is inseparable from
its sensorimotor experience. The essential premise of Sugita and Tani [2005 is that
semantics are an inseparable process in the process of embodied cognition. In this
work, they present a novel connectionist model that learns the semantics of simple
language through behavioral experiences of the robot. This means that no symbolic
or structural representations were provided a priori, such that the lexicon, syntax and
semantics are treated the same as other input modalities. The types of commands
that they learn are two word sentences consisting of a verb followed by a noun, such
as, "hit center." They show that the structures of situated semantics can organize
on their own using a recurrent neural network with parametric bias nodes (RNNPB).
They perform an off-line training phase that takes the full state of the robot paired
with language and learns the parameters of an RNNPB that minimizes the error of
the training set. Because the learning takes place very close to the percepts, there
is almost no representation of the command other than the words as input (e.g.,
semantics, syntax or otherwise).

In Marocco et al. [2010], the authors study how a humanoid robot can learn to
understand the meaning of action words by physically acting in the environment and
linking the effects of its own actions to the behavior of the objects in the environment.
Specifically, the authors study object manipulation and argue that the dynamics of
manipulating an object can be characterized by the action performed on the object
and the activation of its sensors during the movement and physical interaction with



the object. They explore a simulated humanoid robot, which is controlled by a
recurrent artificial neural network trained on examples via the back-propagation-
through-time algorithm. The learning takes place in the space of linguistic input and
joint encoders. The results indicate that the robot is able to extract sensorimotor
contingencies based on a particular interaction with an object and reproduce its

dynamics by acting on the environment. They show that the robot is able to categorize
the linguistic label correctly given sensorimotor input and the system appears to have
learned a notion of the force-dynamics of interacting with the robot directly from the
sensorimotor space of the robot. In this work, they only learn over three different
linguistic terms directly from the sensorimotor input.

Modayil and Kuipers [2007] describe how a robot can learn about objects from
its own autonomous experience with the continuous world. The authors present a
formalism that represents the ontology of objects and actions, a learning algorithm
and an evaluation with a physical robot. The authors assume that the robot has
already learned the basic structure of its sensorimotor system and has the ability
to construct and use local maps of the static environment. The ontology of objects
is an abstraction of the low level continuous experience of the robot. The symbolic
abstraction consists of trackers, perceptual functions, concepts, and actions. Trackers
track a cluster of sensory experiences as it evolves over time, a perceptual function
generates a percept which represents a property of a tracker over time (e.g., distance,
location, color), a concept is an implicitly defined set of percepts, and an action
contains a description of its effects on the object's percepts, the context where it is
reliable and a control law. Actions are learned via the effects of motor babbling. In
order to understand the high-level task such as, "Place a recycle bin in the center of
the room" an associated goal state where the recycle bin is in the center of the room
is generated and backchaining is used to create reactive plans to change a percept to

a goal value.

2.2.3 Learning Approaches to Grounding

In Section 2.2.1, we saw work where a parser was created that mapped natural lan-
guage onto a semantic structure, which was in turn mapped to a discrete action space
for the robot. Each of the actions corresponding to linguistic terms were hand-coded.
In Section 2.2.2. the exact opposite approach was taken: the meanings of a very lim-
ited number of words were learned, but were inextricably tied directly to the direct

sensorimotor experience of the robot. This means that robot plans were necessarily
represented at the sensorimotor level, but at the same time led to an inability to
understand a wide variety of concepts.

In this section, we give examples of work that lie in the middle of these two. For

these approaches there is generally still some connection to the environment, but it
may be slightly abstracted from the sensorimotor system of the robot. In general,
these approaches have employed learning of action space or learning for the conversion
from language into a semantic representation. This generally has the promise to imake

the system more flexible, since the system can learn the mapping from language onto
its own action space or onto perceptual features of the environment, which we would



hope generalize over environments and tasks.
Ge and Mooney [2005] introduces an approach to understanding RoboCup coach-

ing commands. In this approach. the system learns a semantic parser that converts
from natural language onto a formal meaning representation, which can be used to
coach a RoboCup team. The meaning representation language (MRL) is a detailed,
formal, representation that can be used to interpret commands to coach a RoboCup
soccer team in a simulated soccer domain. By augmenting a state-of-the-art statisti-
cal parsing model to include semantic information, their system is able to integrate
syntactic and semantic clues for robust interpretation. However, a true understand-
ing of the linguistic concepts requires capturing the connection between language and
perceptual aspects of the environment [Mooney; 20081.

Matuszek et al. [2010] builds off of the work of Wong and Mooney [2006]. by
learning the mapping between natural language and the physical environment, as
represented by a topology that is directly extracted from sensor measurements. Their
approach breaks down a natural language command into clauses and learns the map-
ping between each clause and the map layer of the environment using a path descrip-
tion language. This language is an unambiguous synchronous context-free grammar
(SCFG) that describes the basic structure of the problem and does not represent
landmarks or context. Given this SCFG and examples of language/path description
language pairs, the authors use the WASP parser to learn the mapping from nat-
ural language onto a path represented in the path description language [Wong and
Mooney, 2006]. Features used in the learning are a function of the parse tree and in-
clude the number of times a rule has been used in the parse, the number of times that
a word is generated from a word gap, and the total number of words generated from
word gaps. To follow a command, the authors break the command down into clauses
(each clause was created by splitting on pre-defined keywords) and then search in the
learned model for a robot path in the path description language of maximum prob-
ability. The authors evaluate their system on a corpus of commands, assuming that
they have a way to determine when the destination has been reached once a path has
been traversed. On the subset of followable commands, they show that their system
is able to interpret the commands 71% of the time.

Similar to Matuszek et al. [2010], Shimizu and Haas [2009] proposes the goal
of creating a system that can understand instructions given in unrestricted natural
language. They assume access to a topological representation of the world and the
current pose of the robot. Using a path (represented symbolically as a sequence of
actions) paired with linguistic clauses, they learn the mapping between the two using a
conditional random field (CRF). In this work, they treat the grounding of a command
as a sequence labeling problem. The input observations are each word in the language
and the output is an action frame, which describes the action the robot should take at
that moment. Action frames are composed of four slots: whether to go down the hall
and turn at the end or enter the doorway, whether the location is a hallway or a door,
whether to turn left. right or go straight and which ordinal number from one to four
describes where to take the action (e.g., the third door). Instead of concatenating the
values of the frame slots to form one label for each token, they factorize each action
frame and the slots associated with it into a segment, calling this the frame-segment



model. Using only linguistic features, they train the conditional random field (CRF)
and show better performance than a linear-chain CRF on a corpus that they have
collected.

There are approaches that use non-linguistic features, using aspects of the en-

vironment in order to understand linguistic terms. Regier [1992] learns a partially-

structured connectionist model for the acquisition of lexical semantics for specific

spatial terms in a visually-grounded domain. The partially-structured nature of the

network attempts to both enable a human designer to build knowledge of the domain
into the architecture, while at the same time enabling the system to learn which fea-

tures of the environment might be relevant. The set of terms includes spatial relations
such as "above," "below," "to the left of," "to the right of," "through," or "around."
For those lexical terms involving motion, the authors use a static feature detecting
module, the output of which is fed into a motion module that judges how well the

example is described by a particular lexical term up to and including the current
frame of the video. The authors extend their work to include the Attention Vector
Sum (AVS) feature, which characterizes the relative "goodness" of spatial relations

such as "above" [Regier and Carlson. 2001].
Finally, we might want to learn to follow commands with less supervision. Brana-

van et al. [2009] develop a system that uses reinforcement learning to map natural

language instructions onto sequences of executable actions. During training, the

learner constructs action sequences for a set of documents, executes those actions
and then observes the resulting reward. Policy gradient is used to estimate the pa-

rameters of a log-linear model of action selection, which they use to infer actions in

both a Windows troubleshooting domain and a game tutorial domain. Finally, they

show that their system can rival supervised learning techniques, while requiring few
or no annotated training examples.

Building on the work of Branavan et al. [2009], Vogel and Jurafsky [2010] present

a reinforcement learning system which learns to interpret route directions from Map-

Task without requiring semantic annotation. At training time they take as input a

set of dialogs, which are segmented into a sequence of utterances and a map of the

environment, which is composed of a set of named landmarks. The state of the system
is composed of a named landmark, a cardinal direction, and the current utterance.
The action space consists of a landmark together with a cardinal direction. The re-

ward function consists of a hand-crafted combination of features that relate to how

similar an utterance looks like a landmark, whether the expert path moves between

two corresponding landmarks, and whether the system goes to the correct side of the

landmark. Instead of directly representing the state of the world, they convert it into

a set of features so that it might generalize to new environments and then learn the

state-action value function using Q-learning.

2.3 Conclusions

As Mooney [2008] said:

I believe the time is ripe for exploring the task of learning the connec-



tion between language and perception.

In this thesis, we explore the connection between language and low-level features
of the environment. Much of our work is based on features of the physical environment
paired with linguistic structures from spatial language. Unlike previous approaches,
we do not constrain the set of actions to a predefined set and build up the set of
comnands that the system can learn, from landmarks to spatial relations to motion
verbs. Since the inference space is no longer discrete (e.g., it is over paths and
events), inference is more difficult and approximations must be made. Since there
are few constraints on the action space, our system is also able to capture the wide
variability in the meanings of spatial language commands. At the same time, we are
not trying to learn directly from the sensorimotor perceptions of a robot, which gives
us hope that our system will generalize over a wide variety of commands. Finally,
we take inspiration from prior work and evaluate our system on various corpora of
natural language commands [Bugmann et al., 2004, Levit and Roy, 2007, Branavan
et al., 2009, Vogel and Jurafsky, 2010].



Chapter 3

A Model for Grounding
Object-Finding Commands

The goal of this chapter is to understand natural language interactions such as "Find

the computer." where a person commands the robot and the robot must infer a

plan that finds an object or place in the environment. This problem would be easy

if we constrained the set of words that the robot might need to reason about. For

example, if the robot had previously detected a monitor and someone said, "find

the monitor," then the nearest location with a monitor would be a good candidate.

However, if a person says, "find the computer," and the robot has not previously

detected a "computer," then it is not clear where the robot should look. One approach

might be for the robot to search arbitrarily through the environment looking for a

computer cluster (assuming access to a 'computer" detector). However, this search

does not utilize prior information that the robot might have about the environment.

For example, if the robot is searching for a computer and has previously detected

monitors, then we might want to bias the search process toward those areas of the

environment where monitors have been found (since monitors and computers tend to

be spatially correlated).

In this chapter, we propose a system that takes as input a free-form natural

language command such as "Find the computer,*" extracts a landmark word (e.g.,
"computer") and, assuming access to an object or place detector, uses a semantic

map of the environment together with a model of contextual relationships between

objects to infer a plan that finds the query object with minimal travel time. This

process consists of first generating a probability distribution over the likely locations

of a "computer" (as in Figure 3-1) and then planning a path which, although it may

not be the shortest. is the one most likely find the object or place corresponding to

the landmark word. A database of over a million imiage/caption pairs from the Flickr

photosharing website has been downloaded and the captions have been found to have

tags that are spatially co-located. This enables the system build a model of context

and convert from any of the 25,000+ concrete nouns in the English language onto

locations in the environment that are likely to see the corresponding object or place



(a) Probability Map (b) Plan

Figure 3-1: In (a) we show the probability map for the previously unseen object,
"computer." White is a high probability region where a computer may be found and
dark is low probability. Based on the predictions in (a), we can generate a plan that
minimizes the expected time to find a computer in (b).

category1 .
Simulated and real-world experiments are performed, showing that a small subset

of detectable objects and places can be used to predict the location of previously
unseen objects or places with a precision of 95% and a recall of 74% over 10 un-
known object and place types. We also show that the system generates better plans
than a greedy approach for finding certain objects or places. Finally, we provide a
demonstration of the system with automatic object detection, showing that the sys-
tem can correctly plan a path to find previously unseen objects or places in real-world
environments.

Object and place words are one component of spatial language that we study in
Chapters 4 and 5. This chapter, aside from providing a cost function that biases the
search for an object or place, also provides a foundational component for locating
objects or places in the environment that will be useful in subsequent chapters.

3.1 Approach

Recall from Chapter 1.3 that the general approach that we take to understanding
commands is to take a natural language command and a semantic map of the en-
vironment, and compute the minimum cost plan that corresponds to the language.

'The number of objects and places in the English language was estimated to be 25,000 by taking
all the concrete nouns from the WordNet database [Miller et al., 1990]. Biederman [1987] estimated
the number of common object categories to be between 1,500 and 3,000.

--- -_-_ ...........



In this case, the plan, F, will correspond to the path of the robot. We represent

the path F as a sequence of poses (x, y, 9) that describe places that the robot visits,
where x and y are the x and y coordinates in a 2D map and 0 is the orientation. More
formally, if we have a set of directions Z that commands the robot to find an object:

Find the computer.

and a semantic map of the environment m, then the goal is to find the lowest cost
path F that will allow the robot to detect the computer:

arginin C(F IZ, m) (3.1)
r

Instead of arbitrarily searching for a previously unseen object, the goal of this cost
function is to bias the search toward areas that are more promising, using an object
detector to determine when it has found the object or place from the command. Thus,
we would like a cost function that will take advantage of prior knowledge that the
robot has about the environment.

We will therefore define the cost function as the expected length of the path under

the probability of seeing the object along the path. This means that the system will
pick paths that are more likely to find the object earlier, rather than arbitrarily

searching for the object or greedily picking the most likely location and driving there.
If F is the path of the robot, Lr is the length of the path, and F, is the part of the
path up to length 1. then the cost function is:

L

C(F Z, m) A E[Lr] - p(Z1Fi, m) x l (3.2)
l=1

In order to compute the expectation in Equation 3.2, we need a way to connect

objects and places from the language to a particular path through the environment.
Noting that the probability of an object or place is approximately conditionally inde-

pendent of location, since observations that are far away from a location do not effect
the probability of detecting an object or place at the current location. If 74y c F, is
the ith location in the path of length 1, Z is the object or place word, and #4(Z) is

true when the an object or place is visible at location i and false otherwise, then we

can model this as:

p (ZIF1, m) p (#1(Z) = T , T m) x l p (#i(Z) = F ly. m) (3.3)

Thus, we model the probability of a object or place along a path as the probability
of the robot seeing the object or place at the final location that it visits (since it has

already visited all locations I on the way to the destination and not found the object).
In this chapter, we are focused on learning the correlations between objects or places

the robot can see and objects and places that are unknown. We will focus our effort

on a model that does not incorporate sensor error since we use this model directly



in Chapter 4. For models that incorporate sensor error, the interested reader may
consult Kollar and Roy [2009] and Espiniace et al. [2010].

3.1.1 Context

In order to connect prior information that a robot may have with previously unseen
objects, we need a model of context. In Equation 3.3, we can see that we need to model
the probability of objects or places given a particular location in the environment.
However, this distribution involves a previously unseen object or place word Z and
an arbitrary location -y and map m. Let us define the following terms:

* di(Z) true if the object or place corresponding to the landmark word Z is visible
at the i th location in l,

" sy (7, m) E S(?', m), true if object or place type j is detected at location Y in
map m

Instead of using learning directly over locations, we will compute a set of features
corresponding to visible objects from a given location. Given 72 is a location in the
environment, we can now rewrite this distribution as:

p(di(Z)Ii., m) - p('i(Z)| S (i, n)) (3.4)

If we instantiate variables 0 for a particular linguistic term Z = "computer," and
assume that the robot has detected a "monitor" and has not detected a "zebra" in
the environment, then we can write:

p (6i(computer) = TI si(Ti, m) = monitor det., s2(7i, M) = zebra not det.) (3.5)

This is the probability that the object corresponding to the landmark word com-
puter is visible given that it can see a monitor and not a zebra. Note that we condition
on all objects and place terms that the robot has detected in the environment, so that
the system can use negative information such as the fact that the robot has not de-
tected a "zebra" in order to infer that the robot is not outdoors. The model in
Equation 3.5 therefore turns into a problem of learning the contextual relationships
between the existence of an object or place corresponding to a landmark word and
objects detected in the environment.

3.1.2 Learning

One might ask how we are able to learn the probability distribution in Equation 3.4
over the unknown class Z of 25,000+ object or place (landmark) words in the English
language. In order to address this issue. we use the idea of context. In Figure 3-3. if we
have an object detector for the category "monitor," this can tell the system something
about the environment. For example, by detecting a "monitor," we have extracted a
landmark word that corresponds to an object or place in the environment. We might
want to relate this landmark word to other landmark words such as a "computer,"
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Figure 3-2: Two query words and the corresponding counts for the most related
categories from the Flickr database. On the horizontal axis are the raw counts for
the number of times desk or mac appeared with each category on the vertical axis in
the Flickr database. In (b) we are able to query a challenging word mac (a computer
made by Apple), which is often found near desks, screens, keyboards, etc. Further, it
is clear that both query words are spatially co-located with the most related categories
and further that a detectable object (monitor) is strongly related to both query words,
indicating that our system should be able to understand commands containing them.

"keyboard," or "mouse." But each of these landmark words is related to objects
or places that are likely to be spatially co-located. In order to detect the object
"computer," we need both an object detector and also a way of relating things that
the robot has detected to places or objects in the environment. The latter is the focus
of this section: is there a way to acquire relationships between objects or places that
correspond to previously unseen objects or places that the robot was not previously
able to detect to objects or places that the robot can detect? And can we do this on
the scale of all the concrete nouns in the English language?

In order to explore whether whether we could acquire semantics on a large scale, we



Figure 3-3: An example Flickr image: tags are desktop, monitor, computer, keyboard
and mouse

turned to large datasets on the World Wide Web. Specifically, we had the hypothesis
that images on the photosharing website Flickr had tags that corresponded to objects
and places that were spatially co-located, as in Figure 3-3. We download over a
million images with their corresponding captions, performing a dense sampling of the
concrete nouns defined in the WordNet semantic network (e.g., soap, hallway, office).
For each concrete noun, a search was performed on the Flickr site, and the top 1000
hits were downloaded. While not all concrete nouns are landmarks that people use
in the corpora we have collected, the set of concrete nouns does provide a superset of
the set of terms that need to be understood for giving directions.

We hope to see that when a query landmark word corresponded to one of the tags,
then other tags in the image would correspond to objects or places that should be
spatially correlated in the image. In Figure 3-2 we can the results for the desk and
the mac classes. On the vertical axis are the top 20 object classes that co-occur with
the base category (desk or mac) and on the horizontal axis are top 20 most-frequently
occurring tag words. Near the top of the list for desk are computer, keyboard, mouse,
printer, lamp, all things that humans would expect to find with a desk. In addition,
we are not limited to a strict vocabulary. This can be seen by looking at mac in
Figure 3-2(b). Mac refers to a Macintosh computer, and as expected we find that it
co-occurs with desks, computers, chairs and printers.

We use a dataset of tag correlations downloaded from the Flickr photosharing
website in order to learn the distribution in Equation 3.4. We downloaded one million
image captions, which contain a set of tags such as, "computer," "monitor," and



"keyboard." Given a query word, such as "computer," we will remove the query
landmark word Z (e.g., "computer") from the examples. A positive example for the
object word "computer" is "monitor" and "keyboard." A negative example of the
object word "computer" may be "microwave." Using a balanced subset of captions
from Flickr of positive and negative examples of the query word (filtered for objects
that the robot is able to detect), we train the model in Equation 3.4 as a naive Bayes
classifier. The model is able to correlate previously unseen words such as "computer"
in the language with locations in the environment using contextual relationships with
detectable objects such as a "monitor."

3.1.3 Planning

We are now able to use this model in order to compute a plan that minimizes the
expected travel distance to find objects or places that correspond to a given landmark
word. In order to do this, we perform breadth-first search. Because the enumeration of
all paths in a full occupancy grid map of the environment is intractable, we operate in
the medial-axis transform of the map [Blum, 1967, Ballard and Brown, 1982], which
reduces an occupancy grid map into a skeleton [Zhang and Suen, 1984, Gonzalez
and Woods, 1992]. By searching to a fixed depth2 in the medial-axis transform of
the map, the algorithm is able to only expand one or two neighboring locations
during the search. To further reduce search complexity, we only allow paths that
backtrack when a candidate path reaches a dead-end (e.g., at the end of a corridor).
Backtracking enables the planned path for the robot to go into a room, explore it,
and then come back out. In Kollar and Roy [2009], we simulated measurements as
the robot moved, taking into account sensor error and incorporating the value of
additional measurements as the robot backtracks to new locations. If the robot goes
into a room, but finds that it is unlikely to see an object in a given room after a few
measurements, then the probability in Equation 3.3 will be low, leading to little need
for additional information about locations in that room.

Given a robot starting location, the robot position is registered to the closest
location on the medial axis, its neighbors are iteratively expanded, the expected path
length is evaluated, and the path that minimizes the expected path length to find the
object or place corresponding to a landmark word from Equation 3.2 is returned.

3.2 Results

There are two ways to evaluate the approach. The first is a component-wise evaluation
of how well the system predicts previously unseen objects or places over the entire
environment. A second method is to run end-to-end evaluations of the system in

order to evaluate the expected length to find a particular object.

2A depth of 1000 in our experiments.
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Figure 3-4: The above image shows probability maps for ten different unknown object
categories: monitor, cow, shelf, couch, mac, computer, zebra, bottle, desk and soap.
White is higher probability, darker is lower probability for each of these objects. For
each of the objects, we have highlighted the locations where the algorithm correctly
predicted these objects for office, lounge and kitchen areas. For example, we can
see that the algorithm properly locates the soap in the kitchen (we did not map
bathrooms) and that computers are correctly located in office areas.

lounge hallway exit office kitchen

Figure 3-5: The above image shows probability maps for five different unknown place
categories: lounge, hallway, exit, office and kitchen. White is higher probability,
darker is lower probability for each of these places. For each of the places, we have
highlighted the locations where the algorithm correctly predicted these objects for
each place category. For example, we can see that the algorithm properly locates
kitchens and offices, but is unable to locate the exits.

3.2.1 Contextual Model

In order to perform a component-wise analysis of the contextual model, we have
collected a semantic map of the third floor of a building at MIT by manually labeling a
fixed number of objects in the environment. In this particular environment, we labeled
approximately one hundred object types. For each of the categories in Figure 3-4, we
have removed the corresponding object types from the semantic map and evaluated



the probability of a previously unseen object or place Z given a location Y over the
entire map according to Equation 3.4.

In Figure 3-4, we can see queries for the probability of an object or place corre-
sponding to ten previously unseen object or place Z: monitor, cow, shelf, couch, mac,
computer. zebra, bottle, desk and soap. We can see that the mac object is usually
associated with offices, which seems intuitively correct and there is zero probability
of finding a cow in an office-type environment, as expected. zebra shows a slight

probability of appearing in the lounge because the Flickr database had a number of
examples of a "zebra couch".

We can also query the model for the most-probable place type for five different
previously unseen place categories: lounge. hallway, exit, office and kitchen (as in

Figure 3-5). Again, white is higher probability, darker is lower probability for each
of these places. We have highlighted the locations where the algorithm correctly

predicted the place types. For example, we can see that the algorithm properly
locates kitchens and offices, but is unable to locate the exits.

If we run the model on simplified examples, we can see what objects will predict

the unknown objects and places and gain insight into the model. For example, in
Table 3.1, we can see that a monitor predicts a computer, a sofa predicts tables and
living rooms, a microwave predicts food, and a sofa predicts a couch and an armchair.
These predictions tend to match our intuitions.

p(computer) monitor sofa microwave

0.72 True False False
0.02 False True False
0.10 False False True

p(food) monitor sofa microwave

0.03 True False False
0.07 False True False
0.70 False False True

p(couch) monitor sofa microwave

0.01 True False False
0.99 False True False
0.00 False False True

p(table) monitor sofa microwave

0.28 True False False
0.42 False True False
0.12 False False True

p(living room) monitor sofa microwave

0 True False False
1 False True False
0 False False True

p(armchair) monitor sofa microwave

0.0 True False False
1.0 False True False
0.0 False False True

Table 3.1: Example of the probability of an object corresponding to the "computer,"

"table," "food," 'living room," "table," and "armchair," given that the robot is able

to detect the existence (or not) of a monitor, sofa and microwave.

We have also performed an experiment to determine which objects or places corre-

sponding to a landmark word were predicted well using the model of context. We did

this by discretizing the environment (from Figures 3-4) into 21 regions and using the
model to categorize when an object or place was present. If the model predicted that



an object or place was in a region of the map above a threshold and the object or place
was truly present, then we would say that this was a correct prediction (otherwise
it was incorrect). We did this for 10 unknown object categories (e.g., monitor, cow,
shelf, couch, mac, computer, zebra, bottle, desk and soap). We found that the model
correctly predicted that an object was present 95% of the time (e.g., precision), and
also correctly predicted that the object was present in regions that truly contained
the object 74% of the time (e.g., recall). If we exclude the bottle class, the recall
becomes 88%. The precision and recall on a per-class basis can be seen in Table 3.2,
where we find that many unknown objects were predicted with 100% precision. The
model misses a number of bottles and couches (low recall). The model likely misses
bottles because they can be found in many locations, which leads to a diffuse prob-
ability mass over the entire environment. The model likely misses couches because
they tend to be found in unlikely locations in the test environment (e.g., offices).

monitor cow shelf couch mac computer zebra bottle desk soap

precision 0.92 1 0.93 1 1 1 1 1 0.92 1
recall 0.92 1 0.87 0.20 0.91 1 1 0.07 1 1

Table 3.2: Precision and recall for each of the object types. In general, the objects are
well-predicted, although in some cases we miss the object when it should be predicted
(e.g., low recall). This happened for the bottle and couch class, where both classes
were missed a number of times. For the bottle class, this is likely because bottles
occur in many locations, so that it is unlikely to find it in any specific space. For
couches, some of the areas in the environment were office-type environments, so it is
not surprising that these were difficult to predict.

3.2.2 Path optimization results

In this section, we used the approach developed in this chapter to find unknown
objects of various types. We picked a greedy baseline with which to compare our
system, which picks the most likely location over the full map and generates the
corresponding shortest-path plan to that location. In the first set of experiments we
placed the robot at a starting location and computed a plan from the starting location
to find various types of objects. Looking at Table 3.3, we found that the generated
paths using our approach were shorter than those of the greedy approach to find the
object.

Finally, we randomly picked 30 starting locations for the robot and generated
a plan, performing an end-to-end test for the query objects in from Figure 3-4. We
found that our approach had a shorter time to find to find the object for the landmark
phrase "desk" 13% of the time and to the object corresponding to the landmark phrase
"refrigerator" 68% of the time. In the rest of the cases the greedy approach and our
approach had equal objective values, since the shortest-path for greedy approach was
also the one that minimized the expected length of the path, which led the same path
to be generated for both approaches.



(a) Location of known objects registered to the map

Location of computer V

(b) Planned path for an unknown object, computer

Figure 3-6: In (a) we can see the location of the detected known objects registered
to the map. The path shown in this map is the path that the robot took during
data collection. The two locations where monitors were detected are denoted by the
arrows. In (b) we can see the path that our system infers in order to find the unknown
object, computer. The path passes by the places where two computers reside in the
environment.

We also evaluated our techniques on another floor of a building at MIT using a
visual object detector from Felzenszwalb et al. [2008]. We detected three objects as
the robot moved around the floor: chairs, bicycles, and monitors. Some examples of
the classifier output are shown in Figure 3-7. The locations of the object detections
were automatically added to the map, according to where the robot was located as



path length (our approach) path length (greedy)

bottle 11.60m 39.90m
computer 11.53m 23.56m

soap 37.76m 40.39m
couch 18.45m 20.19m

monitor 11.07m 11.10m

Table 3.3: Distance in meters before finding an unknown object or place assuming
access to a detector that can recognize when an object is found. There is a trend
indicating that our approach produces shorter paths.

(a) True positive (Monitor) (b) True positive (Monitor)

(c) True positive (Chair) (d) False positive (Chair)

Figure 3-7: Using the approach in Felzenszwalb et al. [2008], we classify a number of
object categories in an office building at MIT. Above are some of the images classified
correctly and one instance of a false positive. In (a/b) are the two locations where a
monitor was detected in the environment. In (c) is a true positive of a chair while in
(d) is a false positive of a chair.

shown in Figure 3-6(a). Out of a trajectory of approximately 5000 images, there
were 13 false positives, and 64 true positives over all categories. The chair detector
incorrectly detected 13 chairs, while the bicycle detector missed no bicycles (there
were two in the environment) and the monitor detector falsely detected no monitors



(there were two detections).
Based on these three detectors alone, we were able to predict the the location for

the computer and keyboard words, each of which looked qualitatively reasonable. In
Figure 3-6(a) we can see the locations where a monitor is known to be visible based
on the object detections and in Figure 3-6(b) we can see the resulting search path

for a novel object, specifically a computer; the path goes past locations where the
monitor is likely to be, minimizing the expected time to find a computer.

3.3 Conclusions

In this chapter we have focused on simple commands of the form, "Find the com-

puter," where we enable a robot to infer when an object or place will correspond

to previously unseen landmark phrases. One contribution of this work is a model of

context that is learned from the captions of a large dataset of photos downloaded
from Flickr. We demonstrate both simulated and real-world experiments that use a

small subset of detectable objects and places in order to robustly predict the loca-

tion of objects or places that correspond to landmark words. In addition, we have

demonstrated that in certain circumstances the proposed approach finds objects more

quickly than the baseline approach of greedily selecting the most likely location in

the map.
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Chapter 4

A Model for Grounding Route and
Mobility Commands

In Chapter 3, the focus was on understanding where object and places were likely to
be found in natural environments. In this chapter, we build on this work in order to

understand spatial discourse such as, "Go down the hallway and past the elevators,"
which. in addition to landmarks such as "hallway," also involve spatial relations such

as "past" and motion verbs such as "go." The spatial language discussed in this

chapter is challenging because it has only been constrained by the task. This means
that each person may give very different language, the quality of which depends on a

person's linguistic and spatial capabilities (see Figure 1.1) [Denis et al., 1999, Vanetti
and Allen, 1988]. Directions are also difficult because some information tends to be

missing, such as a start or end point and path/progression information [Tversky and
Lee, 1998]. Finally, there are 80 to 100 relation words such as "to" or "around" [Lan-
dau and Jackendoff, 1993]. 47 motion verbs such as "meet" or "follow," [Slobin, 1996],
and 10,000 and 30,000 landmark words [Biederman, 1987], such as "the doors" or "the

hallway." A functional system will need to understand a significant subset of these
words in order to follow commands.

In this chapter we take steps toward building a robust spatial language under-
standing system for three different domains: route following, visual inspection and

indoor mobility. In order to understand spatial language, the system exploits the fact

that spatial language breaks down into component clauses that consist of actions the

agent is meant to execute and landmarks that the agent is meant to see [Denis et al.,
19991. For example, for the command "Go through the double doors and go down

the hallway." there are two clauses: "go through the double doors" and "go down the

hallway." Each of these breaks down into four components: a figure, which is often

implicitly "you", a landmark such as "the hallway," a spatial relation such as "down"

and a verb such as "go." Each component in the command is then formalized into a

semantic structure that we call a Spatial Description Clause (SDC).

In this chapter, understanding a spatial language command involves grounding

Parts of this chapter were performed in collaboration with Stefanie Tellex, Sachi Hemachandra,

Emma Brunskill. Albert Huang and Abraham Bachrach.



a command in a path of the robot and possibly other agents in the environment.
One of the contributions of this chapter is a probabilistic graphical model that has
three key components. The first component grounds novel noun phrases such as "the
computers" in the perceptual frame of the robot by exploiting object co-occurrence
statistics between unknown noun phrases and known perceptual features. These
statistics are computed from a large database of tagged images such as Flickr (as
described in Chapter 3). Second, a spatial reasoning component grounds spatial
relations such as "past." Third, a verb understanding component grounds motion
verbs such as "follow," "meet," "avoid," and "turn right." Once trained, our model
requires only a metric map of the environment together with the locations of detected
objects in order to follow directions through it. This map can be given a priori or
created on the fly as the robot explores the environment.

We evaluate the approach using three corpora. First, we evaluate the system on
over 150 natural language route instructions on two different floors of a building.
Second, we evaluate on forty-nine 3-D inspection commands for a micro-air vehicle.
Finally, we evaluate on an indoor mobility dataset containing verbs of motion such as
"meet", "avoid" and "follow." In route directions, the system can successfully follow
67% and 68% of the directions for two different environments, significantly outper-
forming a baseline that uses only landmark phrases. We also tested our approach
with an exploration-based algorithm that does not have a map of the environment
a priori,. showing that spatial relations improve performance in unknown environ-
ments. In the inspection domain, the highest performing model successfully followed
40% of the directions and up to 70% for two direction-givers. In the indoor mobility
domain, the system followed 70% of the commands and 60% with automatic object
recognition.

4.1 Approach

Recall from Chapter 1.3 that the general approach that we take to understanding
commands is to take as input the language and a map of the environment, and
compute the minimum cost plan that corresponds to this language. More formally,
if we have a set of directions Z that command the robot to navigate through the
environment:

With your back to the windows, walk straight through the door near
the elevators. Continue to walk straight, going through one door until
you come to an intersection just past a white board. Turn left, turn
right, and enter the second door on your right (sign says "Administrative
Assistant").

and a map of the environment m, then the goal is to find the lowest cost path, F,
that corresponds to a plan for the robot that obeys the command Z:

argmin C(I IZ, m) (4.1)
r~



In this chapter, we use a probabilistic model in order to ground the language Z
in a path F through a map m:

C(FlZ,m) A -logp(FIZ,m) (4.2)

Instead of learning directly in the space of paths F, which would require parametriz-
ing the set of paths that the robot can take, we use Bayes rule to rewrite the problem
as the probability of the language Z given the grounding F. This enables the system
to learn over a discrete set of output classes Z given a path F (i.e., features of the

path), which leads to a model that can learn over a continuous valued F. By rewrit-
ing this distribution using Bayes rule, we can define the Generative Grounding Model

(GGM) (because we are learning a generative model of the language) as:

p(F Z, m) oc p(Z|F, m) x p(Fm) (4.3)

The question is now how to take an arbitrary command Z with task-constrained
words, an arbitrary map of the environment, and a path F and learn Equation 4.3
over the arbitrary words and phrases in spatial language.

4.2 The Structure of Spatial Language

In order to model arbitrary spatial commands Z. the system will decompose the
learning and inference problems into independent components, and build these inde-
pendent components into an inference about the most likely plan for a robot. This

decomposition uses the the structure of spatial language, breaking an arbitrary spa-
tial command into clauses that correspond to landmark descriptions and actions that
the agent is meant to execute [Denis et al., 1999]. For example, for the command "Go
through the double doors and go down the hallway." there are two clauses that rep-
resent the actions the agent is meant to execute and the descriptive landmarks that

a robot is meant to see: "go through the double doors" and "go down the hallway."
Each of these clauses breaks down into a figure, verb., spatial relation, and a landmark
[Tversky and Lee, 1998]. For example, a command such as "go down the hallway"
would have a figure that is implicitly "(you)", a verb "go," a spatial relation "down,"
and landmark "the hallway." Imperative verbs such as "go," "put," "turn right" or

"turn left" tell a person what to do or how to do it. For the route following domain,
these verbs were generally variants of "go straight," "turn right" or "turn left" (see
Figure 4-1). Non-static spatial relations such as "past" and "through" describe how

an agent plan should appear relative to these landmarks. Figure 4.1 shows a list of

the spatial relations in English. Landmarks are objects or places that a person is

meant to see along the path to the destination region.
The spatial language collected as a part of this thesis is challenging because the

language has only been constrained to the task and because people have different
linguistic capabilities and representations of space. These aspects lead people to give
very different language for the same task [Denis et al., 1999], and which is generally
either understandable or almost unintelligible depending on these factors (people are



either notoriously good or bad at giving directions). People with good spatial abilities
seem to be generally able to give efficient route directions, which have fewer directional
errors, hesitations and requests for assistance [Denis et al., 1999, Vanetti and Allen,
1988].

In addition, there are three aspects of spatial language that are extremely helpful
for decomposing the model [Denis et al., 1999]. The first is that the natural language
description and the described route share a sequential structure, which means that the
sequence of actions in the language corresponds directly to a sequence of actions that
are meant to happen temporally in the environment'. Secondly, even though descrip-
tive and declarative statements are intertwined, they remain functionally distinct,
which means that each component of the command can be understood independent
of the other components (e.g., "turn right" and "at the intersection" are functionally
separate). This is a form of conditional independence, which will enable us to per-
form learning and inference independently for components of the command. Finally,
landmarks are a significant part of route directions, which means that a system that
cannot reason broadly about landmarks is unlikely to be widely applicable.

4.2.1 Spatial Description Clauses

In order to exploit this structure. we have developed a semantic formalism called a
spatial description clause (SDC). Following the structure stated before, each SDC
corresponds to a clause in the language and itself consists of a figure (the subject
of the sentence), a verb (an action to take), a landmark (an object or place in the
environment). and a spatial relation (a geometric relation between the landmark and
the figure). Any of these fields can be unlexicalized and therefore only specified
implicitly. For example, in the sentence "Go down the hallway." the figure is an
implicit "you," the verb is "go." the spatial relation is "down" and the landmark is
"the hallway."

SDCs are also hierarchical. For the sentence "Go through the set of double doors
by the red couches," the top level SDC has a verb, "go," a spatial relation, "through,"
and a landmark, "the set of double doors by the red couches," while the landmark
contains a nested SDC with figure "the set of double doors," spatial relation "by"
and landmark "the red couches." Figure 4-2(a) shows the hierarchy of SDCs for a
sentence in our corpus.

We annotated the text of 150 directions in our corpus with the SDCs in order to
verify that they are capable of capturing the linguistically expressed structure of the
directions and found that by enabling the system to represent both actions and land-
mark descriptions, the meaning of each of the clauses was correctly preserved [Denis
et al., 1999]. In particular, the annotated SDCs corresponded to the intended meaning
of the command with very few orphaned words (7.29%), virtually all stop words.

Figure 4-1 shows the top ten words that appear in each field of an SDC for the three
corpora presented in this chapter, showing the variety of words used in the corpus.

1 Appendix A describes the structure of spatial language in our corpus in greater detail. We have
found that the actions/language are sequential in 99.6% of the instances in one of our corpora.
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Figure 4-1: A histogram of the most frequent words in each of three corpora for the
spatial relation, verb, and landmark of the SDCs. In (a) is route following, in (b) is
visual inspection and in (c) is indoor mobility. See Appendix A for examples from
each of the corpora.

For route instructions, we can see that motion verbs such as "go," "turn right,"
and "turn left" are most frequent. In addition, we can see that people frequently
refer to a "hallway" and "doors." In the visual inspection domain, which involved
commanding a micro-air vehicle, we can see that commands involved new prepositions
such as "under," and "above" as well as verbs such as "fly up," which require reasoning
about the three-dimensional structure of the environment. For the indoor mobility
domain, which involved more general commands, we can see motion verbs that involve
other agents, such as "meet," "bring" and "take."

Some clauses could not be parsed into the SDC formalism, such as commands not
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to do something, multi-argument verbs, and ambiguous prepositional phrase attach-
ment. Although a number of these limitations will be addressed in Chapter 5, we
have found that SDCs capture important parts of the semantics of route commands
and are able to be extracted efficiently (e.g., a sentence can be parsed in under a
second).

SENTENCE(SDC(v = Continue to walk,
r = straight).

SDC(v = going,
r= through,
1 = one door).

SDC(v = going,
r = until,
I = SDC(f - you,

I = SDC(v =come,
r = to.
I= SDC(f = an intersection,

r just past,
= a whiteboard)))))

(a) Ground Truth

SENTENCE(SDC(v = Continue to walk straight),
SDC(v = going,

r = through,
I = one door),

SDC(r until,
I = you come to an intersection),

SDC(r = just past,
1= a whiteboard))

(b) Automatic

Figure 4-2: Ground-truth and automatically extracted SDCs for the sentence. "Con-
tinue to walk straight, going through one door until you come to an intersection just
past a white board." Here, SENTENCE is the entire sentence, SDC is a spatial
description clause, F is the figure, V is the verb, SR is the spatial relation, and L is
a landmark.

4.2.2 Parser

We would like to develop a parser that converts from natural language into the parse
structure of SDCs. In order to keep the parsing process relatively simple and robust,
we make the approximation that a spatial language command can be represented
as a flat sequence of SDCs (rather than the hierarchy). This is reasonable, because
spatial language tends to have a sequential structure, which means that the sequence



of actions in the language corresponds directly to a sequence of actions that are meant
to happen temporally in the environment [Denis et al., 1999, Tversky and Lee, 1998].
Although we may lose some meaning, as when a single landmark element contains
the text "the door near the elevators", we still retain the meaning that a robot is
meant to go to a place that relates doors and elevators. Figure 4-2(b) shows the flat

sequence of SDCs generated by the parser for one sentence. Although it lacks the
hierarchical structure of the annotated data (as in Figure 4-2(a)), it segments the key
components of each phrase.

In order to extract SDCs from a natural language command, we have trained a
conditional random field (CRF) chunker [Kudo, 2009]. The CRF labels each word
in a command with one of the four possible fields (figure, verb, spatial relation and

landmark), or none. A greedy algorithm groups continuous chunks together into

SDCs. The CRF was trained on a different corpus of route instructions from the one

used in our evaluation. On the test corpus. 60% of the parsed SDCs were found to

correspond exactly to the hand-annotated ground truth. To measure inter-annotator
agreement, a second person annotated the SDCs in our corpus, and also had 60%
agTeement. When the automatic algorithm makes a mistake, it is usually a boundary
problem. for example including the spatial relation and landmark, but excluding the
verb. In these cases, the annotations still contain structured information that can be

used to follow the directions.

4.3 The Generative Grounding Model (GGM)

We can now formally define the approach. If we have a set of directions Z, such as

one to command the robot to move from one location to another:

With your back to the windows, walk straight through the door near
the elevators. Continue to walk straight, going through one door until
you come to an intersection just past a white board. Turn left, turn
right, and enter the second door on your right (sign says "Administrative
Assistant").

and a map of the environment m, then the goal is to find the lowest cost path P that

minimizes a cost function C:

argmnin C(F IZ, m) (4.4)
r

As before, we can now ground the language Z in a path F through a map m as

follows:

C(FIZ,m) A -log p(P Z,m) (4.5)

However, we can now leverage the structure of spatial language, specifically that

an unstructured natural language command Z breaks down into a sequence of SDCs:
SDC1 ... SDCv, where each component SDC will correspond to a part of the overall



path F. each of which we will call a sub-path 7i. This means that we can break the
overall path F into a sequence of sub-paths -y7, writing:

p(FlZ, m) oc p(ZIF, m) x p(Flm) (4.6)

=flp(SDCilyi,m) xp(Flm) (4.7)

We define the following variables:

" Af The text of the figure field of the ith SDC.

" Av The text of the verb field of the ith SDC.

" A' The text of the spatial relation field of the ith SDC.

* A The text of the landmark field of the ith SDC.

" F The path that the robot takes in map m.

" 7y C F The sub-path of the path F associated the ith SDC.

For a phrase such as "through the door," A' is "through." A' is "the door" and
yi is the the path of the robot that goes "through" the some object corresponding to
"the door".

As we noted in Section 4.2, even though descriptive and declarative statements
are intertwined they remain functionally distinct, which means that each component
of the command can be understood independent of the other components (e.g., "turn
right" and "at the intersection" are functionally separate). We can therefore reason
that each field of the SDC is conditionally independent of the others given the ground-
ing 7-y (e.g.. that the grounding of "go" is independent of the grounding of "through
the door"). This enables us to factor this distribution as:

p(SDCiIy , m) = p(Af ly, m) x p(A'Iyim. ) x p(A'i, A', m) x p(Alyi, m) (4.8)

The model has four parts, each corresponding to each field of the SDC, plus the
prior probability on p(Fjm). We model this prior as uniform among connected view-
points in the topological map, together with a constraint that disallows backtracking.
This constraint means that the path is not allowed to revisit any location that it has
previously visited. The following sections describe the other terms.

4.4 Grounding

To implement our model, we need to learn the probability distributions for each of
the components of Equation 4.8. The following sections describe how we compute
the probability of figure, verb, spatial relation, and landmark fields of the SDC given
a sub-path -yi of the grounding F.



Figure 4-3: A map of the environment used to collect our corpus of natural language
directions, together with the automatically extracted roadmap. Each circle is a node
in the topological map.

It is worth noting that proposal groundings -yi are created by searching in a se-
mantic map of the environment that includes the location and shape of objects and
places. In order to make inference imore tractable we reduced the space of robot plans
by inducing a topology on the environment. The system first creates a topological
roadmap from the gridmap of the environment and then searches for a path within
this graph. The roadmap is created by segmenting spaces based on visibility and
detected objects and then extracting a topology of the environment from this seg-
mentation. building on techniques described by Brunskill et al. [2007]. Figure 4-3
shows a floorplan of the environment used in our corpus, together with the nodes
and edges in this roadmap. As a robot path extends through each of the nodes, it
may take on any of the four cardinal directions, which leads to connections in the
topological map that include the Cartesian product of the original topological map
connections and the four cardinal directions. This enables the system to use features
of the orientation of the robot along a path to differentiate the next correct action.
For example, "turn right" might be differentiated from "go straight" only by the fact
that the orientation at the end of the path differs by approximately 90 degrees in
each case.

4.4.1 Grounding the figure and landmark fields

People refer to a wide variety of landmarks in natural language directions, and use
diverse expressions to describe them. In the route following corpus, people utilized
more than 150 types of objects and places in the landmark field of the SDC, ranging



from "the door near the elevators" to "a beautiful view of the domes." Other corpora
used landmarks such as "the stairs" or "the conference room." (Figure 4-1).

In order to learn the probability of a landmark word given a grounding sub-path,
we use the idea of context, as in Chapter 3. By taking a semantic map with the
locations of 21 types of known objects, we can compute the set of visible objects
from the current sub-path 7y. This set of objects can then be used as features to
predict the location of objects or places corresponding to unknown landmark terms.
For example, by seeing an object such as "the monitor," the system can infer that
the landmark word "computer" is likely to appear.

In order to learn the first component in Equation 4.8, we assume we have a set of
features S that includes features si for both detected and undetected objects. These
features are computed with respect to the end of the sub-path 'T. Given a sub-
path -y of the overall grounding path F, and Oi(Z) that is true if the object or place
corresponding to the landmark phrase Z is visible at the final location in the sub-path
'h, we can rewrite the problem as:

p (A' I , mn) = p(#(A' )S (- . mn)) (4.9)

= p((A') sI(y, m) ... sK(-, in)) (4.10)

Note that this is exactly Equation 3.4, where the language Z is replaced with the
text of the landmark field A' or Af.

In Chapter 3, we showed that tags in the Flickr database often corresponded to
objects and places that are correlated in space. This distribution can be learned over
the subset of over a million Flickr captions tags that are detectable in the environment.
By treating each sk as a feature and setting #(Al) to be true when this language
corresponds to the features, we can learn a this distribution. In practice, we have
using formulated the learning problem as one of learning a naive Bayes classifier.
'We have also approximated this distribution by picking the single feature sk that
maximizes the probability in equation 4.10. This is a greedy approximation that
enables the system to reason about the single visible object that is most strongly
related to the query landmark word.

4.4.2 Grounding the spatial relation field

Spatial relations are a closed class of geometric relations between a landmark and the
figure (as in Figure 4-4). The set of spatial relations in English according to Landau
and Jackendoff [1993] can be seen in Table 4.1. To model the spatial relation com-
ponent, we need to compute how well the spatial relation text A' such as "past" is
described by a particular grounding sub-path 7y. Here we focus on spatial preposi-
tions that describe the properties of a path (e.g., "to" or "through") as opposed to
static spatial prepositions (e.g., "at" or "on") that localize an object, since almost all
of the most frequent spatial prepositions in the route following corpus describe a path
(Figure 4-1). Since the command is usually imperative, the command references the
agent as the figure. For example, in "go down the hallway," the figure is implicitly
"(you)." as in "you go down the hallway."



about
above
across
after
against
along
alongside
amid(st)
among(st)
around
at
atop
behind
below
beneath
beside

outside
over
past
through
throughout
to
toward
under
underneath
up

upon
via
with
within
without

Table 4.1: The set of spatial relations in the English language that are not compound,
intransitive, or non-spatial [Landau and Jackendoff, 19931.

Landmark

Start Location

Figure 4-4: An example used to learn the spatial relation "past."

between
betwixt
beyond
by
down
from
in

inside
into
near
nearby
off
on
onto
opposite
out

Path Taken



We will model spatial relations by using the path of the agent as the figure relative
to a (static) landmark, which is represented as a polygon. For example, in Figure 4-
4, the agent takes a path from the start location to the end location relative to the
landmark on the right. This is an example of the spatial relation "past."

However, the grounding sub-path -yj only contains the candidate path of the robot.
Therefore, in order to compute the spatial relation component, we must marginalize
over candidate landmarks. The probability of the spatial relation text A' given the
grounding sub-path -7j, a map m. and landmark text A' can be expanded to marginalize
over the location and type (e.g. "door") of a candidate landmark, oj:

p(A= past A = door, m) = p(A= past|73, oy, m) x p(oyIA' - door. 7y, m)
Of

(4.11)

The marginalization operation here is meant to pick out good candidate landmarks
that correspond to the landmark field text A', in addition to picking out paths relative
to this landmark that are described well by Ai. We do this because the system does
not know which physical door is referred to by the phrase "the door." To speed
the inference, the marginalization operation is only performed over the objects or
places ok that are visible from the current sub-path '-y. To model the second term in
Equation 4.11, we again leverage the Flickr dataset.

To model the first term in Equation 4.11, we introduce a set of features S that
capture the semantics of spatial prepositions and a correspondence variable # which
is true if the path -y and object or place oj corresponds to the language A' and false
otherwise:

p(A ly , oy, n) = p(#(A' )S(-i, o. m)) (4.12)

The features for spatial relations are functions of the geometry of the path and
landmark. The major axis is the axis that corresponds to the line that is defined
by the robot start and end location. The minor axis is defined perpendicular to this
and with the origin at the center of the line segment that defines the major axis.
Therefore, some example features include:

distFigureEndToGround The distance from the end of the robot path to the clos-
est point on the landmark.

distFigureEndToGroundCentroid The distance from the end of the robot path
to the centroid of the landmark.

distFigureStartToGround The distance from the start of the robot path to the
centroid of the landmark.

distFigureStartToGroundCentroid The distance from the start of the robot path
to the closest point on the landmark.

distFigureEndToGround The distance from the end of the robot path to the clos-
est point on the landmark.



displacementFromGround The difference in distance between the start point of
the robot path and the centroid of the ground, and the end point of the robot
path and the centroid of the ground (high if the robot is going away from the
landmark and low otherwise).

centroidToAxesOrigin The distance between the origin of the axes and the cen-
troid of the landmark.

ratioFigureToAxes The ratio of the distance between the start and end points of
the figure and the axes it imposes on the landmark.

angleFigureToAxes The angle between the linearized figure and the line perpen-
dicular to the major axis.

axesLength The length of the axes.

All features are normalized, for example, by the area of the bounding box. More
features can be found in Tellex and Roy [2009].

As before, using a set of features Sk we can learn the the parameters of the model
in Equation 4.12. Although this learning could take other forms. we learned this
distribution as a naive Bayes classifier. The training data comes from a dataset of
manually collected examples that represent the spatial relations "across", "along,"
"through," "past," "around," "to." "out," "towards," "down,". "away from." and
"until." ("Until" is not a spatial relation in general, but we modeled it as one here
because it almost always refers to an arrival event in the route following corpus, as in
"until you come to an intersection just past a whiteboard."). Each example contains
a robot path that matched a natural language description such as "past the door"

(as in Figure 4-4). Positive examples of one spatial relation were taken to be negative
examples of others. Some pairs of spatial relations, such as "to" and "towards," were
excluded from each other's training sets.

If we treat the resulting distribution as a classifier for a particular spatial relation,
then we can evaluate the performance on a held-out test set from this hand-collected
dataset of spatial relations. We can see the performance of the system in Figure 4-
5. In general, the system seems to have learned "past," "to," "towards," "across,"
"until." and "away from." For "along," the system has some difficulty, but is still
better than chance (the line in the figure). Further. we can see both high and low-

scoring examples for a set of spatial relations in Figure 4-6.

4.4.3 Grounding the verb field

For the route direction and inspection domains there were very few verbs that were
not referring to a variant of "go". "turn right" or "turn left." However, when you

ask people for more general commands (e.g., the indoor mobility domain) we find
that people want robots to interact and reason about other agents. For example, in

Figure 4-1, we can see that, in addition to "go," people want the robot to "meet,"
"bring," and "take" people around the environment. This section is about simple
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Figure 4-5: The performance on a held-out corpus of examples for the spatial relation
component of the model. On the horizontal axis of the ROC curve is the false positive
rate (FP) and on the vertical axis is the true positive rate (TP).
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High scoring examples Low scoring examples

"past"

"to" WW
"through"

Figure 4-6: Five high scoring and five low scoring examples that were found in our
data set for several spatial prepositions.

verbs from the route directions domain and additionally about motion verbs that
relate to another agent moving around the environment.

If a verb, such as "go" or "turn right," is only with respect to a single agent (e.g.
the action can be understood just in terms of the robot), then we can perform the same
learning as before, by extracting a set of features S and introducing a correspondence
variable 4 that determines if the language AY corresponds to the motion of the robot
in the sub-path -i, then we can learn this distribution from examples of each motion
verb:

p(Aj = goli, m) = p(4(A = go)|S(yi, m)) (4.13)

However, when verbs refer to the path of both the person and the robot in a
dynamic environment, we must reason about the path of the other agent. For example,
if the verb field of the SDC contains text such as "follow," then the grounding -yi
must include both a robot path -y[ and an agent path y7. In this case, we introduce
a correspondence variable # that is true when agent and robot sub-paths correspond
to the language Av and false otherwise:

p(A = followlyf, y',,m) = p(4(A' = follow)|S(-y, -4, m)) (4.14)

In order to compute features S(71 , 'y-). we take a sequence of windows and compute
low-level features with respect to these windows. Each feature is computed with
respect to the robot paths and person paths for a one-second window with center at
time t. These features include:

MovingTowards(-a, T4, time) MovingTowards(ygi, '-4, t) is true when the agent is
moving toward the robot at time t

MovingTowards(y, y7, time) MovingTowards(-y, 'yi, t) is true when the robot is
moving toward the agent at time t

IsVisible(-yT, -y, time) IsVisible(yT, 'yi9, t) is true when '.4 is visible from '.4 at time
t.
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Figure 4-7: An example used to learn the verb "meet."

IsClose(-y[, -yr, time) IsClose(-y[7, 7 t) is true when the distance between 'y[ and 7y7a
is less than a set threshold at time t.

IsMoving(yr, time) IsMoving(-yi, t) is true when 'yi' is moving at time t.

IsMoving(4, time) IsMoving(y[, t) is true when 'y} is moving at time t.

Computing these low-level features results in a vector of feature values, one value
for each time 0 < t < T. We have computed additional low-level features that involve
the conjunction of two of the low-level features. Finally, in order to compute features
si used in the learning, we take the mean of each of the low-level Boolean features gj
(e.g., g1(7,-yI, t) = IsClose(y[,yia. t)) over all times t:

T

Si(7 yM) =T 47,7,t (4.1-5)
t=1

A corpus of labeled examples for each verb, together with a set S of features si,
was used to train a naive Bayes classifier. Models were learned for the verbs "meet,"
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Figure 4-8: ROC curves showing the performance of distributions for various verbs
when they are treated as classifiers. TP is true positive rate, and FP is false positive
rate. We can see that the system appears to learn the meaning of meet, bring, follow
and avoid in our dataset.

"bring," "avoid," "go" and "follow." An example for the verb "meet" can be seen in
Figure 4-7. We have also explored the meaning of "straight." "turn left," and "turn
right" in terms of the geometry of the path, computing a hand-crafted distribution
for route directions. Performance curves for the verbs trained on a corpus of labeled
examples are shown in Figure 4-8, showing that we can learn models for each of the
verbs in our corpus. In addition, since the features used to learn the verbs are scale-
invariant, we expect that this component is likely to generalize to new environments
and paths.

4.4.4 Performing Inference

Once the model is trained, we expect that our system should be able to infer paths
through any environment since the learning is over domain-independent features.
If the robot has explored the entire area a priori and has access to a map of the
environment, global inference searches through all possible paths to find the global
maximum of the joint distribution. When a full map is unavailable, the robot uses a
greedy local inference algorithm that searches for paths using only local information.

Global inference has been performed using a dynamic programming algorithm [Viterbi,
1967] that finds the most probable sequence of viewpoints (nodes the topological map
with an orientation) corresponding to a given sequence of SDCs. The algorithm takes
as input a set of starting viewpoints, a map of the environment with some labeled
objects, and the sequence of SDCs extracted from the directions. It outputs a series
of viewpoints through the environment, using the model described above to compute
the probability of a transition between two viewpoints. For verbs of motion, since the
predictions that the robot may have about the agent may change over time, we must

recompute the inferred plan whenever the agent does something unexpected. Candi-
date paths for the agent and robot are generated using breadth-first search, starting
from the current location of both and were evaluated according to Equation 4.14.

The local inference algorithm has access only to parts of the map that it has ex-
plored. This algorithm takes as input a partial map of the environment with some
labeled objects, a subset of the SDCs in a command and a starting viewpoint. It



outputs a series of viewpoints through the environment that correspond to the subset
of the command. In this mode, the system starts with first SDC and a partial map
of the environment (its local surroundings) The system then plans the path corre-
sponding to the first part of the command. When an SDC leads to a part of the
partial map that the robot has not seen before, it explores this region, incrementally
growing the map of the environment. The system performs this search, incrementally
adding SDCs, until all the SDCs have been satisfied. Finally, the system picks the
best path in the current partial map of the environment to be the path commanded
and drives to the final destination. We expect global inference to perform better
because it searches through all possible paths to find the one that best matches the
descriptions. However, the local inference is more practical for a real robot. because
it does not require the robot to have built a complete map of the environment before
following directions.

4.5 Evaluation on Route Directions

In order to evaluate the robustness of our system, we measured its performance at
following natural language route directions from our corpus. Because subjects used
many different starting orientations for a given route, we gave the system access to
a set of all reasonable starting orientations that subjects used for each route. We
evaluated how close the system got to the final destination at the final location along
the route, counting a command as correct if the final location was less than 10 meters
from the destination. These results are shown in Table 4.2. Ten meters was selected
because it is qualitatively close to the final destination and allows us to compare to
human performance on this dataset.

% correct

Human Performance 85%
With prior map (global) 67%
Wei et al. [2009] 53%
Last SDC only 48%
Without prior map (local) 40%
Random 0%

Table 4.2: The performance of various models at 10 nieters on 150 directions froni
the first half of the study, which was collected on the 8th floor of the Stata Center at
MIT.

The first thing we notice is that humans are not perfect at giving commands. In
both datasets we found that approximately 15% of the commands were un-followable.
In addition, we found that people were either very good or very poor at giving route
directions (see Appendix A.1.5). The first baseline we implemented was (Random),
which is the distance between the true destination and a randomly selected viewpoint.



The second (Last SDC) returns the location that best matches the last SDC in the
directions. The third baseline (Landmarks Only) corresponds to the method described

by Wei et al. [2009], which performs global inference using landmarks visible from any
orientation in a region, and no spatial relations or verbs. Our global inference model
significantly outperforms these baselines. while the local inference model still has a
large gap between its performance and that of the global and human performance.

We have also tested the system in a different environment (see Figure A-1 for the
different floorplans) using exactly the same model as for another floor. We found
that the system is able to follow directions with approximately the same performance
as the first environment in Table 4.3. Although our system is approaching human

performance, there is still a gap.

% correct
Environment 1 Environment 2

Human Performance 85% 86%
System Performance (global) 67% 68%

Table 4.3: The performance of our models at 10 meters over all commands on the 8th

(Environment 1) and 1st floor (Environment 2) of the Stata Center at MIT. Here we

compare both datasets to human performance.

The most significant improvement in performance over the system from Wei et al.

[2009] comes from the model of verbs as described in Section 4.4.3, suggesting that
the combination of verbs and landmarks is critical for understanding natural language

directions. We were surprised that a simple model of verbs involving only left, right,
and straight, caused a large improvement compared to the effect of spatial relations.

We have also demonstrated our system on a robotic wheelchair in Figure 4-9.

4.6 Evaluation on Inspection

We have also evaluated the system on inspection commands (see Appendix A. 1.2). In
these experiments, people were asked to give commands to a micro-air vehicle (MAV)
in order to inspect certain objects in the environment. This involved commanding
the robot to navigate from a starting location and to a position where the robot could

see the object.

We evaluate how well the system performed by the proportion of inferred paths

that terminate within a certain 2D distance of the target object. Figure 4-10 shows

this metric for each subject as the distance is increased. Performance varied widely
for different subjects: the system successfully followed 71% of the directions from two
subjects to within 10 meters of the object (subjects A and B), but none from another

(subject G). For comparison, we also show the overall performance of an algorithm

that randomly chooses a final destination.



(a) giving directions

(c) going into lounge (d) past the stairs

(e) at destination

Figure 4-9: An example interaction with our system for the navigation command,
"Go through the double doors and past the lobby. Go into the lounge with some couches.
Enjoy the view over there. Go past the spiral staircase. Continue down the hallway with
the cubby holes, but don't go down the hallway. Instead take a right into the kitchen" The
system uses global inference in this interaction.

Examining the differences in the types of language produced by the subjects shows
that the system performed best when the subjects referred to distinctive landmarks
in the environment. Some landmarks can be resolved unambiguously by the system
because that type of landmark appears only once in the environment. Others refer
to relatively unambiguous landmarks for a human, but are not correctly identified by
our system due to its inability to reason about adjectives or ordinal numbers such as
'square" and "concrete" in "the square concrete column" or "circular" in "circular
table." In addition, subjects used multiple scales, which is not currently understood
by the system. For example, in every instance where the system failed on subjects A

(b) inferring double doors
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Figure 4-10: System performance for each subject (black) and across all users (dashed
red) on a corpus of natural language commands collected for the MAV. Each point
represents the proportion of directions followed to within x meters of the true des-
tination. Performance of a system that randomly chooses a destination is shown in
blue for comparison.

and B, the directions included phrases such as "Go... the full length of the building"
or "Proceed all the way down the hallway."

In the case of subject G, the language used was ungrammatical, had no punctua-
tion, and contained many typographical errors. For example, "you will a starcase to
your right [sic]." In addition, the language lacked distinctive landmarks; when dis-
tinctive landmarks existed, they were often misspelled. (e.g., "Queston Mark [sic].")
Most landmarks from this subject were distinguished by color and metrical distances
such as "between the yellow and red wall" and "2 meters," which are not understood
by the current system. Finally, the subject would say "right" when the correct turn
direction was "left." Like humans, our system had trouble following directions with
this type and frequency of ambiguity and errors.

4.6.1 MAV Demonstration

To demonstrate the overall system, we developed an interface that enabled a person
to give directions to the MAV using a speech recognition system or by typing a textual
string. Paths computed by the natural language direction understanding module were
then executed autonomously by the MAV. For this set of experiments, we assume that
the robot has been told about some space names. In particular, for rooms such as
"room 124" or "MIT Libraries," we assume that the robot has been told that the
name of a space is "124" and that there is a "library" in the environment. Examples



(a) (b)

(c) (d)

/ll

Figure 4-11: Example paths (green) executed by the MAV superimposed on a map.
Path start points are marked by blue squares, and end points are marked by red
circles. In (a)-(d) the path is shown from an overhead viewpoint. In (e) both an
overhead and a perspective view are given to illustrate the elevation change of the
MAV. Natural language directions corresponding to each path are given in the text.

of successfully executed paths are shown in Figure 4-11. The directions corresponding
to these paths are:

(a) Go past the library and tables till you see a cafe to the left. Fly past the cafe

lu



Figure 4-12: (left) Photographs of the MAV executing an interactive series of instruc-
tions. (right) Imagery from the on-board camera, transmitted to the operator as the
MAV flies. The commands issued to the MAV are given in the text.

and there will be other eateries. Head into this area.

(b) Stand with your back to the exit doors. Pass the cafe on your right. Make
a right directly after the cafe, and into a seating area. Go towards the big
question mark.

(c) Go straight away from the door that says CSAIL, passing a room on your right
with doors saying MIT Libraries. Turn left., going around the cafe and walk
towards the cow.

(d) Turn right and fly past the libraries. Keep going straight and on the left near
the end of the hallway there is a set of doors that say Children's technology
center. You are at the destination.

(e) Fly to the windows and then go up.

In addition to following individual sets of directions, the vehicle can accept direc-
tions interactively, while relaying on-board camera images and LIDAR measurements
back to the user in real-time. In one such interaction, the vehicle was commanded to



fly past a classroom, collect some video, and return to the user. As the MAV carries
out the directions, on-board sensor data is continuously transmitted back to the user
(as seen in Figure 4-12). The commands given were:

Fly past room 124 and then face the windows.
Go up.
Go back down.
Come back towards the tables and chairs.

4.7 Evaluation on Indoor Mobility

In order to evaluate our system on verbs that involve multiple agents in the environ-
ment, we used the indoor mobility corpus (see Appendix A.1.3). We evaluated our
system on directives that were constructed around combinations of five motion verbs:
"go." "meet," "follow," "bring," and "avoid." For each verb, we collected an evalua-
tion corpus that consisted of approximately ten primitive natural language directives
such as, "Follow the person to the kitchen." and compound commands involving
several phrases such as. "Follow the person to the kitchen. Then move towards the
bathroom. Next go down the hall to the lounge."

On held-out data from this corpus, we used our inference algorithm to control the
robot's activity, given the same information a person had when creating the corpus.
When the behavior of the robot was judged to have followed the natural language
command, then we counted it as correct. When any part of the robot's behavior
did not correspond to the command, then the behavior was judged to be incorrect.
A breakdown of the performance over different verbs can be seen in Table 4.4. In
addition, using annotated object detections, we evaluated the system on 10 compound
commands, and found that comparable performance (60%) on commands involving
two or more verbs.

verb % correct

Go 90%
Follow 80%
Avoid 78%
Meet 70%
Bring 29%

Table 4.4: Breakdown of the performance on specific verbs for on 46 commands and
annotated object detections.

To include the effects of potentially noisy object recognition, we also present re-
sults for creating this semantic map automatically. For the automatically generated
detections, we used the wheelchair robot depicted in Figure 1-1(d), equipped with
a camera and LIDAR to drive around the environment. Then we used an object
detector [Felzenszwalb et al., 2008] to detect six types of objects to seed the map.



Figure 4-13: An object detection of a microwave from the environment.

Figure 4-13 shows the object detector automatically detecting a microwave in the
environment. Results comparing an annotated semantic map to one where visual
object recognition is used are shown in Table 4.5.

map type % correct

Hand 69%
Auto 60%

Table 4.5: Percentage of time that our algorithm followed the language exactly for
various command sets. Hand shows an experiment with 46 commands and annotated
object detections. Auto shows results for 10 commands and a fully automatic object
detector.

The verb "bring" performs much worse than the others in our test set. This
disparity occurs because "bring" events are longer and contain significant non-Markov
information. We hypothesize that one reason is because our algorithm cannot search
deeply enough to find a complete "bring" event in the time available. Optimizing and
parallelizing our system to enable it to search deeper in the plan space could alleviate
this problem.

4.8 Conclusion

In Chapter 4, we have take steps toward building a robust spatial language under-
standing system for three different domains: route directions, visual inspection, and
indoor mobility. We take advantage of the structure of spatial language in order to
decompose it into clauses and to decompose those clauses into components. One
of the contributions of this chapter has been that by using a decomposition of the
spatial language into spatial description clauses (SDCs), we can enable the system
to understand each component of spatial language independently, building a plan for
the robot from its component parts.



A second key contribution of this section is to learn the mapping between the
language and robot plans. Instead of manually specifying the meaning of "the doors,"
"to, Ior "follow" in the robot's representation, we learn the mapping between the
two. This allows people to use arbitrary combinations of words in order to command
the robot and does not require manual specification of word meaning. The learning
in this chapter takes the form of a probabilistic graphical model that is factored
into three key components. The first component grounds novel noun phrases such
as "the computers" in the perceptual frame of the robot by exploiting object, co-
occurrence statistics between unknown noun phrases and known perceptual features
using the model from Chapter 3. Second, a spatial reasoning component judges how
well spatial relations such as "past the computers" describe a plan, including spatial
prepositions that are necessary for 3-D environments. Third, a verb understanding
component judges how well spatial verb phrases such as "follow", "meet", "avoid"
and "turn right" describe a plan. Once trained, our model requires only a metric
map of the environment together with the locations of detected objects in order to
follow directions through it. This map can be given a priori or created on the fly
as the robot explores the environment. We have demonstrated our system on both a
robotic wheelchair and a micro-air vehicle.

We have evaluated the approach using three different corpora. First, we have
evaluated the system on over 150 natural language route instructions on two different
floors of a building. Second, we evaluated the system on forty-nine 3-D inspection
commands for a micro-air vehicle. Finally, we have evaluated on an indoor mobil-
ity dataset containing verbs of motion such as "meet", "avoid" and "follow." In
route directions, the system can successfully follow 67% and 68% of the directions
in two different environments, significantly outperforming a baseline that uses only
landmark phrases. We also tested our approach with an exploration-based algorithm
that does not have a map of the environment a priori, showing that spatial relations
improve performance in unknown environments. In the inspection domain, the high-
est performing model successfully followed 40% of the directions and up to 70% for
two direction-givers. In the indoor mobility domain, the system followed 70% of the
commands and 60% with automatic object recognition. We found that our system is
able to understand verbs of motion such as "follow," "avoid," "meet," "bring." and
"go."



Chapter 5

A Model for Grounding Mobile
Manipulation Commands

In this chapter, we expand the set of language that the system can understand to
mobile manipulation commands such as, "put the tire pallet on the truck." These
commands are difficult to understand because they may involve more than one ar-

gument (e.g., "the tire pallet" and "on the truck") and need to be understood hi-
erarchically. The reader may recall that in Chapter 4, although spatial description
clauses (SDCs) were introduced hierarchically, at inference time the system used a
flat sequence of SDCs to understand a natural language command. This led to a flat
model that grounded each component of spatial language. For example "put the tire
pallet on the truck" might be parsed to the spatial description clause: "V:put, L:the
tire pallet on the truck." This would lead to the wrong meaning of this phrase, since
the verb "put" does not operate on "the tire pallet on the truck," it operates on "the
tire pallet" and moves it to "the truck".

The first contribution of this chapter is the Generalized Grounding Graph (G3 )
which connects language onto grounded aspects of the environment. Unlike Chapter 4,
we relax the assumption that the language has fixed and flat structure and provide
a method for constructing a hierarchical probabilistic graphical model that connects
each element in a natural language command to an object, place, path or event in the
environment. The structure of the G3 model is dynamically instantiated according
to the compositional and hierarchical structure of the command, enabling efficient
learning and inference.

The second contribution of this chapter is a discriminative instantiation of the
Generalized Grounding Graph. In Chapter 4, Equation 4.3, the learning problem was
re-written using Bayes rule, which led to a generative model of the language given
the plan. In this chapter, we propose a, discriminative model that learns the mapping
from language directly onto a robot plan. By introducing a correspondence vector
which determines when a component of the language and the plan correspond, the
system is able to ground commands in the robot's representation without requiring a

Parts of this chapter were performed with Stefanie Tellex, Steven Dickerson, Matthew Walter,
and Ashis Banerjee



Commands from the corpus

- Go to the first crate on the left and pick it up.
- Pick up the pallet of boxes in the middle and place

them on the trailer to the left.
- Go forward and drop the pallets to the right of the

first set of tires.
- Pick up the tire pallet off the truck and set it down.

Table 5.1: Sample commands from the domain created by untrained human annota-
tors. Our system is able to successfully follow these commands.

discrete plan space.
The G3 model described in this chapter is trained on a corpus of natural language

commands paired with groundings for each part of the command, enabling the system
to automatically learn meanings for words in the corpus, including complex verbs such
as "put" and "take." We evaluate our model in the domain of mobile manipulation
and navigation commands given to a robotic forklift, although approach generalizes to
any domain where linguistic constituents can be associated with specific actions and
environmental features. Some examples of commands which our approach correctly
follows can be seen in Table 5.1.

5.1 Approach

Recall from Chapter 1.3 that the general approach we take to understanding com-
mands is to take as input the language and a semantic map of the environment, and
compute the minimum cost plan that corresponds to the language. More formally, if
we have a set of directions Z that command the robot to manipulate and move an
object:

Put the tire pallet on the truck.

and a semantic map of the environment m, then the goal is to find the lowest cost
plan, F, that obeys the command Z:

argmin C(FJZ, m) (5.1)
r

As in Chapter 4, we use a probabilistic model to ground the language Z in a plan
F through a semantic map m:

C(FlZ,m) A-logp(FlZ,m) (5.2)

In this chapter, we would like to learn p(F IZ, m) directly instead of using Bayes rule
(as in Chapter 4, Equation 4.3). Learning p(TjZ, m) directly is challenging because
it involves learning in an arbitrary, continuous plan space. Others have converted the



plan space to a discrete set by defining an action space for the robot [Shimizu and
Haas, 2009]. However, this requires a discrete, hand-selected set of actions the robot
can execute. Another parametrization of the plan space is to compute a fixed set

of plans corresponding to a given environment. However, this leads to environment-
specific learning and inference. What is needed is a discriminative formulation of the
problem that does not discretize the plan space, but at the same time is able to handle
new environments that have a unique spatial layout and arrangement of objects.

We address these issues by introducing a correspondence vector <b that true when
a linguistic term corresponds to the robot plan and false otherwise. By learning
over a correspondence vector instead of a discrete plan space, the system is able to
extract an arbitrary set of domain-independent semantic and geometric features from

the language and plan, which enables the system to perform inference over objects,
places, paths and events in the state space of the robot. This alleviates the need for
an intermediate action space or an environment-specific plan space and promises to
generalize to new environments. since the features used by the system are invariant
to scale and orientation (as in Chapter 4).

More formally, the correspondence vector <b is a Boolean vector that determines
when each component of a plan F and language Z in a given semantic map m corre-

spond:

p (F I Z, m) p p(<b|1F, Z, m) (5.3)

In order to perform learning and inference using this model, we will need to

take advantage of the structure of the the natural language command Z. As in

Chapter 4, we will break down spatial language into a semantic structure called a

Spatial Description Clause (SDC) and use this as a part of the learning and inference.

5.1.1 Spatial Description Clause

Although Spatial Description Clauses from Chapter 4 capture much of the semantics
of spatial language, they do not capture the type of the grounding, which is critical for

understanding manipulation commands such as those in Table 5.1. In this chapter,
we build off of the SDCs from Chapter 4 by collapsing the relation and verb fields

and adding object types. An SDC now corresponds to a linguistic clause with a

figure f, a relation r, and a variable number of landmarks li with one of the following
types [Jackendoff. 1983]:

" EVENT Something that takes place (or should take place) in the world (e.g.,
"Move the tire pallet").

" OBJECT A thing in the world. This category includes people and the robot

as well as physical objects (e.g., "Forklift," "the tire pallet," "the truck," "the
person").

" PLACE Places in the world (e.g., "on the truck," or "next to the tire pallet").

" PATH Paths through the world (e.g., "past the truck," or "toward receiving").



SDC(r = Put,
I-= the pallet on the truck)

(a) Flat Parse

EVENT(r = Put,
1 = OBJ(f = the pallet),
12 PLACE(r on,

I = OBJ(f = the truck)))

(b) Hierarchical Parse

Figure 5-1: A hierarchical and flat parse tree for the command "Put the pallet on
the truck." EVENT corresponds to an EVENT SDC with relation text "put." There
are two OBJECT SDCs (OBJ): one is the first argument to the EVENT SDC and
has a figure field that contains the text "the pallet." The other has a figure field that
contains the text "the truck." Finally, there is a PLACE SDC that is the second
argument to the EVENT SDC.

Each EVENT and PATH SDC contains a relation with one or more core argu-
ments. Since almost all relations (e.g., verbs) take two core arguments or less, we use
at most two landmark fields 11 and 12 for the rest of the chapter.

Given this definition, a general natural language command is represented as a
sequence of SDC trees. An SDC tree for the command "Put the pallet on the truck"
appears in Figure 5-1(b). Leaf SDCs in the tree contain only text in the figure field,
such as "the pallet." Internal SDCs contain text in the relation field and child SDCs
in the figure and landmark fields. For example "next to" in "the pallet next to the
truck"' would correspond to an internal OBJECT SDC with relation "next to" and
child OBJECT SDCs with the figure filled for "the pallet" and "the truck."

Although SDCs in Chapter 4 supported hierarchical parses, a flat parse was used
at inference time. A flat parse for a command can be seen in Figure 5-1(a). This
parse clearly has the wrong interpretation, since "put" does not operate on "the pallet
on the truck," it operates on "the pallet" and moves it to the place represented by
"on the truck." A flat structure was reasonable for route directions because there
was a sequential nature to the commands, which contained only landmarks that the
robot was meant to see and actions that the robot was meant to take. For mobile
manipulation commands, a hierarchical structure is required to enable the system to
represent the relationships between objects, places., paths and events and manipulate
and move objects around the environment. A hierarchical parse for the command,
"Put the pallet on the truck" can be seen in Figure 5-1(b). We have built and use
an automatic hierarchical SDC parser that converts Stanford dependencies into a
sequence of SDC trees [Marneffe et al., 2006].



5.1.2 Factor Graphs

In this chapter, we will use a graphical representation of functions called a factor
graph to visualize the factorization of the probability distribution in Equation 5.3.
Factor graphs are an intuitive way to visually expose the dependencies in a probability
distribution, even for undirected models [Kschischang et al., 2001].

Assuming where Wj(Xj) is a function taking the elements of Xj C {x 1 ... x"} as
arguments and that we have a function:

p(x1 .. . x,,) = f WI (Xj) (5.4)
jEJ

Then a factor graph for this function can be represented as a bipartite graph having
a variable node for each variable xi and a factor node for each function Wj if and only
if xi is an argument of 'j.

For example we can take the classic Bayesian network that models the joint prob-
ability of a sprinkler being on, rain falling outside and the grass being wet:

p(sprinklerrain, grass wet)

= p(grass wetsprinkler, rain) x p(sprinklerlrain) x p(rain) (5.5)

Looking at Figure 5-2, we can see the factor graph for this distribution. This
factor graph has three variable nodes, one for each of "sprinkler," "rain," and "grass
wet." and three factor nodes. The prior probability p(rain) is represented as the
factor node with a single incoming edge that is connected to the variable node "rain."
The probability p(sprinklerIrain) is represented as the factor node with two incoming
edges from "sprinkler" and "rain." Finally, p(grass wet sprinkler, rain) is represented
as a factor node with incoming edges from "grass wet," "sprinkler," and "rain."

Given this factor graph, we can infer that a relationship exists between the in-
coming variables to a factor node. For example, we might derive the intuition that
the grass is wet because its either raining or the sprinkler was on. Alternatively, we
might infer that the sprinkler is not on if it is raining. Although a factor graph is
not as direct at representing causal relationships as a directed Bayesian network, it
is more intuitive when representing relationships between variables in an undirected
graphical model (as in this chapter).

5.1.3 Generalized Grounding Graph

Ve can now present an algorithm for constructing the Generalized Grounding Graph
(G 3) according to the linguistic structure defined by a tree of SDCs. We define a
plan F to be the set of all groundings 7y for a given command. In order to allow for
uncertainty in the groundings. we introduce a binary correspondence vector <b; each

ei E CD is true if 7j E F is correctly mapped to part of the natural language command.
The induced G3 for a given command factorizes the distribution from Equation 5.3



sprinkler

Q grass wet

Figure 5-2: A simple factor graph that represents the joint probability distribution
from Equation 5.5. The first element corresponds to the factor in the center of the
graph. The second element corresponds to the factor between sprinkler and rain. The
third element corresponds to a prior over rain and is at t6p right.

by creating a factor IT for each SDC and candidate grounding in the hierarchy:

p(D Z. F, m) =p(<b SDCs, F, m)

= f4 Wi(#i, SDCF, m) (5.6)

where Z is the normalization constant.
We define the variables in the model as follows:

0 #i True if the grounding yi corresponds to ith SDC.

" Af The text of the figure field of the ith SDC.

* Ar The text of the relation field of the ith SDC.

*f 11 12 Th" -y , -y; 2 E F The groundings associated with the corresponding field of the
ith SDC: the robot or object state sequence or a location in the semantic map.

Looking at Equation 5.6, we can see that the model has a factor for each SDC in
the parse. For each leaf SDC or internal SDC, the model has a factor that will take
different arguments according to its location in the tree and the number of landmark
fields in the SDC. The dynamically generated factors 4V fall into two types:

" Y(#i, Af,7y) for leaf SDCs.

SIF(#i, A',y7,71) or ( Ar, f for internal SDCs.

Leaf factors always correspond to an OBJECT or PLACE SDC and operate over
the correspondence variable #i, the figure text Af and a unique grounding -Y7. An
internal factor corresponds to an OBJECT, PLACE, PATH, or EVENT SDC which
always has text in the relation field. These operate over the correspondence variable

rain



Figure 5-3: Four SDC parses. In 5-3(a), the language is "the truck," in 5-3(b) the
language is "the pallet on the truck," in 5-3(c) the language is "on the truck," and
in 5-3(d) the language is "to the truck." The corresponding generalized grounding
graphs for each parse are in Figure 5-4(a-d), respectively.

#, relation text Ar. and the candidate groundings < and gyi (and optionally - 42)

corresponding to the figure and landmark fields of an SDC. Each of the factors from
Equation 5.6 is modeled as a conditional random field in which each factor T takes
the following form [Lafferty et al., 2001]:

q(eg, SDC. F) = exp /Ipsk(#, SDCi. F) (5.7)
(k

Here, sk are feature functions that take as input the correspondence variable, an
SDC and a set of groundings and output a binary decision. The yk are the weights
corresponding to the output of a particular feature function.

At training time, we observe SDCs, groundings F, and the output variable <b. In
order to learn the parameters pM that maximize the likelihood of the training dataset,
we compute the gradient and use L-BFGS to optimize the parameters of the model
via gradient descent. When inferring a plan., we optimize over F given fixed values
for the correspondence vector <b and the SDCs.

5.1.4 Examples

In Figure 5-4 are four examples of generalized grounding graphs for OBJECT. PLACE,
and PATH SDC trees from Figure 5-3. Figure 5-4(a) exhibits a leaf factor, where Af
corresponds to the text "the truck," 71 corresponds to a physical object in the robot's
representation (e.g., the physical truck), and 41 is true when the grounding is the same
as the text (e.g., the language Af is "the truck" and T1 is the object that corresponds
to the truck).

In Figure 5-4(b), the command is "the pallet on the truck." In this case. we have
two leaf OBJECT SDCs (as in Figure 5-4(a)). Here A', "on," is a part of a factor
that, relates the groundings for these leaf OBJECT SDCs, -1 and 72. which are two
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objects corresponding to a pallet and a truck, respectively. Thus, if 03 is true, then
71 and 12 should be in a configuration that corresponds to the text "on."

In Figure 5-4(c), the command is "on the truck." In this case, the G3 model is
represented as the place in the environment (72) that is "on" the object named "the
truck." We have an OBJECT SDC as in Figure 5-4(a) to ground the truck. Then,
A is the text "on," 72 represents a place in the environment corresponding to "on,"
and the 02 is true when the place grounding 12 and truck grounding Y1 correspond
to the relation "on."

Finally, in Figure 5-4(d). the command is "to the truck." The difference between
this model and Figure 5-4(c) is that now the grounding 72 is a path for the robot that
corresponds to the text A', which is "to." At inference time, the system will search
over state sequences of the robot relative to the object, "the truck."

EVENTs are more complex, because in general they may have one or two argu-
ments. Figures 5-5 and 5-6 show the SDC trees and induced factor graphs for two
similar commands: "Put the pallet on the truck" and "Go to the pallet on the truck."
In the first case, "Put" is a two argument verb that takes an OBJECT and a PLACE.
The model in Figure 5-5(b) connects the grounding 13 for "on the truck" directly to
the factor for "Put." In the second case, "on the truck" modifies "the pallet." For
this reason, the grounding 14 for "on the truck" is connected to "the pallet."

5.1.5 Features

To train the model the system extracts binary features sk for each factor. These
features enable the system to determine which aspects I correctly ground to a given
SDC. There are two main types of features used in this model: semantic and geo-
metric.

Geometric features generally enable the system to understand relations between
paths, events, places, and objects. For a relation such as "on,"' a natural geomet-
ric feature is whether the figure grounding is supported by the landmark ground-
ing. However, the feature supports(f, y') alone is not enough to enable the model
to learn that "on" corresponds to supports(yf, '). Instead we need a feature like
supports(1 f, ) \ "on' E Ar. More generally, we implemented a set of base fea-
tures involving geometric relations between the yi. Then to compute features sk we
compute the Cartesian product of base features crossed with the presence of words
in corresponding fields of the SDC. Although many features between geometric ob-
jects are continuous rather than binary valued, we discretize continuous features into
uniform bins.

For OBJECTs and PLACEs, geometric features correspond to relations between
two three-dimensional boxes in the world. All continuous features are first normal-
ized so they are scale invariant, and then discretized to be a set of binary features.
Examples include

e supports( f, Y4). For "on" and "pick up."

* distance('f, j). For "near" and "by."



EVENTi(r = Put.
1 = OBJ 2 (f =the pallet),
12 = PLACE3 (r = on,

1 = OBJ 4 (f = the truck)))

(a) SDC tree

(b) Induced Model

p(<D|I'. SDCs) x 'If1(1 71, 2, 73. Ar = Put) x F2(# 2. 72, Af = the pallet)
Z12

x 3(#3-73, 7 Ar = on) x I 4 (44, '74. A = the truck)

(c) Factorization

Figure 5-5: In (a) is SDC tree for "Put the pallet on the truck." In (b) is the induced
graphical model and factorization.

* avs(f.j). ~For "in front of" and "to the left of." Attention Vector Sum
(AVS) [Regier and Carlson, 20011, measures the degree to which relations like
"in front of" or "to the left of" are true for particular groundings.

For commands such as "to the left," or "to the right," we compute a set of ge-
ometric features designed to capture various frames-of-reference in the environment.
For example, we compute the AVS feature over all four cardinal directions and three
frames of reference: the agent's starting orientation, the agent's ending orientation,
and the agent's average orientation during the action sequence. This enables the
system to learn the mapping from words onto a particular frame of reference.

For PATH and EVENT SDCs, groundings correspond to the location and tra-
jectory of the robot and any objects it manipulates over time. Base features are

"Put

"on'

p2

"the truck"



EVENT1(r = Go
I = PATH2(r = to,

I OBJ 3(f = OBJ 4 (f the pallet),
r = on,
I = OBJ 5 (f = the truck))))

(a) SDC tree
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(b) iduced Model

p(Chf, D~s)=- 91(1,7, 2 A- =G) X T2(62, 2 A' = to)

(3, 3,74 , Ar = on) X 4(#4, 74. Af = the pallet)
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(c) Factorization

Figure 5-6: In (a) is the SDC tree for "Go to the pallet on the truck." In (b) is a
different induced factor graph frorn Figure 5-5. The structural differences between
the two models are highlighted in gray.

computed with respect to the entire motion trajectory of a three- dimensional object
through space. Examples include:

" The displacement of a path toward or away from a ground object.

" The average distance of a path from a ground object.



Other geometric features are derived from those in Chapter 4.
Besides geometric features, the system must have semantic features that map

noun phrases such as "the wheel skid" to a physical object in the world that might
have a different label, such as "tire pallet."' To address this issue we introduce a
second class of base features that correspond to the likelihood that an unknown word
actually denotes a known concept. The system computes word-word similarity using
WordNet as well as from co-occurrence statistics obtained by downloading millions of
images (and corresponding tags) from Flickr (as in Chapter 3). These base features
correspond to similar(Af, labels('})), where "labels" gets the name of a place or
object grounding.

We select 49 base features for leaf OBJECT and PATH SDCs, 56 base features
for internal OBJECT and PATH SDCs, 112 base features for EVENT SDCs and
47 base features for PATH SDCs for their relevance in understanding the semantics
and geometry of the groundings. This translates to 147,274 binary features after the
Cartesian product with words and discretization.

5.1.6 Inference

Given a command. we want to find the set of most probable groundings. During
inference, we fix the values of <D and the SDCs and search for groundings F that max-
imize the probability of a match, as in Equation 5.6. Because the space of potential
groundings includes all permutations of object assignments, as well as every feasible
sequence of actions the agent might perform, the search space becomes large as the
number of objects and potential manipulations in the world increases. In order to
make the inference tractable, we use a beam search with a fixed beam-width in order
to bound the number of candidate groundings considered for any particular SDC. For
OBJECT and PLACE groundings. the beam width is ten, for PATH and EVENT
groundings the beam width over candidate state sequences is five and for transitions
between sequential SDCs the beam width is two.

A second optimization is that we search in two passes: first the algorithm finds
and computes the probability of candidate groundings for OBJECT and PLACE
SDCs, and then uses those candidates to search the much larger space of robot action
sequences, corresponding to EVENTs and PATHs. This optimization exploits the
types and independence relations among SDCs to structure the search so that these
candidates need to be computed only once, rather than for every possible EVENT. In
the example in Figure 5-5(b), this optimization would cause the system to first search
for groundings of "the pallet" and "the truck" and then searching for the grounding
for the PLACE SDC, "on the truck," and finally searching for an EVENT grounding
for "put."

Once a full set of candidate OBJECT and PLACE groundings is obtained up to the
beam width, the system searches over possible action sequences for the agent, scoring
each sequence against the language in the EVENT and PATH SDCs of the command.
In the example in Figure 5-5(b), the system would search over actions the robot can
take with the pallet relative to the place that is "on the truck."' After searching
over potential action sequences, the system returns a set of object groundings and



(c) Put it on the truck

Figure 5-7: A sequence of the actions that the forklift takes in response to the com-
mand, "Put the tire pallet on the truck." In (a) the search grounds objects and
places in the world based on their initial positions. In (b) the forklift executes the
first action, and picks up the pallet. In (c) the forklift puts the pallet on the trailer.

a sequence of actions for the agent to perform. Figure 5-7 shows the actions and
groundings identified in response to the command "Put the tire pallet on the truck."

5.2 Evaluation

To train and evaluate the system, we collected a corpus of mobile manipulation com-

mands paired with robot actions and environment state sequences. We use this corpus
to train the G3 model and also to evaluate end-to-end performance of the system at
following realistic commands from untrained users.

5.2.1 Corpus

To quickly generate a large corpus of examples of language paired with robot plans, we
posted videos of action sequences to Amazon's Mechanical Turk (AMT) and collected
language associated with each video. The videos showed a simulated robotic forklift
engaging in an action such as picking up a pallet or moving through the environment.
Paired with each video, we had a complete log of the state of the environment and the
robot's actions. Subjects were asked to type a natural language command that would
cause an expert human forklift operator to carry out the action shown in the video.
We collected commands from 45 subjects for twenty-two different videos showing the
forklift executing an action in a simulated warehouse. Each subject interpreted each
video only once, but we collected multiple commands (an average of 13) for each
video.

Actions included moving objects from one location to another, picking up objects,
and driving to specific locations. Subjects did not see any text describing the actions
or objects in the video, leading to a wide variety of natural language commands
including nonsensical ones such as "Load the forklift onto the trailer," and misspelled
ones such as "tyre" (tire) or "tailor" (trailer). Example commands from the corpus

(a) Object groundings (b) Pick up the pallet



are shown in Table 5.1.
To train the system, each SDC must be associated with a grounded object in

the world. We manually annotated SDCs in the corpus, and then annotated each
OBJECT and PLACE SDC with an appropriate grounding. Each PATH and EVENT
grounding was automatically associated with the action or agent path from the log
associated with the original video. This approximation is faster to annotate but leads
to problems for compound commands such as "Pick up the right skid of tires and
place it parallel and a bit closer to the trailer." where each EVENT SDC refers to a
different part of the state sequence.

The annotations above provided positive examples of grounded language. In order
to train the model, we also need negative examples. We generated negative examples
by associating a random grounding with each SDC. Although this heuristic works
well for EVENTs and PATHs, ambiguous object SDCs such as "the pallet" or "the
one on the right," are often associated with a different, but still correct object (in the
context of that phrase alone). For these examples we re-annotated them as positive.

5.2.2 Cost Function Evaluation

Using the annotated data, we trained the model and evaluated its performance on a
held-out test set. At this stage, we are assessing the model's performance at predicting
the correspondence vector given access to SDCs and groundings. The test set pairs
a disjoint set of scenarios from the training set in the same warehouse with language
given by subjects from AMT.

SDC type Precision Recall F-score Accuracy

OBJECT 0.93 0.94 0.94 0.91
PLACE 0.70 0.70 0.70 0.70

PATH 0.86 0.75 0.80 0.81
EVENT 0.84 0.73 0.78 0.80

Overall 0.90 0.88 0.89 0.86

Table 5.2: Performance of the learned model at predicting the correspondence vector
<b.

Table 5.2 reports overall performance on this test set, with performance broken
down by SDC type. The performance of the model on this corpus indicates that
it robustly learns to predict when SDCs match groundings from the corpus. We
evaluated how much training was required to achieve good performance on the test
dataset and found that the test error asymptotes at around 1,000 (of 3,000) annotated
SDCs.

For OBJECT SDCs, correctly-classified high-scoring examples in the dataset in-
clude "the tire pallet," "tires," "pallet." "pallette [sic]," "the truck," and "the trailer."
Low-scoring examples included SDCs with incorrectly annotated groundings that the
system actually got right. A second class of low-scoring examples were due to words
that did not appear many times in the corpus.



For PLACE SDCs. the system often correctly classifies examples involving the
relation "on," such as "on the trailer." However. the model often misclassifies PLACE
SDCs that involve frame-of-reference. For example, "just to the right of the furthest
skid of tires" requires the model to have features for "furthest" and the principal
orientation of the "skid of tires" to reason about which location should be grounded
to the language "to the right," or "between the pallets on the ground and the other
trailer" requires reasoning about multiple objects and a PLACE SDC that has two
arguments.

For EVENT SDCs, the model generally performs well on "pick up," "move," and
"take" commands. The model correctly predicts commands such as "Lift pallet box,"
"Pick up the pallets of tires," and "Take the pallet of tires on the left side of the
trailer." We incorrectly predict plans for commands like, "move back to your original
spot," or "pull parallel to the skid next to it." "parallel" only appeared in the corpus
twice, which was probably insufficient to learn a good model. "Move" probably had
few good negative examples. since we (lid not have paths in which the forklift did not
move in the training set to use as contrast.

5.2.3 End-to-end Evaluation

The fact that the model performs well at predicting the correspondence vector from
annotated SDCs and groundings is promising, but does not necessarily translate to
good end-to-end performance when inferring the groundings associated with a natural
language command (as in Equation 5.1).

To evaluate end-to-end performance, the system inferred plans given only coim-
mands from the test set and a starting location for the robot. We segmented com-
mands containing multiple top-level SDCs into separate clauses, and utilized the gen-
erated G3 model to infer a plan and a set of groundings for each clause. Plans were
then simulated on a realistic, high-fidelity robot simulator from which we created a
video of the robot's actions. We uploaded these videos to AMT, where subjects viewed
the video paired with a command and reported their agreement with the statement,
"The forklift in the video is executing the above spoken command" on a five-point
Likert scale. We report command-video pairs as correct if the subjects agreed or
strongly agreed with the statement, and incorrect if they were neutral, disagreed or
strongly disagreed. We collected five annotator judgments for each command-video

pair.
To validate our evaluation strategy, we gave known correct and incorrect command-

video pairs to subjects on AMT. In the first condition. subjects saw a command paired
with the original video that a different subject watched when creating the command.
In the second condition. the subject saw the command paired with random video that
was not used to generate the original command. Table 5.3 depicts the percentage of
conmand-video pairs deemed consistent for the three conditions. As expected, there
is a large difference between commands paired with the original and randomly selected
videos. Despite the diverse and challenging language in our corpus, new annotators
agree that commands in the corpus are consistent with the original video. These
results show that language in the corpus is understandable by a different annotator



and that some people are still bad at giving commands (e.g., 9% of the commands
were un-followable).

Scenario Precision

Commands paired with original video 91% + 1%
Commands paired with random video 11% ± 2%

Table 5.3: The fraction of end-to-end commands considered correct by our annotators
for known correct and incorrect videos. We show the 95% confidence intervals in
parentheses.

We then evaluated our system by considering three different configurations. Serv-
ing as a baseline, the first consisted of ground truth SDCs and a random probability
distribution, resulting in a constrained search over a random cost function. The sec-
ond configuration involved ground truth SDCs and our learned distribution, and the
third consisted of automatically extracted SDCs with our learned distribution.

Due to the overhead of the end-to-end evaluation, we consider results for the top
30 commands with the highest posterior probability. In order to evaluate the rele-
vance of the probability assessment. we also evaluate the entire test set for ground
truth SDCs and our learned distribution. Table 5.4 reports the performance of each
configuration along with their 95% confidence intervals. The relatively high perfor-
mance of the random cost function configuration relative to the random baseline for
the corpus is due the fact that the robot is not acting completely randomly on account
of the constrained search space. In all conditions, the system performs statistically
significantly better than a random cost function.

The system performs noticeably better on the 30 most probable commands than
on the entire test set. This result indicates the validity of our probability measure,
suggesting that the system has some knowledge of when it is correct and incorrect.
The system could use this information to decide when to ask for confirmation before
acting.

Scenario Precision

Annotated SDCs (top 30). learned cost 63% 8%
Automatic SDCs (top 30). learned cost 54% ± 8%

Annotated SDCs (all). learned cost 47% 4%
Annotated SDCs (all), random cost 28% ± 5%

Table 5.4: The fraction of commands considered correct by our annotators for different
configurations of our system.

The system qualitatively produces compelling end-to-end performance. Even
when the system gets a command wrong, it often gets parts of it right. For ex-
ample, it might pick up the left tire pallet instead of the right one. Other factors
include ambiguous or unusual language in the corpus commands, such as "remove the



goods" or "then swing to the right," that make the inference particularly challenging.
Despite these limitations, however, our system successfully follows commands such as
"Put the tire pallet on the truck," "Pick up the tire pallet" and "put down the tire
pallet" and "go to the truck," using only data from the corpus to learn the G3 model.

Although we conducted our evaluation with single SDCs, the framework supports
multiple SDCs by performing beam search to find groundings for all components in
both SDCs. Using this algorithm, the system successfully followed the commands
listed in Figure 5.1. These commands are more challenging than single SDCs because
the search space is larger, there are often dependencies between commands, and these
commands often contain unresolved pronouns such as "it."

Our system is one step toward robust language understanding systems, but many
challenges remain. One limitation of our approach is the need for annotated training
data. Unsupervised or semi-supervised modeling frameworks in which the object

groundings are latent variables have the potential to exploit much larger corpora
without the expense of annotations. Another limitation is the size of the search space;
more complicated application domains require deeper search and more sophisticated
algorithms. Our model provides a starting point for building dialog systems, because
it not only returns a plan corresponding to the command. but also groundings for
each component in the command with confidence scores.

5.3 Conclusion

In this chapter we presented an approach to understand mobile manipulation com-
mands. Building off of the work in Chapter 4. where the system extracted a flat
semantic structure from the language, in this chapter a hierarchical semantic struc-
ture enables the system to factor the learning and inference and ground each linguistic
component in an element of the environment (e.g., an object., place, path, or event).
In addition, we have introduced the generalized grounding graph (G3), which enables
a system to automatically instantiate a probabilistic graphical model for grounding
spatial language. The system automatically learns the meanings of complex manipu-
lation verbs such as "put" and "take," from a corpus of natural language commands
paired with correct robot actions as well as spatial relations such as "on" and "to."
We demonstrate promising performance at following natural language commands.
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Chapter 6

Conclusions

This thesis has focused on understanding unconstrained natural language commands,
where a person gives an arbitrary natural language command to the robot and the
robot infers and executes the corresponding plan.

In this thesis, we have built on the state of the art in two significant ways. First. we
have provided a flexible semantic structure that is able to understand task-constrained
spatial natural language commands. The representation is inspired both by the struc-
ture of spatial language [Denis et al., 1999] and by the need to keep a flexible rep-
resentation that still has the ability to capture the breadth of the language in cases
where the language is un-grammatical or challenging to parse. Further, we learn the
mapping from the language onto this semantic structure.

Secondly, we have provided a set of models that enables a robot to learn the
mapping from spatial language onto an unconstrained action space, which enables
the system to reason about a wide variety of language. The models described in this
thesis predict the state sequence of the robot (e.g., its path relative to other objects or
places) given a natural language command, which means that an action specification
is no longer in symbolic form, but now in terms of the language and states of the
robot (e.g.. "to" in "to the kitchen." means that the physical path of the robot ends
near the kitchen). Thus, the system is able to learn the meanings of words in terms of
spatial and semantic aspects of the environment, instead of abstracting actions into
a fixed, discrete set.

In Chapter 4 and Chapter 5 we have taken a corpus-based approach to evaluate
our system, enabling us to quantify its robustness.

6.1 Summary of Contributions

Chapter 3 has focused on simple commands of the form, "Find the computer cluster,"
enabling the system to infer the corresponding plan. We have learned a model of
context from the captions of a large dataset of photos downloaded fron Fliekr and
demonstrated both simulated and real-world experiments that use a small subset of
detectable objects and scenes in order to robustly predict the location of landmark
words. Further, we present a method that incorporates these predictions into the



object-search process., providing a method for choosing a robot plan that minimizes
the expected distance to the goal object enabling the robot to find an object more
quickly than a greedy approach.

In the Chapter 4 of this thesis, we take steps toward building a robust spatial
language understanding system for three different domains: route directions, visual
inspection, and indoor mobility. We take as input a natural language command such
as "Go through the double doors and down the hallway" and extract a semantic struc-
ture called a Spatial Description Clause (SDC) from the language, and grounding each
SDC in a partial or complete semantic map of the environment. By extracting a flat
sequence of SDCs. the system was able to ground the language by using a probabilis-
tic graphical model that is factored into three key components. The first component
grounds novel noun phrases such as "the computers" in the perceptual frame of the
robot by exploiting object co-occurrence statistics between unknown noun phrases
and known perceptual features using the models from the Chapter 3 of the thesis.
These statistics are learned from a large database of tagged images such as Flickr.
Second, a spatial reasoning component judges how well spatial relations such as "past
the computers" describe a plan. Third, a verb understanding component judges how
well spatial verb phrases such as "follow", "meet", "avoid" and "turn right" describe
a plan. Once trained, our model requires only a metric map of the environment to-
gether with the locations of detected objects in order to follow directions through
it. This map can be given a priori or created on the fly as the robot explores the
environment.

In Chapter 5 we presented an approach for automatically generating a probabilistic
graphical model according to the structure of natural language navigation or mobile
manipulation commands. Building off of the work in Chapter 4, where the system
extracted a flat semantic structure from the language, in this chapter we use the
hierarchical structure of a spatial language command to dynamically instantiated
probabalistic graphical model that connects linguistic terms to grounded aspects of
the environment including objects, places, paths, or events. The system automatically
learns the meanings of complex manipulation verbs such as "put" and "take," from
a corpus of natural language commands paired with correct robot actions as well as
spatial relations such as "on" and "to." We demonstrate promising performance at
following natural language commands.

6.2 Future Research Directions

6.2.1 Unsupervised Approaches

One of the challenges with the approach presented in this work is the requirement of
having a large corpus of language paired with groundings available in order to learn
the target concepts. We have gotten around some of these challenges by leveraging
large online databases for learning the correlations between figure or landmark words
and objects in the environment. Relaxing the annotation requirements of this data
could allow future systems to leverage corpora orders of magnitude larger than the one



used in this thesis, which in turn could enable more robust and interactive systems
for learning.

6.2.2 Semantic Mapping

In much of this work our system has assumed that the robot could detect seed objects
and locations in a map of the environment. As such, current applications are limited
to domains where a real-time object detector is available or those where a human
has given a tour of the environment to the robot. However, there is a rich space
for interaction between the perception and robotics communities in order to build
a representation that contains additional semantics about the environment in an
automatic and robust way.

6.2.3 Dialog

Our current system provides a foundational component of a conversational agent.
Expanding the capabilities of our system that is able to engage in dialog will enable
the system correct its plan or incorporate new information when it is uncertain.

6.2.4 Speech

Speech is one aspect of the problem that has not been addressed in this thesis. In
order for a system to be robust, it must be able to translate from a speech command,
to a textual representation into a plan for the robot. There is space for integrating
uncertainty in the speech recognition into a model of grounding. Additional aspects
of speech not dealt with in this work include disfluencies (e.g., "um" and "uh") and
corrections to a plan such as, "go down the hallway... I mean. go through the doors."
There has been some work by Dzifcak et al. [2009] and Cantrell et al. [2010], but using
an approach that is focused more on the linguistics than on the grounding aspects of
the problem.

6.2.5 Parsing

Our current system has a separate parsing and grounding step. In particular, we
take language, parse it to a semantic structure and then ground each element of the
semantic structure in the environment. However, the environment can be used to
inform the parser and the parser can be used to inform the grounding. For example,
this could enable the system to resolve ambiguous parses such as those involving
ambiguous prepositional phrase attachment. Combining the parsing and grounding
processes in this way could enable for more robust language grounding.

6.2.6 Additional Linguistic Structure

Some parts of the language were not currently handled by our decomposition into
SDCs, such as events where the robot must recognize a time or a situation that is



happening and conditionally execute the corresponding actions such as, "At noon,
come to my office and lead the visitor to the kitchen." In addition, there are actions
that must be repeated until another event occurs, such as "Make sure no one touches
my project while I'm at group meeting." Extending the system handle language like
this requires the ability to recognize events and react accordingly.



Appendix A

The Structure of Spatial Language

As a part of this thesis. we have collected corpora from four different domains, each of
which focuses on spatial language. The focus on spatial language is primarily because
it offers the promise that all of the elements could be grounded in the environment.
Further, the ability to understand spatial language is important for any system that
uses natural language in mobile robotics, since giving and following commands is
natural for humans and there is a natural correctness metric. For example, if the task
is to command a robot to reach a destination or to inspect a certain object, we can
evaluate whether the robot reached the correct final destination. The availability of a
corpus and a concrete correctness metric enable an offline component-based evaluation
of our system, which makes it easier to determine its robustness and enables us to

quickly test new models. In this chapter we analyze corpora of spatial language
that we have collected in four different domains: route directions, inspection, indoor
mobility and mobile manipulation.

A.1 Corpora

In this thesis we have collected corpora around four different domains: route di-
rections, indoor inspection, indoor mobility and mobile manipulation. There was a
natural progression between the various corpora. Route directions captured language
that involved landmarks ("the doors") and relations (e.g. "to the doors"). Indoor
inspection enabled us to expand the set of commands to those that involved three
dimensional structure (e.g. "go up" or "go down"). The indoor mobility dataset
enabled us to expand to verbs that people would like robots to execute in natural
environments (e.g. "follow", "meet" or "bring") and manipulation required us to
expand the set of commands to those that involved moving objects around the en-
vironment ("pick up the tire pallet"). This section gives some examples from the
various corpora and discusses how these corpora were collected. Examples are shown
from each of the corpora in Table A.1.



(a) Stata, Floor 8 (b) Stata, Floor 1

Figure A-1: Two environments where we have collected route directions. For the
inspection domain, we collected a separate corpus in Stata Floor 1.

A.1.1 Route Directions

The first corpus of language consists of directions where subjects were asked write
down directions from one location in an environment to another location, as if they
were directing another person. Language was acquired on two different floors of the
same building: Floor 1 is an atrium with a coffee shop and classrooms, while Floor 8 is
an office building with a computer lab and offices (Figure A-1). A total of 30 subjects
were asked to write directions between 20 different starting and ending locations,
for a total of 300 directions. Experimenters did not refer to any of the areas by
name, instead using codes labeled on a map as in Figure A-1. In order to reduce or
eliminate various biases subjects were from the general population of MIT, between
the ages of 18 and 30 years old, were proficient in English, were unfamiliar with the
test environment, and were approximately of equal genders (47% female and 53%
male subjects). An example set of directions from the corpus is shown in Table A.1.

A.1.2 Indoor Inspection

In order to explore the domain of flying robots that can perform visual inspection,
we asked subjects to describe how they would command a micro-air vehicle (MAV),
as seen in Figure 1-1(b), in order to inspect various objects in the environment.
We collected a corpus on Floor 1 from Figure A-1 because of its high ceilings and
resemblance to an indoor mall, which are too high for most ladders to safely access,
and require specialized lifting equipment for even simple inspections and maintenance.



Route Directions

-With your back to the windows, walk straight through the door near the elevators.
Continue to walk straight, going through one door until you come to an
intersection just past a white board. Turn left, turn right, and enter the
second door on your right (sign says "Administrative Assistant.")

-In the lounge area, orient yourself so that the spiral staircase is on your left
and you can see the elevators toward the glass windows. go out the double doors
to the right of the glass windows. walk down the hallway in front of you until
you reach the end; you must turn right or left. turn left and walk until you are
forced to turn right. walk until (you will pass double doors and a grey door
with keycard that you must walk through) reach a white bulletin board. stop

-Go through the double doors past the elevators on your left. Then through the gray
door down the corridor, take the left through blue doors. Turn the corner. and
first on left.

Visual Inspection

-Go forward until you are able to make a left. Then move ahead until you reach the
opposite wall, then make a right. Go straight, past one staircase and to the
next staircase. At the top of this staircase you will find a fire alarm on your

left at approximately 7ft up.
-go forward towards the square concrete column. make a left and head past room 124

towards the other side of the building. make a right when possible and head
towards the staircase on the right side., which is next to the circular table and chairs
climb to the top of the staircase and stop before the double doors. Look to your left.

-Go straight until the hallway narrows. Take a left and proceed through the open space.
After you go under the stairs and past the large column, turn right. Go past the
square column, turn right, go up the stairs, and stop. The fire alarm is now about

8 feet above the ground, to your left.

Indoor Mobility

-Wait by the staircase next to 391, and bring Susan to my room when she comes in.

-Please go to the question mark and wait for Nick. When he gets here, bring him back here.

-Meet the two people at the elevators and bring them to 32-331

Manipulation

-Lift the tire pallet.
-Back up a bit, then swing left and pick up the tire pallet with the box pallet to its left.

-Pick up the pallet of tires on the right and wait.

Table A.1: For the route direction, inspection, and the manipulation corpora, all com-

mands are for the same destination/video, showing the challenge of understanding
general language. Comparing to Figure A-4, complex verbs can be seen for the mo-

bility/manipulation domains and simple for the route directions/inspection domain.



In this study, subjects were familiarized with the environment and given the ve-
hicle's starting pose for seven different inspection tasks. Each subject was asked to
write down instructions for a human pilot to fly a MAV to the desired object and
take video of that object, which resulted in forty-nine natural language commands
over seven different destinations and seven different subjects. Subjects were all engi-
neering undergraduates unfamiliar with the system. Table A.1 shows an example set
of directions from this corpus. Objects to be inspected were difficult to see from the
ground and included a wireless router mounted high on the wall, a hanging sculpture,
and an elevated window.

When compared to natural language instructions given in a corpus of walking
directions, we noticed many more metrical specifications such as "turn between 90
and 135 degrees." and instances of "fly up." The former may be because of the task:
instructing a flying vehicle, or it may be because subjects knew they were instructing
a robot rather than a person, and were modifying their language.

A.1.3 Indoor Mobility

Expanding beyond route directions and indoor inspection, we wanted to collect an
open-ended corpus that represented tasks that people would like a robot to execute
in an office-type environment. Subjects were asked to imagine a robot that can
recognize people and objects, but not manipulate them. We collected 262 commands
from 12 subjects, an average of 22 commands per subject. Most subjects were robotics
researchers. When looking at the resulting commands in Table A.1, we can see that
many of the commands in the corpus include verbs relating to people's motion (or
verbs of motion), such as "meet" and "follow." This is different from the previous
domains, which mostly contained verbs that were variants of "go", "turn left" and
"turn right."

However. the corpus that was collected contained complex language that was not
strictly spatial. This led us to collect a more focused corpus specifically around
the spatial motion verbs: "bring," "meet," "avoid," "follow," and "go." For each
verb, we created ten natural language commands that used each verb, along with ten
compound commands that involved at least two different verbs, such as "Follow the
person to the kitchen. Then move toward the bathroom. Next go down the hall to
the lounge."

A.1.4 Mobile Manipulation

The final domain that is explored in this thesis is that of mobile manipulation. This
expands on the language in the previous domains because it includes the need to
ground aspects of the environment that involve the motion of other objects. To
quickly generate a large corpus of example manipulation commands paired with robot
plans, we generated random videos of a simulated robotic forklift (e.g. Figure 1-1(c)).
These videos were uploaded to Amazon's Mechanical Turk (AMT), and subjects were
asked to type a natural language command that they would give to an expert human
forklift operator to command them to carry out the action shown in the video. Videos



included a simulated forklift picking up a pallet or moving through the environment.
Paired with each video, we had a complete log of the state of the environment and
the robot's actions.

We collected commands from 45 subjects for twenty-two different videos showing
the fprklift executing an action in a simulated warehouse. Subjects did not see any
text describing the actions or objects in the video, leading to a wide variety of natural
language commands including nonsensical ones such as "Load the forklift onto the
trailer," and misspelled ones such as "tyre" (tire) or "tailor," (trailer). Example
commands from the corpus are shown in Figure A.1.

A.1.5 The Ability of Humans to Follow Commands

We have analyzed the ability of humans to follow the commands given by humans
in the route directions and the manipulation domains. In the route direction study,
subjects were asked to follow a different set of directions that another subject had
created, in order to understand if there were certain people who were better or worse
at giving point-to-point directions. The experimenter would read the directions to the
subject and follow the subject as the subject followed directions. When the subject
became lost, they were asked to report this and the trial was concluded. For the
manipulation domain, we gave subjects the original video paired with the language
that a subject on Amazon's Mechanical Turk was given and asked them if the two
matched.

In Table A.2, we can see the percentage of time another person are able to follow
the directions in each of the corpora. In addition to the fact that between 10% and
15% were found to be difficult to follow, we also found that there is high variance in
the quality of route instructions: some were able to give followable commands 100%
of the time and others were only able to do it 30% of the time.

Dir. Floor 8 Dir. Floor 1 Manipulation

Best direction giver 100% 100% -

Vorst direction giver 30% 20% -
All directions 85% 86% 91%

Table A.2: The percentage of directions in our corpus that were successfully followed
to the end by another person. Dir. Floor 8 and Dir. Floor 1 are the corpus of 300
route direction commands collected on the 8th and 1st floors of our environment.
Manipulation are the commands from the Section A.1.4.

A.2 The Structure of Spatial Language

Spatial language in all of these domains breaks down into clauses that are sequential
and where each clause contains figure., verb, spatial relation, and landmarks. Clauses
tend to correspond to a compositional action that the robot should execute (e.g.



(a) v:starting (b) v:turn left (c) v:walk (d) v:walk (e) v:turn right
sr:in l:this hall sr:through :this sr:straight down sr:into L:the hall

metal door 1:the hall in front of the ele-
vators

Figure A-2: An example from our corpus: each subfigure is a clause in the spatial
language paired with the grounding in the environment (e.g. a path and landmark).
The start location of a robot path is shown in green, the end location is shown in red
and the corresponding landmark is a green polygon (when it exists).

Figure A-2). Each clause tends to be is sequential. In route directions and inspection,
sequential clauses refer to the sequential regions in the environment on the way to the
final destination (e.g. Table A.3). For the indoor mobility and manipulation domains
sequential means that there is a time ordering: the first clause should be executed
before the later ones.

Grounding Statistics

Overlap 92.3%
Strictly overlap 38.5%
Contained 5%
Reordered 0.4%

Table A.3: Statistics about groundings from the route directions corpus. Strictly
overlap means that robot path groundings share more than a common endpoint and
reordered means that although two clauses were sequential in the language, they were
not sequential relative to the ground-truth path. 99.6% of the clauses were sequential.

Each of the clauses in the natural language commands can decomposed into one
of four components: a figure, a verb, a spatial relation and a landmark. For example,
a command such as "go to the doors" would have a figure that is implicitly "(you)", a
verb "go," a spatial relation "to," and landmark "the doors." Landmarks are objects
or places that a person is meant to see along the path to the destination region (as
seen in Figure A-3), along with the largest and smallest landmarks. Spatial relations
such as "past" and "through" describe how an agent plan should appear relative
to these landmarks (as in Figure A-3(g-j). Finally, imperative verbs such as "go,"
"put," "turn right" or "turn left" tell a person what to do . For the route directions
domain, these verbs were generally variants of "go straight," "turn right" or "turn
left" (see Figure A-4). Statistics about the partial paths can be seen in Table A.3
and Figure A-3. In Figure A-4, we can see the most frequent words of various types
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(d) hallway (e) atrium (f) couches

45F

32 34 36 38 40 42 44 46

(g) shortest path

30 35 40 45

(h) longest path

?0 0

15-

10-

5-

25 30 35 40

(i) smallest landmark

40-

15 20 25 30 35 40 45

(j) biggest landmark

Figure A-3: In (a-f) are a set of landmarks from our corpus. In (g-k) are the largest
and smallest landmarks and path groundings that people used in the route directions
corpus. Each corresponded to a clause in the command. In (a) the corresponding
clause was turn towards the large cement-colored double doors, in (b) follow the hall, in
(c) walk towards the M&M doll and in (d) enter building 36. The solid line corresponds
to the landmark and the dotted line corresponds to the path of the robot.

in the corpus.

mean std min max

landmark area 42.94m 2 +102.28m 2 Om 1964m 2

path length 5.53m t5.57m Om 40.83m

Table A.4: Statistics from the groundings from the route directions corpus.

A.3 Conclusions

In this chapter we have given examples of spatial language in four different domains
and provided some statistics about the structure of spatial language in our corpora.
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Figure A-4: Above are the histograms of the most frequent words that appear in the
fields of the SDC for each domain. In (a) is route directions, in (b) is a histogram for
inspection and (c) for indoor mobility.
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