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Abstract

Infrastructureless wireless networks are an important class of wireless networks best fitted to

operational situations with temporary, localized demand for communication ability. These

networks are composed of wireless communication devices that autonomously form a

network without the need for pre-deployed infrastructure such as wireless base-stations and

access points. Significant research and development has been devoted to mobile ad hoc

wireless networks (MANETs) in the past decade, a particular infrastructureless wireless

network architecture. While MANETs are capable of autonomous network formation and

multihop routing, the practical adoption of this technology has been limited since these

networks are not designed to support more than about thirty users or to provide the quality

of service (QoS) assurance required by many of the envisioned driving applications for

infrastructureless wireless networks. In particular, communication during disaster relief

efforts or tactical military operations requires guaranteed network service capabilities for

mission-critical, time-sensitive data and applications. MANETs may be frequently

disconnected due to device mobility and mismatches between routing and transport layer

protocols, making them unsuitable for these scenarios.

Network connectivity is fundamentally important to a network designed to provide QoS

guarantees to the end-user. Without network connectivity, at least one pair of devices in the

network experiences zero sustainable data rate and infinite end-to-end message delay, a

catastrophic condition during a search and rescue mission or in a battlefield. We consider

the use of wireless devices equipped with beamforming-enabled antennas to expand

deployment regimes in which there is a high probability of instantaneous connectivity and

desirable network scalability.



Exploiting the increased communication reach of directional antennas and electronic
beam steering techniques in fixed rate systems, we characterize the probability of
instantaneous connectivity for a finite number of nodes operating in a bounded region and
identify required conditions to achieve an acceptably high probability of connectivity. Our
analysis shows significant improvements to highly-connected regimes of operation with
added antenna directivity.

Following the characterization of instantaneous network connectivity, we analyze the
achievable network throughput and scalability of both fixed and variable rate beamforming-
enabled power-limited networks operating in a bounded region. Our study of the scaling
behavior of the network is concerned with three QoS metrics of central importance for a
system designed to provide service assurance to the end-user: achievable throughput, end-to-
end delay (which we quantify as the number of end-to-end hops), and network energy
consumption. We find that the infrastructureless wireless network can achieve scalable
performance that is independent of end-user device density with high probability, as well as
identify the existence of a system characteristic hopping distance for routing schemes that
attain this scaling-optimal behavior. Our results also reveal achievable QoS performance
gains from the inclusion of antenna directivity. Following these insights, we develop a
scalable, heuristic geographic routing algorithm using device localization information and
the characteristic hopping distance guideline that achieves sub-optimal but high network
throughput in simulation.
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Chapter 1

Introduction

In recent years, wireless infrastructure has become widely prevalent and available to the

end-user. This includes cellular base stations, private and public wireless access points, and

even satellite gateways to access geosynchronous satellite communication systems. Wireless

access to voice and data communication is becoming an embedded part of modern life; we

expect to have instantaneous access to this technology wherever we are. However, this type

of wireless access requires infrastructure and reliance upon a wired backbone network. Fig.

1-1 provides a basic schematic overview of the wireless communication world from an

infrastructure-based point of view. All of the wireless end-user devices are connected

through high-capability wireless infrastructure points, which are in turn connected to one

another through a wired network grid.
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Figure 1-1: An infrastructure-based wireless network.

Future heterogeneous networks may need to incorporate infrastructureless wireless network

technology alongside the traditional infrastructure-based wireless network access. A large

body of work in wireless telecommunication has identified infrastructureless wireless

networks as an alternative to wireless infrastructure-based networks where there is

temporary and localized demand to communication capabilities and highly-contended or no

access to infrastructure points of wireless communication access. Infrastructureless wireless

networks are those which consist of end-user devices that can autonomously discover other

devices in proximity and establish direct network connections with them, becoming data

relays for source-destination pairs that cannot establish efficient one-hop connections. Fig.

r
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Figure 1-2: An infrastructureless wireless network.

1-2 shows a schematic example of an infrastructureless wireless network formed purely of

wireless connections between autonomous, untethered wireless devices.

Since an infrastructureless wireless network does not rely on the availability of pre-deployed

infrastructure, it can be rapidly deployed and autonomously configured in challenging

environments where temporary communication capabilities are required. We now describe

a few driving applications that create challenges for traditional infrastructure-based wireless

networks and identify the need for this infrastructureless wireless network technology.

* Wartime communications-Future combat theaters may contain a large number of

wireless communication devices, including personal handheld devices,

communication devices affixed to ground and aerial vehicles, sensor nodes, and even



communication modules included in autonomous robotic units. In a foreign combat

zone, a military force may not have access to local points of wireless communication

infrastructure. Furthermore, pre-operation deployment of fixed infrastructure is

often infeasible and undesirable as these points would both constrain operational

flexibility and present tactical targets for destruction.

" Disaster relief-Natural causes may cripple local wireless communication

infrastructure, making relief effort communication impossible through traditional

wireless access points. In a scenario like this, emergency response teams need a way

to coordinate the relief and rescue effort in a quick and efficient manner. It is

normally mission-infeasible to first concentrate on re-establishing communication

infrastructure, thus an autonomous infrastructureless wireless network is an

alternative means for telecommunication ability for this localized burst of wireless

device presence. A purely satellite-based network is not a viable alternative because

of the high cost associated with this infrastructure.

* Remote communication-Some distant or underdeveloped regions may not have

established wireless infrastructure. In this case, an infrastructureless wireless

network can allow for increased communication reach into these areas without the

need for the build-up of costly access points and wired connections, even if this is

only used as a temporary means of network access to these locations.

We can additionally imagine that infrastructureless wireless networks could aid in relieving

high user-demand on the limited infrastructure-based network resources by diversifying

available communication options to the end-user device. For example, the gravity and

urgency of a disaster relief scenario could lead to high network loading and severe

contention at wireless access points, such that some users may be denied the communication

capacity required to participate in the relief effort to those in dire need. The additional



availability of infrastructureless wireless communication could allow these blocked users to

remain connected to those leading rescue and relief teams.

The benefits of an infrastructureless wireless network do not come without a price;

successful deployment of these networks is impeded by many unsolved technical problems.

There is increased computational and power demand on each end-user device, since end-user

nodes in these networks must serve as relay points for communication in addition to acting

as data sources and sinks. Further complexity arises from the volatile nature of the wireless

environment, where an end-user may be powered down at any given time, any

communication link along a path is subject to a multitude of wireless RF effects like fading,

shadowing, and nearby device interference, and user mobility gives rise to rapidly changing

network topologies. Catastrophically, a device may even move beyond the communication

range of all other end-user devices and become temporarily or permanently partitioned from

the network.

Many of the driving applications for infrastructureless wireless networks, including tactical

military communication and disaster relief, require stringent quality of service (QoS)

guarantees, particularly in data throughput, end-to-end message delay, and network power

consumption. While throughput requirements may be low to moderate, needing only to

support text-based messages, guaranteed instantaneous access to communication resources to

support the transmission and relay of these messages may be required. Applications like

these may demand higher levels of end-to-end message latency guarantees. Since stale

information becomes useless in time-critical scenarios such as wartime and disaster relief

communication, a message may have a lifetime of only a few seconds and thus must reach its

recipient or recipients in the time scale of seconds or less. Network power consumption

must be simultaneously considered alongside throughput and end-to-end delay performance

since many untethered wireless devices that are part of an infrastructureless wireless



network rely on battery power. The need to be instantaneously connected to send or receive

time-critical data messages means that devices must conserve power as possible to maximize

device lifetime. These challenges, while difficult to meet, become impossible to consider

without first addressing the issue of determining and maintaining infrastructureless wireless

network connectivity. The ability to satisfy QoS requirements, particularly with respect to

end-to-end sustainable data rate and message delay, is dependent first and foremost on

network connectedness. Sustainable throughput and end-to-end delay guarantees to the

end-user cannot be provided in a partitioned network. And if infrastructureless wireless

networks are to become a widely-adopted communication modality in future commercial

heterogeneous networks outside of these driving application examples, the ability to address

network connectivity and, subsequently, end-to-end throughput and data latency guarantees

will become increasingly important to satisfy the QoS demands of familiar civilian network

applications, including real-time streaming video and financial trading.

1.1 Current and Proposed Approaches

The needs and challenges of the infrastructureless wireless network problem has led to

research in ad-hoc mobile wireless networks (MANETs) that offer best-effort network

connectivity (see [1,2]). Commonly, ad-hoc wireless networks refer to networks in which

every device is capable of message forwarding and where messages may potentially take

multiple wireless hops from the source node to the destination node. This framework often

includes wireless sensor networks [3,4], which have enjoyed relative success. Work on

MANETs has been active for nearly three decades. Despite large strides in many of the

fundamental problems in the wireless ad-hoc network architecture, including physical layer

issues, random access considerations, and network-layer routing, there has been limited



practical adoption of MANET architectures [5]. These networks are generally not designed

to provide for QoS assurance. Devices in a MANET may be often disconnected due to the

combination of low device density, end-user mobility, and the lack of an architecture that

proactively seeks to maintain network connectivity and meet application and network

demands.

The most prominent research effort to address the problem of infrastructureless wireless

connectivity for mobile end-users has been Disruption Tolerant Networking. The Internet

Research Task Force (IRTF) formed the Delay-tolerant Networking Research Group

(DTNRG) in 2002 to propose an architecture and protocol design for network scenarios

where instantaneous end-to-end network connectivity cannot be assumed [6,7]. This work

further spawned the DARPA-funded Disruption Tolerant Networking (DTN) program in

2005 [8]. Motivated by interplanetary networking, this architecture is grounded in a store-

and-forward networking approach, where each relay node stores incoming messages until

communication opportunities present themselves and allow the message to be forwarded to

the next hop along a path that will eventually reach the destination. While this approach is

sensible in the interplanetary domain of orbiting celestial bodies and geosynchronous

satellites, the DTN architecture does not consider providing assurance levels to QoS measures

like end-to-end delay. Messages may be delayed within the network for long durations

waiting for an appropriate communication opportunity in this architecture. Thus, DTN is

only suitable for applications that are delay-insensitive, in stark contrast to the driving

applications for infrastructureless wireless networks that we have discussed.

Whereas the DTN architecture makes no attempt to proactively maintain connectivity

between mobile users in the network, [9] argues that service assurance in infrastructureless

wireless networking environments can best be achieved by an architecture that proactively

predicts potential network disconnections and responds by allocating resources to maintain



network connectivity. The author proposes two features of a proactive architecture that

support throughput and delay QoS requirements: (1) network disconnection prediction using

localization, trajectory prediction, and large-scale channel estimation and (2) topology

control through the deployment of mobile relay nodes that provide support at areas of

predicted network disconnection. The results presented by this work suggest that the ability

to predict and proactively combat network partitioning is a keystone to providing QoS

guarantees in the infrastructureless wireless network scenario. Adhering to this insight, the

work of this thesis focuses first on possible improvements for infrastructureless wireless

network connectivity, and the identified high-connectivity regimes are those that are of

primary interest in subsequent analytical study.

In addition to the techniques introduced in [9], other approaches to address connectivity and

QoS assurance issues in infrastructureless wireless networks have been proposed [10]. These

include:

" Beamforming-This is a "smart antenna" technology that uses electronic signal

processing techniques at the multi-element transmitting antennas to focus radiation

energy towards the receiver through constructive interference, while providing

receivers the opportunity to place nulls in the direction of interferers. Receiver array

processing techniques also enable receive beamforming. These antenna array

processing techniques can be used either to reduce required power allocation for a

given transmission rate, to increase the achievable bit rate between a communication

pair, or to increase transmitter reach, while leveraging directionality to reduce

interference noise levels from other transmitters in the infrastructureless wireless

network.

" MIMO-Diversity receivers and transmitters attempt to excite multiple independent

wireless modes between the transmitting wireless device and the receiving wireless

device when available. This technique takes advantage of wireless multipath effects



to achieve throughput gains without additional power or bandwidth allocation. This

"smart antenna" technique requires the existence of RF reflectors and multiple stable

paths, and thus may not be a feasible approach when end-user nodes are highly

mobile or in an uncluttered RF environment where the only stable path between

transmitter and receiver is line-of-sight (LoS).

New Transport Layer Protocol-Transmission Control Protocol (TCP) is the primary

transport layer protocol in today's Internet. Its attractive features include end-to-end

reliability, congestion control, transmission rate control, and a notion of fair network

resource allocation to different users. However, this protocol was designed for a

stationary network topology composed primarily of wired links. It does not

distinguish between congestion-based losses and losses resulting from wireless RF

phenomena, and its functions break down under frequent losses that lead to

underutilization of available network resources. A new protocol that addresses these

inefficiencies in the heterogeneous network domain while preserving the goals of

end-to-end reliability, congestion control, rate matching, and fair resource allocation

would help to maintain high-throughput and low-delay end-to-end connections in

the infrastructureless wireless network setting.

1.2 Scope of Thesis Work

Recognizing the need for improved connectivity in infrastructureless wireless networks in

order to meet application QoS demands, this thesis focuses on a combination of electronic

beamforming (the first of the proposed techniques mentioned at the end of Section 1.1) and

the use of localization and channel state estimation, as in [9]. Directional transmission and

reception using electronic antenna array processing techniques provides several significant



benefits in the infrastructureless wireless network domain that can be used to address the

issues encountered in traditional MANET research, including:

e Reach-By focusing the antenna power radiation pattern in a localized direction of

interest, the communication range of a power-constrained fixed transmission rate

end-user can be extended beyond that of a fixed rate transmission device using an

omnidirectional radiator.

" Data rate/power tradeoff-At the same transmit power level, a communication pair

can exchange information at a higher bit rate than if they were using omnidirectional

antennas. Alternatively, a communication pair can exchange information at a

particular bit rate while using less power for data transmission than if they were using

omnidirectional radiators.

* Pass-through traffic reduction-Given the increased transmitter reach in a fixed

transmission rate system, beamforming-enabled nodes are able to forward messages

along a route that eliminates unnecessarily short intermediate hops required of a

network using only omnidirectional antennas with identical transmission power

constraints. This, in turn, decreases the pass-through traffic load on intermediate

end-user devices that would have to act as data relays in the omnidirectional network

case.

" Interference suppression-Focusing energy in the direction of the intended receiver

reduces the interference levels at ancillary receivers in the network outside the main

beam (and any significant side lobes), thus reducing interference noise and

overhearing when compared to the omnidirectional network in which transmitted

power is radiated equally in all directions regardless of the intended receiver location.

" Interference nulling-A receiving end-user can strategically place nulls to cancel out

energy from nearby interfering end-users or other radiating devices.



* Spectrum reuse-Focused radiation patterns allow neighboring network nodes to

transmit to separate receivers on the same frequency channel without creating

unwanted interference at the receivers.

This work focuses on a power-limited network model, which is in contrast to related work in

the area that considers an interference-limited network model (as made famous by [11]).

The interference-limited model is well-studied in the context of infrastructureless wireless

networks, including some results using beamforming-enabled end-user nodes [12].

Bandwidth scaling is a physical layer system option that has been shown to improve the

scalability of network performance with respect to sustainable throughput, end-to-end delay,

and network power consumption. Given large enough system bandwidth, network

performance is limited by the end-user power consumption rather than the interference and

overhearing levels at the receiver. Bandwidth scaling is used as an analytical technique here

since it allows our results to focus on the effects of increasing the probability of network

connectivity with beamforming-enabled end-user nodes.

This work considers an infrastructureless network of power-limited wireless devices

equipped with localization capability, Global Positioning System (GPS) hardware for

example, and multi-element antenna arrays or apertures capable of transmit and receive

beamforming. While long-accepted as an important feature in satellite communication [13],

multi-element antenna arrays and transmit and receive beamforming have recently been

shown to provide gains in achievable capacity in the infrastructureless wireless setting [14].

Furthermore, node localization information has been shown to provide throughput and end-

to-end latency gains in infrastructureless wireless networks when combined with a strategy

that can exploit this information to promote network connectivity [9]. In our context,

localization information is required for a transmitting node to focus its transmission beam in

the direction of the intended receiver, and antenna array processing can be viewed as a



strategy to exploit user location information to promote network connectivity by

overcoming RF effects and the disconnection of nodes that lie beyond the reach of an

omnidirectional network. The combination of these techniques creates an improved

network topology that can address core service traffic demands through improved

connectivity and, subsequently, achievable throughput, end-to-end delay, and power

consumption.

1.3 Thesis Organization

The following is a brief description of the organization of this thesis.

Chapter 2 introduces the assumptions, models, and technologies that are used throughout the

work. Specifically, it describes the RF and channel model used in the network analysis, an

overview of beamforming and the associated transmission model, and a condensed overview

of localization technology that could be used to provide geolocation information to the

network end-users.

Chapter 3 considers the improvement in infrastructureless wireless network connectivity

from beamforming in randomly deployed networks of a finite number of stationary end-user

nodes. The analysis is done in both one and two dimensions. This study identifies regimes of

high probability of connectivity, which is of interest in subsequent chapters that study the

scaling behavior of QoS metrics.

Chapter 4 examines the scaling behavior of throughput, end-to-end delay (in terms of

number of end-to-end hops), and energy consumption in power-limited infrastructureless



wireless networks with beamforming-enabled end-user devices and large-enough system

bandwidth. After characterizing capacity bounds of these networks for any arbitrary

topology of a finite number of end-users, we show that the throughput-optimal scaling

behavior can be achieved alongside the delay-optimal and per bit energy-optimal scaling

behavior, all of which are independent of increasing end-user device density.

Chapter 5 develops routing algorithm solutions for both the omnidirectional and directional

infrastructureless wireless network that optimize over individual QoS metrics of interest.

Insight from Chapter 4 is then employed to develop a heuristic routing algorithm that

achieves the scaling-optimal behavior for all QoS metrics of interest simultaneously.

Chapter 6 provides a summary of the thesis results and discussion of possible future research

topics.
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Chapter 2

Models, Assumptions, and Technologies

We consider wireless infrastructureless networks with beamforming-enabled end-user nodes

and their capability to provide some level of QoS guarantees that will enable this type of

network to be used for scenarios and applications with stringent service requirements.

Whereas similar work has focused on the addition of autonomous helper relay nodes to

promote connectivity for delay-sensitive services [9], we are interested in addressing

instantaneous network connectivity and QoS performance using array or aperture antennas

and onboard signal processing technology, along with geolocation information in order to

extract the full benefit of beamforming-capable antenna systems. Otherwise, the wireless

infrastructureless network that this work considers is the same as traditional MANETs: the

network is a set of wireless end-user devices that autonomously form a network in a given

operating environment and then proceed to generate, sink, and forward data as necessary.
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We note that this work does not consider end-user mobility in the presented analysis.

Although the mobility of untethered wireless devices is an important feature of an

infrastructureless wireless network, we can see this stationary network deployment analysis

as a snapshot of a dynamic network on an appropriate time scale with respect to the degree

of node mobility. Considering the probability of connectivity and network QoS performance

behavior of these stationary snapshots is necessary before including an end-user mobility

model as part of the analysis.

This chapter has several goals. First, we explain exactly what kind of service we wish to

provide to end-users through this type of infrastructureless wireless network. Second, we

discuss various models that are used throughout the remaining chapters to facilitate

analytical study of the proposed system. This discussion of models focuses on the RF

environment and channel model that we use throughout, along with the antenna and

transmission model that is employed when discussing beamforming-enabled end-user

devices. To this end, we begin by discussing beamforming in general, which motivates the

transmission model. Our work requires an additional network power consumption model.

However, the development of this model is deferred to Chapter 4, where it is required for

the analysis presented. Finally, the last part of this chapter touches upon localization

technology, another tool that we assume to be at the disposal of the end-user devices in our

network.



2.1 Core Services

In proposing an infrastructureless wireless network design capable of supporting throughput-

and time-critical data applications, we need to distinguish the class of service that we are

considering. In general, there are two main classes of service: best-effort and guaranteed

QoS (or "core"). Best-effort services are for those messages without stringent requirements

on throughput and end-to-end latency. Core services provide for mission critical messages

that come with a pre-specified set of QoS requirements that need to be satisfied, such as

required throughput and end-to-end latency. Core services messages are given priority over

those in the best-effort class. Considering the applications discussed in Chapter 1, these core

service messages may include critical military commands to be disseminated to a unit of

troops or time-sensitive alert messages to be distributed to relief workers aiding response

teams after a natural disaster.

Since core services are at the forefront of consideration in this work, the next chapter is

dedicated to analyzing how the use of beamforming-enabled devices can improve

instantaneous network connectivity for fixed rate transmission systems. A connected

network is a prerequisite for providing QoS performance guarantees to end-users. In the

absence of connectivity, the network throughput is zero between at least one end-user pair

and the end-to-end message delay can be considered to be infinite between at least one end-

user pair. A disconnected, or partitioned, network is a catastrophic condition when viewed

in the context of the driving applications we have discussed.

As discussed in [9], instantaneous network connectivity is often ill-defined in the wireless

setting. For variable rate transmission wireless systems, all pairwise end-users are

theoretically connected and able to communicate in an obstacle-free RF environment, even



though the data rate they can support becomes arbitrarily small as the physical distance

between the pair of nodes increases. Given an increasingly long interval of time, two users

can exchange a finite length message even as their separation distance grows unbounded.

We note that this is a theoretical scenario. In reality, there are device hardware limitations

on the power threshold required for reception. Even so, an increasingly long interval of time

is not a luxury that we can assume to have in a network intended to provide core services.

For fixed rate transmission systems, users must communicate at a set rate when they

exchange data. This imposes a limit on the range of a transmitter assuming that we have

some transmission power constraint at the sender (a realistic constraint for a wireless system

of untethered end-user nodes). It is in this type of fixed rate transmission system that we

primarily discuss the metric of instantaneous network connectivity, since connectivity is a

first requirement for providing core services. Throughout this work, we distinguish between

fixed rate and variable rate transmission systems when necessary.

2.2 The RF and Channel Model

Before coming to beamforming and the transmission model, we begin with a discussion of

the RF environment and channel model used in this work. These are necessary to

understand the directional antenna transmission model that is discussed in the subsequent

section.



2.2.1 Empirical Channel Model

For analytical simplicity, we assume that our networks operate in a simple one- or two-

dimensional RF environment free of specific obstructions, absorbers, and scatterers. In a real

world scenario, all of these would need to be considered based on the specific deployment

environment, as they contribute to important time-varying wireless effects: shadowing and

fading.

Instead, we focus on a simple and commonly-used empirical model for system analysis, the

path-loss model. In free space, it is known that signal power at the receiver is inversely

proportional to the square of the distance between transmitter and receiver. However,

should there be imperfections in the RF environment, this relationship may not hold. The

path-loss model combines the effects of typical propagation losses along with absorption and

diffraction losses that may arise from an imperfect RF environment. We assume that our

2D 2

receivers are in the antenna far-field (a distance of more than - from the transmitter,

where D [m] is the transmitting antenna aperture size and A [m] is the signal wavelength).

Then the path-loss model describes the power loss factor between the transmitter and

receiver in dB:

[dB] = 10 log1 o y - 10k logio d (2.1)

where Pr [J/sec] is the received power, Pt [J/sec] is the transmitted power, and their ratio is

the power loss factor. In (2.1), k is the path-loss exponent (sometimes called the attenuation

exponent), usually in the range of 2 k 6, where k = 2 is free space propagation loss

only, and k = 6 can be reached in some indoor environments. Furthermore, d [m] is the

distance between transmitter and receiver, do [m] is the reference distance (usually set to

do = 1, as we use it throughout this thesis) and y is a constant accounting for system losses

that is a function of both frequency and antenna gain [15].
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The parameters of this model can be estimated either from theoretical analysis or empirical

measurements. Throughout this work, we assume the existence of a homogeneous RF

operating environment and that each end-user node is capable of making an estimate of the

path-loss exponent in the particular operating environment. We also assume a homogeneous

end-user device set throughout, and thus we allow y to be a constant for all nodes in the

network. Finally, the value of d between any communicating pair is known to the network

end-user devices since localization information is available to each node (see Section 2.4 on

localization technology).

This model fails to account for important wireless RF phenomena that would realistically

impact the system. Key parameters of a more sophisticated statistical channel model, such as

shadowing and fading, are absent. These effects are typically modeled as random variables of

particular statistics that are added to the path-loss model shown in (2.1). There is a large

body of literature dedicated to studying different statistical channel models (see [15-28]).

However, the parameters of these models are heavily dependent on the operating

environment and communication frequencies used. While allowing for a more detailed

description of the wireless channel, a more sophisticated channel model is not required for

the analysis in this work. The use of the basic path-loss model here aims for simplicity and

first-order intuition.

Alternatively, it is possible to use site-specific models for the wireless channel estimates.

These models utilize detailed knowledge about RF obstacles in a given operating

environment that are gathered a priori from available resources (such as maps and

blueprints) or learned during system operation (such as with sensors designed to detect and

map environmental obstacles). The interested reader is referred to Section 2.2.1 of [9] for a



concise overview of these models and methods. However, these more specific channel

models are not pursued further in this work.

2.2.2 A Power-limited Network

A bulk of the literature analyzing wireless infrastructureless networks focuses on

narrowband systems (such as [11]). These systems are deemed interference-limited, since it

is the signal interference from nearby transmitters that dominate the noise levels at the

receivers. Wireless infrastructureless networks using directional antennas have been studied

using this framework [12]. The work of Dai in [9] shows that significant improvements to

network scalability through bandwidth scaling, where interference levels become negligible

with the availability of large enough system bandwidth and appropriate channelization. In

this regime, called the power-limited regime, the network performance is limited by the

power available to each node.

Following this analytical lead, we consider wireless infrastructureless networks operating in

the power-limited regime by assuming the availability of sufficiently-large system

bandwidth. Analyzing network performance in the power-limited regime shows the best

that we can achieve with the network architecture, since the inclusion of interference effects

at the receivers will reduce achievable performance capabilities despite the ability of antenna

arrays to null interfering signals. Analysis of the power-limited network gives an "upper

bound" on system performance, although network performance can closely approach this

upper bound with effective beamforming.



In the power-limited regime, we assume the availability of at least n(n - 1) available

frequency channels for a network with n end-user devices, such that each possible

communication pair shares its own pair of unique communication channels. This

channelization suppresses the effect of unwanted interference and overhearing at the

receivers. For analysis, we model this as the limit of large bandwidth (W -> 00, where W is

the system bandwidth). We assume that appropriate channel coding is used such that the

capacity between any given pair of nodes is upper bounded by the Shannon Capacity for an

additive white Gaussian noise (AWGN) channel.

2.3 Beamforming and the Transmission Model

The primary objective of this work is to compare the performance of an infrastructureless

wireless network with end-user nodes equipped with beamforming-enabled antennas to one

with end-user nodes using only omnidirectional transmit and receive antennas. To this end,

we discuss a transmission model for the beamforming-enabled node that allows us to develop

a comparative analysis between the two cases. This section first discusses beamforming

technology generally, both from the transmission and reception ends. Then it develops the

abstract model that we employ throughout the remainder of the work to distinguish between

the two different network scenarios.



2.3.1 The Antenna Model

In this section, we distinguish between two main types of antenna models: the

omnidirectional model and the directional model. The performance of an infrastructureless

wireless network with nodes using omnidirectional transmit and receive antennas is well-

studied and is considered as a baseline for comparison throughout this work. The directional

beamforming antenna model is further subdivided into two categories: discrete element and

continuous aperture. This follows the analytic presentation for antenna beamforming

performance in infrastructureless wireless networks in [14].

We begin with the omnidirectional antenna model. This work analyzes infrastructureless

wireless networks in both one- and two-dimensional scenarios. Regardless of the

dimensionality of the operating area, we assume that end-user nodes use isotropic point-

source radiators to produce a spherical radiation pattern. The isotropic point-source radiator

is a theoretical antenna construction with absolute uniformity over its radiation pattern.

Brouwer's hairy ball theorem of algebraic topology shows that a continuous vector field of

uniform magnitude cannot be everywhere tangent to a sphere, thus proving that the ideal

isotropic radiator is not a realizable entity [29]. However, this ideal radiator is often assumed

in literature on omnidirectional antennas and is used to define directive gain, thus it is an

acceptable model for the antennas used in the baseline omnidirectional network.

For the directional antenna model, we begin by considering an array of identical antenna

elements that can concentrate power in an arbitrary direction in a two-dimension

operational plane. The simplest antenna array geometry that can achieve this rotational

symmetry in the plane is a uniform circular antenna array (UCAA). Each UCAA is made of

NE discrete and identical antenna elements, indexed i E {1,2, ..., NEI equally-spaced around



a circle with radius R [m] (see Fig. 2.1). Each element is modeled as an infinitesimally small

isotropic radiator as used for the omnidirectional antenna. The radiation pattern created by

this array is then a linear superposition of the fields radiated by each point-source, which is

called the array factor. The array factor captures the interference pattern among all the

radiators, which also incorporates the antenna geometry and spacing of the antenna

elements. The goal of beamforming is then to adjust the signal amplitudes and delays at each

radiator such that the interference radiation pattern is maximized in the desired direction of

signal transmission rather than over the entire sphere as for the single isotropic point-source

radiator. We assume that there is no mutual coupling between the point-source radiators in

the array for simplicity, however it should be recognized that mutual coupling effects could

distort radiation patterns once the elements are packed in such a way that element spacing is

less than -.
2

Given our assumption of no mutual coupling between antenna elements and a fixed array

radius R, the antenna construction can be theoretically packed with an arbitrarily large

number of infinitesimally-small point-source elements. As NE -M 00, we effectively get a

model for a continuous ring aperture antenna (see Fig. 2.1). So we consider a continuous

ring aperture antenna as a limiting case of the UCAA for the directional antenna model that

can achieve full rotational symmetry in the network operating plane. It turns out that

regardless of the exact directional antenna construction (UCAA or ring aperture), we use the

same transmission model. This is discussed in detail in Section 2.3.3.
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Figure 2-1: The uniform circular antenna array (UCAA) geometry with NE discrete isotropic radiator antenna
elements, and the continuous ring aperture antenna as a limiting case of the UCAA.

2.3.2 Aperture and Array Beamforming Overview

A beamforming antenna array (or aperture) is multiple antenna element system that is

capable of forming a radiation pattern with high gain in a desired direction while minimizing

the antenna gain in undesired directions. Fig. 2-2 shows a typical beamforming radiation

pattern for a UCAA in the operating plane of interest. This is in stark contrast to an

omnidirectional antenna system, which radiates power equally in all directions, regardless of

the direction of interest for communication.
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Figure 2-2: Beam pattern in the network operating plane for a UCAA with NE = 9 [14]. The direction of
maximum gain is normalized to unity.

The beamforming radiation pattern (or beam pattern) is generated by controlling the phase

and amplitude of the field at the different elements of the antenna array (or by adjusting the

phase and amplitude over the antenna continuum when considering a continuous aperture

antenna design). Not only does the signal amplitude and phase at each element affect the

radiation pattern, but the antenna geometry does as well. As mentioned in the previous

section, we focus on a UCAA or ring aperture antenna since they are able to produce a beam

pattern with complete rotational symmetry in the network operating plane purely by

adjusting the signal at each element of the antenna array or over the antenna continuum (in

other words, without any mechanical antenna steering).



To mathematically describe beamforming, we consider a UCAA or ring aperture antenna of

radius R centered at the origin of the x-y plane transmitting to other end-user nodes with

identical UCAAs or ring aperture antennas also lying on the x-y plane. Using spherical

coordinates for notational simplicity, we let U(d, 0, #) be the radiated field from the

transmitter measured at the location (d, 0, #). The total time-averaged radiated power by

the transmitter, Prad [J/sec], is given by:

21r 27r

Prad = d 2 IU(d,0,#)|2 sin 0 d# d6. (2.2)
0 0

Directive gain, G(8, #), is defined as the ratio of the power along a specified radial (0, #) to

the total power radiated over 41 steradians (this can be seen as normalizing the radiated

power in the specified radial by the power radiated in the radial if the transmitter were an

isotropic radiator using the same transmit power):

|U(d, 8,0)12  2 4 |IU(d, , )12
G(84 @)ir27

Prad/4xd2  f0" fo "U(d,6,q#) 2 sin8d#Pd6 (2.3)

where the second equality follows from (2.2). The antenna directivity is defined as the

maximum directive gain, denoted D. Thus, D is defined as:

D Amax G(0, #). (2.4)

Reference [14] proceeds to derive the radiated field from a UCAA and continuous ring

aperture using conventional beamforming weights (uniform amplitude determined by the

maximum average radiated power constraint with phase shift that varies along the curvature

of the antenna array or aperture). The directivity of a ring aperture antenna is well-studied

and can be found in many textbooks on antenna theory and array processing (see [13,30]).

However, this direction of maximum directivity is along the z-axis for a ring aperture

centered at the origin of the x-y plane. In our problem, we are interested in the maximum



directive gain with the constraint that 6 = (the field radiated in the x-y plane to other
2

users in the same plane). In [14], it is shown that while a simple closed-form expression for

the directivity of the UCAA or ring aperture antenna cannot be found given this constraint,

numerical results allow for an easy approximation to the directivity for each type of antenna.

For a UCAA, it is shown that the directivity is approximately equal to NE up to a point where

the element density becomes large enough and the antenna construction approximates the

continuous ring aperture antenna. This point of element saturation is denoted Nsat.

Explicitly, the directivity of the UCAA, denoted Darray, is approximated as:

D NE, NE !; Nsat (2.5)Darray -Nsat, otherwise

where Nsat is approximated as:

41TR 21TRNsat ~ - = . (2.6)

The author of [14] makes the interesting observation that the second equality of (2.6)

corresponds to an element spacing of - along the circumference of the antenna array, which

is the number of discrete elements required to sample the continuous ring aperture at the

appropriate spatial Nyquist rate. Since the UCAA approximates the continuous ring aperture

once the number of elements has exceeded Nsat, [14] also shows numerically that the

directivity of the ring aperture antenna constrained to the x-y plane, denoted Daperture, can

be approximated as:

Daperture E4w- (-

In our transmission model, the antenna directivity is a key parameter, but the distinction

between a UCAA and a ring aperture antenna is lost in the model. Thus, we actually allow

the underlying antenna geometry and construction to be arbitrary as long as it allows for



electronically-steerable rotational symmetry in the network operating plane like the UCAA

and ring aperture antenna described here. Correspondingly, we denote the directivity of this

transmitting directional antenna, constrained to the operating plane (equivalently, for 8 =

), as Dtx from this point on in our work.

As shown in [14], the receive beamforming problem is symmetric to transmit beamforming.

Using a similar conventional beamforming phase shift pattern on the receiving UCAA or ring

aperture antenna, we can realize a receive directional gain just as in the transmit case.

Unlike a traditional steered receive antenna that must know a priori which direction the

transmitted field is arriving from, processing techniques at the receiver allow receive

beamforming to be implemented by solving for the largest eigenvalue in receive antenna

element correlation matrix without this a priori knowledge [31]. This reduces required

network overhead to set up communication between a transmitter-receiver pair. The

transmitting node knows where the receiving node is located and steers its transmitting

beam in the direction of the receiver. The receiving node does not need to be aware that the

transmitting node transmitting. It can use post-processing to discover the direction of arrival

of the transmitter's signal and leverage receive beamforming gain. We note that receive

beamformers are not limited by a time-averaged radiated power constraint like the

transmitting device. Receive beamformers have the additional ability to place nulls in the

direction of undesired interferers to reduce perceived noise and interference levels. As

mentioned in Section 2.2.2, our work is concerned primarily with the power-limited

network regime and not the interference-limited regime. Thus, we do not leverage the use

of receiver null formation in our analysis. In fact, throughout this work, we normalize the

receive directivity in the network plane of operation (as in [32]). This means that the receive

gain is unity in the direction of interest and less than unity in all other directions. This

normalization is intended to make the analysis more tractable and highlight the dependency

of the results on the transmit directivity parameter. However, one should bear in mind that



a receive directivity gain can easily be included in the presented analytical framework by

adding another gain term, D., that represents the signal power gain at the receiving antenna

array or aperture.

2.3.3 The Transmission Model

We now proceed to combine transmit beamforming with our previously discussed channel

model to develop a more abstract transmission model that can be used in our network

analysis to compare a network using omnidirectional transmission antennas with a network

using directional transmission antennas.

We begin by considering an end-user device equipped with an omnidirectional transmission

antenna. As discussed in Section 2.3.2, this antenna radiates power uniformly in all

directions, but we are only concerned with a one- or two-dimensional operating scenario.

Thus we can imagine a node that radiates power uniformly in a circular pattern in the plane

on which the device lies, which we continue to refer to as the x-y plane. We place a

maximum time-averaged radiated power constraint on the end-user node. For a variable rate

transmission system, such a node can theoretically communicate with any other node at any

arbitrary distance, although the data rate it can sustain decreases with increasing physical

separation. In the fixed rate transmission scenario with the assumption of a homogeneous

RF operating environment, we can conclude that a transmitting end-user device has a

limited range in which its signal can be successfully received and decoded at the specified

fixed rate. This reduces our omnidirectional transmission model to the popular disk model

that is frequently considered in network performance analyses [11,33]. We denote the range



of the end-user node with an omnidirectional transmission antenna in the fixed rate

transmission system as r [m], and this is represented visually in Fig. 2-3.

Using the omnidirectional transmission model as the baseline, we develop the directional

transmission model for an end-user node equipped with a directional antenna array or

aperture with transmit directivity Dtx We reiterate that the receive gain is normalized to

unity in the signal direction of arrival. Also, we retain the same maximum time-averaged

radiated power constraint on the transmitting node as in the omnidirectional case. In a

variable rate transmission system, each node is again theoretically connected to any other

node, although the rate that can be sustained between the pair decreases as the physical

separation between them increases. However, the transmitter directivity allows for a higher

sustainable data rate between the pair than in the omnidirectional case at the same node pair

separation distance (and same time-averaged radiated power constraint). In the fixed rate

transmission system, using the simple path-loss channel model discussed in Section 2.2.1 and

assuming a homogeneous RF operating environment such that the path-loss exponent k is

the same everywhere, we can derive the following relationship for the transmission range of

the beamforming-enabled end-user device, denoted rbf [m]:

rbf = rDt1/ (2.8)

where r is the omnidirectional transmission range in the fixed rate transmission system as

previously discussed. The full derivation of (2.8) is presented in Appendix A. Since we only

consider unicast communication in this thesis, we can continue to use the disk model for

analysis of the directional infrastructureless wireless network if we allow the beamforming-

enabled end-user node to steer its transmitting main beam in an arbitrary direction in the

operational plane. This disk model for the directional transmitter does not work if we

consider multicast or broadcast transmission scenarios. By focusing on the range of signal

transmission, this transmission model does not account for the main beam width (as seen in

the beam pattern of Fig. 2-2). The described transmission model and the difference between

51



the omnidirectional and directional case is illustrated in Fig. 2-3. The normalized directional

transmission range, f, is shown as a function of Dtx in Fig. 2-4.
r

2.3.4 Beamforming Pitfalls

While the objective of this work is to reveal the potential gains of beamforming in an

infrastructureless wireless network in terms of connectivity, throughput, and end-to-end

delay, this technology does come with some points of caution that the network architect

must consider for specific network designs and deployments. First, the use of both transmit

and receive beamforming requires computationally intensive signal processing and matrix

operations. This requires that end-user devices meet some minimal requirement on

computational ability. The use of these techniques additionally consumes more processing

power at each network hop. Second, the efficient use of electronic beam steering requires

the additional overhead of equipping each end-user node with some localization technology,

which we discuss more in the next section. It also requires nodes to exchange location data

as part of the network management data overhead. Finally, the use of transmission

beamforming may actually degrade system performance in some cases where the RF

environment is not the ideal unobstructed environment free of absorbers, reflectors, and

scatterers that we assume in this analysis. In these scenarios, we cannot assume the existence

of an unobstructed line of sight (LoS) path. For example, we can consider a situation where

the LoS between a node pair is blocked by an opaque RF obstruction, yet there is an indirect

path using an RF reflector between the two. Using localization information to point the

main beam directly at the receiver in this case would result in the failure of signal

penetration. However, if the transmitter had been radiating the signal uniformly in all

directions as with an omnidirectional transmission antenna, the indirect path using the



Figure 2-3: Comparison of the omnidirectional transmission range model (left) and the associated directional
transmission range model (right) for fixed rate transmission systems. While the beam pattern of the directional
antenna does not radiate power uniformly in all directions at any given time, the main beam can be steered
electronically to achieve this depicted range in any desired direction in the plane of operation. We note that
this transmission range model suppresses the width of the main beam as well as any radiation pattern side lobes,
although the main beam is shown by the dotted line in the model.

rbf
Figure 2-4: Directional transmission range normalized by the omnidirectional transmission range, -, as a

function of the transmitting antenna directivity, Dtx, for fixed rate transmission systems and for different values
of the attenuation exponent, k.
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reflector could be leveraged to achieve some data rate between the two end-user nodes.

Thus, in heavily obstructed operating environments, the direction of signal transmission

would need to be determined by feedback or reciprocity to find and excite the optimum

transmission mode rather than relying on localization information.

2.4 Node Localization

Knowledge of the location of network nodes helps leverage beamforming to improve

network connectivity and employ location-based routing schemes (as we discuss in Chapter

5). To this end, we assume the availability of node localization information (with a

sufficiently small error range) in our infrastructureless wireless networks. This section

provides a brief overview of some of the localization technology that is available to the

network architect, although the analytic results presented in this work are technology-

independent as long as the localization information is accurate enough for transmitter beam

steering.

2.4.1 GPS Systems

The Global Positioning System (GPS) is a system of satellites in medium Earth orbit designed

in a way such that there are at least four satellites visible by any point on Earth at any given

time (assuming no physical obstructions are present). A GPS ground receiver captures the

periodic beacon information with time and location information from each of these visible

satellites in order to synchronize its clock and compute its location through trilateration.



Augmented GPS systems, such as Differential Global Positioning System (DGPS), have been

designed to increase the accuracy of GPS by using wireless ground terminals at known

locations in addition to the satellite constellation. Although the system is widely used and

allows for a relatively high degree of accuracy, a major problem with relying on GPS is the

lack of service when the LoS between the GPS satellites and ground receivers has been

obstructed (such as for indoor environments) [34].

2.4.2 Beamforming-based Localization Techniques

In some non-commercial networks, particularly military networks, there is a desire to

determine location without relying upon easily-jammed systems like GPS. In these

networks, we can use the receive beamforming techniques discussed in Section 2.3.2 to

gather location information about network end-user devices. Specifically, if end-user devices

are equipped with omnidirectional transmitters, then nodes can beacon at some known

power level on their specified frequency channel. Beamforming-enabled receivers can then

solve the received power correlation matrix formed by considering the signal arriving at each

antenna element to find the eigenvalues and eigen-rates corresponding to user locations.

This solution provides the receiver with the direction of arrival of the signal and the received

signal power level. If we assume network operation in a homogeneous RF environment,

then the received power level can be used to determine the distance between the transmitter

and the receiver. Combining the signal direction of arrival with the calculated distance, the

receiving node can determine the location of the transmitter with respect to its position. If

all nodes participate in this process and then exchange information with each other, they can

synchronize information and map out the relative locations of all end-user devices in the

network [31].



2.4.3 Inertial Navigation Systems

Another option that does not require the use of GPS is an Inertial Navigation System (INS),

which uses a combination of inertial sensors (accelerometers and gyroscopes) to measure

acceleration and rotation about each of its axes with respect to some common reference

frame. The output of these sensors is combined to calculate the location of the INS-enabled

device with respect to some known starting location. The rapidly-increasing availability of

microelectromechanical systems (MEMS) sensor modules has made this a popular choice for

position tracking in missile, submarine, and satellite systems. However, INSs are subject to

mechanical imperfections, vibrations, temperature fluctuations, and drift, which accumulate

over time and must be corrected. For this reason, these systems are often used in concert

with other localization techniques (such as GPS) to help correct for these errors and allow

for recalibration [34].

2.4.4 Map-assisted Localization

If a map of the operating region is available prior to network deployment, it can be used

simultaneously with other localization methods to improve the accuracy of location

information. Many techniques have been developed in the field of robotics (such as

algorithms for simultaneous localization and mapping [35]) that could be adapted for wireless

device localization to make highly-precise position information available to end-user nodes

and network algorithms.



Chapter 3

Impact of Directional Antennas on the Probability

of Connectivity in Random 1D and 2D Networks

We begin our investigation on the impact of beamforming-enabled devices in wireless

infrastructureless networks by analyzing their benefits for instantaneous network

connectivity. The probability of connectivity metric is an important place to start, since a

connected network is a vital prerequisite for the analysis of throughput and end-to-end delay

performance. A partitioned network implies zero throughput and infinite end-to-end

latency between at least one source-destination pair.

This work builds upon the probability of connectivity analysis using omnidirectional

transmit and receive antennas presented in Chapter 3 of [9]. Using models amenable for



analytic studies, we seek to identify directional network regimes with a high probability of

connectivity. This section focuses on fixed rate transmission systems, since given a

maximum time-averaged transmitter power constraint at each node, this fixed

communication rate constraint implies a limited communication range for each node. In a

variable transmission rate system, we recognize that every node in the network is trivially

connected to every other node in the network, even though the communication rate

between the two nodes may become arbitrarily small as their separation distance increases.

Therefore, a variable rate system can always be considered to be fully-connected, whereas

the fixed rate transmission system may be disconnected. And while this analysis only

considers stationary node placement as discussed in Chapter 2, the random distribution of

nodes is a stepping-stone towards including the effect of node mobility.

We first study connectivity of one-dimensional random networks (on a line). The results

using directional antennas are compared to the base case of nodes using only omnidirectional

transmission and reception. Subsequently, we extend our analysis to two dimensions (in a

square planar area) and employ well-studied approximation methods to identify regimes of

interest with high probability of instantaneous connectivity. The results in this chapter

identify trends and guidelines for the design and deployment of fixed rate transmission

infrastructureless wireless networks intended to provide end-user QoS assurance.

For the purpose of result visualization in this chapter, we adopt the convention of [37] and

1
define high probability of connectivity as a probability greater than 1 - -, where n is the

number of end-user nodes. We make the threshold of high probability of connectivity a

function of n both because we expect to satisfy a fixed threshold of connectivity trivially as

the end-user density grows large in a bounded operating region, and because the behavior of

this bound agrees with the definition of "with high probability" (the probably of a sequence

of events approaching unity as n goes to infinity). Although this definition of high



probability of connectivity is appropriate when n is large enough (in particular, when

n > 20), we must be careful of how the results are interpreted with respect to this definition

for smaller values of n since we are interested in network operating regimes with very high

instantaneous probability of connectivity. While this is a shortcoming of the definition, we

note that our analytical results in this chapter still hold for any arbitrary value of n. This

definition of high probability of connectivity is only used in a few visualizations and design

tradeoff expressions, where the reader should be appropriately careful with interpretation

when n takes on smaller values.

3.1 Random Line Network Analysis

We consider a simple, idealized random network scenario with end-user nodes distributed

along a fixed-length line region. This analysis identifies insights that drive the analysis for

the planar random network case. It also reveals the effect of antenna directivity on the

probability of network connectivity for a given density of end-user nodes. While the

random line network case is a crude approximation to many realistic scenarios, one can

imagine circumstances where this represents a reasonable estimate of the operational region,

such as vehicular-based end-user nodes distributed along a particular stretch of highway or a

sensor network deployed in a tunnel underpass.

The following is a description of the idealized model that we consider for the subsequent

analysis. End-user nodes are independently and identically distributed along a line of length

L [m] according to a uniform distribution. Adopting the fixed rate system transmission

model for both omnidirectional antennas and directional antennas discussed in Section 2.3.3,

each node with an omnidirectional antenna is assumed to have a maximum transmission



range of r [m] and each node with a directional antenna array is assumed to have a maximum

transmission range that is an appropriately scaled version of the omnidirectional antenna

range, Dt1k r, where Dtx is the antenna directivity and k is the attenuation exponent of the

path-loss model. The value for r is determined by the maximum allowable transmission

power, the exponent of the path-loss model, and the required communication rate under the

fixed rate transmission scenario. An expression for the maximum transmission range of the

fixed rate omnidirectional system is developed after the introduction of the power model in

Chapter 4. However, in this chapter, r is taken as a constant dictated by the constraints of

the end-user node construction and the RF environment. The omnidirectional or directional

network is then deemed disconnected if there is at least one adjacent node pair separated by

more than r or D1/k r, respectively. Note that receive beamforming is suppressed

(normalized to a receive directivity of unity, equivalently) in this analysis, although it could

easily be included by adding an appropriate receive directivity term to the range in the

directional network analysis.

This idealized "disk model" is a gross simplification of reality, as it does not account for

possible RF obstacles and scatterers or the potential use of a non-homogeneous set of end-

user nodes. Despite this, the disk model is often used in network connectivity studies [11,33]

since it allows for analytical tractability and first-order insight.

Now we define the notation that is used in our mathematical analysis. Let there be n end-

user nodes randomly distributed along a line bounded by [0, L]. Each node's location is

selected independently of all other nodes. The location of a node is distributed according to

a uniform distribution over the line. We denote the location of node i as Xi. Thus, the

locations of the user nodes {X1 , X2 , ..., Xn} are independent and identically distributed (IID)

random variables. For analytical simplicity, the origin of the line is defined to be the

deterministic location of an additional user node, indexed node 0. Now we let



{X(1), X(2 ), ... , X(n)} represent random variables that denote the ordered locations of the user

nodes, such that X(O) ! X(1) < X(2) 5 -- 5 X(n) L. We define random variables that

represent the distances between neighboring nodes, {YLEB, where the index set B =

{O,1, ... , n - 1}. By this construction, Y = X( 1+1) - XM -. We note that while each Yi is

identically distributed, they are not independent (consider that one very large distance

between a neighbor pair implies shorter spacings between other adjacent pairs on the

bounded line). Finally, using a well-known result from basic order statistics [36], each Y has

the following cumulative distribution function (CDF):

Pr{YiY y} = 1 - (I - ). (3.1)

An example realization of a random line network with a node anchored at the origin of the

line is shown in Fig. 3-1.

3.1.1 Probability of Connectivity Using Omnidirectional Nodes

We are interested in network regimes with a high probability of connectivity. In these

regimes of interest, we continue our study of the analytical and algorithmic details of QoS

provision for throughput, end-to-end delay, and network energy consumption.

In order for all network users to be able to communicate, the random deployment of end-

user nodes in the line network must be fully connected. With an additional end-user

anchored at the origin of the line for a total of n + 1 network nodes, the probability of

connectivity, denoted PCf"i(n,r, L), is derived in [38] and shown alternatively using the

well-studied problem of circumference cover with random arcs in [9]:
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Figure 3-1: Example realization of random line network with anchored node 0. For analysis, these networks
have a total of n + 1 end-user nodes.

PC"O"l(n r, L) = j(-1) ( ) - u - - ir) (3.2)

i=0

where u(-) is the unit step function.

We observe that this expression can be rewritten such that pcmni (n, r, L) depends on the pair

of arguments (r, L) only through the ratio _. Thus, for notational simplicity, we define the
L

normalized omnidirectional transmission range as A4 L, and rewrite (3.2) as:

n

PC"m"(n, A) = (-1)L (1 - iA)"u(1 - iA). (3.3)

i=0

The expression in (3.3) is precise, but it does not yield much insight into how pmni (n, A)

varies with its arguments. We bound this equation from both sides as proposed in [9] to

elucidate the matter.

* Lower bounds:

PC9"mf (n, A) > 1 - n(1 - A)n (3.4)

> 1 - ne-nA (3.5)

where equality is met in the first bound for n = 1. These results hold for 0 A: 1,

realizing that the network is trivially connected if A> 1. For (3.4), the bound is



derived by simple application of Boole's Inequality, and (3.5) follows from the fact

that 1 - x < e-X for x > 0. It is also quickly verified for the second bound that the

value approaches 1 as n -> oo. We note that these lower bound expressions can yield

negative values for certain combinations of input parameters. For these regions we

instead employ the trivial lower bound, pc"mni (n, A) > 0.

0 Upper bound:

PC" (n, A) (1 - (1 - A))" (3.6)

where equality is met for n = 1. Again, this result holds for 0 A 1. This bound is

derived by noting that conditioned on the event that Y < r, the probability that

Y > r for some i > j increases. Taking the binomial expansion of the upper bound

and observing that (1 - A) e-nA, it is verified that the bound approaches 1 as

n -- oo.

The probability of connectivity and the associated bounds (except the weaker lower bound)

are shown in Fig. 3-2 and Fig. 3-3 for several normalized omnidirectional transmission

ranges, along with the 1 - threshold for high connectivity. Fig. 3-3 plots of the probability

of connectivity in log scale to capture the behavior of the low probability of connectivity

portion of the results, although this is not the interesting regime of network operation. We

note that the exact expression and the upper and lower bounds are tight, and essentially

interchangeable, for larger values of n, as seen in Fig. 3-2 and Fig. 3-3. These results show

that by increasing the normalized omnidirectional transmission range from 0.1 to 0.3, we can

decrease the number of end-user nodes needed for high-connectivity from almost 100 to 10,

an order of magnitude difference. Another interesting aspect of these results is the initial

decrease in the probability of connectivity as the value of n grows from 1 (recall that there

are actually n + 1 total end-user nodes in this random line network scenario). This reflects

the fact that as nodes are initially added to the network, there are more opportunities for



0.9 -

0.8 -

0.7 -

0.3 -

0:

0.6
04

0.4

0. 03

0.2

0.1

0-
1+1 10+1

Number of user nodes
100+1

Figure 3-2: Probability of connectivity and upper and lower bounds for random line networks using

omnidirectional antennas for different values of A, the normalized omnidirectional transmission range. Solid

lines are Pc""i (n, A), dashed lines (---) are upper bounds, and dotted lines (...) are the tighter lower bounds.
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to serve as a reminder of this (n + 1) th end-user node.
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Figure 3-3: Probability of connectivity and upper and lower bounds for random line networks using

omnidirectional antennas for different values of A, the normalized omnidirectional transmission range, on a

log-log plot. This is the log-log scale version of Fig. 3-2.
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disconnections to arise. Thus we see a decrease in the probability of connectivity. Once

enough nodes have been added, however, it becomes increasingly likely that gaps where

disconnections occur are filled by the additional end-user nodes, and this is when we see the

sharp increase in the probability of network connectivity. We can manipulate the weak

lower bound (3.5) to show that for a fixed value of n, we require A> In(n2) for the n + 1
n

node network to fall within the high probability of connectivity regime. As mentioned in

the beginning of this chapter, one should be wary of this expression when n is small (in

particular, when n < 20) due to the behavior of the defined high probability of connectivity

threshold. This caution should be used whenever the high probability of connectivity

threshold is invoked, although we do not reiterate this statement of caution in each section

of this chapter.

3.1.2 Probability of Connectivity Using Directional Nodes

We consider the same scenario of a random distribution of n end-user nodes over a bounded

line region with an additional user node anchored at the origin of the line. However, we

now employ end-user nodes equipped with directional antennas instead of omnidirectional

antennas. For the purpose of this section, we suppress receive beamforming gain by

normalizing the receive directivity to unity and focus on deriving analytic expressions with

respect to the transmit directivity gain, Dtx

As before, in order for all end-users to have the opportunity to communicate, the random

deployment of the nodes must form a fully connected network. In other words, no

neighboring nodes can be separated by a distance more than D1x/ r. With an additional end-

user anchored at the origin of the line for n + 1 nodes in total, the probability of



connectivity, denoted P (n, r, L, Dtx), can easily be shown by following the analysis in [38]

to be:

Pb' (n, r, L, Dtx) = (-1) 1 - irD u(L - irD1 (3.7)

We note that while the result is dependent on the attenuation exponent of the path-loss

model, k, the attenuation exponent is not included as an argument to the function because it

is an inherent characteristic of the operating environment and not explicitly under the

control of the network architect.

Following the analytical approach for the omnidirectional case, we simplify this expression

by rewriting it in terms of the normalized omnidirectional transmission range:

n

P"f (n, A, Dtx) =(( ) (1 - iAD1xk)n u(1 - iAD1). (3.8)
i=O

We also derive bounds similar to the omnidirectional case to reveal how this result depends

on its input parameters.

* Lower bounds:

Pbf (n, A, Dtx) 1 - n(1 - AD1/k)n (3.9)

> 1 - tx (3.10)

where equality is met for n = 1. Again, we note that these lower bound expressions

can yield negative values for some sets of input parameters. So for these regions, we

employ the trivial lower bound, P(n, A, Dtx) 0. Also, if AD 1xk > 1, then our

network realization is trivially connected. Under these conditions, the lower bound

does not provide useful information as P f (n, A, Dtx) = 1.



0 Upper bound:

P,' f(n, A, Dtr) 5 (1 - (1 - AD1xk)) (3.11)

where equality is met for n = 1. This result again holds for 0 < ADtxk < 1. if

ADt~x > 1, then our network realization is connected, P f (n, A, Dtx) = 1, and we can

use the trivial upper bound.

The probability of connectivity and the associated bounds (except for the weaker lower

bound) are shown in Fig. 3-4 and Fig. 3-5 for several values of the directivity, along with the

1 - 1 threshold for high connectivity. In this figure, we see results that appear similar to the
n

omnidirectional case. If we were to replace A'= AD1xk in (3.8) to (3.11), we would in fact

have the same expressions as in the omnidirectional case with a scaled version of the

normalized transmission range. Despite the similarity in analytic expressions, we continue to

use AD1x in the directional network expressions to explicitly highlight the effect of the

directivity gain term. Comparing Fig. 3-4 and Fig. 3-5 to the A= 0.1 omnidirectional case,

we see a significant improvement even with Dtx = 2, which reduces the number of end-user

nodes required for high-connectivity from approximately 100 to 50. Increasing the

transmitter directivity to 20 reduces the required number of end-user nodes to only 6 for a

high probability of connectivity. We can manipulate the weaker lower bound (3.10) to show

that for a fixed value of n, we require ADt/k > 11n(n 2 ) for the n + 1 node network to fall

within the high probability of connectivity regime, where AD1xk can be viewed as the

normalized directional transmission range. Moving the directivity to the right side of this

expression, we see that the required value of A is improved by a factor of - compared

to the omnidirectional case, which corresponds to savings in the required transmission

power required to attain the same level of high probability of connectivity.
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Figure 3-4: Probability of connectivity and upper and lower bounds for random line networks using directional

antennas. Solid lines are Pc (n, A, Dtx), dashed lines (-) are upper bounds, and dotted lines (...) are the tighter

lower bounds. The solid black line is the 1 - threshold for high-connectivity. For this figure, A= 0.1 and the
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antennas on a log-log plot. This is the log-log scale version of Fig. 3-4.

........ ..... 1 111 11, ...............



For a fixed directivity gain, the probability of connectivity and associated bounds (except for

the weaker lower bound) are shown in Fig. 3-6 and Fig. 3-7 for different values of the

attenuation exponent k. This illustrates how the operating environment (assumed to be

homogeneous) affects the directivity gain as the path-loss exponent increases. In these

figures, the leftmost set of curves are the same as in Fig. 3-4 and Fig. 3-5. The two other sets

of curves in each figure demonstrate how dramatically the gains disappear due to undesirable

RF phenomena including environmental absorption and diffraction. We note that the value

for r would also decrease with increasing value of k, however for this analysis we assume

that the value of r (and equivalently A) can be held fixed by increasing available transmit

power as k increases.

3.1.3 Probability of Connectivity Comparison Between Directional and

Omnidirectional Networks

Given the results from Sections 3.1.1 and 3.1.2, we compare the directional network

connectivity performance with the baseline omnidirectional network case. Fig. 3-8 and Fig.

1
3-9 show the omnidirectional and directional results simultaneously (as well as the 1 --

n

high connectivity threshold) for a common normalized omnidirectional transmission range A

and different values of the transmit directivity. These plots show that, when k = 2, we can

see almost an order of magnitude decrease in the number of user-nodes required for the same

probability of connectivity using an antenna with directivity Dtx = 20. A higher probability

of network connectivity with decreased end-user device density significantly increases our

network regime of interest for subsequent study in throughput and end-to-end delay QoS

measures, thus these results make a strong case for using beamforming-enabled nodes in the

design and deployment of a wireless infrastructureless network.
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antennas for different values of the attenuation exponent on a log-log plot. This is the log-log scale version of

Fig. 3-6.
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Figure 3-9: Probability of connectivity comparison between nodes equipped with omnidirectional transmit
antennas and beamforming-capable antennas on a log-log plot. This is the log-log scale version of Fig. 3-8.
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Figure 3-11: Probability of connectivity versus transmitter directivity for selected values of n on a log-log plot.

This is the log-log scale version of Fig. 3-10.



Since transmitter directivity is a crucial design parameter for the network architect, we

consider how the probability of connectivity changes explicitly with the directivity gain for

fixed end-user node density. Fig. 3-10 and 3-11 show the relationship between probability

of connectivity and transmitter directivity for fixed values of n, noting that the far left of

each plot represents the probability of connectivity for a specific end-user node density using

omnidirectional transmission antennas (equivalently, Dtx = 1).

The addition of transmitter directivity allows the end-user device density to decrease while

maintaining a high probability of instantaneous connectivity. With the definition of high

probability of connectivity, we can use the lower bound on the probability of connectivity in

(3.10) to find the required number of end-users to achieve a high probability of connectivity

for a given transmitter directivity. Explicitly, we require that 2 A in order for the

probability of connectivity to fall within the defined high probability of connectivity regime.

This tradeoff between transmitter directivity and the required end-user node density for a

high probability of instantaneous connectivity is shown in Fig. 3-12. The far left side of this

plot represents the number of end-users required to achieve a high probability of

connectivity in an omnidirectional network (equivalently, Dtx = 1). We observe that an

order of magnitude increase in directionality corresponds to approximately an order of

magnitude decrease in the number of nodes required when k = 2. The shape of the curve is

a result of the high probability of connectivity threshold that varies with n. If we were to

consider a fixed threshold of high probability of connectivity, the curve would not drop off

suddenly on the far right side.
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Figure 3-12: Number of end-user nodes required to achieve a probability of connectivity greater than 1 - in a

random line network as a function of transmitter directivity. For this figure, A= 0.1 and k = 2.

3.2 Random Two-dimensional Network Analysis

While we made an effort to fit the random line network to actual operating scenarios, it is

much more common to encounter networks operating in a planar region. As such, the line

network scenario is a special case used to provide insight and analytical expressions that help

us to analyze the more general and realistic case in this section.

We consider a similar network deployment scheme as before, allowing n users to be

identically and independently distributed in a bounded planar region with area L x L [M 2 ]

according to a uniform distribution over the area. In order to apply the analytical results

from Sections 3.1.1 and 3.1.2, we need to anchor an additional end-user node, indexed node



0, at the origin of the planar region (lower left corner). We continue to use the transmission

model for both omnidirectional antennas and directional antennas discussed in Section 2.3.3.

As such, each node is assumed to have a circular transmission range of radius r in the

omnidirectional case and D 1xkr in the directional case.
tx

Under the theory of random geometric graphs, the asymptotic properties of a network

scenario like this are well studied. A thorough overview of the results from this field are

presented in [39]. Applying this theory to infrastructureless wireless networks, Gupta and

Kumar have shown similar asymptotic properties for connectivity in a two-dimension disc

operating region [40]. Although random geometric graph theory allows for analytical

connectivity results as the number of network nodes goes to infinity, we are interested in

identifying regimes of high probability of instantaneous connectivity for finite values of n.

The general problem of identifying the probability of connectivity for a bounded planar

region with finite-valued n is difficult to solve, but we can bound the exact probability with

approximations from each side. The first two subsequent sections develop these

approximations, and the third compares these results and provides visualizations of the

bounds to enable us to identify network operating regimes of interest for discussing QoS

performance.

3.2.1 An Upper Bound Approximation

We consider the randomly deployed network of n + 1 end-user nodes as proposed, with

node 0 anchored at the origin of the plane and the other n nodes placed independently

according to a uniform distribution over the L x L planar operating area. The operating area

is considered to lie in the x-y plane. For the purpose of this section, we denote this random



network as N. Next, we consider the projection of N onto the x-axis of the plane, which is

bounded by [0, L]. We denote the random one-dimensional line network that results from

this projection as N,. Simultaneously, we consider the projection of N onto the y-axis of the

plane, which is also bounded by [0, L]. In a similar manner, we denote the random one-

dimensional line network that results from this projection as Ny. By the projection of the

two-dimensional random network deployment onto the separate axes, we have created two

independent one-dimensional random line networks, just as we have analyzed in Section 3.1.

Fig. 3-13 shows an example realization of N and the associated one-dimensional projection

realizations, N, and Ny.

Next, we recognize that the probability that N forms a connected network, regardless of the

type of antenna technology considered, is less than or equal to the probability that both Nx

and Ny each form a connected network. It is this realization that allows us to use the

probability of connectivity of the two line network projections to create an upper bound for

the probability that N is connected. The random network N is disconnected if either N, or

Ny is disconnected, since the projection process of node locations in two-dimensions to node

locations on a line can only reduce the separation between a neighboring pair of nodes.

Thus, we deem the one-dimensional projection approximation to be connected if both N,

and Ny form connected line networks. The one-dimensional projection approximation

imposes a less stringent requirement on connectivity than our requirement on N to be

connected, making the probability that the projection approximation is connected an upper

bound to the actual probability of connectivity. We can prove that this projection

approximation is an upper bound by the example of Fig. 3-14. We see in this example that

both projections, Nx and Ny, form connected line networks with the given r. However, the

one end-user node in N is actually partitioned from the rest of the nodes in the network.
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Figure 3-13: Example realization of N and its one-dimensional projections, N, and Ny.

By these arguments, we can now write the upper bound expressions for both the

omnidirectional network and directional network cases. If the end-user nodes are equipped

with omnidirectional antennas for transmission, we denote the probability that the random

planar network is connected by P2ogl (n, A), and we have:

(3.12)

(3.13)

where (3.12) follows from the independence of the two random line network projections and

(3.13) follows from the bound to the exact expression of pcmf" (n, A) shown in (3.6).

Actual node

Projected node

+--N

P2fn" (n, A) < (p~om(n, A))

< (1 - (1 - A)")2n

M___



r
Actual node

Projected node

Figure 3-14: Example where both N, and Ny one-dimensional projections are connected, but the actual

realization of N has a partitioned node.

Similarly, if the end-user nodes are equipped with directional antennas for transmission, we

denote the probability that the random planar network is connected by P2 (n, A, X and

we have:

Pb (n, A, Dtx) < (P f (n, A, Dtx))2 (3.14)

(1 - (1 - AD1xk))n2 (3.15)

where (3.14) follows from the independence of the two random line network projections and

(3.15) again follows from (3.11), the bound to the exact expression of Pbf (n, A, Dtx



3.2.2 A Lower Bound Approximation

To derive a lower bound to the probability that the two-dimensional network is connected,

we take up the well-studied "balls and bins" model, following the example of [9]. This model

describes the act of randomly dropping balls into a set of bins and considers properties such

as the distribution of how many balls land in a bin and the expected number of bins that are

empty [41].

We first tessellate our planar area into m equal-sized cells. Next, we map the end-user nodes

to balls, the cells to bins, and the act of randomly distributing the n end-user nodes in the

plane to the act of randomly dropping the balls into the bins. Additionally, we recognize

that an end-user node can land anywhere within a cell, while the balls and bins model only

considers the binary question of whether or not a ball lands in a given bin. Thus, we need to

size the cells appropriately so that we can gain insight from this model. If we set the cell

edge length to be r (in the omnidirectional network case) or (in the directional

network case), then we ensure that a node anywhere within a cell is within communication

range of a node anywhere within the cell directly above, below, to the right, or to the left of

it. This is illustrated in Fig. 3-15. This cell sizing corresponds to having m = (in the

omnidirectional network case) or m = [ADi/k (in the directional network case). With this

structure, we deem the network using the balls and bins approximation to be connected if

there is at least one ball in each bin (or equivalently, at least one end-user node in each cell),

a common question to ask in the balls and bins framework.

Before we derive the probability of connectivity under the balls and bins model, we note that

this approximation imposes a more stringent requirement for connectivity on the random



two-dimension network than the requirement for N to be connected, thus making the

probability that the balls and bins approximation is connected a lower bound to the actual

probability of connectivity. We can prove that this approximation is a lower bound by the

example illustrated in Fig. 3-16. In this example, the underlying network of end-user nodes

is connected. However, the balls and bins approximation would be deemed disconnected,

since there is an empty cell.

We now consider how to analyze this two-dimensional connectivity approximation. As

mentioned before, we require at least one end-user node to fall in each cell to deem the

approximation connected. Given that we deterministically have a node within the bottom

leftmost cell by definition, we need the n nodes to cover the other m - 1 cells for

connectivity. We can find this exact probability by realizing that the described cell

tessellation of the operational plane means that an end-user node is equally likely to land in

any cell, and then we can apply the inclusion-exclusion principle for determining the size of

the union of events in the probability space [42]. We denote the probability of connectivity

for this balls and bins approximation parameterized by n and m as pfb b(n, m). The derivation

is shown in Appendix B, and the exact result is:

.- mn

Pf6 (n, m) = (1) )1 -- ) (3.16)
i=o

This result applies as long as n ;> m - 1. It can be readily verified that plb b(n, m) - 1 as

n - oo for a fixed value of m. The expression (3.16) holds when considering either end-user

nodes with omnidirectional or directional antennas since this difference is captured by the

value of m in the equation. We now have the following lower bounds on the actual

probability of connectivity:



Figure 3-15: The "balls and bins" model with appropriate tessellation (cell sizing) of the operating region.
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balls and bins approximation, whereas the underlying network



P2 ' (n,A, Dtx) Pb ( n, k. (3.18)
AD11

The form of the exact expression does not give a very intuitive understanding of pfb (n, i).

So we derive a lower bound to this expression by indexing the cells from 1 to m and defining

an indicator random variable It such that:

I = I if cell i has no user node (3.19)
0 otherwise.

As before, we recognize that each user-node is equally like to fall into any cell and the

bottom leftmost cell is always deterministically full. Then, we apply the union bound to the

union of the events that these indicator random variables equal 1 to get:

Pb (nm) > 1-(m-1) 1--) (3.20)

-nm

> 1 - (m - 1)en/m. (3.21)

The looser bound (3.21) follows from the fact that 1 - x < e-X for x > 0, and it can be easily

seen that this bound goes to 1 as n -> oo for a fixed value of m.

A well-known result for the balls and bins analysis is that pb (n, > 1- 1> nn

when m ; . A derivation of this result can be found in [43]. In other words, as the
2lnn

number of end-user nodes in the network increases, the number of cells can also increase

while maintaining network connectivity. An increase in the number of cells for a fixed



operating area corresponds to a decrease in the required end-user device transmission radius,

which translates into transmission power savings. Explicitly, this condition says we need

1 l0>nn (3.22)1/k F
tx

to guarantee that we are in the regime of high probability of connectivity using the balls and

bins formulation (note that Dtx = 1 for nodes equipped with omnidirectional transmission

antennas). The normalized omnidirectional transmission range A can decrease as n increases.

And while the normalized omnidirectional transmission range decreases at the same rate

with increasing n for both omnidirectional and directional networks, the directivity gain

scales down A by a factor of D1xk for beamforming-enabled nodes. Recall that a decrease in

the required normalized omnidirectional transmission range for high probability of

connectivity corresponds to a decrease in required transmission power for high probability of

connectivity.

We briefly consider another common question in this balls and bins framework: for a fixed

m, what is the number of end-user nodes we need such that there is at least one node in each

of the m cells? We denote this quantity as n*. Commonly, textbooks consider the expected

value of this quantity (see [44]). If we divide node deployment into sequential stages such

that a stage ends when a node first lands in a previously empty cell and we let ni represent

the number of balls needed for the ith stage, then it follows that ni is a geometric random

variable with a probability of success equal to m. Thus, we have:

m

E[ng] = . (3.23)

for i E {1,2, ..., m - 11. Since n* = E'- ni, we have the following for the expected value of

n*:



M-1

E[n*] = E[n] (3.24)

i=1

rn-1

= m 1 (3.25)
i=1

= mHm-1 (3.26)

where Hm is the m" harmonic number.

3.2.3 Probability of Connectivity in Random Planar Networks

Using the bounds derived in Sections 3.2.1 and 3.2.2, we now provide visualization of these

results and compare results when using omnidirectional antennas versus directional antennas

for transmission.

First we examine the bounds on the probability of connectivity for a random planar network

with end-user nodes equipped with omnidirectional transmission antennas. Fig. 3-17 shows

the upper and lower bounds using the two approximations to the probability of connectivity

we have described for three different values of the normalized omnidirectional transmission

range, A, which corresponds to three different values for the number of cells in the

tessellated operating plane, m. As we observe from these results, the upper and lower

bounds are not tight. When considering the methods of approximation to the planar

network probability of connectivity, we expect that the lower bound is closer to the actual

probability of connectivity, since it more realistically models the two-dimensional end-user

node deployment, whereas the upper bound is a very liberal approximation to the two-

dimensional deployment of nodes. We also observe that, as expected, an increase in the



normalized omnidirectional transmission range corresponds to a dramatic decrease in the

number of end-user nodes we need to achieve a connected planar network with high

probability.

Next we examine the bounds on the probability of connectivity for a random planar network

with end-user nodes equipped with directional transmission antennas. Fig. 3-18 shows the

upper and lower bounds using the two approximations to the probability of connectivity for

three different values of the antenna array directivity, Dtx As in the omnidirectional case,

we observe that the upper and lower bounds are not tight and sometimes provide us with

little information about the true probability of connectivity value (the plot sometimes

indicates that, trivially, the value lies between 0 and 1). Still we have reason to believe that

the true values lies closer to the lower bound due to the nature of the two approximation

formulations. Focusing our attention on the lower bound results, we see that an increase of

transmit directivity gain from Dtx = 2 to Dtx = 20 reduces the number of nodes required for

a high probability of connectivity from approximately 500 to less than 20 when k = 2. This

is a very significant increase to the high probability of instantaneous connectivity regime.

Finally, we look at the omnidirectional and directional results together, with a focus on the

lower bound approximation to random planar network connectivity. Fig. 3-19 and Fig. 3-20

simultaneously show lower bound results from Fig. 3-17 and Fig. 3-18 along with the defined

threshold for high-connectivity when A= 0.25 (we use a larger value of A than we did in the

random line network analysis only for illustrative purpose-the same distinction between

the omnidirectional and directional network cases is seen when A= 0.1). The highlighted

results here show that using directivity gain Dtx = 20, we can reduce the number of end-

user nodes needed in the network to ensure a high probability of connectivity from

approximately 1000 to 20, almost two orders of magnitude difference, when k = 2. This

makes an extremely strong case for the use of end-user devices equipped with beamforming-
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Figure 3-17: Upper and lower bounds on P2"" (n, A) for random planar networks using omnidirectional

antennas. Dashed lines (---) are lower bounds using the balls and bins approximation, and dotted lines (...) are

upper bounds using the one-dimensional projection approximation. The solid black line is the 1 - threshold

for high-connectivity.
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Figure 3-18: Upper and lower bounds on Pf4 (n, A, Dex) for random planar networks using beamforming-

enabled antennas. Dashed lines (---) correspond to lower bound using balls and bins approximation, and dotted

lines (...) correspond to upper bound using one-dimensional projection approximation. The solid black line is

the 1 - a threshold for high-connectivity. For this figure, A= 0.25 and the free space path-loss exponent is
n

used, k = 2.
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enabled antennas in wireless infrastructureless networks, thus providing a reason to study

their performance in more detail in the following chapters.

As in the random line network case, the addition of transmitter directivity allows the end-

user device density to decrease while maintaining a high probability of instantaneous

connectivity. With the definition of high probability of connectivity, we can use the lower

bound result on the probability of connectivity to find the required number of end-users to

achieve a high probability of connectivity for a given transmitter directivity. Since

Pchbo )> 1- '1> 1--' when m s; - in the balls and bins lower bound
2nlnn n 2lnn

approximation, we need to satisfy n-> 2 to ensure that a network deployment falls

within the high probability of connectivity regime. This tradeoff between transmitter

directivity and the required end-user node density for a high probability of instantaneous

connectivity is shown in Fig. 3-21 for different values of the attenuation exponent k. The far

left side of this plot represents the number of end-users required to achieve a high

probability of connectivity in an omnidirectional network (equivalently, Dtx = 1). We

observe that an order of magnitude increase in directionality corresponds to approximately

an order of magnitude decrease in the number of nodes required when k = 2, just as in the

random line network case.

3.3 Summary

This chapter considered random networks operating in fixed one- and two-dimensional

regions and the probability of connectivity using end-user nodes equipped with either

omnidirectional antennas or directional antennas. In particular, the exact probability of

connectivity was shown for random line networks, while two different approximations were

88



presented to bound the actual probability of connectivity in the random planar network case.

Connectivity with high probability was defined and used to identify required transmission

range as a function of the node density of the network. Key design parameters that were

identified included the number of user nodes in the network n, the normalized

omnidirectional transmission range A, the directivity of the directional antenna used for

beamforming-enabled nodes Dt, and the attenuation exponent of the path-loss channel

model k (this is not under the control of the network designer, but important to consider). It

was also pointed out that while receive beamforming gain was suppressed in the analysis, this

is another important design parameter that can be readily added to the analysis to realize

even more gain in the directional network case over the omnidirectional network baseline.

These analytical results were used to compare the connectivity performance of random line

and planar networks using end-user nodes with omnidirectional antennas to those with

directional antennas for transmission. In the line network analysis, it was shown that the

use of modest directivity gain could decrease the number of user nodes required for a high

probability of connectivity by an order of magnitude. In the planar network analysis, we

observed that this same modest amount of directivity could allow the network designer to

reduce the required density of end-users by two orders of magnitude while still attaining a

high probability of network connectivity. Furthermore, in the line network analysis, it was

shown analytically that for a given number of end-user nodes in the network, the required

normalized omnidirectional transmission range (equivalently the transmission power) could

be improved by a factor of ) while still maintaining a high probability of connectivity.

These results indicate that the use of beamforming-enabled end-user nodes can significantly

increase the network operating regimes of interest for providing QoS assurance to the end-

user (specifically, the regimes with high probability of instantaneous network connectivity).
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Figure 3-21: Number of end-user nodes required to achieve a probability of connectivity greater than 1 - -in a

random planar network as a function of transmitter directivity for several values of the operation environment

attenuation exponent k. For this figure, A= 0.25.

As alluded to before, the analysis of this chapter uses very simple models. It does not

consider possible device heterogeneity, RF environment heterogeneity, RF environment

obstacles, or even more realistic node deployment distributions (for example, one would

expect some level of end-user clustering in many infrastructureless wireless networks).

These results, then, are only intended to guide network designers by identifying important

parameters and tradeoffs and to motivate our continued study of the benefits of using

beamforming-enabled devices in wireless infrastructureless networks.



Chapter 4

Throughput, Delay, and Energy Scaling for the

Power-limited Network

In the previous chapter, we characterized network regimes with a high probability of

connectivity. Identifying deployment scenarios with a high probability of connectivity is the

first step in discussing a network's ability to satisfy end-user QoS requirements. We now

consider other important performance metrics that are central to end-user QoS: throughput,

end-to-end delay, and energy consumption. In particular, since we are considering

infrastructureless wireless networks that may be composed of hundreds of end-users in a

bounded operating environment, we focus on the scalability of these metrics. After

identifying the network scaling behavior, we can use the resulting analytical insight to



develop efficient network algorithms to achieve the most desirable scaling behavior. This is

the subject of the following chapter.

Throughput is a clear first-consideration for delivering core service to the end-users, since it

is this metric that initially determines if data can be exchanged between devices in the

network. However, the existence of a sustainable level of throughput alone does not

guarantee that a system of battery-limited wireless nodes can support core services. Thus,

we consider the relationship between the sustainable throughput and the per-bit energy and

delay scaling (in terms of number of end-to-end hops) as well, which helps us to establish the

capability of the network to provide assured QoS.

After the work of Gupta and Kumar [11], there has been a large body of work concerned

with identifying the scaling behavior and tradeoffs of infrastructureless wireless networks.

The majority of this work has considered interference-limited networks, in which the

interference from nearby transmitters is the dominant source of noise at the receivers and

the limiting factor in network scalability. This area is well-studied, and the framework has

been extended to networks with beamforming-enabled end-user nodes [12]. In terms of

scalability, however, better behavior has been shown by exploring the physical layer option

of bandwidth expansion (or in the network regime where bandwidth is not the limiting

factor). With enough system bandwidth available, interference noise at the receivers can be

suppressed through appropriate channelization. In this network regime, the power

constraints at each node become the limiting factor in network scalability and performance.

We use the unlimited bandwidth assumption in our performance analysis, since this

analytical approach allows us to obtain an upper bound on the best performance that we can

achieve with a beamforming-enabled infrastructureless wireless network. While the



inclusion of interference may decrease network performance, the achievable network

performance can closely approach the upper bound with effective beamforming.

This chapter proceeds in the following manner. We first identify important assumptions,

definitions, and additional energy consumption models that we invoke throughout the

analysis presented in this chapter. We then consider the sustainable throughput of an

arbitrary (non-random) infrastructureless wireless network operating in a bounded region

for both fixed-rate and variable-rate transmission systems. We include derivations and

discussions of the omnidirectional infrastructureless wireless network alongside the

directional network for completeness and comparison. Finally, we use insight from the

analysis of arbitrary networks to identify the scaling behavior of random infrastructureless

wireless networks, both omnidirectional and directional, operating in the same bounded

region. We show that this analysis provides insight on routing solutions that attain the best

network scaling behavior in terms of all QoS performance metrics considered. This insight

guides the routing algorithm development of Chapter 5.

4.1 Assumptions, Definitions, and Models

4.1.1 Assumptions

Throughout this chapter, we invoke several key assumptions that make the analysis tractable.

This section summarizes those assumptions, although we repeat them in the appropriate

sections throughout this chapter in order to highlight the effect these assumptions have on

the interpretation of the results.



First, we consider an infrastructureless wireless network with n nodes. Each node in the

network can generate new traffic intended for any other node in the network, and each node

can also help forward pass-through traffic for other source-destination (SD) node pairs. We

find throughout the analysis in this chapter that many results show that the best behavior of

the network in question does not depend on n explicitly. Since we are primarily interested

in scaling behavior, we employ order notation to express some results. Hidden in this

notation is the assumption that n is "large enough." We attempt to clarify what this large

enough n assumption means in context as we proceed. Nonetheless, results in this chapter

are still valid for small values of n.

Next, we assume end-user device homogeneity. The analytical framework presented could

be extended to heterogeneous nodes at the cost of analytical simplicity. By assuming

homogeneous nodes, we are able to find first-order results that reveal the fundamental

limiting behavior of the networks. Maintaining simplicity can guide further network design,

including the algorithmic routing approaches in the following chapter.

Another important assumption is that of a geographically-bounded, two-dimensional

operating region that grows slower than the number of nodes so that the node density

increases as the number of end-users in the operating region increases. If the density of

nodes does not increase with increasing number of end-users, very little can be said about

the scaling behavior of the network. In the analysis of random networks in Section 4.3, we

use a fixed-size bounded operating region for tractable analysis.

We assume enough available system bandwidth, W [Hz], so that through appropriate

channelization, each possible communication pair in the network can use its own set of

unique communication channels (equivalently, for a network with n end-user nodes, there

are at least n(n - 1) available frequency channels). It is this assumption that allows the



receivers to resolve the desired signal from noise and interfering signals and focuses our

analysis on the performance of a power-limited network. With this assumption, the system

bandwidth can be modeled as approaching infinity.

Finally, we assume in our model that node power availability is the limiting factor for our

network. Specifically, we assume that both distance-dependent transmission energy and

signal processing energy are non-negligible (which diverges from many analytical studies in

the power-limited network regime [49,50]).

4.1.2 Definitions

Before proceeding with the specific model we use for analysis in this chapter, we establish a

few key definitions. Using the uniform traffic model to be discussed in Section 4.1.3, SD

pairs all exchange data at an average rate of A [bit/sec]. We define uniform capacity, A

[bit/sec], as the maximum achievable data rate under uniform traffic subject to a per-node

power constraint, where achievable means that this data rate can be sustained by all SD pairs

in the uniform traffic pattern. Uniform capacity is the maximum achievable data rate over

all possible routing strategies. Mathematically, we let P represent the set of all possible

routing strategies, and then we have:

Z = max {Achievable X}. (4.1)
P

For an arbitrary network, A is a deterministic quantity. But, for random networks, A is a

stochastic quantity. Alternatively, we define uniform throughput, A, as the maximum

achievable data rate with high probability under uniform traffic given a specific routing

scheme. We add the phrase "with high probability" to this definition because we only

consider this metric in our analysis of random networks. This definition is used when we



analyze the uniform throughput of a routing scheme that achieves the best uniform capacity

scaling behavior, while comparing this to the uniform throughput using the WtNN routing

scheme (as presented in [51]).

As in the definition of uniform throughput above, we make use the phrase "with high

probability" (whp) throughout the stochastic analysis in this chapter which deals with

random network deployments and uniform traffic patterns. The phrase "with high

probability" is defined as a sequence of events with probability approaching one as n goes to

infinity. The definition of "with high probability" in Chapter 3 (an event with probability

greater than 1 - ) satisfies this more general definition.

4.1.3 Traffic and Power Models

We adopt the network model of [49] with two key differences:

1. Along with distance-dependent transmission energy consumption, we also model

signal processing energy consumption as in [9].

2. Depending on our transceiver design, the transmission rate we consider can be either

fixed or variable. We consider both of these cases, recognizing that the fixed rate

system implies a maximum transmission range, whereas the variable rate system

allows for a connection between every possible node pair in the network albeit

sometimes at low rate. Regardless of the case, we assume that nodes employ power

control such that they can adjust the radiated power depending on the distance

between the transmitter and the receiver.



We consider a uniform traffic model, as in [11], where each node arbitrarily chooses a

destination and then sends data to that destination node at an average rate of A [bits/sec].

Our analysis closely follows the framework of Chapter 4 in [9], although that work considers

a different traffic pattern. Consequently, some of our omnidirectional network results vary

from those presented in [9], but they do agree with [51] in which the uniform traffic model

is used.

Since our work is focused on a power-limited network regime, we develop and discuss the

energy consumption models that we use in this analysis. For most infrastructureless wireless

networks, nodes are required to be untethered and, thus, the devices are limited by available

battery power. For the purpose of this analysis, we assume that the maximum time-averaged

power available to an end-user node, both for transmission and processing, is limited to Pavg

[J/sec]. Decreasing the value of Pag increases node lifetime, but we show that this is at the

expense of degraded network performance.

We begin with discussion of energy consumption models for omnidirectional nodes, and

then we show how the models change for a directional network. In the node

communication electronics, the average power expended is related to the average data rate of

the transmitted and received signals. Using the simple path-loss model, the Shannon

Capacity Theorem tells us that the data rate that node i can transmit to node j, denoted Rij

[bit/sec], is upper-bounded by the link capacity, Cij [bit/sec], under the limit of large

bandwidth:

R*j - < C--* - Pl (4.2)li- Iw->oo Nod

where yij is the RF gain (including antenna gains and RF processing losses), P' [J/sec] is the

time-average transmitted power from node i to j, dij [m] is the distance between nodes i and

j, k is the attenuation exponent of the path-loss model, and No is the noise spectral density.
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The time-averaged received power at node j from node i, denoted P [J/sec], can be seen in

(4.2) as:

P ti .(4.3)
ii

In the limit of large bandwidth, the capacity of the link increases linearly with the received

power.

We define the aggregate average transmitted data rate for new and pass-through traffic at

node i, denoted R [bit/sec], and the aggregate average received data rate for new and pass-

through traffic at node i, denoted RT [bit/sec], as follows:

R= Z Ri, (4.4)
j: ji

RT = R- (4.5)
j: j#t

The time-average total power consumed at node i, denoted Pi [J/sec], can be modeled as

shown in [9]:

Pi = ar R T + aoRT + a1 Rf + atRf + r7 P (4.6)
j: j~i

where ar, ao, ai, and at are the per bit energy costs for receiving data, processing and

storing received data, storing and processing transmitted data, and transmitting data (which

excludes the transmission power amplifier), all measured in [J/bit]. The amplifier power is

modeled by the last term, where 1j represents the inverse of the amplifier power conversion

efficiency. Due to device homogeneity, we let yij = y, Vi,j. Then, using (4.2), we can

rewrite (4.6) as:



Table 4.1: Transmit and processing energy consumption information for two low-power wireless systems [9].

P( = r+ao)Rji +a, +at + d7N Rj. (4.7)

j: j*i j: j#i

Now, we consider the total end-to-end path power consumed by a single transmission of rate

A [bit/sec], which we denote Prath [J/sec]. We allow this transmission to be routed through a

total of h hops, where di [m] represents the distance of the ith hop. If we let a = ar + ao +

ai + at and # = , we use (4.7) to get:
Y

h

Ppata -= A (a +#fd ) 48
m=1

Different forms of this first-order path power consumption model have been used in the

physical device field literature (see [52-54]). The values of a and f# for several short-range

wireless systems are shown in Table 4.1.

Now we consider the associated power models for a directional infrastructureless wireless

network, where we include transmitter directivity and normalize the receive directivity gain

to unity. Using the path-loss model, the received power at node j is increased by a factor

corresponding to the transmitter directivity:



pij yDtxt (4.9)r d k
ij

Therefore, the time-average total power consumed at node i, denoted Pibf [J/sec], can be

modeled as:

P bfr a)Rji + a1 + at + Rij (4.10)
j: j*i j: j*i

We note that due to additional processing requirements for transmit and receive

beamforming, the values for ar and at (and consequently a) may increase in the directional

network case. In the interest of a first-order comparative study, we let these values remain

constant for the omnidirectional and directional network analyses. However, if the

algorithmic implementation of beamforming were to create a significantly large increase in

processing power, this "constant a" assumption may need to be modified to include the

additional power requirements. Similarly, even though the exact value for fl may change

due to differences in the antenna construction and geometry, we keep this value constant

over the two analyses in the interest of a first-order comparative study. Additional work is

required to better characterize the values of these parameters in directional infrastructureless

wireless networks, as they have been in omnidirectional infrastructureless wireless networks

(see Table 4.1, for example).

Finally, as in the omnidirectional case, we define Pbfat [J/sec] as the total end-to-end time-

average path power consumption of a single transmission of rate A which traverses h hops.

From (4.10), we can show that:

hk
p bf a + fl -. (4.11)
path 11 .. txk =
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4.2 Uniform Capacity of Arbitrary Networks

In this section, we derive and present bounds on the uniform capacity of power-limited

networks with n nodes located in a bounded region for an arbitrary uniform traffic pattern.

We first consider omnidirectional and directional networks with fixed transmission rates,

and then we consider these networks with variable transmission rates. The main results are

summarized in Section 4.2.5, and they are used to study the scaling behavior of random

networks in Section 4.3.

4.2.1 Uniform Capacity of Omnidirectional Networks with Fixed Transmission

Rate

In this section, we derive bounds on the uniform capacity of an infrastructureless wireless

network using omnidirectional transmit and receive antennas. In the fixed transmission rate

scenario, a node is assumed to transmit at a fixed rate of R [bit/sec] whenever it transmits.

This includes both new and pass-through traffic. Considering the per-node time-average

power constraint Pavy, this fixed rate system places a maximum hop distance restriction on

each transmission. If we let p [m] represent transmission hop distance, then p must satisfy

the following in order for a transmission to be received correctly:

p [ - a - (4.12)

The expression in (4.12) comes from imagining that all Pavg is devoted to a single one-hop

transmission in the path power model (4.8). As shown in (4.12), we define a maximum hop

distance, Pmax [m], and the constraint on transmission hop distance is 0 p Pmax-

101



We note that the per-node power constraint couples the routing decisions for all pass-

through traffic of all n SD pairs exchanging data under uniform traffic, since each node's

available power must be allocated to all outgoing links (not just a single link). This coupling

makes the analysis difficult. In order to solve this problem and find an upper bound for

uniform capacity, we relax the per-node power constraint to a total time-average network

power constraint of nPavg. The uniform capacity under the per-node power constraint is

bounded from above by the uniform capacity under this relaxed total network power

constraint. This bound is good when nodes are mobile, as in an infrastructureless wireless

network, and their relative positions change ergodically over time. However, this bound is

not good for relatively static situations where interior nodes expend more energy for pass-

through traffic.

We now derive an upper bound on 2 for a fixed rate omnidirectional network using hop

counting arguments similar to the technique used for the derivation of the transport

throughput upper bound in [11] and following the approach of [9]. In terms of notation, we

let {Li h1,i , [m] be the distance between the i"t SD pair in the network. For an arbitrary

network topology and arbitrary uniform traffic pattern, these are deterministic quantities.

We denote the empirical average of distances between all n SD pairs as = Li. For

completeness, the proof is shown in Appendix C. 1.

Lemma 1. The uniform capacity of an arbitrary power-limited infrastructureless wireless

network with fixed transmission rate R and using omnidirectional antennas is upper

bounded by:

< R pmax (4.13)
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Equality in (4.13) is achieved if all n SD pairs are separated by exactly pmax and no node is

selected more than once as a destination node. We then trivially get A = R by direct

transmission between all SD pairs. We consider two very important aspects of this bound.

First, there is no explicit dependence on n, the number of network end-user devices. And

second, as L is both topology-dependent and traffic-dependent, the uniform capacity bound

becomes arbitrarily high as nodes are grouped closer and closer together in the operating

environment. However, R is still the maximum uniform capacity that can be achieved by

the constraint of the fixed transmission rate system.

To derive a lower bound on the uniform capacity, we consider a variant of the worst-case

example as proposed by [9]. Pictorially, this example is shown in Fig. 4-1. In this example,

nn-
we let n be odd. One node is located at the origin (0,0)' 2 nodes called group A are located

at (-pmax, 0), and the other 2 nodes called group B at located at (pmax, 0). The uniform

traffic is such that each node in group A chooses a destination node in group B, and each

node in group B chooses a destination node in group A. The node at the origin chooses a

destination node in either group A or group B. The traffic between group A and group B

must all be routed through the bottleneck node located at the origin, since group A and

group B are separated by more than the maximum transmission range. The bottleneck node

here is subject to the maximum possible traffic load, nA. This is a worst-case example since

uniform capacity is determined by the end-user subject to the most traffic (both new and

pass-through). Since this bottleneck node is transmission rate constrained to R, we have

- R .
A= - in this scenario. Thus we have established the lower bound on uniform capacity,

n

which is given in the following lemma.
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Group A Group B

Figure 4-1: Example network that achieves the uniform capacity lower bound for networks with fixed rate
transmissions.

Lemma 2. The uniform capacity of an arbitrary power-ilmited infrastructureless wireless

network with fixed transmission rate R and using omnidirectional antennas is lower

bounded by:

R
> -. (4.14)

n

This bound is not independent of the number of network end-user devices, and the uniform

capacity can approach zero under the worst-case network topology and worst-case uniform

traffic patterns as the number of nodes in the network increases.

4.2.2 Uniform Capacity of Directional Networks with Fixed Transmission

Rate

We now proceed to derive bounds on the uniform capacity of an infrastructureless wireless

network using directional transmit antennas (receive directivity is normalized to unity for

notational simplicity). In the directional case, we use the notation lf [bit/sec] for uniform
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capacity to avoid confusion with the omnidirectional network results. The fixed rate

transmission assumption again places a restriction on maximum transmission range, as in the

omnidirectional case. Using the path power consumption model as before, we see that the

modified constraint for the beamforming-enabled network is:

p < -DxPv a] Il p ax- (4.15)T RPmax,

As can be seen in (4.15), the maximum hop distance, now denoted pax [m], has increased

by a factor of DtIxk as expected. The constraint on hop distance is now summarized as

0 p p fax- This result depends on the "constant a" assumption as discussed in Section

4.1.3. If the value of a should be significantly larger in the beamforming network, then the

maximum hop distance, pfax, would be less than shown in (4.15).

We proceed as in the omnidirectional network analysis for fixed transmission rate. We first

relax the per-node time-average power constraint to a total network time-average power

constraint to avoid the problem of route computation coupling, and then derive the upper

bound on uniform capacity in exactly the same way as presented in Appendix C.1. The

result is presented in the following lemma.

Lemma 3. The uniform capacity of an arbitrary power-limited infrastructureless wireless

network with fixed transmission rate R and using directional transmit antennas with

directivity Dtx is upper bounded by:

bf <- R pax (4.16)
L

Equality in (4.16) is achieved if all n SD pairs are separated by exactly p ax and no node is

selected more than once as a destination node. Again, there is no explicit dependence on n,

the number of network end-user devices. And as noted in the omnidirectional case, since L
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is both topology-dependent and traffic-dependent, the uniform capacity bound becomes

arbitrarily high as nodes are grouped closer and closer together in the operating

environment. Comparing (4.16) to the omnidirectional uniform capacity upper bound of an

arbitrary network (4.13), we see an increase in the bound by a factor of D1xk through the

difference between piax and pmax. The maximum achievable uniform capacity is still

constrained by R, the transmission rate constraint of the fixed rate transmission system.

Uniform capacity improvement over the omnidirectional network case is realized for a

topology in which an increased maximum hop distance of pmf allows for a reduction in the

number of hops per bit (when L >> pmax)-

To derive the lower bound for uniform capacity in the directional network case, we again

consider the worst-case topology and uniform traffic pattern of Fig. 4-1. This time we let

group A be located at (-Pmfax, 0) and group B be located at (Pmfx, 0). With this worst-case

topology and worst-case uniform traffic pattern, we again find that the bottleneck node

dictates that lbf = R. This establishes our lower bound on uniform capacity, and we present
n

the result formally in the following lemma.

Lemma 4. The uniform capacity of an arbitrary power-limited infrastructureless wireless

network with fixed transmission rate R and using directional transmit antennas with

directivity Dex is lower bounded by:

Abf> R (4.17)
n

As in the omnidirectional network case, this bound is not independent of the number of

network end-user devices, and thus the uniform capacity can approach zero under the worst-

case network topology and worst-case uniform traffic patterns as the number of end-user

devices in the network increases.

106



4.2.3 Uniform Capacity of Omnidirectional Networks with Variable

Transmission Rate

We now establish bounds on the uniform capacity of omnidirectional infrastructureless

wireless networks with variable rate transmission systems. This can be expressed as a multi-

commodity flow problem and solved by standard multi-commodity flow algorithms [55]. If

we allow node i to use link (1, m) to carry its traffic destined for node j at a rate of A'

[bit/sec], which includes new and pass-through traffic, we can express the multi-commodity

flow problem as follows:

max A

S. t.

A" > 0 V (1, m), V (i, j) (.8

m:ml ).Zijj)A (a + fldlm) Pav-V1

(A, l= i

Em: m# A' - Em: nAn = -A, 1= j, V(ij), V1.
0, otherwise

We do not solve this multi-commodity flow problem for specific networks, but instead

derive bounds on the uniform capacity of arbitrary network topologies and arbitrary uniform

traffic patterns as we did for fixed transmission rate systems. We first derive an upper bound

on 1. As in the fixed rate case, the routing decisions for all pass-through traffic for all n SD

pairs are coupled by the per-node time-average power constraint, Pavg. As before, we relax

this constraint to a total network time-average transmit power constraint of nPavg and

recognize that the uniform capacity under this relaxed constraint is an upper bound to A

under the more restrictive per-node constraint. As we are ultimately constrained by the
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network power, uniform capacity maximization becomes equivalent to path power

minimization (this is made clear through the proof procedure). We find the upper bound on

for a variable rate omnidirectional network by minimizing path energy consumption,

following the procedure presented in [51]. In order to perform this minimization, we can

optimize the number of hops for the traffic of SD pair i, striking a balance between

processing energy consumption and distance-dependent transmission energy consumption.

If we let n* denote the optimal number of hops for traffic of SD pair i and Li be the distance

between SD pair i, we can define an optimal, or characteristic, hopping distance, dchar Li

[m], as proposed in [54]. The proof shows that this characteristic hopping distance is

independent of the index i. The characteristic hopping distance will be discussed in more

detail once we have established all uniform capacity bounds for arbitrary networks. For

completeness, the proof of the upper bound on uniform capacity is shown in Appendix C.2.

The result is presented in the following lemma.

Lemma 5. The uniform capacity of an arbitrary power-limited infrastructureless wireless

network with variable transmission rate and using omnidirectional transmit antennas is

upper bounded by:

Pavg Pavgd char

1/k - 1(4.19)
cirL((k - ) ( + c (k - 1)) ' ( + c (k 1))

where dchar = a 11k and c1 , c2 are positive constants.

The positive constants ci and c2 in (4.19) are a result of the integer constraint on the number

of number of hops between the source and destination, since there is no guarantee that n*

will be integer-valued. This is also revealed in the proof procedure presented in Appendix

C.2. Equality in (4.19) is achieved if all SD pairs are separated by dchar. As in the fixed rate
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system, we see that the upper bound is not explicitly dependent on the number of end-user

devices. Also, the uniform capacity can become arbitrarily high if nodes are grouped closer

and closer in the operating environment, since L is both topology-dependent and traffic-

dependent.

For a lower bound on the uniform capacity of arbitrary omnidirectional infrastructureless

wireless networks with variable transmission rate, we recognize that there is no constraint

on maximum transmission range. With the relaxed variable transmission rate consideration,

all pairs of nodes in the network are capable of sustaining some rate of communication.

Thus, the lower bound on uniform capacity is obtained by using direct transmission routing,

where the source transmits to the destination node in one hop. We let Lmax = max{Li} for

an arbitrary network topology and arbitrary uniform traffic pattern, then we have that the

lower bound on the uniform capacity is determined by the longest separation between all n

SD pairs. The following lemma summarizes this result.

Lemma 6. The uniform capacity of an arbitrary power-limited infrastructureless wireless

network with variable transmission rate and using omnidirectional transmit antennas is

lower bounded by:

1> Pavg (4.20)
a + f3Lmax

We note that the lower bound on uniform capacity with variable rate transmissions is also

independent of n, the number of end-user devices in the network.
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4.2.4 Uniform Capacity of Directional Networks with Variable Transmission

Rate

In this section, we derive bounds on the uniform capacity of directional networks with

variable transmission rates. As in the omnidirectional case, this could be formulated as a

multi-commodity flow problem (with slightly modified constraints). But rather than solve

this problem for specific networks, we again focus on finding bounds on the uniform

capacity using the same analytical framework as in Section 4.2.3. Since the proof techniques

are the same, we will simply present the results here.

Lemma 7. The uniform capacity of an arbitrary power-limited infrastructureless wireless

network with variable transmission rate and using directional transmit antennas with

directivity De, is upper bounded by:

,jbf < Pavg

biaL t (k- 1) 1( + k1
(aDex b 2(k - 1)

Pavg dabf 
(4.21)

biaL 1+bk
bw(k - 1)

where d a =11k and b1, 2 are positive constants.

Equality in (4.21) is achieved if all SD pairs are separated by d far Again, we see that the

upper bound is not explicitly dependent on the number of end-user devices. Also, the

uniform capacity can become arbitrarily high as nodes are grouped closer and closer in the

operating environment, since L is both topology-dependent and traffic-dependent. As we

would expect, the characteristic hopping distance is increased by a factor of D1xk over the
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omnidirectional case, and the upper bound on the uniform capacity is also increased by this

same factor as a result.

The lower bound on the uniform capacity for a directional network with variable

transmission rate is derived using the direct transmission routing argument, as in the

omnidirectional case.

Lemma 8. The uniform capacity of an arbitrary power-limited infrastructureless wireless

network with variable transmission rate and using directional transmit antennas with

directivity Dt, is lower bounded by:

bf > Pavg

l Lk (4.22)
a+D- Lmax

This lower bound on uniform capacity for the variable rate transmission system is also

independent of n, the number of end-user devices in the network, just as in the

omnidirectional case.

4.2.5 Summary and Discussion of Uniform Capacity Results for Arbitrary

Networks

Summarizing the results from Sections 4.2.1-4.2.4 and Lemmas 1-8, we establish the

following theorem which contains all of the uniform capacity bounds for arbitrary

infrastructureless wireless networks.
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Theorem 1. Uniform capacity of arbitrary, connected infrastructureless wireless networks in

a bounded operating environment.

(i) The uniform capacity of an arbitrary power-limited infrastructureless wireless network

with fixed transmission rate R that uses either omnidirectional transmission antennas or

directional transmission antennas with directivity gain Dt, is bounded by, respectively:

R< < RPmax

n 
L '

R b Rp f
< Ibf < ax

n L

where n is the number of end-user nodes in the network, Pmax = P 0 - a and

PMax = I - a are the maximum hop distances for nodes with omnidirectional

transmission antennas and directional transmission antennas respectively, Li is the distance

between SD pair i, and L = 1 Li is the average distance between SD pairs.

(ii) The uniform capacity of an arbitrary power-limited infrastructureless wireless network

with variable transmission rate and using either omnidirectional transmission antennas or

directional transmission antennas with directivity gain Dtx is bounded by, respectively:

Pavg Pav dcar

a+fLmax -1_ 11

c(k- 1)

Pav Pag df

<av 5 avg char

a+flLm ax b1 aL ( + 1
etxm b k(k -1)
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where c1 , c2 , b1, and b2 are positive constants, Lmax is the maximum distance between all SD

pairs, and dchar a 11k and dhar = ( t (ki) are the characteristic hop distances

for omnidirectional networks and directional networks respectively.

Additionally, we provide corollaries that follow directly from the results presented in

Theorem 1 and will be useful in discussing the implications of this analysis of uniform

capacity in arbitrary networks.

Corollary 1. The uniform capacity of arbitrary infrastructureless wireless networks with

fixed transmission rate is 0 (1) and fl(1) with respect to increasing n.

Corollary 2. The uniform capacity of arbitrary infrastructureless wireless networks with

variable transmission rate is 0(1) with respect to increasing n.

First, we focus our discussion on fixed transmission rate systems. From these results, we see

that taking long hops on the order of Pmax achieves higher throughput in general. Using

beamforming-enabled antennas with directivity gain increases the maximum hop distance

and can decrease the number of hops needed to reach a destination. However, in terms of

the scalability of these results, we see that the fixed rate systems are both 0(1) with

increasing n in the best case (in other words, the uniform capacity does not scale with the

number of user nodes), but can be as bad as f( 1 ) with increasing n for some worst-case

topologies and worst-case uniform traffic patterns. The increased range of beamforming-

enabled antennas does not save us from this worst-case scaling behavior, although it helps us

to avoid these scenarios by making the occurrence of bottleneck topologies and traffic

patterns less likely for a bounded operating region.
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For variable rate transmission systems, however, we find that the uniform capacity is 0(1) as

the node density increases since both the upper and lower bounds have a scaling behavior

independent of n. We can achieve this scaling behavior that is independent of n by taking

0(1) hops under the direct transmission scheme as demonstrated by the lower bound, even

though this routing scheme may not yield high throughput if SD pairs are separated by long

distances within the bounded operating region. Yet, the uniform capacity under other

routing schemes with 0(1) hops can also achieve the 0(1) scaling behavior as n increases as

shown by the upper bound. This is a favorable result, since [56] has shown that routing

schemes with E(1) hops (equivalently, the number of hops does not increase with increasing

n) also attains the best per bit energy and end-to-end delay (in terms of number of hops)

scaling behavior of 0(1) as n increases for power-limited networks. These results are in

contrast to previous power-limited network studies that invoked the zero processing energy

assumption and claimed that taking a large number of short hops that increases with

increasing node density is the optimal routing scheme. As mentioned in [9], it is for this

reason that we should not assume WtNN as the de facto routing strategy for all

infrastructureless wireless networks.

Theorem 1 further suggests that 0(1) hop routing strategies should use dchar and dchar as

rough guidelines for hop distances in order to achieve the desirable throughput, energy per

bit, and end-to-end delay (equivalently, total number of hops) scaling behavior. By taking

hop lengths of this order (as long as the traffic load can be distributed evenly so as not to

create a network bottleneck node), we minimize total network energy consumption and

realize high network throughput" In effect, we are finding a balance between transmit

energy consumption of each hop and processing energy consumption required at each hop.

And even though omnidirectional and directional networks have the same scaling behavior

for variable rate systems, we can increase the throughput-optimal hopping distance by a

factor of D1xk and correspondingly decrease the end-to-end delay (in number of hops) and
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per bit energy consumption by using directional antennas. Fig. 4-2 shows how the

characteristic distance dbfar grows as a function of transmitter directivity for the two

different systems described in Table 4.1, noting that the far left of the plot is dchar, the

omnidirectional network characteristic hopping distance as shown in the table. This

visualization emphasizes the importance of transmitter directivity as a network design

parameter for the network architect, as the optimal hopping distance (and consequently the

number of hops, end-to-end delay, and path energy consumption) is directly related to this

gain term.

As mentioned above, the characteristic distance is directly related to the end-to-end message

delay through the number of hops between the source and destination. Given an arbitrary

network topology, the maximum number of hops (our proxy for the end-to-end delay QoS

metric) will be close to Lmax (or Lmax in the directional network case) given high-enough
dchar dbfhchar

end-user node density and a smart routing strategy. We can only say it will be close to this,

because it would only be exactly Lmax (or L") if each relay node along that route was on
dchar dchardcchar

the straight line separating the SD pair at intervals of exactly dchar (or defar). As the

characteristic hopping distance is related to the directivity through D1x, we can decrease the

maximum number of hops by approximately this factor as we leverage the directivity gain of

beamforming-enabled nodes. Fig. 4-3 shows the maximum end-to-end delay behavior (using

number of hops as a proxy metric) of the system as the transmitter directivity is increased,

where the maximum end-to-end delay is normalized to unity for the arbitrary

omnidirectional network (far left side of the plots). This is a guideline for beginning the

discussion of providing QoS assurance for metrics related to the characteristic distance, such

as end-to-end delay and path power consumption. It also highlights the importance of

transmitter (and equivalently receiver) directivity as an important design parameter for the

network architect. In our discussion of random networks to follow, we will describe what
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Figure 4-2: Characteristic hopping distance, dalm., as a function of beamforming-enabled transmitter
directivity, Dex. The two systems shown here are those described in Table 4. 1. For this figure, k = 2.

we mean by a smart routing strategy that leverages the characteristic distance to achieve this

optimal scaling behavior.

We now turn to consider the uniform capacity of random networks of n nodes in a bounded

operating region. In particular, we want to show that the undesirable behavior for fixed rate

systems rarely occurs and that we are able to achieve the desirable scaling behavior with

high probability by considering a uniform distribution of nodes and uniform traffic patterns.

In doing so, we illustrate a specific routing scheme and show that its uniform throughput

achieves the desirable uniform capacity scaling behavior with high probability for both fixed

and variable rate systems.
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4.3 Uniform Capacity of Random Networks

Following the lead of [9], we now consider the uniform capacity of random infrastructureless

wireless networks. In the previous section, we showed that arbitrary variable transmission

rate networks demonstrate desirable scaling behaviors. We extend these results to random

variable transmission rate networks using either omnidirectional transmit antennas or

beamforming-enabled transmit antennas. However, we have seen that the uniform capacity

of fixed transmission rate networks can have poor scaling behavior under certain worst-case
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topologies and traffic patterns even with the availability of large enough system bandwidth

and directional transmitter gain. An example topology and traffic pattern that exhibits this

undesirable scaling behavior (see Fig. 4-1) involved a high level of end-user device clustering

and a very specific uniform traffic pattern. In this section, we show that a uniform

distribution of nodes and traffic patterns in a bounded operating region rarely results in these

undesirable combinations of topology and uniform traffic pattern. Explicitly, the results

show that both fixed and variable transmission rate random networks achieve the desirable

scaling behavior independent of n (or increasing node density in the bounded operating area)

with high probability (see Section 4.1.2 for an explanation of the phrase "with high

probability").

Throughout this section, we consider a random network of n user nodes independently and

randomly distributed in a bounded operating region (unit torus, for analytical simplicity)

according to a uniform distribution over the area. We consider the uniform traffic pattern,

where each node randomly selects another node and sends data to it at an average rate of ;.

As n increases, we are interested in the scaling behavior of the uniform capacity achievable

with high probability for fixed and variable rate networks (both omnidirectional and

directional) and the scaling behavior of the uniform throughput for specific routing schemes

(those which can achieve the desirable uniform capacity behavior and WtNN, which exhibits

strictly suboptimal scaling behavior).

4.3.1 Fixed Rate Transmission Systems (Both Omnidirectional and Directional)

From Theorem 1, we see that both omnidirectional and directional fixed rate transmission

systems demonstrate the same uniform capacity scaling behavior. In (4.13) and (4.16), we
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R~max ^b bf
have shown that A R Ra and bf Rpx for omnidirectional networks and directional

L L

networks, respectively. In these upper bounds on the uniform capacity, the only random

quantity for a randomly distributed network topology and traffic pattern is L, since each

{LiJ1 ,5<1 is a stochastic quantity determined by the random placement of nodes and

randomly chosen SD pairs. However, as noted in [43], the law of large numbers dictates that

L = E(1) with high probability for a bounded operating region (in other words, the

ensemble average distance between randomly chosen SD pairs in a bounded operating region

converges to a constant value for large enough n). From (4.13) and (4.16) and this fact, we

have that the uniform capacity A = 0(1) and Abf = 0(1) with high probability for random

networks.

However, we actually want to show that uniform capacity of fixed rate transmission systems

is 0(1) with high probability. To do this, we analyze the uniform throughput of a particular

routing scheme introduced by [56] for interference-limited networks and extended to

power-limited networks in [51] called cell routing. With this specific routing strategy, we

show that we can achieve uniform throughput A = E(1) and Xbf = E(1) with high

probability, thus establishing the desired uniform capacity result.

The cell routing scheme divides the unit torus operating region into equal-sized square cells

12of area A = v x v, where we require that < v !! P in the omnnidirectional antenna case

and v '. in the directional transmit antenna case. These requirements on cell area

guarantee that there is at least one node in each cell with high probability and that nodes in

adjacent cells are within one-hop communication distance of each other (unlike the balls and

bins formulation of Chapter 3, this includes connectivity between diagonally-adjacent cells).

Both of these constraints on v can be met with large enough n. A straight line can then be

drawn between the source and destination node of a specific SD pair, and this line will cross
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through a certain subset of cells. The cell routing strategy then dictates that data exchanged

between this SD pair takes hops along this set of cells, while the pass-through traffic is

evenly distributed over the set of nodes in any given cell. This routing scheme is illustrated

in Fig. 4-4. We note that this is a routing scheme based on taking E(1) hops (the number of

hops does not increase with increasing n) since the cell size does not change as n increases.

Using this routing strategy, we can achieve ; = 8(1) and Pof = 0(1) with high probability

for random networks. Thus, we have our desired results for uniform capacity using a fixed

transmission system with either omnidirectional or directional transmit antennas: A = 8(1)

and Lf = 0(1) with high probability. For completeness, the full derivation of these results

using cell routing is shown in Appendix C.3. We summarize these results in the following

theorem.

Theorem 2. The uniform capacity for a random power-limited infrastructureless wireless

network in a bounded operating region with fixed transmission rate, either omnidirectional

or directional transmission antennas, and large enough system bandwidth availability is 0 (1)

as number of end-user devices increases whp.

Theorem 2 agrees with the result from [51] for fixed rate systems, although we have shown

that this result extends to random networks using beamforming-enabled antennas.

Furthermore, the significance of this scaling result is demonstrated by the analysis in [9].

This work finds that the upper bound on uniform throughput using the WtNN routing

scheme is strictly suboptimal. Explicitly, [9] shows that the uniform throughput of random

infrastructureless wireless networks using WtNN routing is 0 ( n) with high probability.

Since WtNN routing increases the number of hops with increasing end-user device density

(in terms of cell routing, the cell area decreases with increasing n), the amount of pass-

through traffic at each node also increases with high probability, leading to WtNN's
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Figure 4-4: Visualization of different routing schemes discussed in this chapter.

undesirable throughput scaling behavior. The uniform throughput relationship between

routing schemes with 0(1) hops that achieve the desirable uniform capacity scaling behavior

(such as cell routing) and WtNN can be seen in Fig. 4-5.

4.3.2 Variable Rate Transmission Systems (Both Omnidirectional and

Directional)

We now consider variable rate transmission systems for infrastructureless wireless networks

using omnidirectional and directional antennas. As presented in Theorem 1, both

omnidirectional and directional variable rate transmission systems demonstrate the same
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uniform capacity scaling behavior. In fact, Corollary 2 states this scaling behavior explicitly:

the uniform capacity of arbitrary infrastructureless wireless networks with variable

transmission rate is 0(1) as n increases. Since L = 8(1) with high probability by the law of

large numbers and Lmax is bounded by a constant due to the fixed-sized operating region, we

have the desired result, as stated in the following theorem.

Theorem 3. The uniform capacity for a random power-limited infrastructureless wireless

network in a bounded operating region with variable transmission rate, using either

omnidirectional or directional antennas, and large enough system bandwidth availability is

0(1) whp as the number of end-user devices increases.

As in the fixed rate case, we can show that this scaling behavior can be achieved with high

probability with the cell routing strategy. With variable rate transmissions, we do not have

the maximum hop distance constraint used in the fixed rate case to constrain v. However,

we can use the characteristic hop distance, either dchar or d bf

the fixed-area cell size for this routing scheme, since we have already discussed that we want

to take hops on the order of these characteristic distances when possible in our optimal

scaling behavior routing schemes. Explicitly, we can require that v 2c'r in the

omnidirectional case and V c ha in the directional case. In this way, the cell area is

fixed and does not change with increasing n. Furthermore, under the rules of the routing

scheme, the hop distances are now upper bounded by a constant distance and we can

proceed with the cell routing proof just as in the fixed rate transmission analysis. This

establishes that cell routing can achieve uniform throughput that is 0(1) with high

probability as n increases in the bounded operating region by taking 0(1) hops (the number

of hops does not increase with increasing n).
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Figure 4-5: Comparison of throughput scaling behavior of (9(1) hop routing strategies to WtNN routing.

We again emphasize the importance of this scaling result for random networks by comparing

it to the WtNN uniform throughput behavior as shown in [51] for variable rate

omnidirectional systems, which states that the uniform throughput is 0 (nn)with high

probability even under the relaxed variable transmission rate scenario. For the same reasons

as discussed in Section 4.3.1, WtNN is a strictly suboptimal routing strategy with high

probability for power-limited infrastructureless wireless networks where processing energy

is non-negligible.
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4.3.3 Discussion of Throughput, End-to-end Delay, and Energy Optimal

Schemes

Our analysis of uniform capacity scaling behavior for fixed and variable rate transmission

systems for both omnidirectional and directional networks has led to some key insights that

will help guide the design of routing strategies to achieve high network performance in

terms of throughput, energy per bit consumption, and end-to-end delay. This scaling

behavior is important to understand for QoS assurance. Without scalability, there is a point

at which node density will bring network performance below the threshold required to

maintain core services demanded by end-user applications. Luckily, we have shown that

power-limited infrastructureless wireless networks operating in bounded regions are scalable

(equivalently, their QoS behavior does not degrade with increasing n with high probability).

In [56], it was proven that routing schemes with 8(1) hops attain the best energy per bit and

end-to-end delay (in terms of number of hops) scaling behavior of 0(1) as n increases for

power-limited networks. We have proven that some routing strategies with 0(1) hops attain

the best uniform capacity scaling behavior of 8(1) for power-limited networks using either

omnidirectional or directional transmit antennas. Combining these results, we show that

routing schemes with a number of hops that does not increase with increasing n is important

for algorithmic routing design in power-limited networks in order to achieve optimal scaling

performance in terms of all QoS metrics considered. The derivations in this chapter have

revealed metrics that can be useful in guiding the hop distances used to achieve this optimal

behavior.

In fixed rate, power-limited networks, routing schemes should attempt to take hops as close

to Pmaxand p ax as possible, unlike in interference-limited networks. This reduces the
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network pass-through traffic, thus increasing the throughput and reducing both number of

hops (our proxy metric for end-to-end delay) and energy consumption per bit. In addition to

this, a throughput-optimal routing scheme should try to balance the pass-through traffic load

at each node in order to avoid bottleneck situations that degrade network performance.

Although both omnidirectional and directional networks attain the same scaling behavior,

we see the benefit of the directional antennas in this discussion. For the directional network,

the routing scheme should be designed to take longer hops, since pfax 2 Pmax. Thus, we

can expect a reduction in the end-to-end delay and energy consumption, as well as a

network throughput increase, due to reduced pass-through traffic load in the directional

network.

For variable rate transmission systems, we have shown that throughput-optimal routing

schemes should use hop distances on the order of either dchar or d bf Although directchar'

transmission routing is possible in the variable rate system, this routing scheme may

consume too much transmission energy and not achieve the best network throughput. By

using the characteristic hopping distance to guide the routing scheme, we minimize the total

path energy consumption and attain high network throughput. As in the fixed rate case, the

routing scheme must make an effort to distribute pass-through traffic evenly over the nodes

in the network while following this hop distance guideline, since otherwise this scheme

could tax a specific node more heavily with pass-through traffic under certain topologies and

traffic patterns. Also, if end-to-end delay is the primary QoS metric of concern, it could be

argued that direct transmission routing is the preferred routing scheme despite the increased

network energy consumption and lower sustainable throughput, since we have shown that

even direct transmission routing attains the desirable scaling behavior.
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4.4 Summary

In this chapter, we developed a network power model for infrastructureless wireless

networks using either omnidirectional antennas or beamforming-enabled directional

antennas. We used this power model to study the uniform capacity scaling of fixed and

variable transmission rate arbitrary networks under uniform traffic, later extending these

results to random networks. Our results showed that power-limited infrastructureless

wireless networks operating in bounded regions with sufficient system bandwidth

availability are scalable with high probability. We also showed that using either variable

transmission rates or directional transmission antennas can improve network uniform

capacity, but they do not change the order of the uniform capacity scaling results. These

results led to a rough guideline for high uniform throughput routing schemes, which also

achieve optimal end-to-end delay and energy consumption per bit scaling behavior. These

routing strategies use hop distances on the order of a characteristic hopping distance that is

related to the processing and transmission energy costs, the operating environment

attenuation exponent, and the transmitter directivity of the beamforming-enabled devices.

In the next chapter, we consider heuristic algorithmic approaches to routing based on these

insights.

Before moving on, we quickly reiterate some shortcomings to the analysis presented in this

chapter. First, all of the results presented here are subject to the power model that was used.

If the algorithmic implementation of beamforming techniques in the end-user devices

requires a significant amount of additional processing energy, the power model would need

to be modified to abandon the "constant a" assumption as discussed in Section 4.1.3. The

power-limited network analysis allowed us to develop performance upper bounds, which are

applicable to interference-limited networks as well. Although we invoked the W -> oo
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approximation for the sake of tractable analysis, bandwidth cannot scale indefinitely with

increasing n in practical systems. Thus we recognize that there is a point at which

interference effects will begin to limit network performance. Future work should consider

performance bounds of systems that are simultaneously power-limited and interference-

limited. Also, we continued to use some other simplifications for analysis that restrict the

applicability of our results, such as the path-loss channel model, RF environment

homogeneity, uniform traffic patterns, and a homogeneous set of end-user devices. Changes

in any of these models and assumptions may have an effect on the scaling behavior results

presented in this chapter. So these results should all be interpreted as guidelines under the

models and assumptions discussed, but not necessarily the final word for all future

infrastructureless wireless network deployments.
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Chapter 5

Routing Strategies for Quality of Service

In the last chapter, we looked at connected arbitrary networks and characterized bounds for

the achievable capacity of these networks under a particular traffic pattern. We found that

the addition of beamforming-enabled transmitters with directivity Dtx gave us gains

proportional to Dt1/k in the maximum achievable capacity for variable rate transmission

systems. Then, using a smart routing strategy suitable for the proof, we showed that the

optimal capacity scaling behavior (the uniform capacity does not decrease with increasing n)

could be achieved with high probability in randomly deployed networks with random

uniform traffic patterns using uniform distributions for node deployment and traffic source-

destination pair selection. Furthermore, this result indicated that we should be able to

achieve the D1xk capacity gain with high probability for random networks with

beamforming-enabled transmitters.
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Throughout the last chapter, however, we emphasized the need for appropriately smart

routing schemes without explicitly describing what these schemes are (except when required

for the purpose of a proof). Furthermore, certain derivations of the achievable capacity for

an arbitrary network required an optimally distributed topology and optimally chosen traffic

pattern. These methods were important for understanding the scaling behavior of the system

in terms of throughput, end-to-end delay, and energy consumption. Now, we consider the

practical problem of route determination in infrastructureless wireless systems.

First, we consider routing schemes based on well-known routing solutions for the problem of

optimizing one particular QoS metric at a time. Specifically, we consider end-to-end data

rate, end-to-end delay (in terms of number of hops), and end-to-end path energy

consumption. The chapter begins by providing background on the well-known routing

solutions that can be used and then discusses the means of adapting them to choose best SD

routes for the different QoS metrics. We next use the insights of Chapter 4 to design a

heuristic routing strategy that simultaneously achieves the optimal scaling behavior of all

QoS metrics considered for dense enough networks. Since achieving absolute optimal

performance as characterized in Chapter 4 requires particular topology and traffic patterns,

this routing solution does not guarantee the realization of these optimal bounds on

throughput and consequently energy consumption and end-to-end delay. However, by

using the characteristic distance .as a guiding measure, the routing solution is designed to

realize the desirable scaling behavior independent of increasing end-user device density in a

bounded operating area and to strike a balance between reducing end-to-end hops and

achieving high data throughput.

We continue to distinguish between fixed rate transmission systems and variable rate

transmission systems when necessary, since the distinction between these systems leads to

slightly different routing strategies. Furthermore, we make the distinction between
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omnidirectional networks and directional networks when appropriate, discussing how the

use of transmitter directivity may impact the performance of a particular routing algorithm.

5.1 Routing Tools

Throughout the discussion of routing schemes in this chapter, we assume the availability of

particular information at each node. Since we discuss relatively simple routing schemes to

optimize individual QoS metrics, we assume that each of the n end-user nodes in the

network has global position knowledge available for computing routing decisions. In a real

system, this information would need to be gathered by the individual nodes and then

distributed through a protocol that allows each node to gather and aggregate this collected

information. The network could use traditional omnidirectional transmission and reception

to flood information to all of its neighbors. Or, in a directional system, nodes could employ

more sophisticated scanning methods to distribute relevant information to their nearby and

more distant neighbors. In this work it is simply assumed that each node in the network has

the appropriate information available to it. Furthermore, as the network changes over time,

this available routing information must be updated and refreshed. This is part of the process

of distributing the appropriate routing information, and we assume for the purpose of this

work that each node has up-to-date information on the current network state. The problem

of position and link state sensing and information dissemination is left for another work.

The particular information required for computing routing decisions depends on the routing

scheme we are using and the particular QoS metric under consideration. Thus, we develop a

general routing information structure that can be adapted to the information required for the

specific routing solution.
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First, we define an n x n logical adjacency matrix A. Each individual element of this matrix,

ai1, Vi,j E {1,2, ... , n}, represents the existence or non-existence of a logical communication

connection between a pair of nodes. Specifically, a 1 = 1 if nodes i and j are able to

communicate directly, and a11 = 0 otherwise. Furthermore, we define ai =! 0, since we do

not consider logical self-connections in our routing framework. The adjacency matrix A is

symmetric about the main diagonal, since our assumption of end-user device and

environment homogeneity means that node i connected to node j implies node j connected

to node i. Given an adjacency matrix, A, we can interpret this visually as an undirected

graph of n nodes and edges between nodes i and j when a 1 = aj1 = 1. Fig. 5-1 gives an

example.

In the variable rate transmission system, we note that each aqj, i # j entry is set to 1, since

each node is connected to and able to communicate with every other node in the network at

some rate. This is true for both omnidirectional and directional antenna systems. So the

adjacency matrix does not provide any useful routing information in the variable rate

transmission system. However, in the fixed rate transmission system, the existence of a

maximum hop distance means that the graph may not be fully-connected. Thus, the

adjacency matrix will be populated with both 0 and 1 logical values. The end-user nodes in a

fixed rate transmission system can populate the adjacency matrix using the known maximum

hop distance and the location of all the other nodes in the network. Comparing

omnidirectional and directional networks, we expect more Is in the adjacency matrix of the

directional network for a given end-user node topology as long as Dtx > 1 or Drx > 1. For

the remainder of this chapter, we focus only on the transmitter directivity and normalize the

receive directivity to unity, recognizing that it is trivial to generalize the discussion to

include receive beamforming gain.
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Figure 5-1: Adjacency matrix for n = 4 network and equivalent undirected graph representation.

Next, we define a n x 1 localization vector L. Although A gives us information about the

logical communication connections in the network, it provides no information about the

geographic location of each node (the physical network topology). Returning to Fig. 5-1, we

recognize that the location of the nodes in the visualization are arbitrarily chosen. Each

element of L, denoted li, i E {1,2, ...,n}, provides the location of the associated end-user

node in the network. For example, this information might be a GPS location readout as

discussed in Section 2.4.1 or relative location information from the receive array processing

technique discussed in Section 2.4.2. The information in L allows for a visualization of the

physical topology of the network and is important for location-aware routing strategies. This

information can be used for the calculation of other relevant routing information (such as

the adjacency matrix in the fixed rate transmission system), or it can be used directly (for

example, the cell routing scheme discussed in Chapter 4 assumes knowledge of the source

and destination location to determine which cells to route a message through).

Finally, we define a general n x n cost matrix, C. This matrix is particularly general since its

elements may not necessarily represent metrics that are typically referred to as "costs." The
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general terminology and notation allows for analytical simplicity. Each element of this

matrix c1y, Vi,j E {1,2, ... In} represents a "cost" (or "resource," when appropriate) assigned to

the link between node i and node j, assuming that they are connected in A. By convention,

we let cii = 0. If a11 = 0, then we can either set cij = 0 or ci1 = oo depending on the

particular routing solution. Since we assume a homogeneous RF environment and the use of

a homogeneous node set, we recognize that cij = cji for i # j. Thus we have a matrix that is

symmetrical about the main diagonal. For generality, we can even let each element cij be a

vector of cost information if we are interested in multiple cost metrics in our routing scheme.

We now discuss what information we may want to store in C. We may want to have

information on the per bit energy consumption cost of using a link for communication. In

this case, cij can be calculated using our power model from Chapter 4, the attenuation

exponent for our RF operating environment (we assume that nodes have the capability of

estimating the value of k), and the distance between the connected pair of nodes (from L).

For a fixed rate transmission system, we know the absolute energy cost of using a link, since

nodes are assumed to transmit at a fixed rate when transmitting. In a variable rate

transmission system, this link energy consumption cost may be parameterized by the

communication rate and bounded from above by the time-averaged transmit power

constraint of a node. Alternatively, we may want to have information about the maximum

communication rate sustainable over a link in variable rate transmission system. The

maximum communication rate sustainable over a link is not, strictly speaking, a "cost." It is

better described as a "resource." However, for the purpose of uniform terminology, we use

term "cost" for all possible entries of C, recognizing that the data may not represent an

operational cost to the system. The maximum sustainable communication rate over a link

can be calculated using the distance between a pair of nodes (determined from L) and the

maximum time-averaged node transmit power constraint. We discuss the determination of

these cost matrix entries in more detail when we look at specific routing strategies.
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Now given A and C, we can visualize an undirected graph, as in Fig. 5-1, with the elements

of C assigned to the edges. The physical topology as described by L may not need to be

included explicitly in the graph visualization if this information is already used in

determining the costs assigned to the links in the graph. A general example of this graph

theoretic visualization is given in Fig. 5-2.

5.2 Shortest and Widest Path Routing Overview

Many network routing schemes in practice are based on the framework of shortest path

routing. Shortest path routing is a well-established topic, and a complete overview of the

shortest path routing problem is provided in [57,58]. We provide a brief overview here. In

shortest path routing, we consider an undirected graph with a length (or "cost" or "resource"

in terms of C) assigned to each link (see Fig. 5-2). The length of a path, or a sequence of

links, is the sum of the lengths of each individual link in the path. The shortest path

problem, then, is to find the path between a SD pair of nodes with the minimal path length.

Two well-known algorithms to solve this problem when global knowledge is available to the

node computing the route are the Bellman-Ford Algorithm and Dijkstra's Algorithm.

The Bellman-Ford Algorithm is generally used for distance vector protocols, where each

node periodically informs its neighbors about its shortest route to all other network nodes.

Each node periodically distributes its routing table to its neighbors either due to changes in

the table (triggered updates) or scheduled refreshes (periodic updates), and the neighbors

update their routing tables by using the Bellman-Ford algorithm, which is described in full

in [57].
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Figure 5-2: Adjacency and cost matrices for n = 3 network and equivalent weighted undirected graph

representation.

The Bellman-Ford Algorithm produces the optimal shortest paths between the source node

and all possible n - 1 destination nodes in the network, as long as all cycles not containing

the source node have nonnegative lengths. We consider only positive-valued link "costs"

(lengths) in this chapter, so this condition is satisfied. The Bellman-Ford Algorithm

terminates in at most n iterations. The worst-case running time of the algorithm grows as

O(n 3), since each iteration requires a minimization for each of the n - 1 nodes over n - 1

possibilities.

Alternatively, Dijkstra's Algorithm is generally used for link state protocols, where each node

learns about the entire network graph through reliable flooding of update packets (called

link state packets). As does the Bellman-Ford Algorithm, this algorithm computes the

shortest paths from the source node to all other n - 1 destinations in the network. This

algorithm requires that all link lengths are strictly nonnegative, which is satisfied by our

assumptions on link "costs" used in this chapter. However, its worst case running-time

grows as O(n 2 ), which is better than the worst-cast running time of the Bellman-Ford

Algorithm. Thus, throughout the remainder of the chapter, we consider Dijkstra's Algorithm

when using a shortest path algorithm.
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Dijkstra's Algorithm operates by labeling each node with an estimate of the shortest path

length to the source node. On each iteration, an additional node is added to a set of

permanently-labeled nodes once it is clear that its label truly represents the shortest path

length to the source node. After adding a node to the permanent set (denoted P), all the

nodes not in the permanent set update their label estimates of the shortest path length, since

their shortest path must pass exclusively through the nodes in the permanent set P. This

idea is illustrated in Fig. 5-3. Dijkstra's Algorithm is described in full in [571.

When Dijkstra's Algorithm terminates after n - 1 iterations, the final labels represent the

shortest path length from the source node to all possible n - 1 destination nodes. The worst-

case running time is 0(n2 ) since there are n - 1 iterations of this algorithm and each

requires a number of operations proportional to n.

Both of these algorithms require the link lengths to be additive in nature. This matches our

understanding of some link costs, such as delay or power consumption. However, certain

metrics such as end-to-end sustainable data rate (an important "resource" metric to consider

for QoS assurance routing) are not additive in nature. Therefore, we discuss a variant to the

shortest path problem, commonly known as the widest path problem [58]. The widest path

problem is that of discovering the SD path with the optimal performance in terms of a non-

additive concave "cost" or "resource" metric, such as sustainable link capacity. When

considering a path with this type of metric, it is the minimum "cost" or "resource" link that

determines the overall path "cost" (this is easy to understand in terms of end-to-end

capacity). Therefore, our goal in finding the optimal route between a source and destination

is to maximize the minimum link "cost" in the chosen path. It is this maximization of the

minimum "cost" link in a path that gives the name "widest path" to the problem. Luckily,

Dijkstra's Algorithm can be adapted to solve the widest path problem [59]. Since this

algorithm is less-common in the literature, we describe it in full.
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Figure 5-3: Illustration of the main idea behind the operation of Dijkstra's Shortest Path Algorithm for routing

[57].

Algorithm 1. Dijkstra-based Widest Path Algorithm

For notation, we let node 1 be the source node that is determining the widest path to all

other destinations in the n node network. We assume a connected network, such that there

is at least one path between every source and destination pair. We let P represent the set of

permanently-labeled nodes in the network. We let the current estimate of the widest path

"width" (the minimum cost/resource/length on the path) from node 1 to node i on the tt"

iteration be denoted byDt. By convention, Df = oo,Vt.

Initiate:

SP= {1}.

D - {cjj, if node j connected to node 1
0, otherwise

Iterate (tth iteration):

* Add node with current widest path estimate to the permanent set
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o Findi ( P such thatD = maxjEp Df.

o SetP:= PU{i}.

o If Pc = 0, terminate algorithm. Else, continue.

Update labels

o Vj E P, set Dt+1 D.

o Vj i P, setD+':= max[DJ, min{D[, cij}], where ci1 = 0 ifnode i andj are not

connected.

Algorithm 1 runs in a very similar manner to Dijkstra's Algorithm, with slight modifications

to the adding of a node to the permanent set P on each iteration and the label update rules.

Fig. 5-4 illustrates the operation of Algorithm 1 for a simple six end-user node network with

the logical connections and link lengths as shown at the top of the figure. As in our

description of the algorithm, node 1 is assumed to be the source node computing the widest

paths to all other nodes in the network.

Before moving forward, we recognize that more optimal routing schemes exist based on

multi-commodity flow routing [55]. The drawback to the shortest path and widest path

framework is that the source chooses only one route to the destination, when multiple routes

may be available. The flow routing framework allows a flow to be spread over multiple

paths. Single path routing may leave some links in the network completely unused, whereas

flow based routing optimally divides the flow over all SD paths. Flow routing also helps cope

with failures that may arise in a single path. For our work, however, we do not consider

multi-commodity flow routing due to the computational complexity involved in solving the

routing problem and the fact that many practical routing solutions are currently based on

shortest and widest path techniques.
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Iteration 1
D=6 D 3=6

De=O

D=4 D5=3

Iteration 4
D2=6

Iteration 2
D2=6 D 3=6

D4 =4 0=5

D3=6

D4=5 Ds=5

Figure 5-4: Example of the operation of the Dijkstra-based Widest Path Algorithm. The graph at the top of the
figure shows all of the possible logical connections and associated non-additive concave link lengths. At each

iteration, the blue links are those added to the widest path spanning tree of the network rooted at node 1, the

source node. The red dotted lines at each iteration show the link associated with the current length estimate at

each node not in the permanently-labeled set P. The algorithm terminates in exactly n - 1 iterations.

5.3 Routing Solutions for Individual QoS Metrics

Using the algorithmic tools discussed in Section 5.2, specifically Dijkstra's Algorithm and the

Dijkstra-based Widest Path Algorithm, we proceed to formulate algorithmic routing

solutions to optimize SD paths for individual QoS metrics. We consider three different QoS
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metrics in this section: end-to-end data rate, end-to-end delay (in terms of number of hops),

and end-to-end path energy consumption.

5.3.1 End-to-end Data Rate

We first consider an algorithmic solution to determine the optimal path with the maximum

end-to-end data rate between a source and destination pair in our infrastructureless wireless

network.

The fixed rate transmission system is not an interesting case. Given the adjacency matrix for

a fixed rate transmission system, either omnidirectional or directional, each link would have

the same length in terms of the rate that it can support due to the fixed transmission rate

constraint. The end-to-end rate between a source-destination pair would be the fixed rate R

[bit/sec] regardless of which path is chosen. The difference between the omnidirectional and

directional networks is that the directional network would either have more links in the

adjacency matrix A for a specific rate R, or the directional network would have

approximately the same adjacency matrix as the omnidirectional network with a higher fixed

rate transmission constraint than R.

We turn our focus to the more interesting case, the variable rate transmission system (both

omnidirectional and directional). In the variable rate transmission system, each node is

connected to every other node in the network. However, the physical separation between

each pair of nodes, the RF environment attenuation exponent, and the maximum time-

averaged transmitter power constraint at each end-user node determines the communication

rate that each node pair can support. Specifically, for node i and node j constrained by a
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maximum time-averaged transmission power constraint of Pavg [J/sec] and separated by a

distance of dij [m], the communication link between the two nodes can support a data rate of

Rij [bit/sec] upper-bounded by the Shannon Capacity of the link, as given by (4.2) in the

limit of large bandwidth for our power-limited scenario:

R*- < C- ) Yijpavg (5.1)
W--+0o Nodk

where Ci1[bit/sec] is the capacity of link (ij), yij is the RF gain factor (including antenna

gains and RF processing losses), k is the attenuation exponent of the path-loss model, and No

is the noise spectral density. For simplicity, we assume that appropriate channel coding is

employed such that we can achieve the Shannon Limit of the channel. As in Chapter 4, we

assume device homogeneity and let yij = y, Vi,j. And as mentioned before, each device is

assumed to be able accurately estimate channel conditions such that it knows both k and No.

Then, the source node can use the location information in L to calculate dij, Vij, and use

this information to calculate Ri, Vi, j. For the routing problem of determining the path with

maximum end-to-end data rate, we let each element of the cost matrix (or, more

descriptively, resource matrix) cij = Ri. Thus, the source node can use the information it

has to fill in all the values of C. Explicitly, for the infrastructureless wireless network using

omnidirectional antennas, we have for each (ij) pair:

c YPavg 
(5.2)

No d -

And for the infrastructureless wireless network using directional antenna arrays or apertures

with directivity Dt, we have for each (i, j) pair:

yDtxPavg
ctj = .K (5.3)

Nod
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As we can see, the assigned "costs" or "resources" to each link for a given network topology

will be higher for the directional network due to the transmitting antenna directivity gain

factor.

Now, each link in the complete network graph has an assigned length that represents the

sustainable communication rate over that link, as computed by the source node. Since rate is

a non-additive concave metric over an end-to-end path (in other words, the sustainable data

rate on a path is determined by the minimum rate link on that path), the source node can use

the populated C to compute the optimal end-to-end rate paths between itself and all possible

destinations in the network by running Algorithm 1, the Dijkstra-based Widest Path

Algorithm.

5.3.2 End-to-end Delay (Number of Hops)

We next consider an algorithmic solution to determine the optimal path with the minimal

end-to-end delay between a source and destination pair in our infrastructureless wireless

network in terms of number of hops in the path.

The less interesting case when routing specifically for this QoS metric is the variable rate

transmission system. In this system, we can imagine a fully-connected network graph

between all n nodes in the network. Thus, the minimal-hop path between the source and

destination is always the one-hop direct path between the SD pair in both omnidirectional

and directional networks. The only issue to consider here is that while this routing scheme

minimizes the hop count, it may be possible that the data rate sustainable over the direct SD

link is so low due to large physical separation between the two end-users that the
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transmission delay exceeds the total end-to-end delay of a multi-hop path between the

source and destination. Specifically, if the message to be transmitted between node i and

node j is of length L [bits], then the transmission delay is . Since the directional network

is able to achieve a higher data rate for a node pair separated by a given distance, this would

be less of an issue in the directional network compared to the omnidirectional network.

Still, the network designer should'be aware of this possibility. If the direct transmission data

rate becomes so low and delay is measured in units of time, it may be beneficial to use a

multi-hop path. For the purpose of this thesis, we focus our analysis on hop-induced delay.

For fixed rate transmission systems, we recognize that the fixed rate constraint imposes a

maximum hop distance. Thus, a fixed rate transmission system (both omnidirectional and

directional) may not have a fully-connected network graph. The optimal end-to-end delay

path (in terms of number of hops) can then be discovered algorithmically through a simple

scheme. Given the adjacency matrix A, the source node can assign a cost of unity to each

link described by the adjacency matrix. Equivalently, if atj = 1, then we assign ci; = 1.

Otherwise, ci1 = oo. We note that in the fixed rate transmission system, the source node can

calculate the adjacency matrix A from the data in L, since it is the distance between a pair of

nodes and the maximum hop distance that determines if a pair of nodes are connected. As

shown in Chapter 4, the maximum hop distance for an omnidirectional system using our

power model is given as:

1 P a v ( 514
Pmax = a -a]) (5.4)

where R is the fixed transmission rate, Pavg is again the maximum time-averaged

transmission power constraint, k is the attenuation exponent of the path-loss model, a is a

per bit processing energy consumption cost as described in Chapter 4, and #l is a per bit

transmission energy consumption cost as also described in Chapter 4. The parameters a and

# are device-dependent, and we assume they are known to the end-user nodes. Similarly,
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the maximum hop distance for a directional system with transmit antenna directivity Dtx is

given as:

Prnax t D avg /k)Pmax -fl (5.5)

With the populated cost matrix C, the source node has a complete picture of the network

graph. Since hop count is an additive metric, the source node can compute the optimal end-

to-end delay paths (in terms of number of hops) between itself and all possible destinations

in the network by running Dijkstra's Algorithm. Comparing the omnidirectional network to

the directional network, we would expect the shortest paths of the directional network to

have fewer hops for a given topology, since the maximum hopping distance of the directional

network is increased by a factor of Dl/.
tX

5.3.3 End-to-end Path Power

Finally, we consider an algorithmic solution to determine the optimal path with the

minimal end-to-end energy consumption between a source and destination pair in our

infrastructureless wireless network. In determining the best path for this QoS metric, we

continue to use the path power model developed in Chapter 4. In Section 4.1.3, we showed

that the end-to-end power for a particular path in the omnidirectional network can be

expressed as:

h

Ppath =I (a+d ) (5.6)
m=1

where A [bit/sec] is the end-to-end transmission rate, a is a per bit processing energy

consumption cost, # is a per bit transmission energy consumption cost, dm is the distance of
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the mth hop in an end-to-end path of h hops, and k is the attenuation exponent of the path-

loss model. Similarly, we showed that for a directional network with transmitter directivity

Dt, the end-to-end power consumption for a particular path is given by:

h dm
Ppath = a + f (5.7)

M=1

In a fixed rate transmission system, A = R. Thus, we can assign an absolute measure for the

path power consumption over all candidate paths. For the variable rate transmission system,

since A is not constrained to a fixed rate, it is easier to parameterize the path power

consumption by the end-to-end data rate. We assume that, given a set of candidate paths

between a source and destination in a particular variable rate network, the source and

destination wish to communicate at a data rate that is end-to-end sustainable over all of the

paths in this set (since we are not optimizing the end-to-end data rate QoS metric here).

Thus, for the variable rate system, we can assign a relative measure for the path power

consumption over each candidate path parameterized by a common data rate 2.

Next, we recognize that the end-to-end path power is additive, a summation of the per hop

power, which is evident from (5.6) and (5.7). Therefore, we can break the path power

expression into individual hop power requirements. Using information available to the

source node in our routing scenario, including L and A (which may be computed from L and

the known maximum hop distance in the fixed rate transmission system or is trivially

populated in the complete graph variable transmission rate system), the cost matrix C can be

filled in according to the following rules, where each entry ci1 represents the power cost of

using that link at the specified or parameterized data rate.
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For the fixed rate transmission system, if a 1 = 1, then:

ci;= R a+ j (5.8)
Dtx

where dij is the distance between node i and node j as given by the information in L. Note

that we can use this expression for both the omnidirectional and directional network case;

we simply set Dtx = 1 for an omnidirectional transmitting antenna. Furthermore, if atj = 0,

then we let ci1 = oo. In the fixed rate transmission system, the cost ci; corresponds to an

absolute measure of power in [J/sec] for using a particular link (ij). Comparing the

omnidirectional and directional networks, we expect to see two major differences. First, we

expect more links in the directional network for a given topology due to an increased

maximum hop distance. Second, the costs assigned to comparable links in the two network

scenarios for a given topology will be lower in the directional network due to the antenna

directivity gain factor.

For the variable rate transmission system where all at; = 1, i # j, we use:

cij = a + # i. (5.9)
etx

Again, this expression works for both the omnidirectional and directional network case; we

just set Dtx = 1 for omnidirectional transmission antennas. The cost cij in the variable rate

transmission system corresponds to a relative measure of power consumption, since we do

not explicitly include the multiplicative data rate in the determination of the cost metric.

Equivalently, we can see ci; as the cost of using link (ij) measured in [J/bit]. Comparing

omnidirectional and directional networks, the costs assigned to links in the directional

network will be lower than those in the omnidirectional network for a given topology due to

the antenna directivity gain factor.
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With the populated cost matrix C, the source node now has a complete picture of the

weighted network graph. Since per hop power is an additive metric, the source node can

compute the optimal end-to-end paths to all possible destinations in terms of path power by

running Dijkstra's Algorithm. Comparing the omnidirectional network to the directional

network for a given topology, we would expect the shortest paths of the directional network

to achieve better end-to-end path power performance, since the directional network can

leverage antenna directivity to get a 1 savings in distance-dependent transmission power at
DtX

a particular data rate.

5.4 A Heuristic Approach to Best QoS Performance Routing

As shown in Section 5.3, we can compute optimal routes for QoS metrics individually.

While the routing schemes we have discussed so far based on computing weights for

standard shortest path and widest path routing achieve desirable behavior with respect to the

intended QoS metric, these schemes may not achieve the desired scaling behavior for the

other QoS metrics. The major insight regarding best routing strategies that we gained from

the scaling behavior study of Chapter 4 is that our routing scheme should be based on a

characteristic hopping distance (or maximum hop distance in the fixed rate transmission

system case). We proved that routing schemes based around this premise not only achieve

the optimal throughput scaling behavior with high probability, but simultaneously achieve

the optimal end-to-end delay (in terms of number of hops) and path energy consumption

scaling behavior with high probability. Specifically, a routing strategy of this form achieves

behavior in the infrastructureless wireless network scenario that does not scale with n.

Thus, as the end-user node density increases, the achievable network capacity does not

decrease (although more system bandwidth is needed as the density of end-user devices
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increases). Additionally, as the end-user density increases, the end-to-end delay and

communication energy consumption do not increase. Since we wish to formalize a strategy

for traffic routing that recognizes this best scaling behavior from all considered QoS metrics

(even though it may not optimize the performance of each QoS metric individually), we

motivate and develop a new algorithmic routing scheme in this section.

One possibility for an algorithmic routing scheme based on a characteristic hopping distance

(or maximum hopping distance) would be the direct translation of the cell routing scheme

used as a proof technique in Chapter 4. However, cell routing requires splitting up the

operating region into cells a priori and thus becomes a relatively static strategy. We develop

a more adaptive routing scheme based on these hop distance metrics that does not require a

pre-routing tessellation of the operating area. As a result, it can achieve better QoS metric

performance under some physical network topologies than cell routing can.

The algorithmic computation of routes based on a characteristic hopping distance does not

lend itself easily to the standard shortest path optimal route calculation framework. Instead,

we formulate a sub-optimal heuristic routing algorithm that directly leverages our

knowledge of node locations and characteristic hopping distance (or maximum hopping

distance). Since the variable rate transmission system is fundamentally different from the

fixed rate transmission system in the framework of geographical routing (the fixed rate

transmission system has a limited hopping range, whereas the variable rate system can

theoretically take arbitrarily long hops), we develop separate algorithms for these systems.

While the routing solutions presented here are clearly sub-optimal heuristic methods that

are best fined-tuned to a particular network under consideration, our simulation results show

that these presented algorithms can consistently achieve uniform throughput (see Chapter 4

for definition and discussion of this metric) within ten percent of the maximum achievable
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uniform capacity. With some optimization and tuning, it may be possible to realize even

better performance from heuristic algorithms of this type.

Before describing the algorithms for the variable rate and fixed rate transmission systems, we

briefly define notation that will be used throughout the remainder of this section. We adopt

a polar coordinate system (r, #) in the plane of operation as shown in Fig. 5-5. The pole

(origin) for the coordinate system is always considered to be the node currently finding the

next hop towards the destination (this will not necessarily be the source node, even though

the source node is doing the route computation). The # = 0' direction is then the straight

line between the node currently finding the next hop towards the destination and the

destination node. The radial r represents the distance of transmission, and it extends from

the pole.

The following algorithmic parameters are illustrated in Fig. 5-6. We let #P, be the initial

angle of consideration, and we define # as the angular increment. Similarly, we define d. as

the initial radial range, and we define d as the radial range increment. These are tunable

parameters that determine the performance of the presented heuristic routing algorithms.

We provide some insight into how these parameters should generally be set by the network

architect, but the best parameter values will be highly dependent on the network end-user

density, RF operating environment, underlying network graph sparsity, and other factors.

We also continue to use dchar to denote the characteristic hopping distance of a variable rate

transmission system (exactly as computed in Chapter 4) and pmax to denote the maximum

hopping distance of a fixed rate transmission system. We do not distinguish between dcfar

and decar (or Pmax and p ax) since the algorithms are the same for both omnidirectional and

directional networks. Also, as these hopping distance parameters are dependent on node

energy consumption parameters and the attenuation exponent of the path-loss model, we

continue to assume a homogeneous end-user node set and a homogeneous RF operating
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Figure 5-5: Polar coordinate system used in the description of our heuristic routing algorithms.

environment, such that these hopping distance parameters are the same for all nodes in the

network under consideration.

5.4.1 Variable Rate Transmission System Routing Algorithm

As suggested by our analytical results in Chapter 4, the source node attempts to compute a

route to the destination node composed of hops of length dchar. As shown in the previous

chapter, a route is uniform capacity optimal if it is composed only of hops exactly of length

dchar between the source and destination, although this is not necessarily possible to achieve
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diar+dO da, da.r,-do

Figure 5-6: Illustration of additional parameters used in our heuristic routing algorithms.

given an arbitrary network topology and arbitrary SD pair. Thus, dchar serves as a hopping

distance guideline.

After each hop in the route is determined, the next node takes the place of the "source," and

again looks for a near-dchar hop close to the straight line path between it and the destination

node. At each hop, since we cannot expect a node to lie exactly at distance dchar along the

straight line path to the destination, we initially consider a fixed width area defined by dchar,

#Po, and do. Instead of considering only the straight line path between the current node and

the destination, we consider an angle of #P, to each side of the straight line path, defining a

cone that extends from the current node. Furthermore, instead of considering a hopping

distance of exactly dchar, we consider a hopping range of [dchar - do, dchar + do] within the

cone that extends from the current node. Together, these sweep out an area of next hop
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consideration as shown in grey in Fig. 5-6. Nodes within this area are considered as the set

of candidates for the next hop from source to destination. We allow the next hop to be

randomly chosen among this set of next hop consideration according to a uniform

distribution over the set to attempt to distribute traffic load evenly across the network. The

only exception to this area of next hop consideration description is when the destination

node falls anywhere within the hopping range (0, dchar + do]. In this case, the next hop is

always the destination node.

With appropriate initial parameters for a given network density, this might be enough to

define our heuristic algorithm. However, we have to consider the scenario where there are

no next hop candidates in our initial area of next hop consideration. In this case, we allow

the hopping range of consideration to be extended by d on each end, and we allow the cone

of consideration extending from our current node to be increased by <p on each side. This

effectively sweeps out a larger area for next hop node consideration. The nodes that fall in

this area are then considered the set of next hop candidates, and again we allow the next hop

to be chosen randomly among the set of next hop consideration according to a uniform

distribution over the set. Also, as before, if the destination node falls anywhere within

(0, dchar + do + d], it automatically becomes the next hop. It is possible to imagine that the

set of next hop candidates is still empty after the area of consideration is extended the first

time. Thus, we allow this process to be repeated as necessary until the set of next hop

candidates is non-empty. Finally, in the variable rate transmission system, it is never

necessary to take a hop "backwards," since every node is technically connected to every

other node in the network. Thus, we dictate that the cone of consideration can never exceed

(-900, +900). If the cone of consideration has reached this point and the set of next hop

candidates is still empty, then only the hopping range of consideration can be extended on

successive algorithm iterations to increase the area of next hop consideration. In the worst
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case, the destination node will eventually be included in the area of next hop consideration,

and this node will automatically become the next hop in the route.

We proceed to describe the algorithmic process of a source node, node i, computing the

route to the destination node, node j, in a variable rate transmission system. The source

node uses only information known about the homogeneous node set and channel estimation

of the RF environment attenuation exponent (these are used to compute dchar), the

information in L, and the parameters of the heuristic algorithm.

Algorithm 2. A dchar-based Routing Algorithm for Variable Rate Transmission Systems

We assume that the source node, node i, knows the following information: dchar, L (vector

with location information for all n nodes in the network), and the parameters of the routing

algorithm (/po, do, p, d). We let the destination node be denoted node j. The area swept out

by Lower Hop Bound, Upper Hop Bound, Left Cone Width, Right Cone Width is as shown

in grey in Fig. 5-6

Initiate:

* Current Node = node i

* Destination Node:= node]

New Current Node:

* Lower Hop Bound:= dchar - do

* Upper Hop Bound:= dchar + do

* Left Cone Width:= -#0

* Right Cone Width:= +#Po

Candidate Next Hop:

* If Destination Node is in (0, Upper Hop Bound] from Current Node

o Next Hop := Destination Node

o Terminate algorithm
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* Else

o Assign nodes in area swept out by Lower Hop Bound, Upper Hop Bound, Left

Cone Width, Right Cone Width to next hop candidate node set K

o IfK 0r

- Randomly assign Next Hop from nodes in K

- Current Node := Next Hop

- Go to New Current Node procedure

o Else

- Lower Hop Bound := Lower Hop Bound - d

- Upper Hop Bound := Upper Hop Bound + d

- Left Cone Width:= max(Left Cone Width - , -900)

- Right Cone Width:= min(Right Cone Width + 4, +900)

0 Go to Candidate Next Hop procedure

This heuristic algorithm is sub-optimal due to the restrictive nature of the area of next hop

consideration determined by the algorithmic parameters. It is possible to imagine a scenario

where a slightly larger initial area of next hop consideration could yield an overall more

optimal path to the destination when you consider the distance of the subsequent hops in the

path. In this scenario, if a next hop candidate node is found in the smaller initial area of next

hop consideration, the more optimal end-to-end path using the node outside this initial area

of consideration would never be chosen. This scenario indicates why the choice of

algorithmic parameters is crucially important the performance of the algorithm. In general,

a more densely-packed network can use a smaller initial area of next hop consideration and

smaller parameter increments, since it is more likely to find potential next hop candidates

clustered around the straight line path between the source and destination. However, in a

sparsely populated network operating region, the initial area of next hop consideration

should be larger, and larger parameter increments can be used to speed up the algorithm
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running time. In our simulation environment, for both dense and sparse network

considerations, we were able to attain within ten percent of the maximum uniform capacity

as presented in Theorem 1 of Section 4.2.5. However, the algorithmic parameters were

manually optimized for these simulations. The procedure for choosing the best parameters

may be of interest for further study, but for now we simply state that this algorithm can

achieve high uniform throughput and the optimal end-to-end delay and path power

consumption scaling behavior that is independent of increasing n. In our simulation

environment, we ran a series of one-hundred simulations where the area of next hop

consideration was increased once more after the first set of next hop candidates was found to

see if a better SD route would be discovered. In all one-hundred trials, a higher uniform

throughput was not realized through this algorithm variant. Thus, we have reason to believe

that this heuristic algorithm can achieve desirable network performance in many operating

scenarios.

5.4.2 Fixed Rate Transmission System Routing Algorithm

For the fixed rate transmission system, we can use a heuristic routing algorithm similar to

that described in Algorithm 2. However, there are a few key changes that must be made to

ensure that the algorithm is able to successfully compute an end-to-end path for any

arbitrary network topology and any arbitrary SD pair within the network. This is due to the

fundamental attribute of the fixed rate transmission system, which is the existence of a

maximum hopping distance Pmax. For the sake of space, we do not write a formal algorithm

for the fixed rate transmission system, but we instead discuss the necessary changes to

Algorithm 2 and provide a fundamental example of why the most significant change is

required. We assume that the underlying network graph is connected when discussing this
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routing algorithm. If the underlying network graph were to be disconnected, then at least

one SD pair would not be able to sustain any end-to-end traffic. We refer the reader back to

Chapter 3, where we identify regimes of high probability of network connectivity given n

end-user nodes in a bounded operating region for the fixed rate transmission case.

First, we must change the incremental procedure of sweeping out larger and larger areas of

next hop consideration. In the fixed rate transmission system, we would like to take hops of

distance pmax along the straight line path from the source to the destination. Again, we

consider an angular range from this straight line path parameterized by <Po. However, we

now consider only an initial hopping range of [Pmax - do, Pmaxl- If no next hop candidates

are found in this initial area of consideration, we can incrementally increase the angular

range by as before, but we must modify how we increase the hopping distance range.

Since we cannot take a hop longer than pmax, only the lower bound on the range can be

further decreased by increments of d.

The other adjustment that we need to make to Algorithm 2 is to add a memory of the set K at

each step of the algorithm in computing the end-to-end path. In the fixed rate transmission

scenario, it is possible to reach a dead-end, where the current node is separated from the

destination node by a distance of more than Pmax and with no candidate next hop neighbors.

In this case, the algorithm has to be designed to take a step back, delete that dead-end node

from the last next hop candidate set K, and proceed by choosing another node from K. If K

were to become empty at this point, it would need to revert to increasing the area of next

hop consideration and find new next hop candidates. Along with this change in Algorithm

2, we need to remove the restriction on "backwards" hops, since this may be the only way to

reach a destination node given a specific network topology in the fixed rate transmission

system. Fig. 5-7 shows an example network topology that illustrates both of these issues. In

this example, the first next hop candidate would indeed become a dead-end path. The source
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Figure 5-7: Example fixed transmission rate network that illustrates the changes required in Algorithm 2 to
adapt the strategy to a fixed rate transmission system. The red path shows the first path that the source would
try to compute based on the modified algorithm, but the dotted hop of the path fails since the hop distance
exceeds the shown Pmax. The successful end-to-end path between the source and destination node requires
first taking a "backwards" hop to discover the connected route, as shown in blue.

node would then need to continue expanding its area of next hop consideration until it takes

a backwards hop and discovers the connected path to the destination node. In a practical

operating scenario, given a high enough network density (such as we discussed when

analyzing cell routing in Chapter 4), these network topologies may rarely, if ever, occur.

While these changes add to the computational complexity of Algorithm 2 and impose

additional memory requirements on the source node that is doing the route computation,

these changes allow for a heuristic fixed transmission rate system routing algorithm that uses

near-pmax length hops when possible to achieve high network throughput and low end-to-

end delay and path energy consumption.

158

0

0

0



5.5 Summary

We considered algorithmic route determination in both omnidirectional and directional

infrastructureless wireless networks in this chapter. After discussing general, but optimal,

graph theoretic routing techniques and tools, we showed how to adapt these tools to find

optimal routes for our individual QoS metrics of consideration. Specifically, we applied

Dijkstra's Algorithm and the Dijkstra-based Widest Path Algorithm to the problem of

determining the optimal end-to-end paths in terms of sustainable data rate, total delay (end-

to-end number of hops), and end-to-end path power for both fixed rate transmission systems

and variable rate transmission systems. In order to apply these algorithmic routing solutions

to our specific problems, we derived methods to assign link lengths to the underlying

network graph. We then developed a new geographic routing algorithm that leverages

localization information and the results from Chapter 4 indicating that we could realize

optimal throughput, end-to-end delay, and path energy consumption scaling behavior

simultaneously in our infrastructureless wireless network scenario by taking hops on the

order of a characteristic hopping distance (or maximum hopping distance in the fixed rate

transmission system). This routing scheme was based on a heuristic approach to finding a

route between the source and destination with the known characteristic hopping distance as

a general guideline. Initial simulation results showed that even this sub-optimal heuristic

approach can attain the desired performance when the algorithmic parameters are tuned and

optimized to the specific network scenario.

We now briefly discuss some of the shortcomings of the routing solutions presented in this

chapter and some areas for future investigation. Throughout this chapter, we continued to

look at a homogeneous end-user node set and homogeneous RF operating environment.

Additional work is needed to adapt these algorithms to a heterogeneous RF operating
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environment or to end-user device heterogeneity. More importantly, we assumed in this

chapter that every node had global, up-to-date network information. The dissemination of

this information throughout the network is a popular subject of academic study, but the

question remains if the network is capable of disseminating this information on an

appropriate time scale. It is possible that by the time that every node receives global

knowledge of every other node's location and channel estimations, the network state has

changed. This issue becomes more critical when considering more dynamic channel models

and end-user node mobility. Thus, future work is needed to develop efficient distributed

routing algorithms. Although distributed versions of Dijkstra's Algorithm and the Bellman-

Ford Algorithm exist, they need to be adapted to our specific QoS-based routing problem.

Our proposed dcfar-based routing algorithm also requires additional development for a

distributed implementation. Finally, as briefly mentioned before, another area for future

work is to find techniques to automatically optimize the parameters of our proposed

geographical routing algorithm based on the specific network under consideration (using

information such as the end-user node density, the availability of transmitter and receiver

beamforming, the RF environment of operation, and so forth).
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Chapter 6

Conclusion

As identified in [91, current approaches to infrastructureless wireless network architecture,

including MANETs and DTNs, are unable to satisfy the QoS requirements of mission-critical

communications. These designs are intended to provide best-effort services only, which is

not enough when facing the crisis of a natural disaster that has left human life in peril or the

foreign battle theater where late message delivery could result in casualties or the failure of a

campaign. It is for these time-critical scenarios that we must design an infrastructureless

wireless network architecture capable of meeting mission-critical network demands. We

need an infrastructureless wireless network architecture that not only provides guarantees

on achievable end-to-end throughput, but is also designed to offer guarantees on end-to-end

delay and network longevity through efficient management of energy consumption.
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The approach of adding strategically-placed data relays to combat network disconnection

was used in [9]. These relays also reduce the pass-through traffic burden on end-user nodes

and help meet mission-critical QoS demands. And while the results presented in that work

were promising, the addition of these data relays incur a high capital cost and greatly

increase network management overhead. Instead of pursuing this direction further, we

explored the option of using more sophisticated antenna geometries capable of electronic

beamforming to bolster network performance and tackle the requirements of an

infrastructureless wireless networks designed to provide time-critical core services. The

main academic interest in this thesis was to consider the impact of antenna directionality on

the performance of the network with respect to several important QoS metrics.

We first studied the impact of directionality on the probability of connectivity of a randomly

deployed network with a finite number of end-user devices. Network connectivity was

identified as a factor of primary importance, since the ability of a network to provide QoS

guarantees is first dependent on that network being connected. Our analysis found that even

a modest level of antenna directivity could provide significant benefits in the probability of

connectivity. These results provide general guidelines for a network architect regarding

required end-user node density to attain a high instantaneous probability of connectivity.

While the analysis presented made a strong argument for the inclusion of end-user

beamforming capabilities, there is still room for future development and research.

Particularly, it would be of interest to quantify the probability of network connectivity

under more realistic and time-varying channel scenarios and in a non-homogeneous RF

operating environment. Additionally, the assumption of a homogeneous end-user device set

may not be applicable to some of the driving applications considered here. War and natural

disaster, for example, brings together individuals from varied armed and public service

branches. Thus, extending all of the analysis presented in this thesis to device heterogeneity

may be a rewarding endeavor. Also, future work should try and quantify network
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connectedness when end-users are moving in the bounded operating region. Although

considering random networks is a first-step feasibility analysis, the question remains if these

identified deployment regimes with high instantaneous probability of connectivity hold

under the addition of a mobility model.

The next chapter analyzed the scalability of the infrastructureless wireless network using

beamforming-enabled end-user devices in the power-limited regime. We first quantified the

achievable capacity of arbitrary networks. A comparison of omnidirectional and directional

networks here showed that directionality allows for increased achievable capacity in a

variable rate transmission system, again making a strong case for the inclusion of

beamformers in an infrastructureless wireless network architecture. We proved that the

desired throughput performance of the network could be achieved with high probability

under specific routing schemes given a random network. This was an important step because

it showed that these directional (and omnidirectional) infrastructureless wireless networks

are capable of scaling in density without performance degradation with respect to achievable

throughput, end-to-end delay, and energy consumption, and it also provided a routing

strategy guideline that we developed more concretely in the following chapter. This analysis

again left room for future research. We used bandwidth scaling to suppress interference

effects and consider a power-limited network regime to find an upper bound on system

performance. Future work could consider a network that is limited both by power

constraints and by interference effects. This would be of particular interest for directional

networks, since two of the primary benefits of beamforming that were missing in our

analysis are interference reduction and spectral reuse. This type of analysis could also

introduce the benefit of electronic nulling for additional interference suppression. Also, the

analysis presented in these scaling results continued to use some simplifying assumptions,

such as a homogeneous RF operating environment and homogeneous end-user device set,

that could be removed by future research on the topic.
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Finally, we considered some algorithmic approaches to routing that focus on QoS

optimization. In addition to developing routing schemes to optimize these QoS metrics

individually, we developed a heuristic routing algorithm designed to achieve the scaling-

optimal behavior of all of these QoS metrics simultaneously. These algorithms made it clear

that the beamforming-enabled network is capable of providing better QoS performance for

core service, despite achieving the same overall scaling behavior as the omnidirectional

baseline network. Specifically, the increase in the characteristic hopping distance of the

directional network allows for routing decisions under our proposed heuristic algorithm with

fewer end-to-end hops and a reduction in path energy consumption (although this would

ultimately depend on the additional per bit processing energy cost of electronic beam

steering and is worthy of further investigation). In addition to future work suggestions

already mentioned, this chapter focused on routing algorithms with global device location

knowledge. Future study could consider the collection and dissemination of location and

channel state information, the development of distributed network algorithms for

characteristic hop distance routing, and the effect of node mobility on the stability of the

routes computed by the proposed solutions.

Ultimately, the work of this thesis is a first step to the thorough analysis of a directional

infrastructureless wireless network. Our primary focus was to motivate the inclusion of

directional transmitters and receivers at the end-user nodes by showing the directional

network performance benefits over the omnidirectional case. We believe that our results

indeed justify further work on the topic. However, there is still a long way to go before the

deployment of a directional infrastructureless wireless network capable of providing core

service is possible. Although we have shown that these networks are capable of better

performance than omnidirectional networks, the absolute performance capabilities still need

to be quantified. For example, we need to know if it is capable of providing a one second

guarantee for end-to-end message delivery with 99.9% confidence. We need to know that it

164



is robust against adversarial attacks. These questions and others will require a more detailed

analysis of the directional infrastructureless wireless network and the application

requirements. And they may even require the synthesis of different infrastructureless

wireless network solutions, such as the combination of proactive mobile helper node

deployment, network disconnection prediction techniques, and beamforming-enabled end-

user devices.
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Appendix A

Derivation of (2.8) in Chapter 2

We let the omnidirectional transmission range be r, which is determined by the maximum

time-averaged radiated power constraint at the transmitting node (which we denote Pt here),

the attenuation exponent of the particular homogenous RF operating environment, and the

minimum power-threshold for signal reception at the receiving node.

From the path-loss channel model (2.1), we have:

10 log1 o Pr = 10 logio Pty - 10k log1 o d.

We define the minimum power-threshold for signal reception at the receiver as Pr"" and

then let FdB = 10 log10 i Pr"mi When the receiver power is exactly the threshold rdB, then

the receiver is at a distance d = r from the transmitter. Thus:
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FdB = 10 logio Pty - 10k log1 o r.

Re-arranging, we have:

r = 1 0 21 og1Pty-10krdB

= 1 0 1g 1 0(pty)10k 1O_1rdB

= (Pty)VZ0I10 dB.

Similarly, for the directional transmitting antenna with directivity Dt, we can write:

10 log1 o Pr = 10 log1 o PtDtxy - 10k log1 o d.

Maintaining the same notation as above, when the receiver power is exactly the threshold

FdB, then the receiver is at a distance d = rbf from the transmitter. Thus:

rdB= 10 log 10 PtDtxy - 10k log1 0 rbf.

Re-arranging as before, we have:

Tbf
1 1

l T~og 1 0 PtDtxY- 10k dB

S 1 0 1og1 0 (PtDtxy)1/k 1_- rdB

= (PtDtxy)T100k dB

1 D (XI(P1Y0 1 'dB].

Recognizing the bracketed portion of this last equality as r, we have the result shown in

(2.8):

rbf - rDxk
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Appendix B

Derivation of (3.16) in Chapter 3

We let the m equal-sized cells of the tessellated operating area be indexed from 0 to m - 1.

We define event Ai, i E {0,1,2, ... , m - 1}, as the event that the ith cell is empty (none of the

n end-user nodes is in this cell). We also define a complementary event for each of these

events, A, as the event that the ith cell is not empty (there is at least one end-user node in

this cell). Since we want to determine Pcj(n,m), the probability that there is at least one

end-user node in each cell (alternatively, no cells are empty), we are interested in the event

(j- 1 A. Using De Morgan's law of logic, we have:

m-1 m-1

n% Ai UA.
i=0 i=0
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Therefore, we can write:

Pb (n,m) =Pr n
i=0

=PrIU A}
i=0

= 1- Pr UAi.
Ii=0

By the construction of the problem, the cell that includes the origin of the operating area is

always deterministically filled. We call this cell 0, and we have Pr{A0} = 0, or equivalently

Pr{Ao} = 1. Thus, we can rewrite Pa b(n, m) as:

m-1

Pcb (n, m) = 1 - Pr UAi.

Using the fact that an end-user node is equally likely to land in any cell due to the uniform

distribution and equal-sized cells, we can apply the inclusion-exclusion principle to

determine Pr{U'-i Ai} exactly. The inclusion-exclusion principle gives us the following:

m-1

Pr A ={Ui=
m-1

Pr{Ai}

- Pr{AilAj}I

+ Pr{AinAjfAij - -

+ (-1)m- 2 Pr{A1fA 2f ... fAm- 1 }
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m- ) 1 -)
= - (1)i1 (-7( - ±)l

i=1

We substitute this result back into the expression for Pb (ni, m) and we get:

pbb(nm) = 1 -
(rm )

m-1

i=1-

(-1.m)1 i5fn
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Appendix C

Derivation of Results in Chapter 4

C.1 Derivation of Lemma 1

We consider an infrastructureless wireless network of n end-user nodes in a bounded region.

These nodes are equipped with omnidirectional transmit and receive antennas (it is trivial to

extend this proof to the directional transmit and receive antenna case) and are capable only

of fixed rate transmission. Thus, when a node transmits, it does so at a rate of R [bit/sec].

The maximum transmission range of each node based on this rate constraint is pmax [m]. We

consider a uniform traffic pattern, where each of the n nodes randomly chooses a destination

node and sends data to it at an average rate of A [bit/sec]. We are interested in finding the
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upper bound on the uniform capacity A, the maximum achievable rate that all SD pairs can

sustain subject to our power constraint. As discussed in Section 4.2.1, we consider a relaxed

total network time-average power constraint of nPav [J/sec].

We assume a fixed time period T [sec]. Under uniform traffic, nZT total bits of traffic are

generated in T. We can enumerate each of these bits, bi, i E {1,2, ... , nAT}. We focus on bit

bi, which we allow to traverse h(bi) hops from source to destination. We can further

enumerate each of these hops of bit bi, denoted hJ, jE {1,2, ..., h(bi)}. We denote the length

of hop hj as rj. As discussed in Section 4.2.1, we let L be the average distance between all n

SD pairs. Thus, L = 1 Li, where Li is the distance between SD pair i. From this, we can
n

write that the total distance traveled by all bits satisfies the following, since hops aren't

necessarily along the straight line path between source and destination:

nZT h(bi)

r nZITL.
i= =1

We can bound each hop distance from below (trivially) and from above as follows:

0 rP pmax-

Using these upper bounds on the hop distances, we can now write:

nAT h(bi) nlT h(bi)

Pmax
1=1 j=1 i=1 j=1

nT

= Pmax h(bi).
i=1

We denote the total number of hops of all bits as H = EnT h(bi), and we observe that H is

equivalent to the effective number of bits transported by the network in T. Since each node
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is subject to our transmission rate constraint of R, H cannot exceed nTR. Combining this

statement with the bounds developed above, we have:

nZ TL PmaxH PmaxnTR.

Manipulating this, we get the result as presented in Lemma 1:

< RPmax

L

C.2 Derivation of Lemma 5

We consider the same scenario as in the fixed rate case as discussed in Appendix C. 1, except

we relax the fixed transmission rate constraint and allow the nodes to transmit at variable

rates. Again, we look at a infrastructureless wireless network of n end-user nodes operating

in a bounded region and equipped with omnidirectional transmit antennas (extending this

proof to the directional network case is trivial) under uniform traffic. As in the fixed rate

analysis, we are interested in an upper bound on the uniform capacity A under the relaxed

total network time-average power constraint of nPav. As mentioned in Section 4.2.3, the

decoupling of routing decisions allowed by this relaxed power constraint makes it such that

uniform capacity maximization is equivalent to path power minimization.

Given a fixed period of time T [sec], ntT bits of traffic will be generated by our network

under uniform traffic. Using our power model and from Chapter 4 and the notation

introduced in Appendix C.1, we denote the total energy consumed by the network in T as

Etot, and we have:
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nZT h(bi)

Etot = a + j~|}
i=1 j=1

Our total power constraint dictates that Etot ; nTPa. We now want to find a lower bound

on Etot. To do this, we consider an individual SD pair i, i E {1,2, ..., n, which generates AT

bits of traffic in the fixed time period. We denote the path energy consumed by SD pair i in

T as Ei, and, as in [50], we minimize Ei by breaking the path down into some number of

equal lengths hops along the straight line between source and destination. We denote the

number of hops in the SD pair i path as ni, and then each equal-length hop is . Thus, we
n-i

can write the following expression for Ei:

Ej=ATnj a+f(L)).

If we take the derivative with respect to ni and set this derivative to 0, we can minimize this

total path energy consumption for SD pair i while ignoring the integer constraint on ni. This

yields the optimal value for ni that minimizes Ej, denoted ni:

n, = Li _(k - 1) .(1/k

We now want to reintroduce the integer constraint on ni, since the optimal value is not

necessarily an integer. For analytical tractability, we do not use ceiling and floor functions

on ni. Instead, we recognize that 3 c > 0 such that cILi (E (k - 1) = [n*] E N and

3c' > 0 such that c Li (I (k - 1))] = [n'l E N. Substituting n* into the expression for

E gives us a minimum that we denote E4"'. Thus, using our integer values, we can write:

k

E|"i" ;> ZT ciLi fl(k - 1)1k a + L

(a C' ci, L (k - 1))ll
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- - fl 1/k (1
=1TclLia (k -1) 1 + .k(k 1)

Summing E!"" over all SD pairs and letting ci = minitc8} and c 2 = maxi{c'}, we have:

Etot ZTc1 a( (k - 1) (1 + k Li.
a c2 (k - 1)

Now we employ the upper bound on Etot to get:

nTPavg ZTC1a (a (k - 1) 1 + Ck(k 1)) Li.

Rearranging, and recognizing that L = 1 Li, we get the result as presented in Lemma 5:
n =

avg
1/k

caL (k - 1) 1 + cf (k- 1)

Pavgd char

ciaL 1 + c (k- 1)

The final equality here comes from identifying the characteristic hopping distance, dchar, as

the optimal hop distance from the minimization of the path energy consumption: dcfar

i (a\ 11k.
n* fl U1

C.3 Derivation of Theorem 2

We want to prove that uniform capacity is 0(1) with high probability with increasing n for a

random infrastructureless wireless network of n nodes using omnidirectional or directional

transmit antennas and fixed-rate transmissions in a fixed-sized (unit torus) operating region.
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To do so, we show that the cell routing strategy achieves this uniform throughput scaling

with high probability for a randomly distributed network. The cell routing scheme is

described in detail in Section 4.3.1. The proof using this routing scheme requires the

following lemma (which is proven elsewhere, as indicated by the references).

Lemma 9. Consider a random network under uniform traffic with n nodes independently

and randomly distributed on a unit torus operating region according to a uniform

distribution. The torus is divided into square cells of equal area a(n).

nA
(i) If a(n) = A, then each cell has at least- nodes with high probability [9].

2

(i) The number of SD lnes passing through any cell under uniform traffic is 0 (n a a(n)

with high probability [37J

Under the cell routing scheme, we know that each cell is assigned a fixed size A = v x v that

does not change with increasing n. From the first part of Lemma 9, we see that each cell will

have at least one node in it with high probability as long as v . Given large enough n, it

is possible to satisfy the absolute cell-sizing conditions for cell routing: v in the

bf

omnidirectional antenna case and v s in the directional transmit antenna case.

Now, combining the first part of Lemma 9 with the second part, we have that any given node

must transmit 0 (V) = 0 (L) = 0(1) traffic at most with high probability as long as we

distribute the pass-through traffic evenly over all nodes in the cell. Given a fixed

transmission rate R, the fact that uniform capacity is 1= 0(1) (or Abf = 0(1) for the

directional network case) with high probability, and the maximum pass-through traffic a

node must relay is 0(1) with high probability, we establish that the achievable uniform

throughput A (or Abf for the directional network case) under cell routing is 0(1) with high

probability for both omnidirectional and directional random networks with fixed
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transmission rate. Since cell routing can achieve this scaling with high probability for

random networks, we have proven Theorem 2, that the uniform capacity for random power-

limited infrastructureless wireless networks with fixed transmission rate is E(1) with high

probability as n increases. m

As discussed in Section 4.3.2, the cell routing strategy results extend trivially to the variable

rate transmission case for both omnidirectional and directional networks.
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