
Projected Equation and Aggregation-based

Approximate Dynamic Programming Methods for

Tetris

by

Daw-sen Hwang

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

ARCHIVES

June 2011

@ Massachusetts Institute of Technology 2011. All rights reserved.

Author..
Department of Electrical Engineering aId Computer Science

May 24, 2011

Certified by.
Dimitri P. Bertsekas

Professor of Engineering Lab. for Information and Decision Systems
Thesis Supervisor

Accepted by........
Professor t'esIie A. Kolodziejski

Chair of the Committee on Graduate Students

MASs OFTEHNLG
Yv

JUN 17 2011

LIBRARIES

2

Projected Equation and Aggregation-based Approximate

Dynamic Programming Methods for Tetris

by

Daw-sen Hwang

Submitted to the Department of Electrical Engineering and Computer Science
on May 24, 2011, in partial fulfillment of the

requirements for the degree of
Master of Science in Computer Science and Engineering

Abstract

In this thesis, we survey approximate dynamic programming (ADP) methods and
test the methods with the game of Tetris. We focus on ADP methods where the cost-
to-go function J is approximated with 5r, where 4 is some matrix and r is a vector
with relatively low dimension. There are two major categories of methods: projected
equation methods and aggregation methods. In projected equation methods, the
cost-to-go function approximation 4or is updated by simulation using one of several
policy-updated algorithms such as LSTD(A) [BB96], and LSPE(A) [B196]. Projected
equation methods generally may not converge. We define a pseudometric of policies
and view the oscillations of policies in Tetris.

Aggregation methods are based on a model approximation approach. The original
problem is reduced to an aggregate problem with significantly fewer states. The
weight vector r is the cost-to-go function of the aggregate problem and P is the matrix
of aggregation probabilities. In aggregation methods, the vector r converges to the
optimal cost-to-go function of the aggregate problem. In this thesis, we implement
aggregation methods for Tetris, and compare the performance of projected equation
methods and aggregation methods.

Thesis Supervisor: Dimitri P. Bertsekas
Title: Professor of Engineering Lab. for Information and Decision Systems

4

Acknowledgments

I offer my sincerest gratitude to my thesis advisor, Professor Dimitri P. Bertsekas,

whose encouragement and guidance from the beginning to the end has empowered me

to develop an understanding of the material. His deep knowledge and enthusiasm for

research has impacted me greatly. I am heartily thankful to Professor Patrick Jaillet,

whose financial support enabled me to finish this thesis. I thank Professor John N.

Tsitsiklis for his inspirational teachings and discussions in the Dynamic Programming

class and group meetings.

I thank God for being faithful. In my daily life, I have been blessed with cheerful

new friends from GCF, ROCSA, and LIDS as well as sincere old friends. I express

my deep thanks for their prayers and thoughts. Especially, I would like to give my

special thanks to Yin-Wen Chang, Chia-Hsin Owen Chen, Yu-Chung Hsiao, Justin

Miller, Jagdish Ramakrishnan, and Huizhen Janey Yu for their suggestions in coding

and writing.

Last but not least, I would like to express my gratitude to my family for their

unconditional love, support and encouragement in every possible way. Finally, I offer

my regards and blessings to all who supported me in any respect during my master

study.

6

Contents

1 Introduction 11

2 Approximate Dynamic Programming 15

2.1 Approximate Dynamic Programming (ADP) and Linear Architecture 15

2.2 Matrix Representation 16

2.2.1 Approximate Cost-to-Go Function 17

2.2.2 Transition Probabilities . 17

2.2.3 Expected Transition Cost Function 18

2.2.4 Occurrence Probabilities . 18

2.2.5 T and T(A) Mappings . 19

3 Projected Equation Methods 21

3.1 Projected Equation-Based Linear Architecture 21

3.2 Least-Squares Policy Evaluation A Method 22

3.3 Least-Squares Temporal Difference A Method 24

3.4 Simulation-Based Projected Equation Methods 25

3.5 LSPE(A, c) Method . 26

3.6 LSTD(A, c) Method . 28

3.7 Policy Oscillations . 29

4 Aggregation Methods 31

4.1 Aggregation Methods Transition Probabilities 31

4.2 Matrix Representation . 33

7

4.2.1

4.2.2

4.2.3

4.2.4

4.2.5

4.3 Policy

Aggregation and Disaggregation Probabilities

Approximate Cost-to-Go Function

Transition Probabilities

Expected Transition Cost Function

T Mapping

Iteration .

5 Experiments with Tetris

5.1 Problem Description .

5.2 Small Board Version .

5.3 Pseudometric of Policies .

5.4 Feature Functions for Projected Equation Methods

5.5 Aggregation Methods .

5.5.1 Aggregation Methods with Uniform Disaggregation Probabilities

5.5.2 Aggregation Methods with Representative States

6 Experimental Result and Conclusion

6.1 Results for Projected Equation Methods

6.2 Results for Aggregation Methods .

6.3 Comparisons and Conclusions .

. 34

. 34

. 35

. 35

. 36

. 36

39

39

43

48

51

52

52

54

57

57

61

63

List of Figures

3-1 An illustration of the LSPE(0) method

3-2 Simulation trajectories

4-1 Aggregation state transition model.

5-1 The tetrominoes .

5-2 The configurations for pairs (tetromino, orientation) .

5-3 An example of Tetris

5-4 An example of Tetris

5-5 The small tetrominoes

5-6 The configurations for pairs (tetromino, orientation)

5-7 An optimal policy 1 for a 3 x 4 board with p,= 1 . .

5-8 Important states for a 3 x 4 board

5-9

5-10

Aggregation methods with uniform disaggregation probabilities.

Aggregation methods with representative states

6-1 A comparison of noise in LSTD methods with different A

. . . . 22

. . . . 25

. . . . 32

. . . . 40

. . . . 41

. . . . 44

. 45

. 45

. 45

. 46

. 47

10

Chapter 1

Introduction

Dynamic Programming (DP) is an approach used to solve Markov Decision Pro-

cesses with controls that affect the transition probability distribution to the next

state [Ber05]. The goal is to minimize the expected accumulated cost starting from

a given state. The transition cost g(i,u) is the cost between two consecutive states

i and the next state j = f(i, u) with the control u, where f is the state transition

function. Provided we use the policy 7r after the first step, the best control we can

find for the first step is

p(i) = arg mmE piy (U) [g(i,u) + Jr(j)],
uEU(i)

where J, is the cost-to-go function for policy 7r. The policy with the controller yL

is called one-step lookahead with respect to J,. Theoretically, when the number of

states and the size of U(i) are finite, we can use policy iteration or value iteration

methods to find the optimal cost-to-go function J*, and hence an optimal policy.

However, when the number of states is prohibitively large, one cannot use the DP

algorithm to find a good controller due to the computational burden. Therefore

Approximate DP algorithms have been developed [BB96], [B196]. In this thesis,

we survey some methods where the vector representation of the cost-to-go function

J, is approximated by the matrix-vector product Jk = 4 rk, where rk is updated

based on approximate policy iteration methods. This approximation approach has

been widely studied [BT96], [SB98], [Gos03], [Mey07], [CFHM07], [PowO7], [Bor08],

[Cao09], [Berl0b], [Berl0a], [Berl]. The update of rk is based on one of the two

linear transformations

rk+1 -AA rk ± bk, (1-1

rk+1 -AAkrk+1 ± bAk (1.2)

where both A Ak and b lk depend only on the policy suggested by the cost-to-go function

Jk = 4 rk. The matrix A Ak is a contraction mapping.

Since Ak is a contraction mapping, Eq. 1.2 can be viewed as iterating Eq. 1.1

infinite number of times. These methods involve solving a linear equation and are

called matrix inversion methods.

One major ADP approach involves assigning several relevant feature functions

of the state and approximating the cost-to-go function by a linear combination of

those features. In this case, a row in 4 represents the corresponding features and r

is the vector of weights of these features. The approximator learns and updates r

through simulation. In this thesis, we discuss the projected equation methods where

a projection is considered when we update the vector r. We consider the LSTD(A)

and LSPE(A) methods in particular. LSTD(A) is a matrix inversion method and

LSPE(A) is an iterative method. These two methods are not guaranteed to converge

because the A Ilk matrix is not necessarily monotone. As a result, these methods may

not converge to the optimal policy. As shown by Bertsekas, these methods may end

up oscillating with more than one policy [Berl0b].

Another major ADP approach is problem approximation, where the original DP

problem is associated with an aggregate problem with significant fewer states [SJJ94],

[SJJ95], [Gor95], [VR06], [Berl0b], [Ber10a], [Berl]. The aggregate problem has

significantly fewer number of states so that we can calculate the optimal policy for

the aggregate problem by policy iteration. The vector rk is the cost-to-go function

of each iteration. The update of rk is of the form in Eq. 1.2 with a monotonic A Ak.

As a result, {rk} converges to r*, which is the optimal cost-to-go for the aggregate

problem. The cost-to-go r* then specifies a policy pj with J = <br*, where <D is a

matrix which relates the aggregate problem with the original problem. One of the

big differences between the projected equation methods and the aggregation methods

is convergence. The policies converge in the aggregation methods, and hence the

performance may be more regular.

We will test those methods in Tetris, a video game originally invented by A.

Pajitnov in 1984. It is NP-hard to find the optimal policy even when we know the

sequence of tetrominoes in the beginning of the game [DHLN03]. On the other hand,

the game terminates with probability 1 [Bur96], which allows the methodology of

stochastic shortest path DP problems to be used. Because solving Tetris is hard and

can be formulated into a standard stochastic shortest path DP problem, this game

has become a benchmark problem of large scale DP problems. There are several

different versions of Tetris. A study of different variations of Tetris can be found

in [TS09]. Tetris has been well tested with methods where feature functions are

involved. Bertsekas and loffe used a 10 x 20 board and a set of 22 features and

got an average score of 3,183 with the LSPE(A) method [B196]. This score might be

underrated because they considered a slightly different version of Tetris [TS09]. Later

on, Kakade used the same 22 features with a natural policy gradient method and got

an average score around 5,000-6,000 [Kak02]. Farias and Van Roy also used the same

22 features with a relaxed linear program and achieved average score 4,274 [FVR06].

All the methods above were trying to update the policy by letting it be a better

approximator. Szita and Lorincz used the cross-entropy (CE) method, a random

search methods in the space of weight vectors r with special strategy to update the

distribution function, and got an average score exceeding 800,000 with the same 22

features [SL06]. It is clear that the performance of the controller depends on the

feature functions. Therefore, research also focused on different feature functions. For

example, Thiery and Scherrer used a set of 8 features with the cross-entropy method

and achieved an average score of 35,000,000 on a simplified version of the game. This

controller won the 2008 Tetris domain Reinforcement Learning Competition [TSO9].

However, the 8 features they used are not functions of state, but functions of both

state and controller. In this thesis, we are interested in formulating Tetris into a DP

problem and testing the behavior of different ADP methods. As a result, we are going

to use the 22 features proposed in [B196].

This thesis organizes as follows. In Chapter 2, we introduce our notation for the

DP problem we aim to solve. In Chapter 3, we introduce theoretical background for

projected equation methods: LSTD(A) and LSPE(A). In Chapter 4, we introduce

theoretical background for the aggregation methods. In Chapter 5, we formulate

Tetris into a DP problem. We then consider Tetris problems with smaller board sizes

so that we can apply exact projected equation and aggregation methods. Finally,

we compare the performance of the aggregation methods and the projected equation

methods.

Chapter 2

Approximate Dynamic

Programming

2.1 Approximate Dynamic Programming (ADP)

and Linear Architecture

In this thesis, we consider the stochastic shortest problem with a termination state

denoted 0. We use the following transition model:

Xk+1 = f(Xk,uk,yk), (2.1)

where Xk and Xk+1 are the current and the next state. The control Uk is selected

after an uncontrollable random forecast Yk. The control uk can be described as Uk =

P(Xk, Yk) E U(Xk, yk). Here U(Xk, Yk) denotes the set of admissible controls and yL

denotes a controller which maps (Xk, Yk) to uk. The number of possible states of Xk,

the number of possible values of Yk, and the number of elements of U(xk, Yk) are

finite. In this thesis, we only consider stationary problems and policies, and therefore

we may interchangeably refer to yL as either a controller or a policy. We consider the

case where the probability distribution function of yk is stationary. When the state

changes, a transition cost g(Xk, uk, Yk) is accumulated. Bellman's Equation for this

problem is

J*(x) =Zp(y) min [g(x,u,y) + J*(f(xu,y))], with all x, (2.2)UE=U(z,y)
y

where the solution J*(x) is the optimal cost-to-go for x. Any optimal policy p*

satisfies

p*(xy) =arg min [g(x,u,y) + J*(f(x,u,y))]. (2.3)
uEU(x,y)

In this thesis, we consider the stochastic shortest problem where the game starts

at a special state xo = 1 and ends at a cost-free state 0. Thus, the process terminates

when the state is at 0 and the cost-to-go for the state 0 is always 0. We use a linear

architecture to calculate the approximate cost-to-go function Jk = 4rk'. When the

optimal cost-to-go vector J* in 2.3 is replaced with this approximation, the associated

policy is defined to be

pk(X,y) 6 arg min gg(xu,y) ± Jk(f(xu,y))]- (2.4)
uEU(x,y)

When the minimum is achieved by more than one control in U(x, y), we choose Uk from

those controls according to some fixed but arbitrary rule. (In our implementations,

we have chosen Uk randomly from the set of controls attaining the minimum according

to a uniform distribution.) In order to investigate further, we first introduce some

notation.

2.2 Matrix Representation

We will enumerate all the possible states and assume the number of states is n (not

including the termination state 0). Most matrices or vectors below depend only on

the policy t but not on the vector r. When there is no confusion, we do not write ya

'The integer k here refers to different iteration of policies, which is different from the k used in
2.1.

explicitly.

2.2.1 Approximate Cost-to-Go Function

We denote the approximate cost-to-go function Jk = Prk.

Jk(1)

Jk ~ A (IDrk,

Jk (n)

where 4 is some matrix, and the value is calculated only when accessed. The definition

of <b varies in different methods. Because 0 is the cost free state, we define .k(0) A 0.

2.2.2 Transition Probabilities

The matrix of transition probabilities for a stationary policy [L is defined to be

PI=

Ep(y)p11(p(1, y),y) -.-. E, p(y)pin(p(1, y),y)
-.

Zp(y)p.(p~(n, y), y) -. -Z-Ep(y)p..(pi(n, y), y)

where pi (p(i, y), y) is the transition probability with control u = A(x, y) and forecast

y. We then simplify the notation by using pi(pL) to denote the transition probability

from state i to state j with policy p:

pig (p) A Ep(y)pjg(p(i, Iy), y).

Notice that the summation of row i, E" pig(p), may be less than 1 because there

may be positive probability to terminate at state i under p.

2.2.3 Expected Transition Cost Function

With the stationary policy [p, the expected transition cost from state i to the next

state is E, p(y)g(i, [t(i, y), y). As a result, we can define the expected transition cost

vector as

g9 y : - :[9p(n) 1 Zp(y)g(n, y(n, y), y)

2.2.4 Occurrence Probabilities

The occurrence probability in the stochastic shortest problem is similar to the steady

state probability for the infinite-horizon discounted problem. Denote

qt(2g) q(,P) (x= ,Yt)

for all 2 / 0 and let

q(2, V)= E ZX~E qt(,)'

then q(t, g) is the expected frequency at which the state and forecast pair (z, g)

occurs. Similarly, denote

q-*2) g (2 APy(xt =:4)

for all t / 0 and let

EX Et qt(X)'
then q(.t) is the frequency at which the state 2 occurs. We can denote qt and q as

vectors

[q (n)][qt(n)j [1)1

Let ei be the vector [1, 0, ... , 0, 0]'. We have q' = P'tei and therefore

00 00

g =aZ q = a E P'ei = a(I -P) -e,
t=O t=0

where a is chosen to normalize q so that Ej g(i) = 1. We will denote by E the matrix

that has q as its diagonal,

g(1) 0 0

0 '. 0 -

0 0 qu (n)-

The matrix S, defines in turn a weighted Euclidean norm by

i J|| (i)(J(i))2 J
i=1

2.2.5 T and T(A) Mappings

We denote by T, the one-step look-ahead mapping with the policy yL [Ber05]. The

vector T,(J) is the cost-to-go vector where the controller y.I is applied at the first stage

followed by a policy with cost-to-go vector J.

TJ(x) A p(y) [g(x, p(x, y), y) + J(f(x, I(x, y), y))] , with all x.

We notice that E, p(y)g(x, p(x, y),y) = g,(x) and Ep(y)J(f(x, i(x, y), y)) =Epi (p)J(j).

As a result, the matrix representation of T(J) satisfies

TJ(1)

T(J) =T,(J) =g, + PJ.

T,J(n)

With this definition, T, can be applied to any vector J, not necessarily a valid cost-

to-go vector. We will similarly denote T(A) as the infinite-step look-ahead discounted

mapping [Beril]

T(A) - T((1 -
oo

A) AT+
l=1

After some math calculation, we get

T(A)(j) - g(A) + p(A) ,

where

00

g(A) =
l=0

A'P'g = (I - AP)- 1 g,

P(A) =^ (1) (I - AP)-1 P.

Chapter 3

Projected Equation Methods

3.1 Projected Equation-Based Linear Architecture

In projected equation methods such as LSTD and LSPE, the cost-to-go J(x) is ap-

proximated by Jk(x), the inner product of s feature functions #1(x), #2(X),... ,(),

and a vector rk:

(X) A[41 (X),# 2(X), - - ,#"(X)]',

#(0) =[0, 0, - ,0]',

rk A [rk(1),rk(2),' ' k n),

Jk(X) A '-)k

The matrix <b is defined to be

#1(1) -. - M - "(1)

.(2 - r - "(2)

#1(n) -. -- #"(n)

Value iteration: Policy Improvement One DP Iteration

Projection

<>rk+1 = T,,(<>r)

Figure 3-1: This is an illustration of the LSPE(O) method. Each iteration can be
viewed as a value iteration followed by a projection H. The policy Pk is defined in
Equation 2.4.

so that .k = Prk. Because 0 is the cost-free state, we define <0(0) = 0 so that Jk(0) = 0

for all k. This definition also simplifies the notation for the simulation-based methods.

3.2 Least-Squares Policy Evaluation A Method

In the Least-Squares Policy Evaluation A method (LSPE(A)), each iteration can be

viewed as a value iteration followed by a projection as shown in Fig. 3-1 when A = 0.

If there were no projection, the method would become the value iteration method

and the generated policies would converge to an optimal policy. However, in order

to represent the next approximation in term of Jk+1 = 1 rk+1, it is necessary to

project the cost-to-go function onto the subspace spanned by the columns of 4. The

projection H on <} is the projection with respect to the norm defined by E,.. The norm

defined by is critical because we then can update the vector rk by simulation for

the LSPE methods. When the one-step look-ahead mapping T,, is replaced by a more

general infinite-step look-ahead discounted mapping T,, it becomes the LSPE(A)

method. In summary, the LSPE(A) method updates the vector rk by the following

equation:

<brk+1 - lT (<brk).

We can also get rk+1 from the following equation:

rk+1 = arg min 1kr - - P(N)rk||
r

= argmin(<br - g(\) P(\)4rk)I I4r - g(A) - P(A)4)rk).
r

Taking derivative, rk+1 is the solution of the following equation in r:

0(<br - g(A) - P(A)brk)/-((Dr - g(\) - P(Akrk) -

or equivalently

(4'E(b)E(4r - g(\) - P(\)4qrk) = 0.

Therefore, rk+1 satisfies

rk+1 - rk - G(C(\)rk - \d),

where

C(A4/(j - P()<b,

d(A) Ab'Eg,(A)

G A

Note that LSPE(A) is an iterative method of the form Eq. 1.1 with A, = I-GC(

and blk = Gd(\).

(3.1)

3.3 Least-Squares Temporal Difference A Method

The Least-Squares Temporal Difference A method is a matrix inversion method. Sim-

ilar to LSPE, we can view LSTD as iterating over a combination of value iteration

and a projection as shown in Fig. 3-1 when A = 0. The difference is that in the LSTD

method, rk+1 is updated after an infinite number of iterations under the same policy

plk. In practice, we do a matrix inversion calculation to find the fixed point for the

iteration. If there were no projection and A = 0, the method would become the policy

iteration method and the policies will converge to an optimal policy. However, simi-

lar to LSPE, in order to represent the next approximation in term of Jk+1 -- 4 rk+1,

it is necessary to project the cost-to-go function onto the subspace spanned by the

columns of <b. The projection H is with respect to the norm defined by B,.. In sum-

mary, the LSTD(A) method updates the vector rk based on the projected following

equation [Berl]:

<brk+1 - IIT (brk+1)-

We can fin rk+1 by applying Eq. 1.2 with A, = I - GC(A) and bi =k Gd(A) from

Section 3.2.

rk+1 = AIkrk+1 ±,,, = (I - GC(A)) rk+1 + Gd(").

Therefore, the updated vector rk+1 satisfies

CCA)rk+1= d(\). (3.2)

The vector rk+1 can be obtained by the following matrix inversion calculation:

rk+1 = (C(A)) d(A). (3.3)

1st trajectory

2nd trajectory

XJI,1 - *

- X2,(N-1) j N1

lth trajectory

Lth trajectory

Figure 3-2: This is an illustration of simulation trajectories. Each trajectory starts
at state 1: x1,o = 1 for all 1. At state x,i, forecast yL,i happens and control u,i is
applied. Therefore, the next state is xl,isl = f(x.i, ul.i, yl.i) and the transition cost is
g(x.i, u.i, yi.i). Trajectory 1 first enters the termination state 0 at state xl,N - 0.

3.4 Simulation-Based Projected Equation Meth-

ods

In general, the number of states is huge and so the calculation for the matrices C(A),

G are prohibitive. Fortunately, the definition of those matrices involves the matrix

E, and therefore they can be approximately calculated through simulation. Assume

we simulate the DP problem L times and obtain L trajectories as shown in Fig. 3-2.

X2,0 X2,1

X1,0 X1'1

GXLO XLJ XL,(NL-1) XLNL

Then, we can do the following calculation with dimension m but not n:

j=O

L Ni-1

1CL 1L

i=1 (N) _j

L N-1
i (N) i=O

LNi

(A)
li Wbxii) - xii)]

1I -

When L -+ oo,

(A) (A).

G- G.

Thus, we can calculate rk+1 approximately with the simulation-based LSPE(A) method

by using

rk+1 -- rk - G(C rk - di). (3.4)

Alternatively, we can use the simulation-based LSTD(A) method by solving

(3.5)

3.5 LSPE(A, c) Method

In this section, we consider an LSPE(A)-like method for the case where the last feature

4s(x) is 1 and the termination state 0 is not favorable. We write rk = [fi Ck]', where

C(-)rk-.1 = d(.\ -

rk is an (m - 1) dimension vector and Ck is a constant. When the termination state is

not favorable, we can avoid termination by allowing a termination decision only when

necessary. In this case, the policy yk depends on fk but not on ck. We are interested

in the case where Ck remains a constant c for every vector rk. Denote LUc to be the

projection to the affine set b r Ir E m1 } with a fixed constant c and the norm
c

Pk LSPE(A, c) updates rk with the following equation:

<brk+1 = ricT(<b(rk).

Although the policy pk does not depend on c, the constant c makes a difference

when rk is updated. Let e be [1, 1,- , 1]' and the matrix 4 be the n x (m -1) matrix

with the first (m - 1) columns of 4. Then, the projected equation can be calculated

to be

rk+1 = arg r mmn |I>r + ce - g - P (fk + ce)I IVk

arg min (Dr + ce - g(- P ((k + ce))'E(1 r + ce - g - P (464 + ce))
rEgm-1

Taking derivative, rk+1 is the solution of the following equation in r:

0(4r + ce - g(A) - P(A)(Ii +ce))'E(dr ± ce - g(A) - P(A)(k + ce)) -

Or

or equivalently

D.'E(-(4r + ce - g(- P ((fk + ce)) 0.

Therefore, fk+1 satisfies

fk+1 = fk- Ge(Cc) f - d),

where

CFA AcI"'(I-PN ,

dcA A)'I(g() -(I - P(A))ce),

LSPE(A, c) is an iterative method of form Eq. 1.1 with A, I - GcCA) and

by= GcdA). If there are only the first (m - 1) features for the matrices C and G,

Cc and Gc happen to be exactly equal to those matrices, respectively. Furthermore,

when c = 0, if there are only the first (m - 1) features for the vector d, de happens

to be exactly equal to this vector. As a result, the LSPE(A, c) method is equivalent

to the LSPE(A) methods with only the first (m - 1) features.

3.6 LSTD(A, c) Method

In this section, we consider an LSTD(A)-like method for the same case discussed in

Section 3.5. The LSTD(A, c) method is similar to the LSPE(A, c) method. However,

LSTD(A, c) is a matrix-inversion method which finds the fixed point instead of doing

one iteration. The LSTD(A, c) method updates rk using Eq. 1.2 with the same

Apk and b, as the LSPE(A, c) method. Therefore, rk+1 is updated by the following

equation:

fk+1 = fk+1 - Ge(C \k+1 - dc(\),

where C , dcA), and Gc are defined in Section 3.5. Therefore, the vector rk+1 satisfies

Ccfk= d(. (3.6)

The updated vector fk+1 can be calculated by matrix inversion.

3.7 Policy Oscillations

From Eq. 3.2, we know that rk+1 depends only on the current policy ptk. Furthermore,

there is only finitely many policies. As a result, for the exact LSTD(A) method, after

several iterations, we will have pi = pt for some i < j. When this happens, we will

have ri+1 = rj+l and thus pi+1 = Ij+1. By mathematical induction, rk - rk+j-i for all

k > i. As a result, we will end up oscillating between a subset of policies periodically.

The trajectory of the oscillating policies depends on A and the starting vector ro

[Berl0b]. On the other hand, from Eq. 3.5, both 0 (A) and PCA) are random variable and

the distribution depends on L, the number of simulation trajectories. Therefore, in

the simulation-based methods, rk+1 is also random and it is not necessarily oscillating

periodically. In Chapter 6, we will discuss policy oscillations for the exact projected

equation methods.

30

Chapter 4

Aggregation Methods

In aggregation methods, the original DP problem is approximated by a simpler prob-

lem. The idea is to reduce the original problem to a problem with significantly fewer

states. We call the new problem the aggregate problem, and a state in the new prob-

lem an aggregate state. We use policy iteration methods to find the optimal policy

for the aggregate problem. This optimal policy may suggest a good policy for the

original DP problem.

4.1 Aggregation Methods Transition Probabilities

We associate the original problem with an aggregate problem by aggregation and

disaggregation probabilities. For each pair of aggregate state a and original state

i, we specify the aggregation probability 4j, and the disaggregation probability dai.

The aggregation and disaggregation probabilities satisfy equations EZ dai = 1 and

E j,, = 1. These probabilities can be defined arbitrarily as long as the associated

aggregate problem is a stochastic shortest path problem which terminates with prob-

ability 1. When this is not so, the optimal cost-to-go function goes to minus infinity

for some states and policy iteration need not converge. Therefore, in practice, we do

not have to check for this condition before applying policy iteration. When aggre-

gation and disaggregation probabilities are specified, the aggregate problem is then

well-defined, as illustrated in Fig. 4-1. The transition of an aggregate state involves

Aggregation system:

Original system: I pi(u,y)

Figure 4-1: Aggregation state transition model. The transition probability from a to b
with control u and forecast y is pfr(u, Y) = E dai E,_ pij(U, y)4jb. The transition
cost (a, u, y) is E' dig(i, u, y)

the following 3 steps:

1. Start from the aggregate state a, an original state i is generated with probability

p(ija) = di.

2. With a control u, state i then changes to state j of the original system with

transition probability pij (u, y). During the transition between state i and j, the

transition cost g(i, u, y) is accumulated.

3. Start from the state j, an aggregate state b is generated with aggregation prob-

ability p(bjj) = 4jb.

Based on this model, we then define the aggregate system rigorously with transition

probability yab(U, y) and transition-cost '(a, u, y) as follows,

n n

pb (u, y) AZ
i=1

dai E pij(U, Y).jb
j=1

j(a, u, y) A daig(i, u, y).
t=1

(4.1)

(4.2)

Then, the associated Bellman's equation is

r*(a) = di>Zp(y) min g(iu,y) +Epi(u,y)br*(b) ,for all a,
i y E~~y

(4.3)

where the solution r*(a) is the optimal cost-to-go for the aggregate state a. Any

optimal policy j* satisfies:

^*(i, y)=arg min g(i,u,y) +Epjj(u,y)E45jbr*(b)1 .
uEU(i,y) . b

(4.4)

The policy

follows,

I-k specified by the approximated cost-to-go function rk is then defined as

k (i, Y) =- arg min g (i, u, y) + pi (u, y) 5jbrk (b)1 -
auCU(i,y) L b

(4.5)

For further discussion, we introduce some notation in the next section.

4.2 Matrix Representation

We want to use matrix representation to simplify notation. We will use the same

notation for the original system described in Chapter 2. The number m denotes the

number of aggregate states except for the termination state. Most matrices or vectors

below depend only on the policy p but not the vector r. When there is no confusion,

we do not write p explicitly.

4.2.1 Aggregation and Disaggregation Probabilities

The matrix of aggregation probabilities is

#n -- - 1m

e tn ... inm

The matrix of disaggregation probabilities is

dn,

Dd1
[di dndn 2

4.2.2 Approximate Cost-to-Go Function

The vector of the cost-to-go values of the aggregate problem is defined as

rk(1)
rk=

rk(m)

Using the definition of <b and rk, and comparing Eq. 2.4 with Eq. 4.5, we see that the

policy '1 is exactly the same as pk. We will use the notation pk in the subsequent

discussion.

4.2.3 Transition Probabilities

The transition probability from aggregate state a to b with the control u = [L(i, y) is

dE p(y)pi (p(i, y), y)9.

We define the matrix of transition probabilities for the stationary policy p to be

Z2 dmi EZ E, p(y)p j(p(i, y), y)5j1
P = P, A

Ejdm Ej E, p (y)pij (p (i, y), y)4Oj1

- d1i E pi (4p)4;1

E dmi Ej pij (/-p)4 Oj

... dii E EY p(y)pi (p(i, y), y) Om

... X dmi E E, p(y)pig (p(i, y), y)k m

... E di E A ()#jm

- -- Ej dmi ZEj j(p4m_

= DP,<,

where pi(t) and P, are defined in Section 2.2.2.

4.2.4 Expected Transition Cost Function

With the stationary policy [t, the expected transition cost from the aggregation state

a to the next aggregate state is Ej dai E, p(y)g(i, p(i, y), y). As a result, we can

define the vector of expected transition cost values to be

E dlig,(i)

SE dmig,(i)

g = [= Dgj,

where g,, and g,,(i) are defined in Section 2.2.3.

Ejdi; E, p(y)g (i, p (i, y), y)

Ejdmi E, p (y)g (i, p (i, y), y)

4.2.5 T Mapping

Similar to Section 2.2.5, we denote T, as the one-step look-ahead mapping for the

aggregate problem with policy yt [Berl]. The vector T,1(r) is the vector of the cost-

to-go values where the controller p is applied at the first stage followed by a policy

with cost-to-go vector r:

Tr(a) - ZdiE p(y) 9(i, p(iY),Y) +Zpij(u,y)Z jbr(b) , with all a.
i y b .

We notice that

dei 1 p(y)g(i, p(i, y), y) - '(a),

and

dai p(y) pij(u, y) # q$br(b) - P,r(a).
i y j b

As a result, the matrix representation of T(r) satisfies

T~r(1)
T(r) = T,(r) = ' =0+ POr = Dg,, + DP,,k4Qr.

Tyr(m)

With this definition, T can be applied to any vector r, not necessarily a valid cost-

to-go vector.

4.3 Policy Iteration

Policy iteration is an iterated method which terminates in a finite numbers of iter-

ations with an optimal policy in stochastic shortest problems which terminate with

probability 1. There are two phases in policy iteration: policy improvement and pol-

icy evaluation. We will update rk through policy iteration for the aggregate system.

In the beginning of an iteration, we have an approximate cost-to-go function rk. In

the policy improvement phase, we get the improved policy pk from Eq. 4.5.

In the policy evaluation phase, we update rk+1 to be the cost-to-go vector of the

policy pk. As a result, rk+1 is the fixed point of the mapping T,,.

rk+1 = T, rk+1

With matrix representation, the equation is simplified,

rk+1 - Dg,, + DP,,Qrk+1-

Therefore, the cost-to-go vector rk+1 can be calculated with a matrix inversion (I -

DP<D)-Dg. We can write this inversion in the form of Eq. 1.2 with Ak = DP,k

and b - = Dg,,. One of the major differences between the aggregation methods

and the projected equation methods is that here the matrix A,, is monotone and

hence vectors {rk} will converge [Berl0b]. In fact, policy iteration terminates when

rk+1 = rk, both are the optimal cost-to-go r* for the aggregation problem, after a

finite number of iterations. This indicates that the aggregation methods provide a

more regular behavior.

38

Chapter 5

Experiments with Tetris

5.1 Problem Description

As mentioned in [TS09], there are several variations of Tetris games. In this thesis,

we consider a simplified version of Tetris, used by most researchers, where horizon-

tal transitions and rotations are not allowed once the tetromino starts falling down

[LKS93]. In this section, we formulate this version of Tetris into a DP problem of the

type introduced in Chapter 2.

Tetris is a game where tetrominoes are placed one-by-one into a board with a width

W and a height H. Each cell can be either occupied or empty. The configuration of

the board is the state in the DP problem, denotes Xk. At the beginning of a game,

every cell is empty. The empty board is the start state of the stochastic shortest DP

problem and is denoted 1.

In a regular Tetris game, W x H = 10 x 20, and there are 7 different types of

tetrominoes as shown in Fig. 5-1. At the beginning of each stage, a tetromino yA is

generated randomly with uniform distribution. The controller then specifies where

to put the tetromino yk by a rotational orientation ok and a horizontal position Sk.

Different tetrominoes have different possible number of orientations. We enumerate

the rotational orientation o. The complete configurations of pairs (y, o) are shown in

Fig. 5-2. The tetromino yk falls down and stops right before overlapping with any

occupied cell. The position where the tetromino stops is denoted POS(Xk, Yk, Ok, sk).

V'a) Li m11dJup) tid;J

gj) I
shape

(g) 0 shape

Figure 5-1: The tetrominoes

The corresponding cells of this position become occupied. When there is a row with

all W cells occupied, we say the row is full. When a row is full, it is eliminated and

the rows above all drop by 1 row. The top row is then replaced by empty cells. More

than one row can be eliminated when a tetromino is dropped. The number of rows

eliminated is added to the score, which starts at 0 when the game starts. We want

to maximize the score by minimizing the cumulative cost of a game. Therefore, the

cost g(i, POS(i, y, o, s), y) is defined to be (-1) times the number of rows eliminated

when y is put at POS(i, y, s, o).

It is possible that for some pairs of orientation and position the tetromino does

not fit in the board when dropped. In this case, the game is over. The state where the

game is over is the cost free state of the stochastic shortest DP problem and is denoted

0. The set of admissible controls is the set of possible positions where tetrominoes

can be put. When no choice of POS(xk, Yko Oki Sk) can avoid the termination of the

game, we define the only admissible control to be an artificial termination decision t.

ku) d ollapt

ku, k) %Id)

I
(h) (J,3)

U
(j) (,1)

U
U

(1 T,3)

kto) kou)

(q) (r) (1,1) (s) (U, 0)
(1,0)

Figure 5-2: The configurations for pairs (tetromino, orientation)

a4) koj))

kv- kL)J V) ko1j -

kry V , 41

State : Xk -

The configuration of board

,if gameover.

otherwise.

We denote the configuration of the board as a matrix B = [bij]

with bi 1, if the cell at position (i,.j) is occupied.

0, otherwise.

We know that a Tetris board state contains no full row and no occupied cells are

above an empty row if the state is obtained through playing a game.

these states good states and other states bad states.1

Forecast: Yk {L, J, T, Z, S, I, O} with uniform distribution.

Admissible

We refer to

Controls: U(Xk, Yk) -
{POS(Xk, yk, Ok, sk) which fits in the board}

{t}

,if possible.

otherwise.

Ok= The rotational orientation of Yk.

Sk = The left-most horizontal position where yk is put.

POS = The function mapping (Xk, Yk, Ok, sk) to the occupied cells.

Uk - I(Xk, yk) E Uk(Xk, yk).

State Transition: Xk+1 = f(xk, Uk, Yk)

0

The configuration of

board after putting yk at Uk

,if Xk 0 or Uk=t.

otherwise.

Transition cost: g(Xk, Uk, Yk) = (-1) x (Number of rows eliminated instantaneously).

'Not every good state can be arrived at through playing a game but every bad state cannot.

Control:

An example is shown in Fig. 5-3. The original state Xk is shown in Fig. 5-3(a).

The forecast tetromino is yA I. All possible locations to put the tetromino Yk are

shown as the light green cells in Fig. 5-3(f) to Fig. 5-3(i). As a result, the set of

admissible controls is U(Xk, Yk) -u u1 2 u 3 u4 }. The possible next states Xk+1 with

different controls are shown in Fig. 5-3(f) to Fig. 5-3(i). In Fig. 5-3(f), the transition

cost g is -2. In all other figures, the transition cost g is 0. Another example is in

Fig. 5-4. When the state Xk is as the figure shows and yA = 0, there is no location

to place the tetromino. As a result, the only admissible control is the termination

decision t.

5.2 Small Board Version

We will test the behavior of the projected equation methods in Tetris with a small

board where W = 3 and H = 4 in order to apply exact calculation. We will also

test aggregation methods with smaller boards. When we are playing with a smaller

board, the tetrominoes may be relatively too big. As a result, we introduce 3 dif-

ferent types of smaller tetrominoes: {v, i, o}, as illustrated in Fig. 5-5. Similar to

regular tetrominoes, different smaller tetrominoes have different numbers of possible

rotational orientations. A complete list of configurations is shown in Fig. 5-6. The

probabilities of the forecast yA is defined to be: with probability ps, yk ~ {v, i, o}

with uniform distribution. With probability (1 - P), Yk - {L, J, T, Z, S, I, 0} with

uniform distribution. In summary, the probability distribution for Yk is replaced with{ {L, J, T, Z, S, I, O} each with probability I-P,
Forecast: Yk-7

{v,i, o} each with probability 9.

It can be proved that when p, = 1, the optimal policy does not terminate for a

3 x 4 board.

Theorem 5.2.1. There exists a policy for a 3 x 4 board such that the costs-to-go of

5Lm
4
3
2
1 4

(a) he
state Xz

POS(Xk, 1,0,1)
(c) U=
POS(Xk,I, 1, 1)

(d) u
POS(zk, 11 6)

20 20 20 20

18 18 18 18

17 17 17 17
18) 16 16 16

15 15 15 15
14 14 14 14
13 13 13 13
12 12 12 12
11 11 11 12
10 10 10 10

8 8 8 8 t
7 7 7 7

33 3 _- 3
2 2 2 __ 21
1 1 1 1

1 2 3 4 5 6 7 8 910 1 2 3 4 5 6 728 910 1 2 3 4 5 6 7 8 910 1 2 3 4 5 6 78 910

(f) f(Xk, u 1 , I) (g) f(Xk, U 2 , I) (h) f(xk, , I) (i) f(xk, , I)

Figure 5-3: This is an example of Tetris. The original state Xk is shown in Figure
5-3(a). The coming tetromino is yk = I. The possible locations to put the tetromino

yA are shown as the light green cells in Figure 5-3(f) to Figure 5-3(i). As a result,
the set of admissible controls is U(xk, Yk) = {u 1)u 2 , u 3 , u 4 }. The next states with
different controls are shown in Figure 5-3(f) to Figure 5-3(i). In Figure 5-3(f), the
transition cost g is -2. In all other figures, the transition cost g is 0.

Figure 5-4: When yA = O,there is no location to place the tetromino. As a result,
the only admissible control is the termination decision t.

(a) v shape b) i shape (c) o shape

Figure 5-5: The small tetrominoes

(a) (v, 0) (b) (v,1) (c) (v,2) (d) (v,3)

(e) (iOi,1 (g o,0)

Figure 5-6: The configuration for pairs (tetromino, orientation)

(a p(xo, o)

(i) A (x2,V)

Figure 5-7: The policy p. The configuration of dark green cells is the state and the
set of light green cells is where the coming tetromino is dropped.

kLo) pkro ,z)

e) pitx1,,'z) M1 p-Ix1, V)

k9) YkX2,0) k-n) PkX2,'Ij

V1) AkX3, V)

(a) 30 1 -

ku) X3

--1-
kC) X2

tr) x5

Figure 5-8: Important states for a 3 x 4 board.

an empty board is -oo when p, = 1.

Proof. Let us first introduce states xO, x1 , x 2 , X3 , x4 , and x5 as shown in Fig. 5-8 and

a symmetric controller p as discribed in Fig. 5-7, where symmetric controller means

the places to put the flipped tetrominoes are horizontal flipped for horizontal flipped

states. We will show that the policy p provides J,(xo) = -oo. We know that the

cost-to-go for horizontal flipped states are the same for a symmetric controller. As

a result, J,1(XI) = J,(X4), and J,(x 2) = J,(x 5). Therefore, we can get the following

~II

equations:

Jt, -) (J,(Xi)) + (J,1(x2)) + (J(X 3))
3

J, (Xl) (J,1(x 2)) + (-1 + J,1(X2)) + (-1 + J,(X4))
3

(J(2)) + (-1 + J,(X2)) + (-1 + J,(X1))
3

i,(X 2) (-1 + J,(Xo)) + (-1 + J,(X4)) + (-1 + J,(X5))
3

(1 + Jkt (XO)) + (- + JM (Xl)) + (1 ± Jti (X2))

JL (zm)-=

3
(-1 + J,(Xi)) + (-1 + J,1(x 2)) + (-2 + Jm(xo))

0 3 3

Solving the linear equations, we get J,(xo) = -oo. L

It follows from the same algorithm, the result holds for any 3 x H board with

H > 2. We can also show the same result holds for any 4 x H board with H > 2.

When p, < 1, there is a nonzero probability for each original tetromino to occur,

so the modified Tetris game still terminates with probability 1. Based on this fact

and this theorem, the optimal cost for the smaller version of Tetris can be as low

as possible when we choose p, arbitrarily close to 1. In our implementation, we set

either p,, 0.8 or p, = 0 depending on the board size.

5.3 Pseudometric of Policies

There are several reasons to define a pseudometric over the space of policies. First

of all, when we define a policy p4 by an approximated cost-to-go function Jk = Drk,

there are infinitely many choices of rk, but the number of policies is finite. As a

result, there must be cases where different values of r specify the same policy. In this

case, while the norm of the difference between two approximation vectors is not zero,

we should consider other measures of distance where it is zero. Furthermore, we do

not know whether good approximation provides a good policy. Instead of having a

good approximation in s weighted norm, we might want to consider how often two

controllers are making the same decision.

For the reasons above, we introduce a pseudometric over the space of policies that

could measure how similar two policies are. For a pair of state x / 0 and forecast

y, let S,,(x, y) denote the set of possible admissible controls attaining the minimum

in Eq. 2.3, when pL is optimal, or in Eq. 2.4, when p is one of the policies suggested

by approximator. We define the distance between p~l and pL2 for a state and forecast

pair (x, y) to be

I s,1,(x, y) n S,2(X, Y)|

d(S~~~~~~l S,(x, y) S, X) ,, X) U S,2 (X, Y)|

It is proved that d is a metric space over the space of sets [BKV96]. We define

D,(ptl, p2) A q, (x, y) d(S,,i (x, y), S,2(X, y)),
x~y

where q,(x, y) is the occurrence probability for the state and forecast pair (x, y).

Then, D,, is a pseudometric space on policies, as shown in the following theorem:

Theorem 5.3.1. D,1 is a pseudometric space on policies.

Proof. We need to verify the following 3 conditions:

1. D ((, i y)) = 0e

D (pl, pd) !1 q(x, y) d(S,,i(x, y),7 S.i (x, y)) = 0,

because d(Si (x, y), S,1l(x, y)) = 0, for every pair of (x, y).

2. Symmetry:

D ''(pti, pt2) j q,(x, y)d(S,,i(x, y), S,2(X, Y))
xly

= q,,(x, y)d(S,2 (x, y), S,1 (x, y))
x~y

= D,1 [2,[1), from the symmetry of the metric d.

3. Triangle inequality:

DP(PI, P2) + D,, (P2,3)

A q,,(x, y)d(S,(x, y), S,2(x, y))+ E q, (x, y)d(S,2(x, y), S,3(x,y))

= q,(x, y) [d(S.1(x, y), S,2(x, y)) + d(S,2(x, y), S,3(x, y))]
x~y

> E q.,(x, y) d(S,1l(x, y), S,3 (X, Y))

Xy

-D'(1 , [t3), from the triangle inequality of the metric d.

Furthermore, if D, 1 (p1i, pA2) = 0, then the two controllers I' and pa2 are equivalent.

In other words, the two policies always choose the same controls pl(X, y) =L 2 (X, y)

for every state and forecast pair (x, y) that they may visit.

Theorem 5.3.2. If DI1pi (, [p2) =0, then the two controllers p' and pt2 are equivalent.

Proof. If DA1(I p2)) = 0,

E q,1(x, y)d(S,1(x, y), S,2(x, y)) A D,1p ,L2) = 0.
d x,y

Because d(S,,l (x, y),S,2 (X, Y)) is nonnegative, we have d(S,L1(x,y),S,2 (X, Y)) -0

Since pi and [p2 always make the same decision for everywhenever q,1l(x, y) = 0.

(x, y) that might be visited by controller pi, controller pL2 cannot visit any pair (x, y)

which is not visited by [pL. Therefore, pi1 and p 2 are equivalent. E

If the sets S, (x, y) and S,2 (x, y) all have only one element for any (x, y), then this

metric could be interpreted as the probability that pi and p2 make different decisions

following the trajectories under policy Ip. As a result, D may be interpreted as the

opposite of the degree of similarity between two policies pi and p2. As we will see in

Chapter 6, the best policies are closer to the optimal policy p* with the pseudometric

space DA in our experimentation.

5.4 Feature Functions for Projected Equation Meth-

ods

We are interested in using a linear architecture based on the followsing m = (2W + 2)

features for the cost-to-go function of the board when Xk: 0 [B196]:

#*(xk) = the highest occupied cell of the ith column, for i = 1, 2,..- , W

max{jlbi = 1}, if {big = 1} $ 0

0, otherwise

#W+i(Xk) = X)- #1(xk)| ,for i = 1, 2, --- , (W - 1).

#2W (Xk)= max{# 09Xk)|Ii = 1, 2,.. - W}.

#2W+1 (Xk) = the number of holes (empty cells with at least one occupied cell above it.)

2w+2 _(X) = 1.

We note that the last feature function 02W+2 is constant. As a result, the policy does

not depend on the corresponding weight. However, the existence of this function

provides a different trajectory for the vector r when the projected equation methods

are used.

, for i = 1, 2, -. -I W.

5.5 Aggregation Methods

We approximate Tetris into two different hard aggregation problems. Hard aggrega-

tion means for fixed i, #--, 1 for only one aggregate state y = yi, and 0 for all other

aggregation states. We define some features so that original states with the same fea-

tures have the same aggregate state. Here we propose two different ways to formulate

aggregate problems. In the first method, the disaggregation probabilities are uniform

among some subset of original states depending on the aggregate state. We refer to

this method as aggregation method with uniform disaggregation probabilities. In the

second method, for a fixed aggregate state x, the disaggregation probability dxi is 1

for a certain original state i = is and 0 for all other states. We can view the original

state is with dxi, l 1 as the representative original state of the aggregate state x,

and we refer to this method as an aggregation method with representative states.

5.5.1 Aggregation Methods with Uniform Disaggregation Prob-

abilities

For a W x H board state x, assume the highest occupied cell in the ith column is hi (x),

for i = 1,2, ... , W. The feature hi = 0 if no cell is occupied in the column. 2 Denote

hmax = maxi hi, the height of the highest column, and Nie the number of holes in

the board. Let s be any positive integer, we define ht - max (hi, hmax - s). The ag-

gregate state for x is defined to be (h+, hi, - , h , Nhole), that is, #2j = 1 is and only

is i = (h+,h+, ... h+, Nhe). For an aggregate state y = (h+, h, ... , h+, Noe),

we denote S, the set of good states i with aggregation probability 44, = 1. Then the

disaggregation probability is defined to be

d , for i E Sy,

0, otherwise.

2 It is true that hi(x) = #i(x). However, the relation between the matrix <D and #' is different in
this section. As a result, we use the notation hi to reduce confusion.

(F riginaa state x
with aggregate state
y = (4, 1, 2, 1).

>me bad states with aggregate state y

Figure 5-9: An illustration of aggregation methods with uniform disaggregation prob-
abilities and s = 3. In this case, #$ = 1 if and only if i = y. Because | = 5, dy = 1
for i e S. and dy = 0 for i 0 Sy.

An illustration is shown in Fig. 5-9 with s = 3. Fig. 5-9(a) is the original state

x. We see that the height for each column are (hi, h2, h 3) = (4,0,2). Therefore,

hmax = 4 and (h+, h+, h+) - (4,1, 2). The number of holes is Nhae = 1. As a result,

the aggregate state is y (h+, hj, h+, Nhae) = (4, 1, 2, 1). Fig. 5-9(b) shows all

other original good states with the same aggregate state y. Therefore, we know that

IS,= 5, so dyg = . for i c Sy. Notice that some original states have aggregate state

y but they are bad states so they are not in Sy. Examples of those bad states are

shown in Fig. 5-9(c).

5.5.2 Aggregation Methods with Representative States

We use the same notation as in Section 5.5.1. Furthermore, we denote h A min. ht.

In this method, we do not use the number of holes, but we consider the number of

rows which contain holes and are above (but not including) h+ . Denote this number

to be rge.. The number rhde can be interpreted as the number of rows between the

(h+,, + 1)th and the (hmax, - 1)th row which contain holes, and therefore,

rhde _ (hmax - 1) - (h + 1) + 1 s - 1.

Therefore, the possible values of rhde is less then the one of Nhde, so this method

has fewer aggregation states than the method in Section 5.5.1 with same s. We no-

tice that states which are horizontal symmetric to each other should have the same

cost-to-go function. As a result, we will treat them as the same aggregate state. Con-

sider the two base-(H + 1) positional notation numbers, o-1 = h 1h 2 ... hw(H+1), and

0-2 = hwhw.-1 --- h1(H+1)- If O-1 > 0-2 , the aggregate state y_ - (h+, h+, ... , h+, rw)

Otherwise, y, = (h+, h+- 1 ,... , h+, rhae). The disaggregation probabilities are

42,, = 1 and #2, = 0 when y z/ yx.

Now, assume we have an aggregate state y = (y1, y2, - , Yw, rhde). We want

to find a representative original state z. We set the height of the ith column to

be yi. Let Ymax = maxi yi and ymin = mini yi. We know that Ymin $ yma, unless

Ymin = Ymax = 0. When Ymin = Ymax = 0, the representative state is an empty

20 20 20
19 19 19
18 18 18

17 T I111717 17

16 16 I16
1515 1514 14 14
13 13 13
12 12 12
11 11 11
10 10 10

9 9 9

8 8 8
77 7

6 6 6
5 5 5

4 4 4
3 3- 3
2 2 2

1 1 1

12 3 4 5 6 7 8 910 1 2 3 4 5 6 7 8 910 1 2 3 4 5 6 7 8 910
(a) The representative state (b) Possible original state (c) Possible original state

Figure 5-10: The representative state and possible some original states for aggregation
state (12,12, 12,12, 10,13, 11, 9, 10, 9, 2) with s = 4.

board. Now, we consider the case ymin Yma . Denote Imm = {ily = ymin} and

= {ilyi = Ymaz}. We know that 1m il I, = 0. We set the board with the

following configuration3 ,

, if i V Imn

, if i E Imin

,if i (Imin

if i E Imin

if j < ymin.

, if j = Ymin.

, if i E Ima, and yma, - rhole 5 j < Ymax
, if ymin < j < Yi*

otherwise

,if yj <j.

The number of rows which contain holes above Ymin is contributed to the top rhole

cells below each of the top occupied holes in the representative state. An example

3The representative state does not have to be a good state, but it has to be a good representative
of the cost-to-go function.

bi 3 =

0

0

0

with s = 4 for a 10 x 20 board is shown in Fig. 5-10. Fig. 5-10(a) is the representative

state zY of aggregate state y = (12,12, 12, 12, 10, 13,11, 9, 10, 9, 2), and hence, dy, = 1

if and only if z = zy. The state shown in Fig. 5-10(b) has holes in the 10th and 11th

rows so rhde = 2. The state shown in Fig. 5-10(c) is an example that o-2 > 0-1 . It has

holes in the 10th and the 12th rows so rhoe =2.

Although aggregation methods with representative states seems to be a looser

approximation model, we may still prefer this method for some reasons. First of all,

in the aggregation methods, we update rk by following the equation:

rk+1 =(I - DPLk b)- 1 Dg,0

In general, the computational burden for DPb depends on the dimension of P, so it

depends on the number of original states. Fortunately, for our problem, the matrix

P is sparse, because pij (p,) 74 0 only when j is the possible next state for i. In the

representative states method, because D and <b contain only one nonzero component

at each column and each row respectively, using sparse matrix calculation techniques,

the computational time of the production DPb only depends on the the number of

aggregate states. The matrix inversion is also significantly reduced because of the

sparsity of I - DPb [DLN+94]. On the other hand, for the uniform disaggregation

probabilities methods, we need to find the size of Sy for each aggregate state y, which

is time-consuming and may need to go through every good original states. As a result,

the calculation of the representative states methods might be much lighter than the

one with uniform disaggregation probabilities.

Chapter 6

Experimental Result and

Conclusion

6.1 Results for Projected Equation Methods

We tested the projected equation methods with a smaller Tetris board (3 x 4) with

p = 0.8. We denote the optimal cost-to-go J* and the optimal policy p*. We

have obtained J* by using (exact) policy iteration. We chose the starting vector

ro A [1, 0, 0, 0, 0, 0, 3, 0]', as suggested in [BI96]. For the fixed-c methods, we

chose c to be 0 and the corresponding term for the projection min, 1r - J*I, denotes

the value c, A -144.643.

We calculate the L 2 distance L2(cIrk, J*), the L, distance L,(Drk, J*), over the

good states. We also calculate the policy distance DA (p*, cIrk) for the oscillating

policies for each method. The results are shown in Table 6.1.

In our experiments, all projected equation methods with exact calculation end up

oscillating with more than one policy. For the argument in Section 3.7, it is required

that the next vector rk+1 depends only on pk, not rk. However, since computers must

discretize the vector r, the possible choices of r will be finite. As a result, in our

experimental results, vectors rk end up oscillating among few vectors in W* and so do

the policies pk.

With A = 0 and 0.999, the projected equation methods outperform the methods

Table 6.1: Results for projected equation methods. The second column indicates the
number of policies involved in the oscillation. The notation ~ means approximately,
and a ~ b means between a and b.

Method Average cost Loo(J, J*) L2(Jk, J*) DI (p*, pk)
LSTD(0) 2 ~-70 ~52 ~ 810 ~ 0.23
LSPE(0) 5 ~ -70 ~ 55 ~ 920 ~ 0.23
LSTD(0, c,) 4 ~ -70 ~ 69 ~ 70 ~ 1050 ~ 1060 ~ 0.23
LSPE(0, c,) 4 ~ -70 ~ 70 ~ 71 ~ 1070 ~ 0.23
LSTD(0, 0) 10 ~ -1 ~ -9 ~ 99 ~ 1810 - 1860 ~ 0.67 ~ 0.84
LSPE(0, 0) 4 ~ -9 ~ -10 ~ 99 ~ 1800 ~ 0.74 ~ 0.75
LSTD(0.9) 2 ~ -68 ~ 55 ~ 880 ~ 0.23
LSPE(0.9) 4 ~ -68 ~ -69 ~ 54 - 55 ~ 860 ~ 870 ~ 0.23
LSTD(0.9, c,) 4 ~ -72 ~ -87 ~ 51 - 63 ~ 840 ~ 1180 ~ 0.19 ~ 0.31
LSPE(0.9, cp) 4 ~ -73 ~ -89 ~ 54 ~ 65 ~ 900 ~ 1080 ~ 0.16 ~ 0.31
LSTD(0.9, 0) 6 ~ -4 ~ -10 ~ 99 ~ 1720 - 1830 ~ 0.73 ~ 0.77
LSPE(0.9, 0) 31 ~ -1 - -8 ~ 99 ~ 1780 ~ 1830 ~ 0.72 ~ 0.85
LSTD(0.999) 4 ~ -68 ~ -69 ~ 55 ~ 870 ~ 880 ~ 0.23
LSPE(0.999) 4 ~ -68 - -69 ~ 55 ~ 870 - 880 ~ 0.23
LSTD(0.999, c,) 2 ~ -15 ~ -16 ~ 289 ~ 299 ~ 4060 ~ 4190 ~ 0.29 ~ 0.40

LSPE(0.999, c,) 2 ~ -15 - -16 ~ 290 - 299 ~ 4060 - 4190 ~ 0.29 - 0.40

LSTD(0.999, 0) 8 ~ -4 ~ -10 ~ 99 ~ 1710 - 1830 ~ 0.73 ~ 0.77
LSPE(0.999, 0) 2 ~ -4 - -10 ~ 99 ~ 1720 - 1830 ~ 0.73 ~ 0.77

Table 6.2: Best 5 average costs by projected equation methods.

Method Average cost L,(J, J*) L 2 (Jk, J*) D,,.(p*, pk)
LSPE(0.9, c,) -88.9909 55.8694 971.636 0.158360
LSTD(0.9, c,) -86.9333 51.1765 838.332 0.194934
LSTD(0.9, c,) -86.7808 51.8306 845.953 0.195161
LSPE(0.9, c,) -79.0661 53.8910 894.058 0.217701
LSPE(0.9, c,) -77.3788 55.2582 966.091 0.253505

with a fixed weight for the constant feature. However, when A = 0.9, the methods

with c = c, perform the best. With c = 0, the projected equation methods is as if

there are only the other (s - 1) features, and 0 is not close to the corresponding weight

for any reasonable projected equation methods, so it does not perform well. With the

projected value c = c,, the weight is already where a real projection solution should

be. As a result, the performance might be comparable with the original projected

equation methods. This result also suggests that if we can know a good weight for

the constant term c in advance, we may be able to get a better controller. However,

in practice, the projection is not calculable and hence c, is not accessible.

The costs of the best of policies involved in the oscillation for various methods are

shown in Table 6.2. The top 5 policies are all from the projected equation methods

with A = 0.9 and c = c,. We may think with c = c,, the higher A, the better the

performance is. However, this is not so. When A = 0.999 and c = c,, the average

score is not comparable to good controllers. This may be due to the fact that when

A is close to 1, the projected equation is not stable even without simulation noise but

only truncation error. The best score is -88.9909. The L 2 and L, distances for these

policies are not the lowest. However, the policy distances D,,*(p*, p4) are the lowest

for the best 4 policies. This makes sense because the lower the policy distance is, the

higher the probability this policy makes the same decision as the optimal one.

We also want to compare the results of the exact calculation of projected equa-

tion methods and the simulation-based ones. The results of the LSTD(A) methods

are shown in Fig. 6-1. This figure indicates that the larger A is, the higher the noise

is. When A = 0.999, the simulation-based result is very different from the exact calcu-

0 20 40 (a) LSTD(O0 120 140 16

-35

-40-

-45

-50 -

-55 -

-60

-65

-70

(cLSTD(0.$

-40-

-45

-50 -

-55 -

-60-

-65

-70

Simulation-based LSTD(O.999)

Figure 6-1: A comparison of noise in the LSTD methods with different A. In the left
column, the costs are calculated exactly and the weight vectors rk are updated by the
exact LSTD methods. In the right column, the costs are the average of 100 games
and the weight vectors rk are updated based on a simulation of 100 games.

60

-55

11 20 40 (e)6oLSTD(0)9
120 140 160

lation. Many policies updated through simulation-based LSTD(0.999) have average

costs more than -20. On the other hand, for both the simulation-based LSTD(0)

and LSTD(0.9) methods, most policies have average costs lower than -50. We know

that the average costs are the average of 100 games. As a result, the fluctuation of

costs in the LSTD(0) method might mainly be due to the variance of the cost of one

single game. On the other hand, in the LSTD(0.9) method, two policies have costs

about -10 consecutively. These policies are very likely to be obtained because of the

simulation error in C, d, and G. From this Figure, we cannot see the policy oscilla-

tions for the LSTD(0) and LSTD(0.9) methods, and we can only see the policies are

oscillating between two policies for the LSTD(0.999) methods. However, when we

look more closely into the vectors rk, we see that the policies are oscillating between

2, 2, and 4 policies respectively. Therefore, the average cost is not a very good way

to discern different policies.

6.2 Results for Aggregation Methods

Some results are shown in Table 6.3. The table shows that the number of aggregate

states is much lower than that of the original states in all the cases. The table

indicates that the two different types of aggregation state methods perform as well

as each other when s = H. When s < H, the uniform disaggregation probabilities

method outperforms the representative states method. A possible reason is that

the first method encodes the actual number of holes while the second method only

considers the holes of the top few rows. However, when s is greater than or equals 3,

both aggregation methods may outperform the projected equation methods.

We also tried to apply the representative states methods to a larger board with

original tetrominoes. A comparison between the result for s = 4 on a 7 x 20 board is

shown in Table 6.4. The representative states method achieves the average cost about

-228. Although not as good as the projected equation methods, it is a promising

method. Chances are that when s is getting bigger, the representative states methods

may outperform the projected equation methods.

Table 6.3: A comparison between different methods for smaller versions of Tetris
games with p, = 0.8. The costs are the average of 100 games. The costs for projected
equations are the best from LSPE and LSTD methods with A = 0 and 0.9.

Board size (W x H) 3 x 8 3 x 10 4 x 6
Number of god states 2015539 72559411 8108731

i(2 - 2)__

Projected equations costs ~ -5000 ~ -25000 m -4000
CE-based random search costs a -5700 m -31000 m -9291
Uniform disaggregation -9079 -84537
probabilities costs (s = H)
Number of aggregate states 3409 7621

Uniform disaggregation ~ -8765 ~ -80218 ~ -25684
probabilities costs (s = 4) (s = 4) (s = 3)

Number of aggregate states 1897 3193 5269
Representative states costs (s = H) ~ -9011 ~ -87339 ~ -30010
Number of aggregate states 1741 3851 4985

~ -7456 m -56052 p -216274
Representative states costs (s = 4) (s = 4) (s = 3)

Number of aggregate states 571 771 981

Table 6.4: A comparison between different methods for
noes only on a 7 x 20 board. The costs are the average

Tetris with original tetromi-
of 100 games.

Board size (W x H) 7 x 20
Number of good states Ei=0 (2w - 2)i 1.03 x 104
LSTD(0) costs ~ -782
CE-based random search costs ~ -1000
Representative states costs (s = 4) ~ -228
Number of aggregate states 1992847

6.3 Comparisons and Conclusions

In this section we summarize our computational experimentation on Tetris with pro-

jected equation and aggregation methods. As expected, the results verify that in the

projected equation methods, the policies end up oscillating between a few different

policies rather than converging to a single policy, even without simulation error. Con-

sistent with the experiments of [TSO9], we may obtain a much better policy by using

a random search method such as the CE method.

The experimental results show that different choices of A provide different results,

even without simulation error, consistent with the theory of these methods. However,

there are currently no criteria to choose the best A before running the projected

equation methods. As a result, it requires more investigation to find a way to choose

A wisely.

In the aggregation methods, the dimension of r is significantly lower than that of

original cost-to-go vectors but larger than that in the projected equation methods.

We experimented with two different hard aggregation methods: one is with uniform

disaggregation probabilities, and the other is with representative states. The results

suggest that the first approach provides slightly better policies. However, this ap-

proach requires computational time that depends on the number of original states in

order to calculate the disaggregation probabilities. As a result, only the representative

states approach can be used for a bigger board. The results show that the perfor-

mance of aggregation methods is better when s (the number of top rows considered)

is bigger.

When the board is small, the aggregation methods provide better policies than

the projected equation methods do. However, when the board is big, the number of

aggregate states can be very large. As a result, the aggregation methods as imple-

mented in this thesis are not practical for board sizes beyond some threshold. In this

case, projected equation methods may be used, but their effectiveness is questionable

in view of the much superior results obtained with the CE methods.

In this thesis, we do not aim to build a champion controllers for Tetris. However,

our results indicate that the aggregation methods are applicable for smaller versions

of Tetris games. Moreover, we have obtained good results with a number of aggregate

states that is much smaller than the number of original system states. With better

aggregation and disaggregation probabilities, or with simulation-based calculations

which allow more aggregate states, it may be possible to find better aggregation-

based controllers for Tetris.

One major issue for ADP algorithms is that, when we replace the optimal cost-to-

go vector J* in Bellman's Equation with another vector to find a policy, the vectors

i and i+ ce yield the same policy for any constant c, where e = [11, -- - , 1]'. This

fact is reflected in the projected equation methods, where the best policy is obtained

with a fixed weight for the constant feature. This suggests that with projection

onto an affine space determined by a heuristically chosen value of c, the projected

equation methods may provide better policies. For example, we may choose the affine

space based on the knowledge of previous controllers. However, no theory has been

developed for choosing this affine space. This may be an interesting topic for future

investigation.

The projection H in the projected equation methods is used to find a good ap-

proximation to the policy. We have shown that the pseudometric D,' may provide

a good evaluation of the opposite of the similarity between two policies. The value

D, 1 , p2) can also be calculated approximately through a simulation with policy p-.

This may help us to understand the policy oscillations for large scale DP problems

with the simulation-based projected equation methods. If we have found two policies

P1 and t2 with the approximate distance D,1 (I, p2) close to 0 with the projected

equation methods. We may infer that the policies roughly start randomly oscillat-

ing in some sense. However, more analysis and development of theory are needed to

understand the policy oscillation of the projected equation methods.

Bibliography

[BB96] S. J. Bradtke and A. G. Barto. Linear least-squares algorithms for tem-
poral difference learning. Machine Learning, 22:33-57, 1996.

[Ber05] D. P. Bertsekas. Dynamic Programming and Optimal Control. Athena
Scientific, Belmont, MA, 3rd edition, 2005.

[Berl0a] D. P. Bertsekas. Approximate policy iteration: A survey and some new
methods. In Lab. for Information and Decision Systems Report LIDS-P-
2833. MIT, Cambridge, MA, 2010.

[Berl0b] D. P. Bertsekas. Pathologies of temporal difference methods in approxi-
mate dynamic programming. Decision and Control, 2010.

[Ber11] D. P. Bertsekas. Dynamic Programming and Optimal Control: Online
Chapter Approximate Dynamic Programming. Athena Scientific, Belmont,
MA, May 11 version, 2011.

[B196] D. P. Bertsekas and S. Ioffe. Temporal differences-based policy iteration
and applications in neuro-dynamic programming. In Lab. for Information
and Decision Systems Report LIDS-P-2349. MIT, Cambridge, MA, 1996.

[BKV96] M. Bezem, M. Keijzer, and C. Volmac. Generalizing Hamming distance
to finite sets to the purpose of classifying heterogeneous objects, April
1996.

[Bor08] V. S. Borkar. Stochastic Approximation: A Dynamical Systems Viewpoint.
Hindustan Book Agency and Cambridge University Press (jointly), Delhi,
India and Cambridge, UK, 2008.

[BT96] D. P. Bertsekas and J. N. Tsitsiklis. Neuro-Dynamic Programming.
Athena Scientific, Belmont, MA, 1996.

[Bur96] H. Burgiel. How to lose at tetris. Mathematical Gazette, 81:194-200, 1996.

[Cao09] X. R. Cao. Stochastic learning and optimization - a sensitivity-based
approach. Annual Reviews in Control, 33(1):11-24, 2009.

[CFHM07] H. S. Chang, M. C. Fu, J. Hu, and S. I. Marcus. Simulation-Based Al-
gorithms for Markov Decision Processes. Springer-Verlag, London, UK,
2007.

[DHLN03] E. D. Demaine, S. Hohenberger, and D. Liben-Nowell. Tetris is hard, even
to approximate. In Proceedings of the ninth International Computing and
Combinatorics Conference, pp. 351-363, 2003.

[DLN+94] J. Dongarra, A. Lumsdaine, X. Niu, R. Pozo, and K. Remington. A sparse
matrix library in c++ for high performance architectures, 1994.

[FVR06] V. F. Farias and B. Van Roy. Probabilistic and Randomized Methods
for Design Under Uncertainty, chapter Tetris: A Study of Randomized
Constraint Sampling. Springer-Verlag, London, UK, 2006.

[Gor95] G. J. Gordan. Stable function approximation in dynamic programming. In
Machine Learning: Proceedings of the Twelfth International Conference,
pp. 351-363. Morgan Kaufmann, San Francisco, CA, 1995.

[Gos03] A. Gosavi. Simulation-Based Optimization: Parametric Optimization
Techniques and Reinforcement Learning. Kluwer Academic, Norwell, MA,
2003.

[Kak02] S. Kakade. A natural policy gradient. In Advances in Neural Information
Processing Systems, Vol. 14. MIT Press, Cambridge, MA, 2002.

[LKS93] R. P. Lippmann, L. Kukolich, and E. Singer. Lnknet: Neural network,
machine-learning, and statistical software for pattern classification. Lin-
coln Laboratory Journal, 6(2):249-268, 1993.

[MeyO7] S. Meyn. Control Techniques for Complex Networks. Cambridge Univer-
sity Press, New York, NY, 2007.

[Pow07] W. B. Powell. Approximate Dynamic Programming: Solving the Curses
of Dimensionality. Wiley-Interscience, 2007.

[SB98] R. S. Sutton and A. G. Barto. Reinforcement learning. MIT Press, Cam-
bridge, MA, 1998.

[SJJ94] S. P. Singh, T. Jaakkola, and M. I. Jordan. Learning without state-
estimation in partially observable markovian decision processes. In Pro-
ceedings of the Eleventh International Machine Learning Conference, pp.
284-292. Morgan Kaufmann, San Francisco, CA, 1994.

[SJJ95] S. P. Singh, T. Jaakkola, and M. I. Jordan. Reinforcement learning with
soft state aggregation. Advances in Neural Information Processing Sys-
tems, 7:361-368, 1995.

[SL06] I. Szita and A. Lorincz. Learning tetris using the noisy cross-entropy
method. Neural Computation, 18:2936-2941, 2006.

[TS09] C. Thiery and B. Scherrer. Improvements on learning tetris with cross
entropy. International Computer Games Association Journal, 32:23-33,
2009.

[VR06] B. Van Roy. Performance loss bounds for approximate value iteration
with state aggregation. Mathematics of Operations Research, 31:234-244,
2006.

