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Abstract
The supply chains of aerospace products can be complex, involving thousands of

components per product and hundreds of vendors spaced out over an increasingly global
landscape. Managing all inputs necessary for these complex aerospace supply chains is a
task that is critical to the success of any firm and requires extensive planning, close
partnerships, and detailed analysis.

This thesis outlines a system for optimal safety stock management in high volume
aerospace supply chains. Given such supply chain parameters as component inventory
values, procurement and manufacturing lead times, demand distributions, and bills of
material, the ideal safety stock locations and sizes which result in minimal overall
inventory levels are calculated by a nonlinear optimization program. With this safety
stock structure, aerospace firms can operate their supply chains with higher customer
service rates and lower inventory levels.

A methodology is also developed to help aerospace companies improve their
existing supply chains as efficiently as possible. Considering the limited time and
resources available, a company may not be able to enhance all areas of its operations and
determining where to improve with the greatest effect on customer service levels and
inventory can be difficult. The framework developed provides general guidelines to
ensure improvement resources are being deployed most efficiently. Finally, business
environment and operations considerations are discussed to aid companies in the process
of implementing supply chain improvements and instituting organizational change.
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1. Introduction

1.1. Overview
In many ways, the aerospace industry presents an exceptional set of challenges.

Product development cycles are long, capital equipment costs are high, and cost pressures

are severe. During the procurement process, customers can easily substitute one

company for another because product differentiation is often small. In environments as

competitive as these, successful companies need to implement world-class strategies in

all areas of their business. Firms with excellent product offerings may still be

uncompetitive due to substandard supply chain, aftermarket, manufacturing, or marketing

services. Only by excelling in all of these areas can an aerospace firm be successful in

the marketplace.

The supply chains of aerospace companies are generally expansive, consisting of

several partners or suppliers, internal manufacturing, aftermarket support, and commodity

producers. Deliverable products can consist of millions of individual parts, each of

which must be individually sourced, controlled, and delivered to the point of use. Within

this vast supply chain network, the margin of error can be very small. An individual

missing rivet can delay the delivery of an entire aircraft, and a replacement engine blade

can keep an in-service aircraft on the ground. With such severe consequences, aerospace

supply chain operations are as critical to the success of the company as any other

functional area. Only through close partnerships with suppliers, honest evaluation of

internal manufacturing processes, and careful analysis of all network practices can an

aerospace supply chain serve as the strategic asset necessary to the success of the firm.



1.2. Objective
Managing high volume supply chains is a difficult task for any aerospace

company. As ever decreasing lead times are demanded by customers, many aerospace

supply chains cannot operate under make-to-order systems or be buffered only at finished

goods due to the enormous inventory levels that would be required. This thesis aims to

provide a system for managing these supply chains by strategically locating safety stock

to buffer against uncertain demand. Both safety stock levels and locations are optimized

to provide the lowest overall inventory levels while maintaining a specified customer

service rate. A framework for supply chain improvement is then developed which allows

aerospace firms to target specific operations areas for further enhancement to ensure the

firm's resources are used most efficiently. In these discussions, a sample Pratt &

Whitney supply chain will be used as a basis for illustration, but the practices detailed can

be applied to any number of products manufactured in high volume and with uncertain

demand. Through these discussions, aerospace companies will be able to further use

these practices to improve their supply chains and increase their competitive position in

the marketplace.

All data in this thesis is fictionalized and provided solely for the purposes of

illustration of the processes and frameworks described. To protect the proprietary

property of Pratt & Whitney and United Technologies Corporation, all part numbers have

been removed, all data has been altered, and the scales have been removed from a

number of figures.



2. Background

2.1. Aerospace Industry Overview
The aerospace industry consists of several different markets and segments, with many

having long design and development cycles and capital-intensive manufacturing. As a result,

few competitors exist in each segment and barriers to entry are high. In the large commercial

aircraft segment, Boeing and Airbus hold most of the market share, but are being challenged

by such companies as Bombardier, Embraer, and Comac. Similarly, Lockheed Martin,

Northrop Grumman, and Boeing control most of the U.S. military aircraft market. Each of

these manufacturers uses several tiers of suppliers to contribute such critical subsystems as

engines, avionics, body components, environmental systems, etc. Often, these suppliers are

partners in new product development, sharing some of the design responsibility and financial

risk associated with a new program.

2.2. Pratt & Whitney
Pratt & Whitney (P&W) is a division of United Technologies Corporation (UTC),

which includes aerospace firms Sikorsky and Hamilton Sundstrand in addition to Carrier,

Otis, and UTC Fire & Security. Pratt & Whitney, headquartered in East Hartford,

Connecticut, develops and manufactures aircraft engines, gas turbines, and space propulsion

systems. The company, founded in 1925, was a key manufacturer of aircraft engines during

World War II, and operates heavily in both the commercial and military sides of the jet

engine business. In the commercial space, it supplies engines to such aircraft as the Boeing

747, 767, and 777 and the Airbus A300, A320, A330, and A380. On the military side, Pratt

& Whitney manufactures engines for the F- 16 Fighting Falcon, F-22 Raptor, F-35 Lightning

11, and C-17 Globemaster III.



Three main competitors exist in the aircraft engine market: Pratt & Whitney, GE

Aviation, and Rolls-Royce. Competition between the three firms can be fierce on some

programs, while they partner on others. For example, P&W and GE are joint partners on the

GP7000 engine that powers the Airbus A380, but are direct competitors on a number of other

aircraft. While airlines typically have an engine choice when purchasing a new aircraft, a

particular engine may occasionally be the solitary option for a given plane. For example,

Pratt & Whitney does not have an offering in the lucrative Boeing 737 jet engine market.

However, they have recently won a series of contracts that could earn back significant market

share in the narrow-body commercial jet segment. The Pratt & Whitney PurePower* engine

uses an advanced gear system which allows the engine fan to rotate slower than the low

pressure compressor and turbine. This separation of engine components results in significant

decreases in fuel consumption, operating cost, environmental emissions, and noise over

engines currently on the market. Using this advanced technology, P&W has won contracts to

power the Mitsubishi Regional Jet, Bombardier CSeries, and Irkut MC-2 1, as well as a new

engine option on the Airbus A320. With the emergence of this new technology, Pratt &

Whitney is well poised to earn back a significant share of the narrow-body commercial

aircraft market.

2.3. Supply Chain Dynamics and Business Model

2.3.1. Aerospace Industry
The aerospace industry, in contrast to many consumer goods and other technology

businesses, is characterized by very long product cycle times. New aircraft frequently

require a decade or more to design and test, and may be in service for as many as 50 years.

For example, the Boeing 747 first flew in 1969, and remains in production today, though it

has undergone numerous design changes and upgrades. Similarly, the F- 15 first flew in 1972
13



and is still serving the U.S. Air Force. With these product lifetimes, the aerospace business

faces a set of challenges unlike those of many other industries. In such long design and

development cycles, the technologies many new products use may become outdated by the

time they enter the market. Advances in materials, processes, software, and other

technologies that emerge once a design has been selected are challenging to implement,

causing some products to become obsolete by the time they enter the market. The high

development cost makes reactions to new breakthroughs difficult, and changes to proven

designs can require extensive validation, removing the incentive to upgrade a product. For

example, an aircraft which undergoes a design change to its wing to take advantage of new

advances in aerodynamic simulation technology may have to perform the same costly

validation procedures as a brand new aircraft introduction. As a result, the introduction of

these technological advances may be delayed until the next new product release cycle.

With long product development cycles and service times, aerospace companies are

often unable to respond directly to customer demand. Instead, they are forced to anticipate

customer needs decades into the future. If firms only reacted to the immediate needs of its

customers, large portions of the market that develop in the coming years may be missed and

would be difficult to serve. As a result, aerospace companies are forced to determine where

their industries are headed over the foreseeable lives of their products, and design solutions

to meet their customers' needs before they develop. For example, a commercial aircraft

manufacturer needs to analyze and plan for the needs of the industry over the next 20 to 40

years, even before airlines do. They need to examine such variables as the future of point-to-

point versus hub-and-spoke travel, the role of cargo in commercial aviation, and the regions

of the world likely to experience the greatest growth in airline traffic.
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Furthermore, aerospace firms are forced to support their products for many years or

decades after the initial sale to meet the needs of their customers. This support may come in

the form of spare parts, repair, overhaul, or service, and can make up a large part of an

aerospace firm's revenue. For new commercial aircraft purchases, airlines will typically

spend an equivalent amount of money purchasing the aircraft as they will on parts and

service over its life (Bernstein Global Wealth Management, 2003). On the engine side, GE

estimates that for every dollar of value created by new engine purchases, $17 of net present

value is created by the sales of parts and services to support it (Bernstein Global Wealth

Management, 2003). In many aerospace segments, the Original Equipment Manufacturer

(OEM) alone is able to capture the aftermarket value of its products due to industry

regulation, customer loyalty, and barriers to entry. This large and mostly exclusive

aftermarket creates a significant market opportunity for aerospace companies in terms of both

revenue and profit.

The rapid technological change of the aerospace industry paired with the long product

development and service lives force firms to support a wide array of applications. Aerospace

companies are asked to support technologies that can be several decades old. Obsolescence

of supplier parts can be a constant problem due to changing demands of other industries that

share components. As a result, firms may have to bring more work in-house because few

suppliers remain which still support it, adding cost to the business. Outdated capital

equipment may have to be retained to process obsolete material. Select components with

very infrequent demand still have to be produced to meet customer needs. Irregular

production of these components incurs start/stop costs and can cause logistical problems.



However, even despite these issues, the aerospace aftermarket remains the most significant

market opportunity for aerospace firms.

However, with these unique aerospace challenges come some considerable

opportunities. The barriers to entry in the aerospace industry are extremely high, with the

long development cycles and capital-intensive manufacturing requiring huge amounts of

upfront cash in financing. As a result, relatively few firms can compete in each segment of

the aerospace industry. The large commercial aircraft business is controlled by Boeing and

Airbus, while the engine segment is covered by Pratt & Whitney, General Electric, and

Rolls-Royce. Similar trends exist on the defense side of the business and for major

subcontractors. With few competitors, an opportunity exists for each firm to enjoy large

market shares, and work in closer coordination with its customers.

2.3.2. Pratt & Whitney
Like most of the aerospace industry, Pratt & Whitney relies heavily on aftermarket

sales. Spare parts and service make up a large portion of Pratt & Whitney's annual revenue,

and at a disproportionately higher profit margin than new engine sales. Due to its long

history of successful engine programs, Pratt & Whitney has over 2900 commercial jet

engines currently in service (Airline Business, 2010), including those operating within its

joint venture programs. P&W engines power more than 30% of the world's passenger

aircraft fleet, and such in-service military planes as the F-.15 Eagle, F- 16 Fighting Falcon, F-

22 Raptor, and C-17 Globemaster III (Pratt & Whitney: An Overview, 2011). Some of these

aircraft are still flying engines built several decades ago, which require additional spare parts

and overhaul services than newer ones, and in turn generate further revenue for the company.



Due to its large revenue and profit contributions, Pratt & Whitney's aftermarket

business is a critical area for the company and for UTC as a whole. In order to best serve this

market, high customer service rates must be maintained through careful inventory and

production management. Many of the aftermarket parts and services are life-limited,

requiring replacements or overhauls after a certain number of flight hours or cycles, and can

be forecast with some accuracy. Others, however, are elective or the result of failures. In

these cases, an inability of Pratt & Whitney to immediately ship a component to a customer

may result in that customer being unable to fly an airplane at all, resulting in an Airplane on

Ground (AOG). These instances result in huge revenue losses for airlines due to their

complete inability to use their asset, the cost of rebooking passengers, additional support

needed, etc. As a result, it is critical that P&W maintain high service levels of its aftermarket

components in order to meet customer need.

2.4. Problem Statement
Pratt & Whitney is under daily pressure to balance two conflicting priorities in its

supply chain: inventory levels and customer service targets. P&W is held to tight

expectations by UTC and its shareholders to operate with as little inventory as possible (by

overall value). With minimal safety stock, cash is freed up to expand the business, move into

new markets, and better utilize its current assets. If cash is tied up in inventory, P&W may

lack the resources it needs to make strategic business moves such as bidding on new engine

programs and moving into adjacent markets. Additionally, excess inventory can become

obsolete if market demand or technology shifts. For example, if P&W holds a large number

of a particular fan blade to sell for spare parts, and the demand for this particular product is

displaced by other models, all of the cash that P&W put into the entire inventory of that blade



is lost. Furthermore, P&W is better able to see the inefficiencies in its operations and

identify improvement opportunities when operating with minimal inventory.

However, low inventory levels increase the risk that Pratt & Whitney will experience

stockouts. On many of its components that support the high margin aftermarket business,

stockouts are unacceptable. P&W's customers are generally unwilling to wait even a small

portion of a component's manufacturing time for delivery after order placement, expecting

prompt shipment in order to continue serving its passengers. If an airline experiences a

failure in an engine part and is forced to wait for a replacement from P&W, the resulting

AOG loses all revenues that aircraft would have generated. An event such as this can

severely damage the image of P&W in the eyes of its customers, and should be avoided by

any means necessary.

In accepting these market forces, the inherent challenge for an aerospace firm is

ensuring very high customer service rates without excessive inventory levels. P&W must

weigh the expectations from its different stakeholders in order to determine inventory levels

of strategic items to hold and customer service rates to target. This thesis provides a tool to

determine where and in what amounts inventory should be held in a supply chain. Using this

tool, P&W can weigh the effects of varying customer service targets on necessary inventory

sizes and locations. With this information, P&W can better plan its facilities, resources, and

manpower in support of new engine programs and existing aftermarket activity. Specifically,

this thesis will outline the methodology of the tool and give an overview of its application

and use to P&W.



3. Inventory Management Literature Review
Locating safety stocks and managing inventory efficiently have been studied at

length, with industry experiencing significant resulting benefits. Simpson (1958)

develops a system for locating safety stocks in serial supply chains, similar to the

successive machining operations of many aerospace components. This methodology can

provide intermediate inventory sizes for parts in supply chains with flexible safety stock

locations. It can also prove helpful to companies with complex machining operations or

to size kanbans in large-scale assembly operations. Inderfurth and Minner (1998) present

a system for safety stock optimization in multi-stage supply chains when demand follows

a normal distribution. This system allows for very large supply chains (such as the entire

BOM of a jet engine) to be analyzed, but is limited to customer deliverables with normal

demand, which cannot always be proven. Graves and Willems (2000) give another safety

stock optimization model which is capable of analyzing serial or branched supply chains.

In doing so, they make no assumptions about demand distributions, allowing the model to

use a number of peak demand approximations.

More recently, Miragliotta and Staudacher (2004) propose a method of reducing

the effect of large orders unforeseen to the production organizations. To do so, they

advocate the sharing of information between the sales team negotiating large orders and

the production groups that will manufacture them once received. They perform a risk

analysis weighing the benefits of starting production before demand is received against

the costs of poor customer service rates and production spikes. Sitompul, Aghezzaf,

Dullaert, and Landeghem (2008) propose a safety stock optimization system that takes

capacity of each node into account, a strategy that could prove valuable to companies



with assets operating near full utilization. Kanet, Gorman, and St6Blein (2010) outline a

method in which safety stocks can be updated dynamically, allowing greater alignment

with demand, and conduct a survey of U.S. industry to show the benefits of their

approach.

4. Approach and Methodology

4.1. Current Inventory Analysis
Pratt & Whitney has a number of engine production and overhaul facilities across the

globe. Engine components are produced at many locations, while assembly and test occur at

a select few facilities. In addition to internally manufactured components, P&W procures

large numbers of parts from its global supply base. Each of these parts requires their own

manufacturing lead time (LT), and most have additional sub-tier components with their own

procurement requirements. Within this complex supply chain, production scheduling and

inventory analysis can become quite difficult. Further complicating this situation, P&W

receives its orders in a number of ways. Its military orders, both for new engines and spare

components, are typically received at full replenishment lead time and tend to change little

over their duration. This structure allows P&W to produce or procure most of its military

sales to order, giving it full visibility into its supply chain and the ability to keep military

inventory to a muimum.

However, Pratt & Whitney's commercial orders are received in other ways and

require different inventory strategies. Both new engines sales and spares orders are

frequently placed short to full production lead time, which requires P&W to hold additional

inventory to buffer against demand variation. Currently, P&W holds inventory in a number

of manners depending on production volume and unit cost. High value items, such as

20



engines and other large, critical subassemblies are built to order. Forecasting demand for

these items would force P&W to carry significantly higher inventory values and bear large

amounts of risk. If orders were not received in the forecasted manner for these high value

parts, P&W would potentially be forced to carry millions of dollars in inventory across

financial statement release dates, which would affect UTC as a whole. A similar strategy is

used for items with inconsistent or rare demand. If P&W forecasted demand of these items, a

portion of them would become obsolete before they are sold, resulting in significant losses.

High volume parts are handled differently, however. The components that Pratt &

Whitney manufactures in the highest numbers, such as fan and turbine blades, typically serve

the aftermarket in addition to new engine production. They are generally designed to a

useful life less than that of the engine and must be replaced with some regularity, usually

after a certain number of flight hours or takeoff and landing cycles. This forced replacement,

combined with the large in-service base of P&W's engines, produces a high volume market

on select P&W products. Due to volume and fairly regular demand, these parts require

material buffering. Unlike P&W's military customers, commercial airlines do not place

orders far in advance and require delivery far short to full replenishment lead time. To allow

for this, P&W buffers with safety stock of only finished goods inventory. For example, to

provide safety stock of a high volume fan blade, excess raw materials are purchased and

undergo a series of machining operations to become the final deliverable to the customer.

Safety stock (sometimes several months' worth of demand) is then held in finished goods

form to account for any variation in demand that may occur over the full replenishment lead

time of the component.



Other components that are low in value are bought to forecast and then held in

inventory until needed. Components that fall into this category are typically not directly

deliverable to P&W's customers, and include such low value items as fasteners, rivets, etc.

Due to their low value but high impact, P&W has decided that taking a slight increase in

inventory levels outweighs the cost of placing frequent orders and experiencing the

occasional production stoppage due to a stockout.

4.2. Project Target Areas
High volume components, with their significant impact on aerospace firms, will be

analyzed for inventory reductions. While production of these components is used to support

both new engine production and the aftermarket, particular attention will be paid to the

critical aftermarket segment, which drives the majority of demand. Within Pratt & Whitney,

these high volume lines tend to be turbine and compressor blades and other similar products.

Targeting these areas allows for safety stock analysis and measurable results. Their fairly

steady demand allows for strategic inventory placement that would not be beneficial in low

volume lines. Holding strategic safety stock in these situations with high demand variability

would result in inventory levels disproportionately higher to the customer service benefits

P&W would receive. Additionally, the analysis focuses on components that P&W

manufactures internally, due to the increased control P&W has over its own safety stock

inventory locations and sizes when compared to those of its suppliers. Within this

framework, P&W can still hold stock of supplier goods within its own house, but only after it

has received and owns the inventory. Asking first tier and lower suppliers to maintain

specified inventory levels would cause P&W to experience significant additional cost and



logistical complexity. As a result, this thesis will focus on the supply chains of high volume

components manufactured by P&W.

4.3. Inventory Model
Pratt & Whitney's high volume products and their supply chains are an appropriate

application for the strategic inventory placement model developed by Stephen C. Graves and

Sean Willems at MIT (Graves & Willems, 2000). The methodology behind this model

examines a given supply chain, or system of supply chains, and minimizes the overall

inventory value carried given a specific customer service target. Due to the machining-heavy

nature of P&W's high volume lines, their associated supply chains tend to involve only a few

components but high labor content. These simple supply chains are an ideal fit for a

spreadsheet-based tool which can be used by any member of the P&W community with little

training.

4.3.1. Assumptions
The safety stock optimization model makes a number of assumptions to translate a

complex supply chain into a set of mathematical equations. Each can greatly affect the

results of the analysis, having large implications on the operations of a company, and must be

carefully considered. First, the model uses a set of lead time data for various supply chain

events (component procurement time, manufacturing lead time of a component, etc.). All

analysis is then performed assuming each lead time is static and completely accurate. As a

result, any lead times that are not true to reality can impact the performance of the supply

chain and lead to excess inventory or stockouts. For example, if the delivery time of a

supplier casting is estimated by a planner to be eight weeks, the model analyzes the supply

chain using exactly that lead time as the delivery time for all those castings. However, if this

eight week estimate is buffered to account for the longest realistic lead time or the longest
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past lead time experienced to save the planner any responsibility for stockouts, vast amounts

of excess inventory will be held to account for this additional time. Internal manufacturing

lead times can be influenced the same way. Therefore, it is important that all time data used

in the model is completely accurate and not buffered to defer accountability. Lead time

variability can, however, be factored into the model and will be considered later.

Customer demand, by its very nature, is uncertain, and very difficult for any

mathematical model to evaluate. The model used here can incorporate a number of forecasts

to predict demand, but all of them involve some prediction of the future which may or may

not prove true. For stable product lines with constant or near-constant demand, the best

method for predicting future performance is often based upon historical need. If demand

appears to be normally distributed, its mean and standard deviation can be obtained over a

given time period, and, along with a customer service target, be used to predict an upper

bound of demand. For new programs or product lines with inconsistent demand, an estimate

of the upper bound of demand can be made based on market research or similar predictions.

As historical data becomes available and programs mature, these market estimates can be

phased out in favor of historical distributions. No matter the method, however, the model

requires some prediction of future demand upon which the analysis is based. Unforeseen

spikes or drops in demand will not be able to be explained by the model, and will yield

skewed results.

Furthermore, the model yields optimum safety stock locations and sizes, but does not

analyze work-in-progress assemblies (WIP) or material flow. All analysis performed by the

model is based upon the lead time data it is given, which must include all necessary transit

times, order delay times, and production sequencing activities. Inconsistencies in the
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analysis may occur if certain parts are taken out of the work flow and quarantined due to a

defect or other issue. Often, manual intervention is used to resequence work flow, giving

priority to more visible or critical programs. This practice can cause the lower priority

components to back up and their manufacturing times to greatly increase, which in turn can

cause safety stocks to dry up and potential stockouts to occur. The factors affecting work

flow and production sequencing cannot be directly analyzed by the model, which assumes

that they are all built into the given lead times.

4.3.2. Methodology
In order to analyze a complex supply chain, the model breaks the entire procurement

and manufacturing process into a series of "nodes", each of which represents a distinct step

or activity. These nodes can vary greatly in scope, and are specific to the level and

complexity of the supply chain being analyzed. At Pratt & Whitney, many of the nodes used

represent large operations, such as the whole procurement process of a supplier part or the

entire in-house manufacturing time of a blade. Essentially, each node is a part number and a

new node is created when a component or assembly changes part numbers. This distinction

was chosen because the greatest sources of inventory control exist at these interfaces.

Physical boundaries (between manufacturing departments or facilities) and virtual

distinctions (in inventory tracking systems, etc) occur between these different part numbers.

At P&W, inventory can only be controlled once supplier components are received in-house

because of the lack of ownership of inventory at suppliers' facilities. However, other

manufacturing processes may require different node granularity. For some simpler

components or assemblies with irregular value-add profiles, the correct nodes may be

individual manufacturing operations (grind, deburr, assemble, etc) rather than part number

interfaces to provide the lowest overall inventory value.
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These nodes are then arranged into a tree system, showing the bill of material (BOM)

of the entire product. The final deliverable (at the end of the tree) is assigned a maximum

service time to the customer, which represents the time frame in which the customer expects

delivery from the time the order is placed. Working backward in the node tree from this final

deliverable, each successive node is assigned a guaranteed service time to its downstream

nodes and an inbound service time (which accounts for the lead times of its successive

upstream nodes, allowing the operation to collect all components necessary for production to

commence). Safety stocks are then located and assigned to cover the peak demand likely to

occur over the lead time of that given node. This process is repeated until all nodes in the

model are covered and assigned safety stocks. Several service time initial conditions may

have to be tested to achieve the global optimum, with all service times set to zero or to the

node lead times often showing success. Once reached, however, this optimum will yield

safety stocks sufficient to achieve the desired customer service rate with the lowest overall

inventory value.

This optimization function is then minimized over the feasible space to obtain the

ideal safety stock locations and sizes. In mathematical terms, the optimization function is

given below (Graves & Willems, 2000).

V {D, (Si + T, - S, )- (SI + T, - S,
j=1

Equation 1: Inventory Model Optimization Function

Where: V =unit inventory value at nodej
SI;= inbound service time to node j
S = guaranteed service time of nodej
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D = peak demand per time period experienced by nodej
pu = average demand per time period experienced by nodej
T = lead time of nodej
sy = maximum service time for demand nodej

Subject to the constraints: S, -S1 T

Si, -S> 0
S1  s, for all demand nodesj

S, S/; > 0 and integer

The optimization program minimizes the inventory value held by every node in the supply

chain, fromj=1 to N. In this way, the safety stock held is actually the difference between the

peak and mean demand over the net replenishment time of each node. The given constraints

restrict all solutions to possible conditions in the supply chain. For example, the first

constraint ensures that net replenishment time of each node is greater than zero, and the

second forces each node to wait until all previous nodes have delivered materials before it

can commence production. Using this set of mathematical equations, the ideal safety stock

locations and sizes can be obtained.

This model formulation is a nonlinear optimization problem, which can be solved by

a number of commercially available software programs. At P&W, all calculations were

entered into a spreadsheet, and the optimization problem was solved using an add-on

program. The spreadsheet format (see Appendix 1) was used at P&W to maximize

usefulness of the product because it is available to all members of the organization,

increasing the likelihood that the tool will become widely used. If the tool is built in a more

powerful but sparsely available specialized software package, its adoption would be slowed

and its traction in the organization diminished. In the relatively simple supply chains of



P&W's spare parts business, the spreadsheet add-on platform is sufficient to properly solve

the nonlinear optimization problem and common enough to gain support within the company.

5. Analysis and Results

5.1. Application
Perhaps the best way to illustrate the usefulness and effectiveness of the safety stock

optimization tool is to review an example of its application. An example of a P&W high

volume product is shown in the sample supply chain Figure 1.

Figure 1: Sample P&W High Volume Supply Chain

This supply chain is typical of many of the high volume parts at P&W. This product has two

different blades as end deliverables to customers. Material inputs are few (only two in this

case) and much of the inventory value is added through machining and labor. The casting is

machined into an intermediate part with its own unique part number, which is essentially a

break in the manufacturing process because the other supplier component, a cover, is not

added until the final blade. Each of the parts in Figure 1 represents a node in the

optimization model where safety stock could be held. The raw materials are bought from

suppliers and would be held as safety stock once received at a P&W facility. All further

operations are performed within P&W, allowing easier inventory control.
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The static lead times for each component in this supply chain and their associated

inventory value at each point in the manufacturing process are shown in Table 1.

Quoted Lead Time
Part Inventory Value (weeks)

Blade 1 $400.00 4.0
Blade 2 $425.00 4.5
Intermediate Part $250.00 2.0
Cover $2.00 1.0
Casting $75.00 8.0

Table 1: Component Inventory Values and Lead Times

As this data shows, the inventory of the final deliverable product to the customers, the

blades, are more than five times the inventory value of the raw materials. This significant

difference creates an opportunity to hold inventory in locations of lesser value. P&W

values its inventory in two ways. For purchased parts (such as the casting and cover), it

is valued at the purchase price from the vendor. For parts manufactured in-house,

inventory is valued based on the labor or machine time added to the part plus the cost of

any supplier components. Labor and machine hours both have associated standard hourly

rates based on labor grade and type of machine. P&W's manufacturing IT system tracks

the real-time machine and labor content added to a given part and calculates the inventory

value.

Furthermore, as shown in Table 1, the majority of the full replenishment lead time

of the entire supply chain is in the procurement of the casting. From the time P&W

places an order, two months elapse before they actually receive the casting. In

comparison, the critical path of the entire subsequent supply chain is only 6.5 weeks. By



having the bulk of the lead time built into a lower value area of the supply chain, safety

stock may be able to be held there at a lower rate to cover more expensive areas of the

supply chain. The cover, at just $2 and with a one week lead time, has little impact on

the supply chain in terms of both price and schedule.

The model runs assuming all demand and production occurs within a specified

time period, with the length of time having significant impact on the usefulness of the

results. In this case, a time period of one week is used to yield the most meaningful

results. If longer time periods are used, the variation in demand may diminish, but this

length of time is too long to accurately model supply chains where some components

have lead times as short as one week. As with most mature products, these two blades

have relatively stable demand, with the standard deviation of weekly demand rarely

varying more than 50% week to week. While this may seem volatile, demand is rarely

zero in any one week and spikes are infrequent. For the model, two years' worth of

demand data was used to give an accurate representation of the production needs for this

project.

The safety stock optimization model requires some assumptions about demand,

but these can be given in a number of ways. In short, it requires a "peak" demand that

the end items are likely to see any given time period. If demand exceeds this limit,

insufficient safety stock may exist, and stockouts may occur. However, this "peak"

demand can be determined in a number of ways, and it even may be appropriate to

estimate the peak demand when poor forecasts or little history exists. Executives may

conservatively set these estimates, or they may be set to align with production capacity.

Where sufficient demand history exists and is likely to align with future orders, analysis
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of historical demand may yield better results. A common way to set the peak demand

based on historical data is to specify a service level based on a normal distribution. This

way, a company can determine that it wants its safety stocks to buffer for demand with

90%, 95%, 99%, etc certainty.

To check if demand data follows a normal distribution, several steps must be

taken. If demand of a particular product is normally distributed, a histogram of it should

follow a bell-shape curve (Vining & Kowalski, 2006). If demand of a particular product

from a time period is represented by y, the data must be arranged in ascending order such

that y, SY2 5 Y3 - yn. The cumulative probability point, P(i) is then

i-0.5
P(i) = I -0.

n

Equation 2: Cumulative Probability Point Calculation

where i is the rank of a particular demand value. The cumulative probability points from

Equation 2 are then plotted on y-axis, with each demand figure on the x-axis. A sample

normal probability plot from a Pratt & Whitney product line is shown in Figure 2.
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Figure 2: Normal Probability Plot of a Sample Product

If the data graphed in the normal probability plot is roughly linear, then the demand can

be assumed to follow a normal distribution. A common test for linearity is to place a "fat

pencil" on the page and ensure that all data points are covered by the pencil. This simple

test accounts for any slight imperfections in the data, as no demand is perfectly normal.

The data shown in Figure 2 does appear to follow a normal distribution. All data points

are roughly linear and pass the "fat pencil" test. If multiple data points fell outside this

linear trend, or if the graph was blatantly nonlinear (such as parabolic), the normal

distribution could not be used to analyze the demand of this product.

Once demand data is confirmed as following a normal distribution, the demand

limit can be estimated by

Demand Limit = p + z-

Equation 3: Demand Limit Calculation
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where p is the mean demand per time period,,: is the standard normal factor

corresponding to a customer service rate, and a is the standard deviation of demand per

time period. With this demand limit, the model can now be used to determine the

optimum safety stock locations and sizes.

Another important consideration in the model is the service time for the demand

nodes. This factor represents the amount of time a company has to ship a product once it

receives an order. For example, if an order is received on day one, but the customer does

not require shipment for another two weeks, the service time of the demand node would

be 14 days. This service time to the customer is typically determined by customer

expectations and market trends. In some industries with highly customized and low

volume products, long customer service times may be acceptable. Aircraft, for example,

are typically built to order for a specific customer and are unique to other planes made by

that company. In this case, the airlines expect a long service time for their product,

allowing the aircraft manufacturer the freedom to not hold safety stocks of finished

aircraft. However, the business environment of Pratt & Whitney's aftermarket does not

allow for this type of long customer service times. Typically, parts sold as spares need to

ship immediately because they prevent a customer from utilizing their asset. For this

reason, the customer service times in all of the P&W supply chains studied were set to

zero to model a ship-from-stock environment. As a result, safety stock may have to be

held at the finished goods stage of every product line.

5.2. Model Results
The safety stock optimization model yielded a number of interesting insights into

Pratt & Whitney's high volume spare components supply chains. With the parameters in



Section 5.1 entered into the spreadsheet-based optimization program in Appendix 1, a

detailed safety stock map is obtained. A summary of the results is shown in Figure 3.

Current Safety Stock (units)
- -Proposed SS, Demonstrated LT (units)

r - _ U Proposed SS, Quoted LT (units)
Mean Weekly Demand (units)

StDev of Weekly Demand (units)

Ceor Blade 2,

Figure 3: Example Safety Stock Optimization Results

As shown, P&W previously held large amounts of safety stock at finished goods. While

this practice may have provided very high service levels, it forced the company to carry

high inventory levels. As a reference to the safety stock targets, mean weekly demand

and the associated standard deviation of weekly demand are shown in Figure 3. For the

Blade 1 product, for example, P&W is holding many, many weeks' worth of demand in

safety stock. These high levels are necessary to buffer against the variation demand

across the full replenishment lead time of the entire supply chain. However, the unit

value of the blades at this point in the supply chain is $400, compared to $75 at the

casting level. As a result, the location choice of this safety stock forces P&W to carry

much more inventory (by value) than is necessary. At the time of analysis, Blade 2 was

still gaining market share, and not experiencing the same demand levels as Blade 1.
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Little historical demand data was available, so the initial safety stock level was manually

set low. As also shown in Figure 3, safety stock of the cover was carried due to its

extremely low inventory value and short lead time. As with some parts, it is simply

easier to carry higher inventory levels of these parts than to order them just-in-time

because of their low inventory impact and ordering and logistics cost.

In this model, two different parameters for the lead time of each component are

used to obtain a better frame of reference for the safety stock results. First, the model

was run with the lead times for all components set to their "quoted" lead time, which is

the static measure direct from P&W's Material Requirements Planning (MRP) system.

These numbers are used to plan material requirements and order dates, but are updated

infrequently and do not take into account quality or supplier issues. For purchased parts,

the quoted lead times account for all time from the order placement date until the

shipment reaches P&W and is ready for use. For parts manufactured in-house, the quoted

lead time includes any necessary manufacturing and transportation times.

However, upon further analysis, the quoted lead times of various manufacturing

steps did not always match the real process times. In reality, each of these lead times

varied occasionally and disrupted the supply chain. The organization requested a

conservative lead time value to protect against stockouts. Upon further inspection, the

historical lead times of each component approximately followed a normal distribution, so

a "demonstrated lead time" figure was created with a 95% certainty level. These lead

times are buffered to allow for the natural supply chain variation, and tend to be longer

than quoted lead times of a particular component. Actual historical lead time data was



not available for purchased parts, so only nodes in the supply chain that are performed

internal to P&W are able to use these demonstrated lead times.

As Figure 3 also shows, safety stock has been lowered in the later stages and

moved earlier in the supply chain. In this case, fewer units of finished blades,

specifically Blade 1, are necessary to buffer the supply chain against demand variability

by providing additional safety stocks of castings. Figure 3 shows safety stocks in units,

where the real value of this proposed safety stock strategy may not be apparent.

However, by moving the inventory from Blade 1 finished goods, at a value of $425 per

unit, to castings, at $75 per unit, the real cost savings becomes apparent. As shown, the

safety stocks that were calculated from the model using demonstrated lead times tend to

be longer than those using quoted lead times, but both still show significant savings over

the current state. Specifically, an inventory reduction of over $1.2M is possible in this

supply chain alone by moving the inventory as shown.

In the particular supply chain analysis shown in Figure 3, a few observations can

be made which appear counterintuitive. First, in the case of the cover component, the

model recommends lower safety stock when using demonstrated lead times than when

using quoted lead times, when the opposite is usually true. Pratt & Whitney was more

willing to hold inventory of the covers than other items because of its low inventory

value. Second, Blade 2 shows higher recommended safety stock levels than P&W is

currently holding. As mentioned earlier, this product is still ramping up production and

gaining traction in the marketplace, so little historical demand data was available. As

such, initial safety stock levels were set manually based on sales estimates, when

additional levels were actually necessary to account for demand variability.
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5.3. Sensitivity Analysis
Once an organization optimizes its safety stock levels and locations, continuous

improvement efforts are often initiated, but choosing in which area to concentrate

resources can be difficult. The improvement options on any given supply chain are

almost endless. An organization can work with its suppliers to lower the unit cost of

parts, reduce lead time, or even decrease lead time variability. Additionally, a firm can

look inward to try to reduce its own manufacturing time, variability in its manufacturing

time, or service time to its customers. It can even examine its own inventory valuation

system to see if the labor or machine rates applied to components are excessive, or add

value incrementally (at part number interchanges, for example) rather than the strict

hourly value-add time that Pratt & Whitney uses. Some companies also attempt to alter

their demand patterns. For example, demand can be smoothed out to reduce variation,

but this practice damages customer service rates, and cannot be considered for P&W's

high volume aftermarket business. However, some industries with long customer service

times, especially those that use a make-to-order system, such as new aircraft production,

can effectively smooth out demand and carry little safety stock, but at the cost of

customer service times.

While improving all areas of a supply chain would be ideal, most companies do

not have the required time or resources. With so many areas to focus on, organizations

often have a difficult time determining where to start. It can be challenging to decide if

efforts should begin with their supplier base, or with internal manufacturing processes.

Once these decisions are made, choices must then be made between lead time, variability,

and cost reductions. Furthermore, some companies have very little leverage over their



suppliers, either because they are a small percentage of their overall business or buy sole-

sourced parts. In these cases, improving the vendor area of the supply chain may be

difficult, so firms can only concentrate on the internal parts of their supply chain. By

eliminating improvements areas that are not feasible, it may become clear to many firms

where to concentrate improvement efforts.

However, even when improvement projects are not limited to internal processes,

the choice of where to start can be difficult. For the supply chain outlined in Figure 1, a

number of options are possible. Internal Pratt & Whitney manufacturing processes could

be examined to shorten their manufacturing time, allowing less safety stock to be held to

cover the uncertainty in demand. Efforts could be focused on bringing the cost of

inventory down by reductions in labor rates, energy input, machine costs, chemical costs,

facility charges, supervision, etc. Additionally, the variability in manufacturing time can

be a large driver of demand, but can be reduced by looking at defect rates, which cause

large delays in processing time, and unplanned machine downtime, which interrupts the

flow of material and causes fluctuations in lead time. Figure 4 shows the effects of each

of these improvement efforts.
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Figure 4: Internal Improvement Effort Analysis for Blades

As shown, each improvement effort does result in overall safety stock inventory

reductions, but with varying success. The safety stock values shown on the vertical axis

are from a nominal case. To obtain this data, the safety stock model was run successive

times to yield the overall supply chain safety stock value, while reducing the lead times,

lead time standard deviation, and unit inventory value of Blade 1 and 2 by 5% reduction

increments. The improvement efforts in each of these three areas resulted in a linear

relationship between improvement and safety stock value, with unit inventory value

being the most effective by far. Lead time improvements had a greater impact than

decreases in its standard deviation, but only a 10% reduction in unit inventory value had a

greater effect on the overall inventory value than a 50% reduction in the other factors.

This significant difference is intuitive, however, because of the large number of blades

held in safety stock (approximately 2900 and 1980 units of Blades 1 and 2, respectively)

and their higher inventory values. By reducing the high inventory value of these finished
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goods by 10%, cost is saved on each one of these units in safety stock, and at the highest

cost location in the supply chain. Meanwhile, reducing the lead times and LT standard

deviations allow the supply chain to hold fewer units in safety stock because it reduced

the interval over which demand variation must be covered, but these units are still held at

the higher inventory level. As a result, if improvement efforts can only focus on one area

of the supply chain, inventory cost reductions should be addressed.

In some cases, companies may have better control over their suppliers or little

room for improvement in their own manufacturing processes due to past advances in

productivity. In these cases, it may be easier for a company to work with its suppliers on

their processes in order to make the relationship more valuable and cost effective for both

parties. This relationship is more likely to be effective when a close partnering history

exists between the two firms and their future success is dependent on one other. In such a

case, Figure 5 shows the effectiveness analysis of each improvement method at the

supplier level.
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Figure 5: Supplier Improvement Effort Analysis

As shown, the effects of each improvement strategy at the supplier level are

similar to those internal to P&W in Figure 4. Cost reduction efforts hold significantly

more value than the other two, but by a lower margin. Here, a 15% reduction in casting

unit cost results in a lower overall inventory value than a 50% reduction in either casting

lead time or LT standard deviation. This result, again, is intuitive because of the lower

inventory value of the castings when compared to the finished blades. Additionally, the

casting lead time, at eight weeks, is significantly longer than that of the blades, causing

reductions in the casting lead time or its variation to result in greater inventory savings

than similar blade efforts. This increased effectiveness is due to the additional safety

stock necessary to cover the longer lead time and demand variation of the castings.

However, despite the additional value of the lead time reductions, improvements in the

unit inventory cost are still the most effective choice.



Considering that inventory unit cost is a significantly better choice on which to

focus improvement efforts, Figure 6 compares the inventory savings resulting from unit

cost reductions in the blades and castings.
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Figure 6: Casting and Blade Cost Reduction Comparison

As shown, reducing the unit inventory value of the blade yields greater returns than that

of the casting, primarily due to its higher initial cost. This is true of all supply chains that

follow a similar trend of increasing inventory value as parts flow closer to finished goods,

and is not specific to this one P&W supply chain. As a result, any improvement efforts

should be focused as close to the end of the supply chain as possible because of the high

per-unit inventory values associated with this location. In some supply chains, cost

reductions at finished goods may not be possible, so efforts should be undertaken moving

back in the supply chain one node at a time from customer delivery.

However, when possible, the most effective means of reducing safety stock is

through demand smoothing. Demand variability is the one supply chain measure that
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truly drives the need for safety stock. Without demand variability, there would be no

need to carry safety stock because the demand experienced in every time period would be

exactly the same as the last, with no chance of sudden spikes or drops in demand. As a

result, production could be completely level-loaded, making it more economical in a

number of ways. Labor charges would fall because there would be no need for overtime.

Machine capacity could be sized to align with the static demand, eliminating the need to

purchase additional capacity to be able to respond to demand spikes. However, demand

smoothing is not possible in many industries because it drives up customer service times.

When not possible, even slight decreases in demand variability can yield drastic declines

in necessary safety stock levels. Figure 7 shows the same effects of reducing unit

inventory cost of the casting and blades as Figure 6, with the additional factor of reducing

demand standard deviation.
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Figure 7: Unit Inventory Cost and Demand Smoothing Analysis



As shown, reducing demand variability is the single most effective measure that

can be taken to reduce the necessary safety stock carried by a supply chain, even more so

than reducing unit inventory values at the most expensive point. While this technique

may not be feasible in such markets as the aftermarket aerospace industry in which Pratt

& Whitney operates, other companies may find this to be a viable strategy. If the benefits

are sufficient, production could be kept at a level rate in anticipation of future demand.

Even slow production adjustments such as specifying one production rate for a given

time period can be very beneficial. The automotive industry works under this production

strategy. Automobiles are produced at a specified rate, which can be changed in the long

run, but not in immediate response to customer demand. Lower safety stock is then

possible, but customers may have to wait longer for their automobiles if none are

available that match their needs. However, when demand cannot be adjusted or

controlled, improving the supply chain at its costliest point, finished goods, is the ideal

place to begin improvement initiatives.

5.4. Implementation

5.4.1. Challenges
Once inventory recommendations are made, implementing them can be another

matter altogether. Significant amounts of discipline are typically necessary for an

organization to bring in additional material and even more to reserve it as safety stock. In

any large organization supply chain, the most attention is typically paid at the latest

stages. The business is driven by customer demand, causing the organization and its

personnel to focus on finished goods. In the example of a jet engine blade, a customer

order triggers an employee to look at the number of completed blades. If these are not

available, the next upstream node is then examined for availability or potential issues. By
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this method, large amounts of attention are paid to the last few stages in a supply chain.

However, by ignoring the earlier stages, organizations take a shortsighted view of the

process. In fact, the earliest stages of a supply chain, typically consisting of suppliers and

their sub-tier suppliers, are just as important to the overall success of a product line as the

final few process steps before a component is shipped to the customer.

Frequently, as demand peaks, organizations will signal the supply chain to

produce additional components, even if sufficient safety stock exists to accommodate the

surge. This is known as the "bullwhip effect" (Wangphanich, Kara, & Kayis, 2010),

resulting in huge amounts of excess and wasted inventory. To counteract this, the further

upstream nodes have to be disciplined to only produce to order, and the downstream

nodes cannot request more than their customer demand. Upstream nodes frequently feel

as though they need to produce as long as they have material to keep the "more

important" downstream nodes running. However, this practice is actually contrary to the

purpose of safety stock. The upstream nodes have to show restraint to hold large

amounts of raw material inventory and not process it, even if workers or machines are

idled. Producing excess material, even to keep other nodes running, only increases the

inventory an organization is forced to carry and the likelihood it will become obsolete.

As a result, in order for safety stock to be held effectively, manufacturing groups,

especially upstream ones, must remained disciplined enough to not process any material

until demand is received.

5.4.2. Business Environment Considerations
The model outlined here assumes an ordering system that may be contrary to that

currently used by many aerospace companies. Its analysis is based on a supply chain in



which customer demand is received at the end node, and then necessary components are

ordered from upstream nodes in the same time period. In this system, no advance

production planning or time fences are needed and all production reacts only and

immediately to demand. The lead time of each manufacturing or procurement stage,

however, is factored into the safety stock that each node carries. By reacting immediately

to customer demand, the need for complicated planning systems is eliminated, and all

necessary buffers are built into the optimized safety stock.

The MRP systems that most aerospace companies use, however, can be in conflict

with the simple ordering strategy employed by the inventory optimization model

discussed here. These MRP systems are rigid computer structures that plan production

and procurement activities using the fmal component requirement date then determining

all other necessary material requirement dates by their lead times. In doing so, MRP

systems require long planning times and react poorly to shifts in customer demand. In

fact, they work best when demand is placed far in advance and components do not have

to be shipped from stock. Changes can be made to most MRP systems to allow for better

response to customer demand, but many others still struggle. If a company's IT systems

are not aligned with its supply chain strategy, neither are likely to succeed. For a safety

stock optimization strategy such as the one outlined here to become widely used in an

organization, the production and procurement planning system used must be flexible

enough to allow for immediate reactions to customer demand and not burden an

organization with long planning time fences and rigid production schedules.



5.4.3. Possible Areas for Further Projects
While this project addresses the needs of Pratt & Whitney's high volume supply

chains, significant opportunity exists for further projects. Although the high volume

aftermarket makes up a considerable portion of P&W's revenue, many other critical

production areas operate at far lower rates. The safety stock optimization model

discussed here is of little use in these lower volume areas due to their uncertain demand.

Additional projects could address these lower rate areas, such as engine production and

overhaul. These programs make up a large portion of the inventory value that P&W

carries because of the longer lead time of each assembly and higher per-unit inventory

values. Future projects could address these lower volume areas and seek to minimize the

necessary inventory value in make-to-order systems.

Vendor management is another source of supply chain uncertainty that is not

addressed in this thesis. In the safety stock optimization model discussed, supplier lead

times are held as completely accurate with no allowance for variability or interruptions.

In reality, P&W demand may exceed supplier capacity or the vendors themselves may

have internal issues that cause shipment delays. By examining supplier stability,

capacity, and past performance, tools could be developed which provide a more robust

view of the supply chain and allow for variation. Future projects could work more

closely with the supply base to identify improvement opportunities and reduce cost for

themselves as well as P&W.

6. Recommendations and Conclusions
The dynamics of the aerospace industry present a number of challenges unlike

those faced by many other industries. Lead times of components are very long, and
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suppliers with the necessary capabilities can be few. Capital equipment and tooling costs

are substantial, creating high barriers to entry for new competitors and putting significant

pressure on existing firms. Many components, such as the jet engine blade discussed

here, need to be shipped immediately when sold because the availability of much larger

assets depend on them. These aftermarket parts are typically sold on large margins, and

make up significant portions of a firm's profits. The aerospace industry as a whole also

tends to be cyclical, further adding to the challenges the few firms in each segment

experience.

However, despite these challenges of the aerospace industry, rewards for

competing firms can be high. In the high volume aftermarket business, high customer

service rates and low inventory levels can be crucial to a firm's success. The safety stock

optimization model discussed here addresses both of these needs. It provides the ability

to specify varying customer service rates (90, 95%, 99%, etc), the ability to ship in any

time window, and can use demand limits in a variety of forms. By using basic

manufacturing and procurement parameters, such as lead time and inventory unit cost,

safety stock levels and locations across an entire supply chain are optimized to provide

the lowest overall inventory value. By reducing these inventory levels without

sacrificing customer service rates, firms are able to remain competitive and better

respond to customer demand.

As important as the safety stock optimization tool itself is the ability to pinpoint

the most efficient locations in a supply chain in which to make improvements. By simply

trying to improve all areas of a product's supply chain, firms may spread their resources

too thin, generating benefits in some areas while experiencing little to no returns in
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others. However, by using the safety stock optimization model to analyze the ideal areas

of a supply chain to target, improvement efforts become their most effective. As shown,

improvement initiatives tend to be most efficient when directed at areas of high inventory

value, such as finished goods, and at reducing unit inventory cost. Reducing raw material

cost, lead time, or LT variability do not have as significant an effect on overall safety

stock inventory as finished goods improvements. By instituting an optimized safety

stock structure and then choosing specific areas of the supply chain upon which to

improve, an aerospace firm can remain competitive in its aftermarket industry and better

serve the needs of its customers.



Appendix 1: Safety Stock Optimization Model Interface

CffdneInterval tha No 9Stage wiAl Stock Out 95%

BLadM 1 Blade 2

Mean Weekly Demand, p, 500,.00 600.0
Standard Deviation of
Weekly Demand 200.00 250,00
Maximum Service Time for
Demand Node (weeks), s0
Correlation of Demand
(0=lndependent,
1=Completely Correlated)

Part Number

Level

Level;

Lee '

Optimization Function
$879,602

Constraints

Part Number

Average StDev of
Lead Time Lead Time Inventory

(weeks) (weeks) Value / Unil

Effective
Lead Time,

T,
Safety Stock, Safety Stock

ElI Value

Inbound
Service Time
(weeks). SI1

Guaranteed
Service Tire
(weeks), S, or

Ski

Net
Replenishment

Time (weeks). S\,
+ T, - S

Demand Over
Net

Replenishment
Time, Dj(Stj +

Tj - S)

p(SI1 + T -
S')

$75.00 800 14WAS $111,711 0 0 8.00 1028948 8800
$250.00 2. 0.00 $0 0 2 0.00 0.00 0
$2.00 0 1.00 0 0 0 1 0.00 000 0

$4000 4. 805 $ 322,324 2 0 &00 3805.81 3000
$425.00 4.50 104L.3 $445,567 2 0 6.50 4948.39 3900

Constraint 3Constraint 1

0 & 8.00
2 2.00
1 CO1O
-2 s4.00 5 I U I
-2 I S I 4.50 I 0 I ~ I 0 I 0 I S I 0 3

General
Inputs

serkty sINock

Decision
Variables
Used in
Calcidatons
Objiect
Function

... .........

Cal lations

Constraint 4

S, Ai 2 0

0 V S | 0 1-2 i s6 I 4;50 1 0 1 Z i 0 0
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