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Abstract Standard methods for estimating the effect of a time-varying expo-
sure on survival may be biased in the presence of time-dependent confounders
themselves affected by prior exposure. This problem can be overcome by in-
verse probability weighted estimation of Marginal Structural Cox Models (Cox
MSM), g-estimation of Structural Nested Accelerated Failure Time Models
(SNAFTM) and g-estimation of Structural Nested Cumulative Failure Time
Models (SNCFTM). In this paper, we describe a data generation mechanism
that approximately satisfies a Cox MSM, an SNAFTM and an SNCFTM. Be-
sides providing a procedure for data simulation, our formal description of a
data generation mechanism that satisfies all three models allows one to assess
the relative advantages and disadvantages of each modeling approach. A sim-
ulation study is also presented to compare effect estimates across the three
models.

1 Introduction

Commonly used methods to estimate the effect of a time-varying treatment on
mortality model the hazard at time t conditional on treatment and covariate
history through time t (e.g., a Cox model) (Cox and Oakes, 1984). This stan-
dard approach, however, may be biased in the presence of a time-dependent
covariate (Robins, 1986; Hernán et al, 2004) that is:

1. a time-dependent confounder, i.e., it affects both future risk of failure and
treatment and

2. affected by past treatment.
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As an example, consider an observational study of the effect of diet on risk
of coronary heart disease. The time-varying covariate “diagnosis of diabetes”
is a time-dependent confounder because a diagnosis of diabetes affects future
dietary choices and is a risk factor for coronary heart disease. In addition,
prior diet affects future risk of diabetes.

Robins and collaborators have developed methods to appropriately ad-
just for measured time-varying confounders that are affected by past treat-
ment (for a review of these methods see Robins and Hernán (2009)). In the
high-dimensional failure time setting, these methods include inverse probabil-
ity weighting of marginal structural Cox models (Cox MSM) (Robins, 1998a;
Hernán et al, 2000), g-estimation of structural nested accelerated failure time
models (SNAFTM) (Robins et al, 1992, 1993; Hernán et al, 2005), and g-
estimation of structural nested cumulative failure time models (SNCFTM)
(Page et al, 2008; Picciotto et al, 2008, 2009).

This paper describes the relations between these three models. In previous
work (Young et al, 2008) we described a data generation mechanism (with no
modification of the treatment effect by time-varying covariates) that satisfied
both a Cox MSM and an SNAFTM. In this paper, we describe a data gener-
ation mechanism that approximately satisfies a Cox MSM, an SNAFTM and
an SNCFTM. Besides providing a procedure for data simulation, our formal
description of a data generation mechanism that satisfies all three models al-
lows one to assess the relative advantages and disadvantages of each modeling
approach.

This paper is structured as follows. In §2 we describe the data structure of
interest. In §3 we review general definitions of the SNAFTM, Cox MSM and
SNCFTM and briefly describe associated estimation procedures and inference.
In §4 we describe sufficient conditions for a data generation mechanism that
satisfies all three models. In §5 we present results of a simulation study that
compares estimators of the parameters of the three models both when using
data generated under those sufficient conditions, and when using data in which
the conditions are violated. In §6 we discuss our results.

2 Data structure and identifying assumptions

Consider a longitudinal study with n subjects and observation times m =
0, 1, 2, ..., K + 1. Let T be a failure (death) time variable that may be either
exactly observed or interval censored, Ym the indicator for death by time m
(1 = yes, 0 = no), Vm a vector of time-varying covariates measured at the
start of the interval [m, m + 1), and Am a treatment indicator (1 = yes, 0 =
no) during the interval (m,m + 1]. We use overbars to represent a variable’s
history, i.e., V K = (V0, V1, ..., Vm, ..., VK). By convention, (i) Y0 = 0 and (ii)
if Ym = 1 then Vm = 0, Am = 0, and Ym+1 = 1. Those who do not die before
the last observation time K + 1 are said to be administratively censored. The
observed data consists of n i.i.d. copies of

O = {LK+1, AK}
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where
LK+1 = {Y K+1, V K}
Y K+1 = (Y0, ..., YK+1)

if T is interval-censored and

Y K+1 = (Yu; 0 ≤ u ≤ K + 1)

if T is exactly observed.
Let g = a for a ≡ aK in the support of AK denote a (static or nondynamic)

treatment regime. An example of a treatment regime is “treat continuously
since baseline” or g = (1, 1, ..., 1) = 1. Let Tg and V K,g represent the failure
time and covariate history, respectively, a subject would have experienced had
she, possibly contrary to fact, followed treatment regime g = a. We say a
subject follows treatment regime g = a if the subject takes treatment am at
time m if alive at m. By convention, a subject takes treatment am = 0 if dead
at m. Let am be the first m components of a. The full data structure consists
of the observed data O and the counterfactual data

(
V K,g, Tg

)
for all g = a.

We can think of the observed data structure O as a missing data structure
with

(
V K,g, Tg

)
unobserved.

We assume the following three identifying assumptions (Robins and Hernán,
2009):

1. Consistency:
Given g = a, if Am = am then Y m+1,g = Y m+1 and V m+1,g = V m+1

where
Yu,g = I(Tg < u),

Y K+1,g = (Y0,g, ..., YK+1,g)

if T is interval-censored and

Y K+1,g = (Yu,g; 0 ≤ u ≤ K + 1)

if T is exactly observed. Also in the exactly observed case, if the above
holds and either T < m + 1 or Tg < m + 1 it follows that Tg = T .

2. Conditional exchangeability: For any regime g and m ∈ [0,K]
(
Tg, V K+1,g

) ∐
Am|V m, Am−1, Ym = 0

3. Positivity: fAm−1,V m,Ym
(am−1, vm, 0) 6= 0 =⇒ Pr(Am = am|V m, Am−1, Ym =

0) > 0 w.p.1 for all am in the support of Am, 0 ≤ m ≤ K.

Informally, consistency is satisfied if the counterfactual outcomes are well
defined, exchangeability if there is no unmeasured confounding, and positivity
if there are subjects at all levels of exposure within levels of the measured
confounders. See Young et al (2008) for a graphical representation of this data
structure.
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3 Model definitions, estimation and inference

3.1 Model definitions

Let T0 be the counterfactual failure time under the treatment regime “never
treat during the follow-up” or g = 0 ≡ 0K = (0, 0, ...0). Let T(ām−1,0) be the
failure time under the regime “take treatment ām−1 through m−1 and then no
more treatment” so T(Am−1,0)is the treatment regime “take treatment actually
taken through m− 1 and then no more treatment.” We define three models:

An SNAFTM assumes

T(ām−1,0) and
∫ Tā

m

exp{γAFT (t, at, V t,ā, ψ∗aft)}dt

have the same conditional distribution given(
V m, Am−1 = ām−1, Tām−1 > m

)
; (1)

an MSM assumes

λTā(t) = λ0(t) exp{γMSM (t, at, ψ
∗
msm)}; (2)

and an SNCFTM assumes

exp{γCFT,k(V m, Am, ψ∗cft)} =
E[Yk,g=(Am,0)|V m, Am, Ym = 0]

E[Yk,g=(Am−1,0)|V m, Am,, Ym = 0]
, (3)

where γAFT (t, at, V t,a, ψaft) and γMSM (t, at, ψmsm) are known functions, con-
tinuous in t and differentiable wrt to t except at t = 1, 2, ..., K; γCFT,k(V m, Am, ψcft)
is a known function for 0 ≤ m < k ≤ K + 1; λTā(t) and λ0(t) are the hazard
functions at t for Tā and T0, respectively; and ψ∗aft, ψ∗msm and ψ∗cft denote the
unknown true values of the model parameters ψaft, ψmsm and ψcft, respec-
tively.

3.2 Estimation and inference

Briefly, estimating the parameters of the structural models defined above re-
quires solving an estimating equation of the general form

n∑

i=1

Ui(ψ, α̂) = 0, (4)

where ψ is ψaft, ψmsm, or ψcft depending on which model is of interest,
and α̂ is a consistent estimator of the p-dimensional nuisance parameter α∗

of a parametric model Pr(Am = 1|V m, Am−1, Ym = 0; α) for the treatment
mechanism Pr(Am = 1|V m, Am−1, Ym = 0), 0 ≤ m ≤ K. The specific form of
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U(ψ, α̂) depends on the choice of model for the treatment mechanism and the
choice of γAFT (t, at, V t,a, ψaft), γMSM (t, at, ψmsm), or γCFT,k(V m, Am, ψcft).
More efficient estimators of ψ exist which solve estimating equations with
additional nuisance parameters.

If the model for the treatment mechanism is correctly specified and α̂ is
the MLE of α∗, then

√
n(ψ̂ − ψ∗) −→ N(0, Σ) where

Σ = Λ−1ΓΛ−1
T

, (5)

Λ = ∂E[U(ψ, α∗)]/∂ψT
ψ=ψ∗ when U(ψ, α∗) is a differentiable function of ψ,

S(α∗) is the score for α evaluated at α∗ and

Γ = var{U(ψ∗, α∗)− E[U(ψ∗, α∗)S(α∗)T ]E[S(α∗)S(α∗)T ]−1S(α∗)}.

A consistent estimator of Σ is given by

Σ̂ = Λ̂−1Γ̂ Λ̂−1
T

(6)

where Λ̂ = Pn[∂U(ψ,α̂)
∂ψT |ψ=ψ̂], Γ̂ = Pn{AAT } and

A = U(ψ̂, α̂)− Pn[U(ψ̂, α̂)S(α̂)T ]Pn[S(α̂)S(α̂)T ]−1S(α̂).

Differences in the specific form of U(ψ, α̂) associated with each model result
in varying degrees of computational complexity. For the Cox MSM, the inverse
probability weighted estimator of ψ∗msm that solves

∑n
i=1 Ui(ψmsm, α̂) = 0 can

be computed using standard off-the-shelf software. Robust variance estimates
that lead to conservative Wald confidence intervals for ψ∗ are also straight-
forward to obtain using off-the-shelf software although, if desired, consistent
estimates of the limiting variance estimates can be obtained from equation (6).
In contrast, for the SNAFTM, the estimating equation

∑n
i=1 Ui(ψaft, α̂) = 0 is

non differentiable with respect to ψaft when there is administrative censoring
(i.e., when not all subjects have failed by end of follow-up at K + 1) and so-
called ‘artificial’ censoring is used to guarantee unbiasedness of the estimating
function. As a consequence, solving

∑n
i=1 Ui(ψaft, α̂) = 0 requires search-based

algorithms (e.g., bisection method for one-dimensional ψaft, Nelder-Mead Sim-
plex method in general). G-estimation of an SNCFTM is somewhat more com-
putationally involved than inverse probability weighted estimation of a Cox
MSM, but the estimating function U(ψcft, α̂) is a continuously differentiable
function of ψcft, even in the presence of administrative censoring. Thus, the
estimating equation can be generally solved using a Newton-Raphson type
procedure.

For more details on estimation of a Cox MSM, SNAFTM and SNCFTM see
Hernán et al (2005), Hernán et al (2000) and Page et al (2008), respectively. For
more on general inference for estimators obtained using estimating equation
methodology see van der Laan and Robins (2002).
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4 A data generation mechanism that satisfies all three models

The following theorem states sufficient conditions for the generation of data
that satisfies an SNAFTM and a Cox MSM. Note that this is a special case
of the more general theorem presented in Young et al (2008). Proofs of all
theorems are presented in the appendix.

Theorem 1 Suppose the counterfactual failure times Ta follow an SNAFTM
(1) with γAFT (t, at, V t,a, ψaft) = at × ψaft. Further assume that T0 has an
exponential distribution with hazard λT0(t) = λ0. Then the Ta also follow a
Cox MSM with γMSM (t, at, ψmsm) = at × ψmsm and ψ∗msm = ψ∗aft.

Note that, in this case, exp{ψ∗msm} is the hazard ratio comparing the
regimes “always treat” vs. “never treat.”

The next theorem provides conditions under which there is approximate
equivalence between an SNAFTM and SNCFTM.

First, given the SNAFTM γAFT (t, at, V t,a, ψaft) = at × ψaft, define for
u ≥ m

h(u, Am, ψaft)

=
∫ m

0

exp (At × ψaft)dt +
∫ min(u,m+1)

m

exp (At × ψaft)dt

+ I (u > m + 1) {u− (m + 1)}

= I (m ≤ u < m + 1)

{
m−1∑

l=0

eψaftAl + (u−m) eψaftAm

}

+ I (m + 1 ≤ u)

{
m∑

l=0

eψaftAl + u− (m + 1)

}
(7)

Note Pr
(
j < Tg=(Am,0) < u|Am, V

)
= Pr

[
h(j, Am, ψ∗aft) < T0 < h(u, Am, ψ∗aft)|Am, V

]

under the above SNAFTM.

Theorem 2 Suppose that the following assumptions hold in addition to those
of Theorem 1 and §2:
1. the conditional distribution of Vm given Am−1, V m−1, T0 depends on T0

only through the function I(T0 < c) for a constant c such that c > max(
{
h(K, Am), h(K, Am−1)

}
and

2. failure is rare in the sense that ST0(t) ≈ 1 for t < maxm∈{0,...,K}
{
h(K, Am)

}
where

ST0(t) is the survival function for T0 at t, and A ≈ B means A and B are
approximately equal.

It then follows that the SNCFTM:

exp{γCFT,k(V m, Am, ψ∗cft)} = 1 +
eAmψ∗cft − 1

k −m

approximately holds with ψ∗cft = ψ∗aft.
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When the probability of failure in any interval (m, m + 1) is small, eγCF T,k(V m,Am,ψcft)

with k = m+1 approximates the conditional hazard ratio
λT(Am,0)

(t|V m,Am)

λT(Am−1,0)
(t|V m,Am)

at time t ∈(m,m + 1] given V m, Am, for regime g = (Am, 0) versus regime
g = (Am−1, 0) if, as we assume, the conditional hazard ratio is nearly constant
in the interval (m,m + 1]. Consider a correctly specified SNCFTM (3) with
the form

exp{γCFT,k(V m, Am, ψcft)} = 1 +
eAmψcft − 1

k −m

Under this model, exp{γCFT,m+1(V m, Am, ψcft)} = eAmψcft . Note
λT(Am,0)

(t|V m,Am)

λT(Am−1,0)
(t|V m,Am)

=

eAmψcft does not imply
λT(Am,0)

(t)

λT(Am−1,0)
(t) = eAmψcft . If it did we could conclude

that the MSM γMSM (t, at, ψmsm) = at × ψmsm was correctly specified with
ψ∗msm = ψ∗cft. However, under the additional assumptions of Theorems 1 and

2, we can conclude that
λT(Am,0)

(t|V m,Am)

λT(Am−1,0)
(t|V m,Am)

approximates
λT(Am,0)

(t)

λT(Am−1,0)
(t) , and

thus that the MSM γMSM (t, at, ψmsm) = at × ψmsm with ψ∗msm = ψ∗cft ap-
proximately holds.

The following theorem provides sufficient conditions for data generation
that satisfies a SNAFTM, Cox MSM and SNCFTM in the special case where
ψ∗aft = 0.

Theorem 3 Suppose the counterfactual failure times Ta follow a SNAFTM
(1) with γAFT (t, at, V t,a, ψaft) = at × ψaft and ψ∗aft = 0. Then:

1. the Ta follow a Cox MSM with γMSM (t, at, ψmsm) = at × ψmsm and
ψ∗msm = ψ∗aft and

2. the following SNCFTM:

exp{γCFT,k(V m, Am, ψ∗cft)} = 1 +
eAmψ∗cft − 1

k −m

holds with ψ∗cft = ψ∗aft.

5 Simulation study

We generated data consistent with the conditions stated in Theorems 1 and 2,
and under the full data structure described in §2. The simulations consisted
of 1000 samples, each with 2500 subjects and K + 1 = 10 observation times.
Each sample was generated according to the general algorithm described in
Young et al (2008) for SNAFTM data generation. Here, this algorithm was
specifically implemented as follows:

For each of 2500 simulated subjects:
step 1: Simulate the counterfactual T0 from an Exponential distribution with
λ0 = 0.01.
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Define V−1 = A−1 = Y0 = 0. Then for each m ∈ [0, 9] implement steps 2-4:
step 2: Simulate Vm from logit[Pr(Vm = 1|V m−1, Am−1, T0, Ym = 0; β)] =
β0 +β1I(T0 < c)+β2Am−1 +β3Vm−1 where β = { log( 3

7 ), 2, log(0.5), log(1.5)}
and c = 30.
step 3: Simulate Am from logit[Pr(Am = 1|V m, Am−1, Ym = 0; α)] = α0 +
α1Vm + α2Vm−1 + α3Am−1 where α = {log( 2

7 ), 0.5, 0.5, log(4)}.
step 4: Simulate Ym+1, and possibly T , based on the following:

– if T0 >
∫ m+1

0
exp{ψaft ×Aj}dj then Ym+1 = 0;

– else if T0 ≤
∫ m+1

0
exp{ψaft × Aj}dj then Ym+1 = 1 and T ∈ (m,m + 1]

with T = m + (T0 −
∫ m

0
exp{ψaft ×Aj}dj) exp{−ψaft ×Am}.

Finally, redefine Vl = 0, Al = 0 for l > T .
SAS code to implement the above algorithm is provided at

www.hsph.harvard.edu/causal/software.htm.
Tables 1 through 3 display simulation results for the inverse probability

weighted estimates ψ̂msm, and the g-estimates ψ̂cft and ψ̂aft. The true value of
the parameter ψ∗aft was varied to be either −0.3, 0.0 or 0.3. Each table reports
the mean of the model parameter estimates across Monte Carlo simulation
samples (MC Mean), the difference between this mean and the true value of
the parameter ψ∗aft (Bias), variance of the model parameter estimates across

samples (MC Var), the test statistic T = Bias√
MC Var/2500

and the two-sided

p-value comparing T to a N(0, 1) (p-value).
Results in Table 1 confirm that the estimators of ψ∗msm, ψ∗cft and ψ∗aft

are essentially unbiased when data are generated under the assumptions of
Theorems 1 and 2.

Tables 2 and 3 display simulation results under a data generation mecha-
nism in which the conditions of Theorems 1 and 2 are violated. Specifically,
results presented in Table 2 are based on data generated as in Table 1, except
with T0 generated from a Weibull distribution with shape and scale parameters
2 and 0.02, respectively, which violates the condition that T0 is exponentially
distributed. Results presented in Table 3 differ from those of Table 1 in that
λ0 = 0.1 (as opposed to 0.01), which violates the rare disease condition defined
in Theorem 2.

As expected, for ψ∗aft 6= 0, the results reported in Table 2 confirm that
violation of the exponential condition results in biased estimators of ψ∗msm and
ψ∗cft as the data are no longer generated under a Cox MSM or an SNCFTM.
Also as expected under ψ∗aft 6= 0, violation of the rare disease condition results
in biased estimators of ψ∗cft (see Table 3).

In theory, the performance of the inverse probability weighted estimator
ψ̂msm of ψ∗msm should be unaffected by violations of the rare disease condi-
tion. However, as is common practice (Hernán et al, 2000) we approximated
ψ̂msm via a weighted logistic regression model, which requires the rare disease
condition in every time interval. This approximation may explain the poorer
performance of the inverse probability weighted estimator that is seen in Table
3.
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Table 1 Monte Carlo simulation results for estimators of the parameter of a Cox MSM,
SNCFTM and SNAFTM when data are generated under the assumptions of §2 and Theo-
rems 1 and 2 for various values of ψ∗aft based on 1000 replicates, n = 2500 and K + 1 = 10.

ψ∗aft Model MC Mean Bias MC Var T p-value

−0.3 Cox MSM −0.301 −0.001 0.024 −0.15 0.88
SNCFTM −0.300 −0.000 0.060 0.00 1.00
SNAFTM −0.287 0.013 0.058 1.71 0.09

0.0 Cox MSM 0.000 0.000 0.020 0.14 0.88
SNCFTM −0.002 −0.002 0.046 −0.26 0.79
SNAFTM 0.010 0.010 0.051 1.40 0.16

0.3 Cox MSM 0.302 0.002 0.018 0.50 0.62
SNCFTM 0.294 −0.006 0.037 −0.99 0.32
SNAFTM 0.302 0.002 0.047 0.27 0.77

Table 2 Monte Carlo simulation results for estimators of the parameter of a Cox MSM,
SNCFTM and SNAFTM when data are generated as in Table 1 but with violation of the
assumption that the T0 are exponentially distributed. Here, the T0 follow a Weibull distri-
bution with shape and scale parameters 2 and 0.02, respectively.

ψ∗aft Model MC Mean Bias MC Var T p-value

−0.3 Cox MSM −0.364 −0.064 0.074 −7.47 < 0.0001
SNCFTM −0.467 −0.167 0.175 −12.64 < 0.0001
SNAFTM −0.300 −0.000 0.055 −0.02 0.98

0.0 Cox MSM −0.001 −0.001 0.055 −0.16 0.88
SNCFTM −0.006 −0.006 0.083 −0.64 0.52
SNAFTM 0.010 0.010 0.043 1.59 0.11

0.3 Cox MSM 0.358 0.058 0.044 8.66 < 0.0001
SNCFTM 0.394 0.094 0.054 12.79 < 0.0001
SNAFTM 0.301 0.001 0.037 0.242 0.81

Table 3 Monte Carlo simulation results for estimators of the parameter of a Cox MSM,
SNCFTM and SNAFTM when data are generated as in Table 1 but with violation of the
rare disease assumption (λ0 = 0.1).

ψ∗aft Model MC Mean Bias MC Var T p-value

−0.3 Cox MSM −0.314 −0.014 0.004 −7.17 < 0.0001
SNCFTM −0.248 0.052 0.006 21.46 < 0.0001
SNAFTM −0.296 0.004 0.011 1.08 0.28

0.0 Cox MSM 0.001 0.001 0.003 0.58 0.56
SNCFTM −0.000 −0.000 0.005 −0.10 0.92
SNAFTM −0.000 −0.000 0.010 −0.03 0.98

0.3 Cox MSM 0.318 0.018 0.003 10.25 < 0.0001
SNCFTM 0.245 −0.055 0.005 −25.31 < 0.0001
SNAFTM 0.296 −0.004 0.011 −1.21 0.23
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As expected based on Theorem 3, estimators of both ψ∗msm and ψ∗cft are
unbiased when ψ∗aft = 0 as shown in Tables 2 and 3.

6 Discussion

This paper defines sufficient conditions for a data generation mechanism to
satisfy three structural failure time models: the SNAFTM, Cox MSM and
SNCFTM. A simulation study where the data generation mechanism was (i)
consistent with these conditions, and (ii) in violation of these conditions sup-
ports theoretical results regarding the sufficiency of these conditions. Our re-
sults also describe how to correctly simulate data from a SNCFTM with known
parameter by generating data from a SNAFTM with known parameter. For
simplicity, our discussion did not allow for right-censoring due to loss to follow-
up or competing risks before K + 1, but estimating the model parameters in
the presence of such censoring is straightforward under additional identifying
assumptions as described in Hernán et al (2005), Hernán et al (2000) and Page
et al (2008).

By generating data that satisfies all three models, we can evaluate the
relative performance of the inverse probability weighted estimator of the Cox
MSM and the g-estimators of the SNAFTM and SNCFTM under this limited
data-generating mechanism. An interesting finding is that, as shown in Table
1, the widely used inverse probability weighted estimator of ψ∗msm had similar
or less bias, and a smaller variance, than the g-estimators of ψ∗aft and ψ∗cft,
with the added advantage of being more easily computed.

As discussed in §3.2, the estimators studied in our simulations were simple
to compute but non-optimal. Optimal estimators of parameters of structural
nested models should be more efficient than those of marginal structural mod-
els under the assumption of no effect modification by past covariates (which
is assumed in Theorems 1 and 2) (Robins and Hernán, 2009). Our simulation
results suggest that, at least under this limited data-generating mechanism,
non-optimal parameter estimates for the Cox MSM are actually more efficient
than those of the SNCFTM or SNAFTM.
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7 Appendix

7.1 Proof of Theorem 1

Proof Without loss of generality, we can assume the SNAFTM is locally rank
preserving in the sense that

T(ām−1,0) =
∫ Tā

m

exp{γAFT (t, at, V t,ā, ψ∗aft)}dt,

T0 =
∫ Tā

0

exp (at × ψ∗aft)dt, (8)

since it is non-identifiable whether or not local rank preservation holds (Robins,
1998b). Thus

Pr(Tā > u)

= Pr(T0 >

∫ u

0

exp (at × ψ∗aft)dt)

= exp
{
−

∫ u

0

λ0 exp (at × ψ∗aft)dt

}

Hence λTā(u) = {∂/∂u}
{∫ u

0
λ0 exp (at × ψ∗aft)dt

}
= λ0 exp (au × ψ∗aft). It

follows that ψ∗aft = ψ∗msm for a Cox MSM with γMSM (t, at, ψmsm) = at ×
ψmsm.

7.2 Proof of Theorem 2

Proof By the definition of Yj,g=(Am,0) and Yj,g=(Am−1,0)for any j ∈ [m,m +
1, ..., k] and by consistency, we may rewrite the SNCFTM (3) as follows:

exp{γCFT,k(V m, Am, ψcft)} =
Pr[Tg=(Am,0) < k|V m, Am, Tg=(Am,0) > m]

Pr[Tg=(Am−1,0) < k|V m, Am, Tg=(Am,0) > m]

=
Pr[Tg=(Am,0) < k|V m, Am, Tg=(Am−1,0) > m]

Pr[Tg=(Am−1,0) < k|V m, Am, Tg=(Am−1,0) > m]

=
Pr[k > Tg=(Am,0), Tg=(Am−1,0) > m, V m, Am−1]

Pr[k > Tg=(Am−1,0) > m, V m, Am−1]

=
Pr[h(k, Am) > T0 > h(m,Am−1), V m, Am]

Pr[h(k, Am−1) > T0 > h(m,Am−1), V m, Am]
.

Now, with no loss of generality, explicitly writing out Pr[h(k,Am)>T0>h(m,Am−1),V m,Am]

Pr[h(k,Am−1)>T0>h(m,Am−1),V m,Am]
under

the locally rank preserving SNAFTM and noting that by assumption fVj |V j−1,Aj−1,T0
(Vj |V j−1, Aj−1, u)
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is the same for all u < max
{
h(K, Am), h(K, Am−1)

}
, we obtain

exp{γCFT,k(V m, Am, ψcft)} =




m∏
j=0

fAj |V j ,Aj−1
(Aj |V j , Aj−1)

m∏
j=0

fAj |V j ,Aj−1
(Aj |V j , Aj−1)




×

∫ h(k,Am)

h(m,Am−1)
fT0(u)

m∏
j=0

fVj |V j−1,Aj−1,T0
(Vj |V j−1, Aj−1, u)du

∫ h(k,Am−1)

h(m,Am−1)
fT0(u)

m∏
j=0

fVj |V j−1,Aj−1,T0
(V |V j−1, Aj−1, u)du

= 1 +

∫ h(k,Am)

h(k,Am−1)
fT0(u)

m∏
j=0

fVj |V j−1,Aj−1,T0
(Vj |V j−1, Aj−1, u)du

∫ h(k,Am−1)

h(m,Am−1)
fT0(u)

m∏
j=0

fVj |V j−1,Aj−1,T0
(V |V j−1, Aj−1, u)du

= 1 +

∫ h(k,Am)

h(k,Am−1)
fT0(u)du

∫ h(k,Am−1)

h(m,Am−1)
fT0(u)du

= 1 +

∫ h(k,Am)

h(k,Am−1)
λT0(u)ST0(u)du

∫ h(k,Am−1)

h(m,Am−1)
λT0(u)ST0(u)du

≈ 1 +

∫ h(k,Am)

h(k,Am−1)
λT0(u)du

∫ h(k,Am−1)

h(m,Am−1)
λT0(u)du

= 1 +
λ0

∫ h(k,Am)

h(k,Am−1)
du

λ0

∫ h(k,Am−1)

h(m,Am−1)
du

= 1 +
h(k, Am)− h(k, Am−1)

h(k, Am−1)− h(m, Am−1)

= 1 +
eψaftAm − 1

k −m

7.3 Proof of Theorem 3

Proof By equation (8) and ψ∗aft = 0 it follows that T0 = Ta for any a. Hence

λTa(t) = λT0(t) = λT0(t) exp{at × ψ∗aft}



14

It follows that ψ∗msm = ψ∗aft for a Cox MSM with γMSM (t, at, ψmsm) = at ×
ψmsm . Further, using equation (7), for ψ∗aft = 0, h(u, Ām, ψ∗aft) = u for any
Ām. Thus, we may rewrite the SNCFTM (3) as

exp{γCFT,k(V m, Am, ψ∗cft)} = 1 = 1 +
eAmψ∗aft − 1

k −m
.

It follows that ψ∗cft = ψ∗aft for a SNCFTM with exp{γCFT,k(V m, Am, ψcft)} =

1 + eAmψcft−1
k−m .


