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THE BIPARTITE SWAPPING TRICK
ON GRAPH HOMOMORPHISMS*

YUFEI ZHAO†

Abstract. We provide an upper bound to the number of graph homomorphisms fromG toH , whereH is
a fixed graph with certain properties, andG varies over allN -vertex, d-regular graphs. This result generalizes a
recently resolved conjecture of Alon and Kahn on the number of independent sets. We build on the work of
Galvin and Tetali, who studied the number of graph homomorphisms fromG toH whenG is bipartite.We also
apply our techniques to graph colorings and stable set polytopes.
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1. Introduction.

1.1. From independent sets to graph homomorphisms. Let G ¼ ðV;EÞ be a
(simple, finite, undirected) graph. An independent set (or a stable set) is a subset of the
vertices with no two adjacent. Let iðGÞ denote the number of independent sets ofG. The
following question is motivated by applications in combinatorial group theory [1], [12]
and statistical mechanics [6].

Question. In the family of N -vertex, d-regular graphs G, what is the maximum
value of iðGÞ?

Alon [1] first conjectured in 1991 that, when N is divisible by 2d, the maximum
should be achieved when G is a disjoint union of complete bipartite graphs Kd;d. In
2001, Kahn [6] proved Alon’s conjecture in the case when G is a bipartite graph. Zhao
[13] recently proved the conjecture in general. Theorem 1.1 contains a precise statement
of the result. See [3] or [13] for a history of the problem.

THEOREM 1.1 (Zhao [13]). For any N -vertex, d-regular graph G,

iðGÞ ≤ iðKd;dÞN ∕ ð2dÞ ¼ ð2dþ1 − 1ÞN ∕ ð2dÞ:

Note that there is equality when G is a disjoint union of Kd;d’s.
This result gives a tight upper bound to the quantity iðGÞ1 ∕ jV ðGÞj ranged over all d-

regular graphs G. This quantity can be viewed as the number of independent sets nor-
malized by the size of the graph.

In this paper we extend Theorem 1.1 to give several new results on graph homo-
morphisms, graph colorings, and stable set polytopes.

For graphs G and H (allowing loops for H), a graph homomorphism is essentially a
map from the vertices of G to the vertices of H that carries each edge of G to some edge
of H . More precisely, the set of graph homomorphisms from G to H is given by

HomðG;HÞ ¼ ff : V ðGÞ → V ðHÞ∶fðuÞfðvÞ ∈ EðHÞ ∀ uv ∈ EðGÞg
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(vv means a loop at v), and let

homðG;HÞ ¼ jHomðG;HÞj:

Graph homomorphisms generalize the notion of independent sets. Indeed if we takeH to
be the graph with vertices {0,1} and edges {00,01} (see Figure 1), then HomðG;HÞ is in
bijection with the collection of independent sets of G. Indeed, for each homomorphism
fromG toH , the subset of vertices ofG that map to 1 ∈ V ðHÞ forms an independent set.
Thus iðGÞ ¼ homðG;HÞ.

In addition, graph homomorphisms generalize proper vertex colorings. Take
H ¼ Kq, the complete graph on q vertices. Viewing each vertex of Kq as a color, we
see that a homomorphism in HomðG;KqÞ corresponds to an assignment of each vertex
ofG to one of q colors so that no two adjacent vertices are assigned the same color. Thus
homðG;KqÞ equals to the number of proper q-colorings of G.

Since graph homomorphisms generalize independent sets, it is natural to ask
whether Theorem 1.1 can be generalized to graph homomorphisms. Indeed, the follow-
ing result of Galvin and Tetali [5] generalizes Theorem 1.1 in the bipartite case.

THEOREM 1.2 (Galvin and Tetali [5]). For anyN -vertex, d-regular bipartite graphG,
and any H (possibly with loops), we have

homðG;HÞ ≤ hom ðKd;d; HÞN ∕ ð2dÞ:ð1Þ

Note that in contrast to Theorem 1.1, Theorem 1.2 requires G to be bipartite. It
was conjectured in [5] that the bipartite condition in Theorem 1.2 can be dropped.
Unfortunately, this is false for G ¼ K3 and H a graph of two disconnected loops
(see Example 2.3). We would like to know which graphs H satisfy (1) for all G, as
it would allow us to address the following question and thereby generalize Theorem 1.1
to other instances of graph homomorphisms.

Question. Let H be a fixed graph (allowing loops). In the family of N -vertex,
d-regular graphs G, what is the maximum value of homðG;HÞ?

1.2. Motivation of technique. The proof of Theorem 1.1 consists of two main
steps. The first step, given by Kahn [6], used entropy methods to prove the theorem
when G is bipartite. The second step, given by Zhao [13], reduces the general case
to the bipartite case through a combinatorial argument. The first step has already been
generalized to graph homomorphisms by Galvin and Tetali, resulting in Theorem 1.2. In
this paper we generalize the second step to graph homomorphisms. Since we will be
building on the ideas used in the proof of the independent set problem, it will be helpful
to recall the argument, as we shall do now.

LetG ⊔ G denote two disjoint copies ofG, with vertices labeled vi for v ∈ V ðGÞ and
i ∈ f0; 1g. Let G ×K2 denote the bipartite graph with vertices also labeled vi for v ∈
V ðGÞ and i ∈ f0; 1g, but with edges u0v1 for uv ∈ E. The key step in [13] was to show
that iðGÞ2 ≤ iðG ×K2Þ. We know that iðG ×K 2Þ ≤ iðKd;dÞN ∕ d from the bipartite case,
so it follows that iðGÞ2 ≤ iðG ×K 2Þ ≤ iðKd;dÞN ∕ d and hence iðGÞ ≤ iðKd;dÞN ∕ ð2dÞ.

Note that iðGÞ2 ¼ iðG ⊔ GÞ. The proof of the inequality iðGÞ2 ≤ iðG ×K 2Þ in-
volves constructing an injection from the collection of independent sets ofG ⊔ G to that

FIG. 1. A homomorphism from any graph G into the above graph corresponds to an independent set of G.
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of G ×K2. A snapshot of this construction is illustrated in Figure 2. We start from an
independent set of G ⊔ G (the black vertices in the figure). After “crossing” the edges to
transform G ⊔ G into G ×K 2, we get a subset of the vertices of G ×K 2 (middle figure)
which might not be an independent set in G ×K2. However, it turns out that we can
always “swap” a number of pairs of vertices (each pair is shown in a dashed circle) so that
the resulting subset of vertices is an independent set in G ×K2. It takes a bit of thought
to see that such swapping is always possible. It is true because the set of “bad” edges inG,
corresponding to those edges in G ×K2 whose both endpoints are selected, form a bi-
partite subgraph ofG. Once we specify a uniform way of choosing of the set of vertices to
swap—one recipe is to always choose the lexicographically first subset of V ðGÞ that
“works”—we will have a method of transforming an independent set of G ⊔ G into
an independent set of G ×K 2. This map is injective as long as there is a way of recover-
ing the set of swapped pairs of vertices—if we had chosen the lexicographically first
subset of vertices to swap, then we can recover our choice by choosing the lexicographi-
cally first subset of V ðGÞ whose swapping gives an independent set of G ⊔ G after “un-
crossing” the edges of G ×K 2 to get G ⊔ G. This completes the proof that iðGÞ2 ¼
iðG ⊔ GÞ ≤ iðG ×K2Þ.

We would like to extend the comparison between G ⊔ G and G ×K 2 from indepen-
dent sets to graph homomorphisms. We introduce the bipartite swapping trick
(Proposition 3.7, which is a generalization of the above injection). The bipartite swap-
ping trick gives us a method of corresponding certain elements of HomðG ⊔ G;HÞ with
those of HomðG ×K2; HÞ. For instance, when H is a bipartite swapping target (Defini-
tion 4.1), there is an injection from HomðG ⊔ G;HÞ to HomðG ×K2; HÞ, thereby allow-
ing us to extend Theorem 1.2 to nonbipartite G in certain cases.

Outline of paper. In section 2, we give a summary of our results and introduce the
notion of GT graphs, which characterizes when Theorem 1.2 can be extended to nonbi-
partite graphs. In section 3 we describe the bipartite swapping trick. In section 4 we con-
sider families of graphs where the bipartite swapping trick always succeeds in proving the
nonbipartite extension of Theorem 1.2. In section 5 we apply the bipartite swapping trick
to counting graph colorings. In section 6 we apply our results to the stable set polytope of a
graph. Finally, in section 7, we consider weighted generalizations of our results. Although
the proofs of the weighted analogs of our results come at almost no extra effort, we choose
to defer the discussion until the end in order to simplify the presentation.

Notation and convention. In this paper, G always denotes the source of a graph
homomorphism and H always denotes the target. All graphs are undirected. The graph
G is simple. We allow loops for H but not parallel edges or parallel loops. The notations
V ð·Þ and Eð·Þ, respectively, denote the set of vertices and the set of edges of a graph. The
functionHomð·; ·Þ (and its variants) always returns a set while homð·; ·Þ always returns a
number.

FIG. 2. Transforming an independent set of G ⊔ G to an independent set of G ×K2.
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2. Statement of results.

2.1. GT graphs. As motivated in the introduction, we are interested in extending
Theorem 1.2 to nonbipartite G.

DEFINITION 2.1. A graph H (not necessarily simple) is GT if

homðG;HÞ ≤ hom ðKd;d; HÞN ∕ ð2dÞð2Þ

holds for every N -vertex, d-regular graph G.
Example 2.2. The graph H in Figure 1 is GT by Theorem 1.1 since homðG;HÞ ¼

iðGÞ for every G.
Example 2.3. Let H be the graph with two disconnected vertices, each with

a loop. Then H is not GT. Indeed, let G ¼ K3. Then homðG;HÞ ¼ 2 > 23 ∕ 4 ¼
hom ðK2;2; H Þ3 ∕ 4.

Theorem 1.2 implies that (2) is true for bipartite G. As motivated in section 1.2, we
would like to reduce the general case to the bipartite case by comparing G ⊔ G
and G ×K2.

DEFINITION 2.4. A graph H (not necessarily simple) is strongly GT if

homðG ⊔ G;HÞ ≤ homðG ×K2; HÞ

for every graph G (not necessarily regular).
The following lemma shows the significance of being strongly GT and also justifies

the terminology.
LEMMA 2.5. If H is strongly GT, then it is GT.
Proof. SupposeH is strongly GT. LetG be anN -vertex, d-regular graph. Note that

G ×K2 is a 2N -vertex, d-regular bipartite graph, so we may apply Theorem 1.2. ThenH
being strongly GT implies that

hom ðG;HÞ2 ¼ homðG ⊔ G;HÞ ≤ homðG ×K2; HÞ ≤ hom ðKd;d; HÞN ∕ d:

Therefore homðG;HÞ ≤ hom ðKd;d; HÞN ∕ ð2dÞ, and hence H is GT. ▯
Example 2.6. The argument in section 1.2, originally from [13], shows that

iðG ⊔ GÞ ≤ iðG ×K2Þ for all graphs G, so the graph H in Figure 1 is strongly GT.
Remark. If G is bipartite, then the graphs G ⊔ G and G ×K2 are isomorphic.

Indeed, if V ðGÞ ¼ A ⊔ B is a bipartition, then the map V ðG ⊔ GÞ → V ðG ×K 2Þ send-
ing vi to vi if v ∈ A and v1−i if v ∈ B gives a graph isomorphism.

If H is bipartite, then HomðG;HÞ ¼ ∅ unless G is bipartite, so hom ðG;H Þ2 ¼
homðG ⊔ G;HÞ ¼ homðG ×K2; HÞ if G is bipartite and homðG;HÞ ¼ 0 otherwise.
Thus every bipartite graph is strongly GT in an uninteresting way.

We suspect that there exist graphs which are GT but not strongly GT. Unfortu-
nately, we do not know any examples.

In this paper, we provide some sufficient conditions for a graph to be GT. Here is a
road map for our chain of implications.

H is a threshold graph ðDefinition 4.10; Theorem 4.12Þ
Prop: 4.9

⇒
H is a bipartite swapping target ðDefinition 4.1Þ

Cor: 4.5
⇒

H is strongly GT ðDefinition 2.4Þ
Lem: 2.5

⇒
H is GT ðDefinition 2.1Þ:
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Threshold graphs are graphs with vertices being a multiset of real numbers, and an edge
between two vertices whenever their sum does not exceed a certain global threshold.
The graph in Figure 1 is an example of a threshold graph, so our new result generalizes
Theorem 1.1. We also provide weighted generalizations in section 7.

2.2. Counting graph colorings. The case H ¼ Kq is particularly significant,
since HomðG;KqÞ is in bijection with the set of all proper q-colorings of G, i.e., ways
of coloring the vertices of G using at most q colors so that no two adjacent vertices are
assigned the same color. The function

PðG; qÞ ¼ homðG;KqÞ
is known as the chromatic polynomial of G (viewed as a function in q) and it counts the
number of proper q-colorings of G. The problem of maximizing/minimizing the number
of q-colorings over various families of graphs has been intensely studied, especially the
family of graphs with a fixed number of vertices and edges. See the introduction of [8] for
an overview of the state of this problem. Here we are interested in maximizing the num-
ber of q-colorings in the family of N -vertex, d-regular graphs.

CONJECTURE 2.7. For q ≥ 3, the complete graph Kq is GT. Equivalently, for any N -
vertex, d-regular graph G, the chromatic polynomial satisfies

PðG; qÞ ≤ PðKd;d; qÞN ∕ ð2dÞ.ð3Þ

Note that we have equality when G is a disjoint union of Kd;d’s.
From Theorem 1.2, we know that Conjecture 2.7 is true when G is bipartite.

Although we do not know how to prove the conjecture, we can show the following
asymptotic result using our bipartite swapping trick.

THEOREM 2.8. For every N -vertex, d-regular graph G,

PðG; qÞ ≤ PðKd;d; qÞN ∕ ð2dÞ

for all sufficiently large q (depending on N). Note that equality occurs when G is a dis-
joint union of Kd;d’s.

2.3. Generalized independent sets. Let IðG;nÞ denote the set of assignments
f : V → f0; 1; : : : ; ng so that the sum of the endpoints of an edge never exceeds n. Let
iðG;nÞ ¼ jIðG;nÞj. When n ¼ 1, this construction corresponds to independent sets, so
the following result is a generalization of Theorem 1.1.

THEOREM 2.9. For any N -vertex, d-regular graph G, and positive integer n,

iðG;nÞ ≤ iðKd;d; nÞN ∕ ð2dÞ:

The collection I ðG;nÞ arises naturally in statistical mechanics [9] and communica-
tion networks [4], [10]. Galvin et al. [4] related it to the “finite-state hard core model.” In
these stochastic modeling applications, it is common to weight each assignment in
IðG;nÞ using a geometric or Poisson distribution. Our results also extend to weighted
generalization, which are discussed in section 7. In fact, Theorem 2.9 remains true if we
replace IðG;nÞ by the collections of assignments f : V → A, where A is some fixed finite
set of real numbers, so that the sum of the numbers assigned to endpoints of an edge
never exceed some threshold.

2.4. Stable set polytope. We consider one more measure on the independent sets
of G, namely the volume iV ðGÞ of the stable set polytope of G, which is defined to be the
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convex hull of the characteristic vectors of the independent sets of G. We prove the
following inequality, which has a form analogous to the previous results.

THEOREM 2.10. For any N -vertex, d-regular graph G, the volume of the stable set
polytope of G satisfies

iV ðGÞ ≤ iV ðKd;dÞN ∕ ð2dÞ ¼
�
2d

d

�
−N ∕ ð2dÞ

:

3. Bipartite swapping trick. In this section, we describe the main technique of
our paper. Our goal is to construct a correspondence between a subset of
HomðG ⊔ G;HÞ and a subset of HomðG ×K2; HÞ.

We name the vertices of both G ⊔ G and G ×K2 by vi, for v ∈ V and i ∈ f0; 1g,
such that the edges in G ⊔ G are uivi and edges of G ×K 2 are uiv1−i, for uv ∈ E
and i ∈ f0; 1g.

Let us describe a representation of elements of HomðG ⊔ G;HÞ and
HomðG ×K2; HÞ. An H -pair-labeling of G is simply an assignment V ðGÞ →
V ðH Þ× V ðHÞ, with no additional constraints. Equivalently, it is a way of labeling each
vertex of G with a pair of vertices of H . Every f ∈ HomðG ⊔ G;HÞ can be represented
by an H -pair-labeling of G with additonal constraints, assigning v ∈ V ðGÞ to the pair
ðfðv0Þ; fðv1ÞÞ, satisying the constraints that whenever uv ∈ EðGÞ, the first vertex of H
assigned to u must be adjacent (in H) to the first vertex assigned to v, and the second
vertex assigned to umust be adjacent to the second vertex assigned to v. It is easy to see
that this describes a bijective correspondence betweenHomðG ⊔ G;HÞ and the set ofH -
pair-labelings satisfying these constraints. Similarly, we can represent elements of
HomðG ×K2; HÞ by H -pair-labelings satisfying the constraint that whenever uv ∈
EðGÞ, the first vertex assigned to u must be adjacent to the second vertex assigned
to v.

If f ∈ HomðG ⊔ G;HÞ or f ∈ HomðG ×K2; HÞ, we denote by pairðfÞ the corre-
sponding H -pair-labeling.

Example 3.1. Let G and H be the following graphs. The vertices of H are named a,
b, c, d.

. Then the H -pair-labeling on the left diagram below represents an element of
HomðG ⊔ G;HÞ (but not an element of HomðG ×K2; HÞ), while the H -pair-labeling
on the right diagram below represents an element of HomðG ×K2; HÞ (but not an ele-
ment of HomðG ⊔ G;HÞ). Recall that in both cases we label each v ∈ V ðGÞ by
ðfðv0Þ; fðv1ÞÞ.

We wish to transform a homomorphism f ∈ HomðG ⊔ G;HÞ into a homomorphism
in HomðG ×K2; H Þ. We might naively do so by hoping that the same map of vertices
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works; that is, perhaps we can keep the same H -pair-labeling representation. However,
this does not always work, because the same H -pair-labeling might no longer represent a
homomorphism inHomðG ×K2; H Þ, as is the case in the previous example. The problem
is that the H -pair-labeling needs to satisfy different contraints to be a homomorphism in
HomðG ⊔ G;HÞ and in HomðG ×K2; HÞ. The following definition is motivated by this
obstruction.

DEFINITION 3.2. Let p ¼ ðp1; p2Þ: V ðGÞ → V ðHÞ× V ðHÞ be an H -pair-labeling of
G. We say that uv ∈ EðGÞ is safe with respect to p if piðuÞpjðvÞ ∈ EðHÞ for all i,
j ∈ f0; 1g; otherwise we say that uv is violated with respect to p.

If f ∈ HomðG ⊔ G;HÞ or f ∈ HomðG ×K2; HÞ, then we say that uv ∈ EðGÞ is safe
(resp., violated) with respect to f if the corresponding H -pair-labeling is safe (resp.,
violated) with respect to pairðf Þ.

Note that we speak of edges of G being violated, and not edges of G ⊔ G or
G ×K2. For instance, when we say that uv ∈ EðGÞ is violated with respect to
f ∈ HomðG ⊔ G;HÞ, the violation refers not to what happens in the current homo-
morphism (as f is a valid homomorphism), but the obstructions to a homorphism once
we transform G ⊔ G to G ×K 2 and attempt to keep the “same” f .

Example 3.3. A homomorphism to Kq is the same as a proper q-coloring of the
graph. Suppose that we represent the colors (i.e., vertices of Kq) by letters. In the
diagrams below, the first Kq-pair-labeling on the left represents an element of
HomðG ⊔ G;K4Þ and the second Kq-pair-labeling represents an element of
HomðG ×K2; K4Þ. The violated edges of G in each case are highlighted in bold.

Here is the key operation used in the bipartite swapping trick.
DEFINITION 3.4 (the swapping operation). Let p be an H -pair-labeling of G, and let

W ⊆ V ðGÞ. Define swapðp;W Þ to be the H -pair-labeling obtained from p by swapping
each pair of labels assigned to vertices in W .

Note that swapping does not affect whether an edge is violated.
The key insight is that if we start with f ∈ HomðG ⊔ G;HÞ, then the violated edges

prevent f from being a valid homomorphism in HomðG ×K2; HÞ, but we can fix this
issue by swapping exactly one endpoint of each violated edge. In order to perform this
operation successfully to the whole graph, the set of violated edges must form a bipartite
subgraph; hence the following definition.

DEFINITION 3.5 (bipartite swapping property). Let p be an H -pair-labeling of G. We
say that p has the bipartite swapping property if the edges of G that are violated with
respect to p are a bipartite subgraph of G. Similarly, we say that f ∈ HomðG ⊔ G;HÞ or
f ∈ HomðG ×K2; HÞ has the bipartite swapping property if pairðf Þ does.

Note that bipartiteness appears in two separate places. The first is where we com-
pare any arbitrary graph G to a bipartite graph G ×K2. The second is where we con-
sider bipartite subgraphs of G.
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Example 3.6. In Example 3.3, the first homomorphism has the bipartite swapping
property while the second one does not. Let f denote the first homomorphism,
whose H -pair-labeling is reproduced below on the left. Let W denote the set of circled
vertices. Then swapðpairðf Þ;W Þ, shown on the right, represents an element of
HomðG ×K2; K4Þ. Note that W contains exactly one endpoint of every violated edge.

Let HombspðG ⊔ G;HÞ denote the subset of HomðG ⊔ G;HÞ containing all homo-
morphisms possessing the bipartite swapping property. Similarly let HombspðG×
K2; HÞ denote the subset of HomðG ×K2; HÞ containing all homomorphisms possessing
the bipartite swapping property.

PROPOSITION 3.7 (bipartite swapping trick). For graphs G and H (H possibly with
loops), there exists a bijection between HombspðG ⊔ G;HÞ and HombspðG ×K2; HÞ, ob-
tained through some application of the swapping operation.

We need to address two issues. First we need to check that such swapping operation
produces valid homomorphisms. Second we need to describe how to consistently choose
the subset of vertices of G in order to make the map a bijection.

LEMMA 3.8. Suppose f ∈ HombspðG ⊔ G;HÞ (resp., HombspðG ×K2; H Þ) and
W ⊆ V ðGÞ such that each violated edge with respect to f has exactly one endpoint
in W . Then swapðpairðf Þ;W Þ represents an element of HombspðG ×K2; HÞ (resp.,
HombspðG ⊔ G;HÞ).

Proof. We check the f ∈ HombspðG ⊔ G;HÞ case (the other one is analogous). Let
p ¼ pairðf Þ and p 0 ¼ swapðp;W Þ, so that p 0iðvÞ ¼ piðvÞ for all v ∈= W and i ∈ f0; 1g,
and p 0iðvÞ ¼ p 01−iðvÞ for v ∈ W and i ∈ f0; 1g. We want to show that p 0 represents
an element of HombspðG ×K2; HÞ. So we need to check that if uv ∈ EðGÞ, then
p 0iðuÞp 01−iðvÞ ∈ EðHÞ for i ∈ f0; 1g. If uv is safe with respect to p (and hence p 0 as well),
then we automatically have p  0iðuÞp  01−iðvÞ ∈ EðHÞ. Otherwise, uv is vioated, so exactly
one of u and v is contained in W . Say v ∈ W . Then p  0iðuÞp 01−iðvÞ ¼ piðuÞpiðvÞ, which is
inEðHÞ since p represents an element ofHomðG ⊔ G;HÞ. It follows that p 0 represents an
element of HomðG ×K2; HÞ. Note that the set of violated edges is not affected by swap-
ping, so p 0 also has the bipartite swapping property, and hence represents an element of
HombspðG ×K2; HÞ. ▯

Given f ∈ HombspðG ⊔ G;HÞ, the set of violated edges form a bipartite graph, but
since there is no canonical bipartition, there may be many choices forW as in the lemma.
How do we consistently choose W so that we have a bijection? The rest of the proof
addresses this question.

Proof of Proposition 3.7. For every F ⊆ EðGÞ that forms a bipartite subgraph
of G, choose WF ⊆ V ðGÞ so that every edge in F has exactly one endpoint in WF .
The specific choice of WF is unimportant; it just needs to be chosen once and for all.
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Construct a bijection between HombspðG ⊔ G;HÞ and HombspðG ⊔ G;HÞ by send-
ing f ∈ HombspðG ⊔ G;HÞ to the element of HombspðG ×K2; HÞ represented by
swapðpairðf Þ;W violðf ÞÞ, where violðf Þ denotes the set of violated edges of f . Lemma 3.8
guarantees that the image lands in HombspðG ×K2; HÞ. For the inverse map, we note
that the set of violated edges does not change, so that we can send
f  0 ∈ HombspðG ×K2; HÞ to the element of HombspðG ⊔ G;HÞ represented by
swapðpairðf  0Þ;W violðf  0ÞÞ. This gives a bijection. ▯

4. Bipartite swapping target. In the previous section we saw that there exists a
bijective correspondence between HombspðG ⊔ G;HÞ and HombspðG ×K2; HÞ. Some-
times it happens that every homomorphism in HomðG ⊔ G;HÞ has the bipartite swap-
ping property, and in this section we study such cases.

4.1. Bipartite swapping target.
DEFINITION 4.1 (bipartite swapping target). We say that a graph H (not necessarily

simple) is a bipartite swapping target if HombspðG ⊔ G;HÞ ¼ HomðG ⊔ G;HÞ for every
graph G; i.e., every homomorphism from G ⊔ G to H has the bipartite swapping
property.

Remark. IfH is a bipartite swapping target, then any induced subgraph of H is also
a bipartite swapping target. In other words, being a bipartite swapping target is a
hereditary property.

Example 4.2. Every bipartite graph H is a bipartite swapping target, since
HomðG ⊔ G;HÞ ¼ ∅ unless G is already bipartite.

Example 4.3. An odd cycleH ¼ Cn is not a bipartite swapping target. Indeed, if the
vertices of Cn are given by elements of Z∕ nZ, with edges between i and iþ 1, then the
H -pair-labeling i ↦ ði; iþ 1Þ on G ¼ Cn represents an element of HomðCn ⊔ Cn;CnÞ
that has every edge ofG violated. The following diagram shows the example of a 5-cycle.

PROPOSITION 4.4. IfH is a bipartite swapping target, then the bipartite swapping trick
gives an injective map from HomðG ⊔ G;HÞ to HomðG ×K 2; H Þ.

Proof. We have HomðG ⊔ G;HÞ ¼ HombspðG ⊔ G;HÞ, which, by the bipartite
swapping trick, is in bijective correspondence with HombspðG ×K2; HÞ, which is a sub-
set of of HomðG ×K2; HÞ.

COROLLARY 4.5. If H is a bipartite swapping target, then H is strongly GT
(Definition 2.4), and hence H is GT (Definition 2.1).

Proof. Proposition 4.4 implies that

homðG ⊔ G;HÞ ≤ homðG ×K2; HÞ

for every G. Therefore H is strongly GT. ▯

4.2. Testing for bipartite swapping targets. From Definition 4.1 it seems
that to determine whether H is a bipartite swapping target, we have to check
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the condition for every G and every homomorphism. Fortunately, there is an easy
criterion for determining whether a graph is a bipartite swapping target which
involves checking whether a particular subgraph of H × H is bipartite, as we shall
explain in this section.

Construct the graph Hbst with vertices V ðHbstÞ ¼ V ðHÞ× V ðHÞ, and an edge be-
tween ðu; vÞ and ðu 0; v 0Þ ∈ V ðHbstÞ if and only if

uu 0 ∈ EðHÞ; and vv 0 ∈ EðHÞ; and fuv 0 ∈= EðHÞ or u 0v ∈= EðHÞg:
PROPOSITION 4.6. A graph H is a bipartite swapping target if and only if Hbst is bi-

partite.
Proof. To see whether H is a bipartite swapping target, we need only check

that HomðG ⊔ G;HÞ ¼ HombspðG ⊔ G;HÞ for all odd cycles G. Indeed, if some f ∈
HomðG ⊔ G;HÞ does not have the bipartite swapping property, then the set of
violated edges with respect to f contains some odd cycle Cn, and restriction
to the cycle subgraph gives a homomorphism in HomðCn ⊔ Cn;HÞ that has all
edges of Cn violated.

An element in HomðCn ⊔ Cn;HÞ can be represented by a closed walk of n
steps in H ×H (i.e., through the H -pair-labeling). The step from ðu; vÞ to ðu 0; v 0Þ
satisfies uv ∈ EðHÞ and u 0v 0 ∈ EðHÞ since it is an edge of H ×H . Furthermore, it
gives a violated edge in Cn if and only if uv 0 ∈= EðHÞ or u 0v ∈= EðHÞ, and such
edges form the subgraph Hbst ⊂ H × H . A homomorphism in HomðCn ⊔ Cn;H Þ
fails to possess the bipartite swapping property if and only if there is a closed walk
of n steps in Hbst. Checking over all odd n, we find that H fails to possess the
bipartite swapping property if and only if Hbst contains an odd cycle. The result
follows. ▯

Example 4.7. Here is a graph H with Hbst drawn (indexed Cartesian-style as op-
posed to matrix-style). It is straightforward (although somewhat tedious) to construct
the edges of Hbst using the rules given above. Note that Hbst is bipartite, so it follows
that H is a bipartite swapping target.

Extending this example, it turns out that if H is a path with a single loop
attached to either the first or the second vertex of the path, then Hbst is bipartite
and thus H is a bipartite swapping target. The following diagrams provide a
proof-by-picture of this fact. The vertices of Hbst are drawn in the order following
the example above, and they are colored black and white to show the bipartition.
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On the other hand, the following graph H is not a bipartite swapping target, since
Hbst is not bipartite (an odd cycle is highlighted). Any graph containingH as an induced
subgraph is thus also not a bipartite swapping target.

4.3. Threshold graphs. Bipartite swapping targets at first seem like rather elu-
sive objects, and we are left wondering whether there are many graphs that are bipartite
swapping targets. In this section we provide a simple sufficient condition for bipartite
swapping targets, thereby presenting a large useful family of such graphs.

DEFINITION 4.8. LetH be a graph (not necessarily simple). An alternating 4-circuit is
a sequence a, b, c, d ∈ V ðHÞ (not necessarily distinct), such that ab, cd ∈ EðHÞ, and bc,
da ∈= EðHÞ.

PROPOSITION 4.9. Let H be a graph (not necessarily simple). Suppose H has no al-
ternating 4-circuit; then H is a bipartite swapping target.

Proof. We use Proposition 4.6. In Hbst, let

W ¼ fðu; vÞ ∈ V ðHbstÞ ¼ V ðHÞ×V ðHÞ: uv 0 ∈= EðH Þ
for some ðu; vÞðu 0; v 0Þ ∈ EðHbstÞg:

We claim that every edge of Hbst has exactly one endpoint in W . For edge
e ¼ ðu; vÞðu 0; v 0Þ ∈ EðHbstÞ, by definition either uv 0 ∈= EðHÞ or u 0v ∈= EðHÞ, so at least
one of the endpoints of e is inW . Now suppose that both endpoints of e are inW . With-
out loss of generality assume that uv 0 ∈= EðHÞ. Since ðu 0; v  0Þ ∈ W , we have u 0v 0  0 ∈= EðHÞ
for some ðu 0; v 0Þðu 0  0; v 0 0Þ ∈ EðHbstÞ. Then uv 0, u 0v 0 0 ∈= EðH Þ and uu  0, v 0v 0  0 ∈ EðHÞ, so that
u, u 0, v 0  0, v 0 is an alternating 4-circuit ofH , a contradiction. Therefore, every edge ofHbst

has exactly one endpoint in W and hence Hbst is bipartite.
Remark. The graph H in Example 4.7 has an alternating 4-circuit (namely b, c, c,

b), but it is still a bipartite swapping target. Thus the converse of Proposition 4.9 is false.
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Now we construct a family of graphs which have no alternating 4-circuits and are
hence bipartite swapping targets.

DEFINITION 4.10 (threshold graphs). LetA be a finite (multi)set of real numbers, and
t be some “threshold” constant. Let HA;t denote the graph with A as the vertices, and an
edge between x, y ∈ A (possibly x ¼ y) if and only if xþ y ≤ t. We call such graphs
threshold graphs. When A ¼ f0; 1; : : : ; ng and t ¼ n, we write Hn for HA;t.

LEMMA 4.11. For any A and t, the graph HA;t has no alternating 4-circuit.
Proof. An alternating 4-circuit a, b, c, d ∈ V ðHA;tÞ ¼ A in HA;t must satisfy

aþ b ≤ t, cþ d ≤ t, bþ c > t, dþ a > t. The sum of the first two inequalities gives aþ
bþ cþ d ≤ 2t while the sum of the last two inequalities gives aþ bþ cþ d > 2t, which
is impossible. ▯

Note that a graph homomorphism in HomðG;HA;tÞ corresponds to assigning each
vertex of G some “state” represented by a real number in A, so that the sum of the states
of the two endpoints of an edge never exceeds some threshold. This interpretation allows
us to prove the result about generalized independent sets stated in section 2.3.

Proof of Theorem 2.9. The key observation is that HomðG;HnÞ ≅ IðG;nÞ (de-
fined in section 2.3). Then Theorem 2.9 is equivalent to the statement that Hn is
GT, which is true since Hn has no alternating 4-circuit, and hence is a bipartite
swapping target. ▯

The statement at the end of section 2.3 about assignments f : V → A follows ana-
logously by using H ¼ HA;t.

Next we give a complete characterization of all threshold graphs. It turns out that
they are precisely the class of graphs without alternating 4-circuits.

THEOREM 4.12 (characterization of threshold graphs). Let H be a graph (allowing
loops) with n vertices. The following are equivalent:

(a) H has no alternating 4-circuit.
(b) H is isomorphic to some threshold graph HA;t.
(c) The vertices of H can be ordered in a way so that the set of positions of the 1’s in

the adjacency matrix ofH form a self-conjugate Young diagram (English-style).
(d) The vertices of H can be ordered as v1; : : : ; vn so that Nðv1Þ ⊇

Nðv2Þ ⊇ · · ·⊇ NðvnÞ, where NðvÞ denotes the set of neighbors of v.
Remark. The condition in (c) means that the adjacency matrix of H has the prop-

erty that, whenever an entry is 1, all the entries above and/or to the left of it are all 1’s.
Self-conjugate means that matrix is symmetric, which is automatic for undirected
graphs. Here is an example of a matrix satisfying (c):

0
BBBBBB@

1 1 1 1 1 0
1 1 1 0 0 0
1 1 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0

1
CCCCCCA
:

Figure 3 shows all isomorphism classes of graphs with up to 3 vertices satisfying the
conditions of Theorem 4.12.

Proof of Theorem 4.12. We will show that ðaÞ ⇐ ðbÞ ⇐ ðcÞ ⇐ ðdÞ ⇐ ðaÞ. The im-
plication ðbÞ ⇒ ðaÞ has already been established in Lemma 4.11.

ðcÞ ⇒ ðbÞ: Start with an adjacency matrix satisfying (c). Let ri denote the number
of 1’s in the ith row. Let ai ¼ i− ri, and let A denote the multiset fa1; a2; : : : ; ang. We
claim that H is isomorphic to HA;0, where ai ∈ A corresponds to the vertex represented
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by the ith row of the matrix. Indeed, if the ði; jÞ entry in the matrix is 1, then i ≤ rj and
j ≤ ri so that ai þ aj ¼ i− ri þ j− rj ≤ 0. Otherwise, the ði; jÞ entry is 0, so i > rj and
j > ri, and hence ai þ aj ¼ i− ri þ j− rj > 0.

ðdÞ ⇒ ðcÞ: Suppose that (d) holds. We claim that the adjacency matrix of H with
respect to the vertex ordering v1; : : : ; vn satisfies (c). It suffices to show that if the entry
ði; jÞ of adjacency matrix is 1 (denoting vivj ∈ EðHÞ), then every entry directly above or
directly to the left of it is 1. Due to symmetry, we need only consider the entries above
ði; jÞ. For k < j, we have NðvkÞ ⊇ NðvjÞ ∋ vi, so vivk ∈ EðHÞ and hence the entry at
ði; kÞ is 1. This shows that (c) is satisfied.

ðaÞ ⇒ ðdÞ: Suppose that H has no alternating 4-circuit. Order the vertices by de-
creasing degree, so that jNðv1Þj ≥ jNðv2Þj ≥ · · ·≥ jNðvnÞj. We claim that (d) is satisfied
for this ordering. Suppose not, so that NðviÞ ⊉ NðvjÞ for some i < j. Since
jNðviÞj ≥ jNðvjÞj, we have NðviÞ ⊈ NðvjÞ as well. Let x ∈ NðviÞ \ NðvjÞ and y ∈
NðvjÞ \ NðviÞ. Then vi, x, vj, y is an alternating 4-circuit, a contradiction. Therefore,
(d) is satisfied. ▯

We conclude this section with an enumerative result about threshold graphs, there-
by showing the abundunce of bipartite swapping targets.

PROPOSITION 4.13. There are exactly 2n isomorphism classes of threshold graphs on
n vertices, of which ðnkÞ have exactly k loops.

Proof. Using characterization (c) of Theorem 4.12, we see that graphs with k

loops correspond bijectively to paths on the Euclidean lattice (0, 0) to ðk; n− kÞ using
steps (1, 0) and (0, 1) (that is, consider the boundary between the 0’s and the 1’s up to
the diagonal of the matrix) and there are exactly ðnkÞ such walks. Summing over k yields
2n. ▯

Remark. The ðnkÞ classes can be constructed by arranging k looped vertices and
n− k nonlooped vertices in a row, and then connecting every looped vertex to all
the vertices on its right.

5. Counting graph colorings. When H ¼ Kq, the set HomðG;KqÞ is in bijective
correspondence with proper vertex colorings of G with q colors corresponding to the
vertices of Kq. The number of proper q-colorings of G is equal to PðG; qÞ ¼
homðG;KqÞ, the chromatic polynomial ofG. As discussed in section 2.2, we suspect that
Kq is GT, so that PðG; qÞ ≤ PðKd;d; qÞN ∕ ð2dÞ. Unfortunately, when q ≥ 3, Kq is not a
bipartite swapping target, since it contains an induced triangle, which is not a bipartite
swapping target by Example 4.3. Nevertheless, we still suspect that Kq is strongly GT.

CONJECTURE 5.1. Kq is strongly GT.

FIG. 3. All graphs with up to 3 vertices satisfying Theorem 4.12 and their adjacency matrices.
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Note that Conjecture 5.1 implies Conjecture 2.7. Since Kq is not a bipartite swap-
ping target, we cannot directly apply the bipartite swapping trick. However, it turns out
that we can still use the bipartite swapping trick to prove an asymptotic version of Con-
jecture 5.1. Here is the main result of this section.

PROPOSITION 5.2. Let G be a graph with N vertices. Then PðG ⊔ G; qÞ ≤
PðG ×K2; qÞ for q ≥ ð2NÞ2Nþ2.

Before we prove Proposition 5.2, let us deduce Theorem 2.8 from the proposition.
Proof of Theorem 2.8. From Proposition 5.2, we have PðG; qÞ2 ¼ PðG ⊔ G; qÞ ≤

PðG ×K2; qÞ for sufficiently large q. Theorem 1.2 implies that PðG ×K 2; qÞ ¼
homðG ×K2; KqÞ ≤ hom ðKd;d; KqÞN ∕ d ¼ PðKd;d; KqÞN ∕ d for all q. Theorem 2.8 then
follows from combining the two inequalities. ▯

Remark. After the initial draft of this paper was written, Lazebnik observed
(personal communication to the author via Galvin) that PðG; qÞ ≤ PðKd;d; qÞN ∕ ð2dÞ

whenever N ∕ ð2dÞ is an integer and q > 2ðnd ∕ 24 Þ, thereby improving the lower bound
on q in Theorem 2.8 at least in the case when N is divisible by 2d. This proof uses a
completely different method from this paper, and is inspired by Lazebnik’s [7] use of
the Whitney broken circuit characterization of the chromatic polynomial.

Let HomsurjðG;HÞ denote the subset of HomðG;HÞ containing homomorphisms
whose maps of vertices V ðGÞ → V ðHÞ is surjective. Also let hom surjðG;HÞ ¼
jHomsurjðG;HÞj. We know that

PðG; qÞ ¼
XjV ðGÞj

i¼0

homsurjðG;KiÞ
�
q
i

�
:

Indeed, if exactly i colors are used in the coloring, then there are ðqiÞ ways to choose the i
colors used, and homsurjðG;KiÞ ways to color G using all i colors. Now

PðG ⊔ G; qÞ ¼
X2N
i¼0

homsurjðG ⊔ G;KiÞ
�
q
i

�
;ð4Þ

and PðG ×K2; qÞ ¼
X2N
i¼0

homsurjðG ×K2; KiÞ
�
q
i

�
:ð5Þ

From playing with small examples, it seems that the PðG ⊔ G; qÞ ≤ PðG ×K2; qÞ holds
even when (4) and (5) are compared term-by-term. We state this as a conjecture. Ob-
serve that Conjecture 5.1 follows from this stronger conjecture.

CONJECTURE 5.3. If G is a simple graph, then for all positive integers i,

homsurjðG ⊔ G;KiÞ ≤ homsurjðG ×K2; KiÞ:

Although we are unable to prove Conjecture 5.3, we will prove the inequality for the
most significant terms of (4) and (5). Note that ðqiÞ is a polynomial in q of degree i. IfG is
bipartite, then G ×K2 ≅ G ⊔ G, so the two polynomials (4) and (5) are equal. So we
shall assume that G is nonbipartite. Our strategy is to compare the coefficients of ðqiÞ in
(4) and (5) starting from the highest i, and show that on the first instance when the two
coefficients differ, the coefficient in (5) is greater. This would imply that PðG; qÞ2 <
PðG ×K2; qÞ for large q. Specifically, we claim the following.
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LEMMA 5.4. Suppose that G has N vertices and odd girth t; then

homsurjðG ⊔ G;KiÞ ¼ homsurjðG ×K2; KiÞ for i ≥ 2N − tþ 2;

and homsurjðG ⊔ G;KiÞ < homsurjðG ×K2; KiÞ for i ¼ 2N − tþ 1:

The proof of Lemma 5.4 requires several more lemmas.
LEMMA 5.5. If f ∈ HomsurjðG ⊔ G;KiÞ, and the set of violated edges of G with re-

spect to f contains a cycle of length l, then i ≤ 2N − lþ 1, where N ¼ jV ðGÞj. Further-
more, if l is odd, then i ≤ 2N − l.

Proof. For each color c ∈ V ðKiÞ, let jf−1ðcÞj denote the number of vertices of G ⊔
G colored using c. Then

P
c∈V ðKiÞjf−1ðcÞj ¼ 2N so that
X

c∈V ðKiÞ
ðjf−1ðcÞj− 1Þ ¼ 2N − i:ð6Þ

Let v1; : : : ; vl ∈ V ðGÞ be the cycle of violated edges. As we color each pair of vertices
ðvj0; vj1Þ with a pair of colors in the order j ¼ 1; 2; : : : ;l, the condition that the edge
vjvjþ1, for 1 ≤ i ≤ l− 1, is violated implies that in order to color the pair
ðvjþ1

0 ; vjþ1
1 Þ after having colored ðvj0; vj1Þ, some previously used color must be repeated

at least one more time, thereby contributing at least one to the sum on the left-hand side
of (6). Since this is the case for each 1 ≤ i ≤ l− 1, it follows that the left-hand side of (6)
is at least l− 1. Thus 2N − i ≥ l− 1, thereby showing the first statement in the
lemma.

If l is odd, then the final edge in the cycle vlv1 must also contribute one more re-
peated color, thereby showing that 2N − i ≥ l. (This is not the case for l even because
we can use the same color for v10; v

2
1; v

3
0; v

4
1; : : : ; v

l
1 , and different and distinct colors for all

other vertices of G ⊔ G.) ▯
There is a parallel lemma for G ×K2, whose proof we omit since it is completely

analogous to the first part of Lemma 5.5.
LEMMA 5.6. If f ∈ HomsurjðG ×K2; KiÞ, and the set of violated edges of G with re-

spect to f contains a cycle of length l, then i ≤ 2N − lþ 1.
LEMMA 5.7. Suppose that G has N vertices and odd girth t; then every element of

HomsurjðG ⊔ G;KiÞ for i ≥ 2N − tþ 1 has the bipartite swapping property.
Proof. Suppose that some f ∈ HomsurjðG ⊔ G;KiÞ fails to have the bipartite swap-

ping property; then the set of violated edges contains an odd l-cycle, and l ≥ t since t is
the odd girth of G. Then Lemma 5.5 implies that i ≤ 2N − l ≤ 2N − t, which contra-
dicts i ≥ 2N − tþ 1. ▯

LEMMA 5.8. Suppose that G has N vertices and odd girth t; then every element of
HomsurjðG ×K2; KiÞ for i ≥ 2N − tþ 2 has the bipartite swapping property. Further-
more, some element of HomsurjðG ×K2; KiÞ for i ¼ 2N − tþ 1 does not have the bipar-
tite swapping property.

Proof. The first part is analogous to Lemma 5.7. For the second part, suppose that
v1; : : : ; vt is a t-cycle inG. Consider the coloring ofG ×K 2 which colors v10; v

2
0; : : : ; v

t
0 all

with the same color, and all other vertices of G ×K2 with different and distinct colors.
Then the odd t-cycle is violated, and exactly 2N − tþ 1 colors are used. ▯

Now we are ready to apply the bipartite swapping trick.
LEMMA 5.9. Suppose that G has N vertices and odd girth t; then for i ≥ 2N − tþ 1,

the bipartite swapping trick gives an injective map
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ϕ: HomsurjðG ⊔ G;KiÞ → HomsurjðG ×K2; KiÞ:

This map is a bijection when i ≥ 2N − tþ 2, but fails to be a surjection when
i ¼ 2N − tþ 1.

Proof. From Lemma 5.7, we see that when i ≥ 2N − tþ 1, HomsurjðG ⊔ G;KiÞ is a
subset of HombspðG ⊔ G;KiÞ, so that we can bijectively map it to a subset of
HomsurjðG ×K2; KiÞ. Note that the bipartite swapping trick preserves the surjectivity
of the map of the vertices, so the image of HomsurjðG ⊔ G;KiÞ lies in
HomsurjðG ×K2; KiÞ, and hence ϕ is an injection.

When i ≥ 2N − tþ 2, from Lemma 5.8 we know that HomsurjðG ×K2; KiÞ ⊆
HombspðG ×K2; KiÞ, so that we can apply the bipartite swapping trick to HomsurjðG ×
K2; KiÞ to obtain the inverse of ϕ.

When i ¼ 2N − tþ 1, from Lemma 5.8 we know that some element of HomsurjðG ×
K2; KiÞ does not have the bipartite swapping property. Therefore, ϕ is not
surjective. ▯

Lemma 5.4 follows immediately from Lemma 5.9.
Proof of Proposition 5.2. If G is bipartite, then G ×K 2 ≅ G ⊔ G, so PðG; qÞ2

¼ PðG ×K2; qÞ. Otherwise, let t be the odd girth of G. Then using Lemma 5.4 and
(4) and (5), we find that for q ≥ ð2NÞ2Nþ2,

PðG ×K2; qÞ− PðG ⊔ G; qÞ ¼
X2N
i¼0

ðHomsurjðG ×K2; KiÞ− HomsurjðG ⊔ G;KiÞÞ
�
q

i

�

≥
�

q

2N − tþ 1

�
þ

X2N−t

i¼0

ðHomsurjðG ×K2; KiÞ

− HomsurjðG ⊔ G;KiÞÞ
�
q

i

�

≥
�

q

2N − tþ 1

�
−

X2N−t

i¼0

HomsurjðG ⊔ G;KiÞ
�
q

i

�

≥
�

q

2N − tþ 1

�
−

X2N−t

i¼0

i2N
�
q

i

�

≥
�

q

2N − tþ 1

�
− ð2N − tþ 1Þð2N − tÞ2N

�
q

2N − t

�

≥
�
q− 2N þ t

2N − tþ 1
− ð2N − tþ 1Þð2N − tÞ2N

��
q

2N − t

�

which is nonnegative as long as

q ≥ ð2N − tþ 1Þ2ð2N − tÞ2N þ 2N − t:

Note that t ≥ 3, so q ≥ ð2NÞ2Nþ2 suffices. ▯

6. Stable set polytope. Let G be a graph. For any S ⊆ V ðGÞ, let 1S ∈ RV be the
characteristic vector of S ; i.e., the component of 1S corresponding to v ∈ V ðGÞ is 1 if
v ∈ S and 0 otherwise. The stable set polytope STABðGÞ ofG is defined to be the convex
hull of the characteristic vectors of all independent sets of G; i.e.,
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STABðGÞ ¼ convf1I : I ∈ I ðGÞg:

For instance, STABðK3Þ is the tetrahedron with vertices (0,0,0),(1,0,0),(0,1,0),(0,0,1).
For every I ∈ IðGÞ, x ¼ 1I satisfies

0 ≤ xv ≤ 1 ∀ v ∈ V ðGÞ andð7Þ
xu þ xv ≤ 1 ∀ uv ∈ EðGÞ:ð8Þ

It follows that every point in STABðGÞ also satisfies (7) and (8), and hence STABðGÞ is
contained in the polytope

ESTABðGÞ ¼ fx ∈ RV : x ¼ ðxvÞ satisfies ð7Þ and ð8Þg:

Although we always have STABðGÞ ⊆ ESTABðGÞ, the containment may be strict. For
instance, ð12 ; 12 ; 12Þ lies in ESTABðK 3Þ but not STABðK3Þ. It is well-known that the two
polytopes are equal if and only if G is bipartite.

THEOREM 6.1. (see [11, Thm. 19.7]). For any graph G, STABðGÞ ⊆ ESTABðGÞ,
with equality if and only if G is bipartite.

Let volðPÞ denote the volume of a polytope P. Recall from section 2.4 the notation
iV ðGÞ ¼ volðSTABðGÞÞ. So we have

iV ðGÞ ¼ volðSTABðGÞÞ ≤ volðESTABðGÞÞ

with equality if G is bipartite. Thus the inequality in Theorem 2.10 follows from the
following stronger statement, which is what we will prove.

PROPOSITION 6.2. For any N -vertex, d-regular graph G,

volðESTABðGÞÞ ≤ volðESTABðKd;dÞÞN ∕ ð2dÞ:

For a polytopeP, let nP denote the image ofP after a dilation at the origin by a factor n.
So,

nESTABðGÞ ¼ fx ∈ RV : 0 ≤ xv ≤ n ∀ v ∈ V ðGÞ; xu þ xv ≤ n ∀ uv ∈ EðGÞg:

Since

IðG;nÞ ¼ fx: V ðGÞ → f0; 1; : : : ; ng: xðuÞ þ xðvÞ ≤ n ∀ uv ∈ EðGÞg;

lattice points in nESTABðGÞ correspond bijectively with IðG;nÞ. Hence

iðG;nÞ ¼ jIðG;nÞj ¼ jðnESTABðGÞÞ ∩ ZV ðGÞj:

Regarded as a function in n, iðG;nÞ is known as the Ehrhart polynomial of the polytope
ESTABðGÞ. It is related to the volume of ESTABðGÞ by

volðESTABðGÞÞ ¼ lim
n→∞

iðG;nÞn−jV ðGÞj:ð9Þ

Proof of Proposition 6.2. From Theorem 2.9 we have

iðG;nÞn−N ≤ ðiðKd;d; nÞn−2dÞN ∕ ð2dÞ:

Letting n → ∞ and using (9) gives
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volðESTABðGÞÞ ≤ volðESTABðKd;dÞÞN ∕ ð2dÞ: ▯

LEMMA 6.3. Let a and b be positive integers. Then iV ðKa;bÞ ¼ ðaþb
a Þ−1.

Proof. Label the coordinates of RV ðKa;bÞ by ðx1; : : : ; xa; y1; : : : ; ybÞ so that
STABðKa;bÞ is the convex hull of points of the form ðx1; : : : ; xa; 0; : : : ; 0Þ or
ð0; : : : ; 0; y1; : : : ; ybÞ, where xi, yj ∈ f0; 1g.

For each pair of permutations ðπ;σÞ ∈ Sa × Sb, consider the subset Tπ;σ of
STABðKa;bÞ lying in the region defined by

xπð1Þ ≤ xπð2Þ ≤ · · ·≤ xπðaÞ and yσð1Þ ≤ yσð2Þ ≤ · · ·≤ yσðaÞ:

Note that fTπ;σ: ðπ;σÞ ∈ Sa × Sbg gives a dissection of STABðKa;bÞ. Indeed, excluding
the measure-zero set of points with some two coordinates equal, the first a coordinates
and the last b coordinates of every point can be ordered in a unique way, thereby ob-
taining a unique π and σ.

By symmetry, allTπ;σ are congruent, so we can consider the one where both π and σ

are identity permutations. We see that Tπ;σ is the simplex with one vertex at the origin,
and the other vertices the rows of the matrix

�
Ua 0
0 Ub

�
;

where Un is the n× n upper-triangular matrix with 1’s everywhere on or above the
diagonal. The determinant of this matrix is 1, so volðTπ;σÞ ¼ 1 ∕ ðaþ bÞ!, and this is
true for all (π, σ) due to symmetry. Since STABðKa;bÞ is triangulated into a!b! such
simplices, we have volðSTABðKa;bÞÞ ¼ a!b! ∕ ðaþ bÞ!, as claimed. ▯

Proof of Theorem 2.10. We have

iV ðGÞ ¼ volðSTABðGÞÞ ≤ volðESTABðGÞÞ
≤ volðESTABðKd;dÞÞN ∕ ð2dÞ ¼ volðSTABðKd;dÞÞN ∕ ð2dÞ

¼ iV ðKd;dÞ ¼
�
2d

d

�−N ∕ ð2dÞ
: ▯

Remark. In the spirit of [6, Thm. 4.3] and [5, Prop. 1.10], our proof can be modified
to prove the following extension.

PROPOSITION 6.4. For any ða; bÞ-biregular, N -vertex bipartite G, we have

iV ðGÞ ≤ iV ðKa;bÞN ∕ ðaþbÞ ¼
�
aþ b
b

�
−N ∕ ðaþbÞ

:

7. Weighted generalizations. In this section we discuss weighted generaliza-
tions of our results on graph homomorphisms. In applications in statistical mechanics
and communication networks, these weights can be used to represent probabilities.

Assign to each vertex of H a nonnegative real number weight λw (also known as the
activity or fugacity). For any f ∈ HomðG;HÞ, the weight of f is defined to be
wðfÞ ¼ Q

v∈G λf ðvÞ. Given a vector of weights Λ ¼ ðλw: w ∈ V ðHÞÞ, let

homΛðG;HÞ ¼
X

f∈HomðG;HÞ
wðfÞ:
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See [2] for the statistical mechanical motivation of this construction. When λw ¼ 1 for all
w ∈ V ðHÞ, we have homΛðG;HÞ ¼ homðG;HÞ. So the following result is a weighted
generalization of Theorem 1.2.

THEOREM 7.1 (Galvin and Tetali [5]). For anyN -vertex, d-regular bipartite graphG,
any H (possibly with loops), and any vector of nonnegative weights Λ on V ðHÞ, we have

homΛðG;HÞ ≤ ðhomΛðKd;d; HÞÞN ∕ ð2dÞ:ð10Þ

We would like to know when Theorem 7.1 can be extended to nonbipartite graphs as
well.

DEFINITION 7.2. A graph H (not necessarily simple) is wGT if

homΛðG;HÞ ≤ homΛðKd;d; HÞN ∕ ð2dÞð11Þ

holds for every N -vertex, d-regular graph G, and any vector of nonnegative weights
Λ on V ðH Þ.

DEFINITION 7.3. A graph H (not necessarily simple) is strongly wGT if

homΛðG ⊔ G;HÞ ≤ homΛðG ×K2; HÞð12Þ

for every graph G (not necessarily regular), and any vector of nonnegative weights
Λ on V ðH Þ.

By setting unit weights, we see that wGT implies GT, and strongly wGT implies
strongly GT.

LEMMA 7.4. If H is strongly wGT, then it is wGT.
The proof of the lemma is essentially the same as that of Lemma 2.5, so we omit it.
PROPOSITION 7.5. If H is a bipartite swapping target, then H is strongly wGT, and

hence wGT.
Proof. Since swapping preserves weights, we know from Proposition 4.4 that there

is a weight-preserving injection from HomðG ⊔ G;H Þ to HomðG ×K 2; HÞ. This implies
that homΛðG ⊔ G;H Þ ≤ homΛðG ×K2; HÞ, and hence H is strongly wGT. ▯

We can now modify our chain of implication given in section 2.1 as follows:

H is a threshold graphHA;t ðDefinition 4.10; Theorem4.12Þ
Prop: 4.9

⇒
H is a bipartite swapping target ðDefinition 4.1Þ

Cor: 7.5
⇒

H is strongly wGT ðDefinition 7.3Þ
Lem: 7.4

⇒
H is wGT ðDefinition 7.2Þ:

Recall from section 4.3 that the graph HA;t has no alternating 4-circuit.
COROLLARY 7.6. HA;t is wGT.
The fact thatH 1 is wGT was proven in [13], in which Theorem 1.1 was proven in the

following weighted form.
THEOREM 7.7 (see [13]). For any N -vertex, d-regular graph G, and any λ ≥ 0,

I ðλ; GÞ ≤ I ðλ; Kd;dÞN ∕ ð2dÞ ¼ ð2ð1þ λÞd − 1ÞN ∕ ∕ 2dÞ;

where I ðλ; GÞ is the stable set polynomial of G, given by
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I ðλ; GÞ ¼
X

I∈IðGÞ
λjI j:

Therefore, we note that I ðλ; GÞ ¼ homð1;λÞðG;H 1Þ and homðλ1;λ2ÞðG;H 1Þ ¼
λN1 hom

ð1;λ2 ∕ λ1ÞðG;H 1Þ ¼ λN1 I ðλ2 ∕ λ1; GÞ. Hence Corollary 7.6 is a generalization of
Theorem 7.7.

Here is an interpretation of the wGT property applied to the graph HA;t.
THEOREM 7.8. Let S be a finite set of “states,” with attributes α: S → R and

λ: S → R≥0. Let t be a real constant. For any graph G, let

σSðGÞ ¼
X
f

Y
v∈G

λf ðvÞ;

where the sum is taken over all f : V ðGÞ → S satisfying: αðf ðuÞÞ þ αðf ðvÞÞ ≤ t whenever
uv ∈ EðGÞ. Then for any N -vertex, d regular graph G,

σSðGÞ ≤ σSðKd;dÞN ∕ ð2dÞ:

Proof. Observe that σSðGÞ ¼ homΛðG;HA;tÞ, where A is the multiset
fαðf ðsÞÞ: s ∈ Sg. Then the inequality is equivalent to HA;t being wGT, which is true
by Corollary 7.6. ▯

Finally we give a weighted generalization of our result on the stable set polytope.
THEOREM 7.9. For any N -vertex, d-regular graph G, and any Riemann-integrable

function τ: ½0; 1� → ½0;∞Þ, we have

Z
ESTABðGÞ

Y
v∈V ðGÞ

τðxvÞdx ≤
�Z

ESTABðKd;dÞ

Y
v∈V ðKd;dÞ

τðxvÞdx
�

N ∕ ð2dÞ
:ð13Þ

Proof. Define a vector of weights Λn on Hn by λi ¼ τði ∕ nÞ for i ∈ V ðHnÞ ¼
f0; 1; : : : ; ng. We have

homΛnðG;HnÞ ¼
X

f∈HomðG;HnÞ
wðf Þ

¼
X

f∈HomðG;HnÞ

Y
v∈V ðGÞ

τ

�
f ðvÞ
n

�
¼

X
x∈ESTABðGÞ∩1

nZ
V ðGÞ

� Y
v∈V ðGÞ

τðxvÞ
�
;ð14Þ

where the last step uses the bijective correspondence HomðG;HnÞ ≅ I ðG;nÞ ≅
ðnESTABðGÞÞ ∩ ZV ðGÞ. By Riemann sum approximation,

lim
n→∞

n−jV ðGÞjhomΛnðG;HnÞ ¼
Z
ESTABðGÞ

Y
v∈V ðGÞ

τðxvÞdx:ð15Þ

Since Hn is wGT, we may apply (11) to Hn and Λn to obtain

n−NhomΛnðG;HnÞ ≤ ðn−2dhomΛðKd;d; HÞÞN ∕ ð2dÞ:ð16Þ

Letting n → ∞ in (16) and applying (15) yields the result.
Using Theorem 6.1 we obtain the following result about the stable set polytope.
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COROLLARY 7.10. For anyN -vertex, d-regular graphG, and any Riemann-integrable
function τ: ½0; 1� → ½0;∞Þ, we have

Z
STABðGÞ

Y
v∈V ðGÞ

τðxvÞdx ≤
�Z

STABðKd;dÞ

Y
v∈V ðKd;dÞ

τðxvÞdx
�

N ∕ ð2dÞ
:ð17Þ

Setting τ ¼ 1 yields Theorem 2.10 as a special case.
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