
MIT Open Access Articles

Where to go: Interpreting natural directions using global inference

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Yuan Wei et al. “Where to go: Interpreting natural directions using global inference.” 
Robotics and Automation, 2009. ICRA’09. IEEE International Conference on. 2009. 3761-3767. © 
2009 IEEE.

As Published: http://dx.doi.org/10.1109/ROBOT.2009.5152775

Publisher: Institute of Electrical and Electronics Engineers

Persistent URL: http://hdl.handle.net/1721.1/66168

Version: Final published version: final published article, as it appeared in a journal, conference 
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be 
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/66168


Where to Go: Interpreting Natural Directions Using Global Inference

Yuan Wei, Emma Brunskill, Thomas Kollar, Nicholas Roy

Abstract—An important component of human-robot interac-
tion is that people need to be able to instruct robots to move to
other locations using naturally given directions. When giving
directions, people often make mistakes such as labelling errors
(e.g., left vs. right) and errors of omission (skipping important
decision points in a sequence). Furthermore, people often use
multiple levels of granularity in specifying directions, referring
to locations using single object landmarks, multiple landmarks
in a given location, or identifying large regions as a single
location. The challenge is to identify the correct path to a des-
tination from a sequence of noisy, possibly erroneous directions.
In our work we cast this problem as probabilistic inference:
given a set of directions, an agent should automatically find the
path with the geometry and physical appearance to maximize
the likelihood of those directions. We use a specific variant
of a Markov Random Field (MRF) to represent our model,
and gather multi-granularity representation information using
existing large tagged datasets. On a dataset of route directions
collected in a large third floor university building, we found that
our algorithm correctly inferred the true final destination in 47
out of the 55 cases successfully followed by humans volunteers.
These results suggest that our algorithm is performing well
relative to human users. In the future this work will be
included in a broader system for autonomously constructing
environmental representations that support natural human-
robot interaction for direction giving.

I. INTRODUCTION

As robots become part of daily life, one essential capa-
bility they must have is to be able to interpret and follow
human directions in natural human environments. However,
people are notoriously poor at giving directions. Firstly,
the directions may be noisy or incorrect; people confuse
left and right, distance estimates are frequently wrong, and
instructions for important decision points may be missing.
Furthermore, and more importantly, people do not always
share the same perception or representation of an environ-
ment. People will often refer to aspects of the environment at
different levels of granularity: one person might say “go past
the sofa” whereas another might say “walk past the living
room.” Successful direction giving requires recognizing that
both of these observations are consistent references to the
same location. This requires more than using an ontology to
recognize different class levels of an object, such as realizing
“futon” is related to “sofa.” Rather it requires knowledge of
what scenes tend to have similar objects and labels, such as
a kitchen is likely to include a sink and a refrigerator.
We address the problem of determining the correct path
through a known environment from a sequence of noisy
and ambiguous directions. We cast this as a probabilistic
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inference problem: given a set of directions an agent must
infer the most likely hidden sequence of physical regions
corresponding to the given directions. In the current work
we assume that the map is segmented in advance into a set
of regions, such as by using a SLAM algorithm to construct
a hybrid map (see e.g. [13]) or by hand. Our long term
goal is to have robots autonomously construct appropriate
representations of the environment that they then use to
reliably and correctly infer human level directions.

In addressing this challenge, we make two contributions.
Firstly, we show that a specific variant of a Markov Random
Field (MRF) is a better inference model than existing infer-
ence techniques for compensating for errors in the directions.
We argue that using probabilistic inference creates a robust
and flexible approach: flexibility comes from allowing users
to use the representation most natural to them, and robustness
comes from using a MRF algorithm to infer the most likely
complete path. In large environments where there may be
considerable ambiguity and more than one instance of a
particular landmark or area, such as schools or businesses
with large numbers of offices, bathrooms and kitchens,
reasoning about the full trajectory instead of making local
decisions may be particularly helpful.

Our second contribution is to use a specific MRF model
that allows us to handle directions (or observations) provided
at multiple levels of granularity, such as referring to a region
by an abstract name (terms such as “kitchen” or “office”), or
by a specific object contained in the region (terms such as
“microwave” or “computer”). We learn a multi-granularity
model from an existing, large, tagged dataset that allows
us to infer relationships between known concepts and novel
keywords in the directions. The specific dataset we use is
Flickr, a dataset of photographs which are tagged with labels
by users. By analyzing tags, we can automatically compute
shared probabilities between different types of objects, such
as the probability of a “microwave” label when a “kitchen”
label is also present. These relationships could be achieved
by hand labeling a large corpus; however in addition to being
time consuming, this has the the drawback that objects not
present in the original labeled corpus can cause problems
when applying these learned groupings to new environments.

The paper commences with a discussion of related work
in Section II. We then present our approach in Section III,
starting with some background on probabilistic inference
of time-series data, followed by details of our specific
algorithm. In Sections IV and VI we evaluate our approach
and then conclude.
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II. RELATED WORK

Within the robotics community there has been recent
interest in utilizing the structure of the environment when
interacting with humans, and a number of researchers have
understood the need to characterize space by a hierarchy of
elements contained in each place [1], [2], [3]. For example,
an office area is likely to entail a desk and a computer.
This previous work utilizes semantic networks that have been
created by hand, but there is no sense of uncertainty in their
spatial models of how likely objects are to appear with oth-
ers. By utilizing hand-constructed semantic representations,
researchers have enabled their robots to communicate with
people in a meaningful although limited way, and do not
consider the use of directions through the environment.

There has, however, been a significant amount of work
on how people give natural-language directions. Michon and
Denis [4] found that pedestrians perceive landmarks as a use-
ful part of route directions: the authors concluded that when
people refer to landmarks they are attempting to provide an
abstract topological map, and use landmarks to guide people
through difficult or uncertain parts of that environment.
In [5], Stoffel constructs a geometric model from which
he takes into account topological relationships, visibility
within areas, and the generation of route descriptions. In
his model, he considers a number of spatial relationships,
but does not use uncertainty or landmarks when generating
the route descriptions. MacMahon et a. [6] created a system
for automatically following natural language route directions.
The focus of this system was to infer implicit actions from
linguistic conditional phrases with no information about
the environment topology. The authors presented results in
a virtual maze-like environment with landmarks such as
butterflies. The authors’ algorithm performed well relative
to humans: their approach is mostly orthogonal to the one
presented in this paper, and it is possible that by combining
some aspects of this system with our own could result in a
strong system. One of the conclusions of their study was that
landmarks are incredibly important for navigation.

In [7], the authors learned to extract spatial relationships
from grid maps. These relationships are given only at a local
level. Directions such as “robot, go to the pillar” are parsed
from natural language and turned into logical expressions.

Gribble et al. [8] described a robotic wheelchair based
upon the Spatial Semantic Hierarchy: their system could
potentially follow directions over an extended period, but the
authors did not evaluate their assertions. Similarly, Muller
et. al [9] described directing a semi-autonomous wheelchair
through an environment, where commands take the form of
“enter right door.” However, the authors did not describe
how they dealt with arbitrary landmarks or uncertainty in the
locations. Both approaches appear to make hard decisions
on directions based on known landmarks and the spatial
directions, in contrast to our approach which computes the
globally most likely path.

III. MARKOV RANDOM FIELDS

We now briefly introduce Markov Random Fields (MRFs)
which are the graphical models we use to represent the
relationship between physical locations and verbal directions.
In the next section we will describe in more detail how we
can use MRF inference to find the most likely sequence of
states for a given set of observations as a method to find
the most likely path of physical locations corresponding to
a user’s spoken directions.
MRFs are undirected graphical models in which related
variables are linked with an edge in order to convey a
dependency between the two variables xi and xj . This
dependency is encoded by a feature function φ(xi, xj). Our
MRF consists of a discrete set of states S and a discrete set
of observations Z. At each time t the world transitions to a
new state st and yields a new observation of the new state,
zt. We assume each observation variable zt is only connected
with the state value at the same time step, st, and the feature
function relating the two is the same for all times t:

φ(zt, st) = φ(zt|st) = φ(z|s) ∀t.

In other words, there is an observation model that relates
observations to states, and this model is fixed for all time.
There will also be interdependencies between the state
variables themselves. We assume that our model follows
a N -th order Markov process, where N will be defined
below. This means that state variable st will be conditionally
dependent on st−N , st−N+1, . . . , st−1. This dependency will
be encoded by a feature function φ(st|st−1, . . . , st−N ). The
value of this feature function for a particular set of state
values is proportional to the probability of transitioning to
state st = v given a particular set of past values for the
prior N states. Note that this is only proportional to this
distribution since the feature functions between the states
are not normalized, (

∑
st∈S φ(st|st−1, . . . , st−N ) �= 1). The

full model is shown in Figure 1.
Our MRF is closely related to a hidden Markov model
(HMM). The relation between observations and states is
similar to the relationship encoded in HMMs; as in HMMs,
states in our model are hidden and information about them
is only provided through the observations emitted. However,
our feature functions are not normalized to sum to 1, unlike
the feature functions in HMMs used to define the transition
and observation probability tables. The absence of normal-
ization in a MRF allows us to avoid a specific bias during
HMM inference of favoring states with a smaller number
of potential next states in their transition model (the “label
bias” problem [10]). The importance of avoiding this bias in
direction inference will be discussed in later sections.
MRFs can be used to address a range of important
questions, including what is the most likely state sequence
s1, s2, . . . sT given a series of observations z1, z2, . . . , zT ,

argmax
s1,...,sT

p(s1, . . . , sT |z1, . . . , zT ). (1)
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Fig. 1. Specialized Markov Random Field variant used in our approach.

Using Bayes rule this is proportional to

argmax
s1,...,sT

φ(z1, . . . , zT |s1, . . . , sT )φ(s1, . . . , sT ).

Using the conditional dependencies expressed in our model
we can re-express Equation 1 as:

argmax
s1,...,sT

p(s1)φ(z1|s1)

T∏

t=2

φ(zt, |st)φ(st, st−1, . . . , st−N )

This final expression can be evaluated efficiently using a
Viterbi-style algorithm [11].

A. Direction interpretation as inference

We will use our specific MRF to perform direction in-
ference. In our model, states represent the physical regions
of an environment. For example, Figure 2 shows the third
floor of a building, segmented into a non-overlapping set
of contiguous physical regions. Each region is associated
with a set of objects that are present in that region: in the
current work object labeling is done by hand but in the future
we intend this to be performed with an object recognition
algorithm. The observations are keywords occurring in a
set of directions, such as sofa, kitchen, or monitor. The
objective is to compute the most likely sequence of physical
regions, given a set of observations (directions). Evaluating
the likelihood of sequences requires that we specify the
correct transition and observation model probabilities for our
problem.
1) Transition Probabilities: In our approach the physical

connectivity of the space helps define the feature function
encoding the dependencies between prior and future states.
In particular, the feature function is zero for all next states
st = Ri which are not physically adjacent to the prior state
region st−1 = Rj :

φ(st =Ri|st−1 =Rj ,. . . ,st−N ) = 1 if Adjacent(Ri, Rj)

= 0 otherwise

where the Adjacent function is true if it is possible to
directly transition between regions Ri and Rj and false
otherwise. For example, in Figure 2 regions R1 and R3
are adjacent. A region is also considered to be adjacent to
itself. In addition, in a set of directions it is not expected

Fig. 2. Stata center segmented into regions. Adjacent regions are shaded
differently to highlight the region boundaries.

that the agent will backtrack to previously visited regions.
In our initial experiments we only used first order feature
functions for the state transitions, and we found that this
caused the agent to occasionally return to earlier visited
regions, or oscillate, particularly in similar places where the
observation model could not uniquely identify the area. Our
N -th order feature functions for the state transitions allow
us to expressly prohibit this, by setting the feature function
value to zero for revisiting states earlier than the state st−2

φ(st = Ri|∃t̃ ∈ t − N, . . . , t − 3 st̃ = Ri) = 0.

We set N according to the length of the given direction set.
Finally, in order to ensure that in absence of any observa-
tions, all paths of equal length have the same probability, the
feature function values themselves are set to 1 for all allowed
transitions. For example, starting in a region connected to five
others, the feature function for the next state taking on any
of the five next potential region values would be equal to 1.
If the first region had instead been connected to two other
regions, the feature function value for each of those regions
would also have been 1. In this way, transitions through
highly connected regions do not receive a lower likelihood
than transitions through regions with low connectivity. Note
that this is a key distinction from Hidden Markov models
which would require the feature function value to sum to
1 over all the next potential regions for any current region,
which results in highly connected regions having a lower
probability of transitioning to other regions compared to
regions that are only adjacent to a few regions.
2) Observation Probabilities: we could pre-compute the

model for a complete set of observation probabilities for all
observations (aka directions) we expect to receive. However,
this pre-computation will inevitably lead to failures when
someone gives directions using novel vocabulary. Instead,
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we represent regions using a fixed set of abstract types, but
we compute the observation model online from the nouns in
the parsed directions. These keywords could refer to specific
objects o such as ‘monitor” or “microwave” or types of
regions y, such as “kitchen” or “office.” In order to perform
inference we need to compute the probability that each map
region generated a particular observation, p(zi|Rj) for all
regions j and keywords i. We will assume that each region
Rj is associated with a list of objects that were detected in
that region dj1, dj2, . . . , djD. We assume that these object
detections are not perfect: that there is a probability θfp1

for a particular object o1 that we get a false positive, and a
probability θfn1 that our object detector fails to detect when
there really is an object o1 in the region. Given this, the
probability that there is an object o1 in region Rj given a
detection dj1 is

p(o1|dj1, Rj) = p(o1|dj1) = 1 − θfp1,

namely, the true positive rate of the object detector.
If zi instead refers to a region type, such as “kitchen” (K),

then we use the object detections found in the region Rj to
infer the probability that Rj is a kitchen:

p(z = K|Rj , dj1, dj2, . . . , djD) = p(z = K|dj1, dj2, . . . , djD)

Applying Bayes rule (using K to represent z = K) we get

p(K|dj1, . . . , djD) =
p(dj1, dj2, . . . , djD|K)p(K)

p(dj1, dj2, . . . , djD)

=
∑

O

p(dj1, dj2, . . . , djD, O|K)p(K)

p(dj1, dj2, . . . , djD)

where O is a particular set of objects present in a region
and. Here we are introducing and summing over possible
object sets O. We assume that object detections are only
dependent on the objects present in the environment (and
not the environment type), so we can re-express this as

p(K|dj1,. . . , djD)=
∑

O

p(dj1, dj2,. . ., djD|O)p(O|K)p(K)

p(dj1, dj2, . . . , djD)

We next make the simplifying assumption that the probability
of each object is independent conditioned on the region type
(as in a naive Bayes model), and that each object detection
depends on whether or not that particular object is present

p(K|dj1, . . . , djD) =
∑

O

p(K)
∏D

l=1
p(djl|ol)p(ol|K)

p(dj1, dj2, . . . , djD)

∝
∑

O

p(K)

D∏

l=1

p(djl|ol)p(ol|K). (2)

This sum should be over all possible object sets O: if there
are NO objects in the world, there would be 2NO potential
object sets, corresponding to the possibility that each object
is or is not truly present in a particular region. For a large
number of objects this is intractable: instead we approximate
this sum by considering only objects that were detected in

a particular region. This effectively means that we consider
false detections but not missed object detections.
To make this concrete, consider the case of when there is
only 1 possible object in the world (o1) and we have detected
this object (dj1) in region Rj . Then Equation 2 becomes

p(K|dj1) ∝ p(K)[p(dj1|¬o1)p(¬o1|K) + p(dj1|o1)p(o1|K)]

= p(K)θfp1p(¬o1|K) + (1 − θfp1)p(o1|K).

In other words, the likelihood that region Rj is a kitchen,
given that object 1 was detected there is proportional to the
probability that either there is or is not truly object 1 in that
region, and the associated probabilities related to that.
At a high level, this allows us to create a model that
is more robust to the probability that our detections are
incorrect. In the case that we have a perfect object detector,
this model simplifies as expected.
In order to compute Equation 2 for each region, we must
be able to evaluate the probability of an object being present
or not present in a particular region type (p(o|z = K) and
p(¬o|z = K)). We do this by using a Flickr image dataset.
We constructed our dataset by first using WordNet to find all
hyponyms for environmental areas (such as hallway, office,
etc): this produced approximately 2000 words. Flickr was
queried with each of those terms, and around 500 images
were downloaded for each term, along with all the associated
tags for those 500 images. Given this set of images and tags,
we performed simple counting to compute the probabilities

p(Object|RegionType) =
p(Object, RegionType)

p(RegionType)

=
NTagOR/NI

NTagR/NI

=
NTagOR

NTagR

where NI is the total number of images in the set, NTagR

is the number of images with a tag of RegionType
and NTagOR is the number of images with tags of both
RegionType and Object. The benefit of using Flickr is
two-fold: it is an existing labeled dataset, and it is a very
large set of images, labeled by a huge number of users.
Therefore we expect the probabilities of particular objects
being associated with particular region types to be more
reliable than if we were to hand label a small set of regions
and use these to compute the model probabilities. Here we set
the probability of a false detection θfp manually to be 90%
for all object categories: soon we intend to use an automatic
object detector and will use its associated false positive rate.
In summary, given a set of observations, we first parse

the directions and extract a set of keywords. We then use
MRF inference to compute the probability that each keyword
corresponds to each region given the keywords, the transition
probabilities, and observation probabilities. We then extract
the most likely sequence of regions, with two additional
modifications. First we constrain the search for the most
likely region sequence to start at the known first location
in the sequence: we anticipate that our approach will be
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Algorithm 1 Algorithm
1: Input: English directions D, Map M segmented into
regions R, list of objects detected in each region O, and
transition model representing connectivity between the
regions φ(st|st−D, . . . , st−1)

2: Parse sentence and extract keywords d1, d2, . . . , dN from
D (“Leave the office and turn right into the hallway”
goes to d1=”Office”, d2=”Right”, d3=”Hallway”)

3: Compute observation model for each extracted keyword
which is a noun given each of the map regions R.
(φ(d1 =′′ Office′′|R1), . . . φ(d1 =′′ Office′′|RN ))

4: Run the Viterbi algorithm on the keywords using the
transition model and observation model.

5: Return the most likely sequence of regions output from
Viterbi.

Fig. 3. One of the images taken of region R12 in the dataset. The objects in
a region were used to compute the probability of a region being a particular
type of area, such as a kitchen or office.

used in settings where a human is giving instructions to a
robot that is present in the room with the human to some
other region, and so it is reasonable to assume the start
location is known. Second, our current transition model is
very simple and does not include information about the
agent’s orientation, or directional information such as “turn
right.” However, whenever an instruction such as “right” or
“left” is encountered, it is often an indication that the agent is
about to change physical regions. Therefore, whenever such
a keyword is encountered, the transition probability of a self
transition is set to zero, to force a transition to an adjacent
region.
An overview of our approach is presented in Algorithm 1.

IV. EVALUATION

In order to evaluate our algorithm we gathered directions
from 11 volunteers on a set of 10 possible pairs of regions,
resulting in 80 total sets of directions. Each volunteer was
given the segmented map shown in Figure 2 and asked to
write, in whatever way was natural to the person, directions
from the start region to the end region, with the goal of
communicating this route to another person that does not
have a map. User volunteers were familiar with the space,

# correct destination / # correct destination /
Human performance Total samples

Humans 55/55 (100%) 55/80 (68.8%)
Algorithm 47/55 (85%) 47/80 (58.75%)
Random guessing 4.4/55 (8%) 4.4/80 (7.8%)

TABLE I

RESULTS ON DIRECTION ACCURACY

and were encouraged to review the area before writing
directions if he or she was unsure of how to give directions
between each pair of regions.
From these user directions, keywords were extracted by
hand, and the algorithm presented in the prior section was run
to extract the most likely sequence of regions given the set of
observations. Figure 4 gives an example of one of the routes
that volunteers were asked to write down directions for, as
well as the volunteer directions given, extracted keywords
and most likely state sequence output.
In order to fairly evaluate the performance of our algo-
rithm, it was important to first ascertain how good the human
directions were. To estimate this we tried giving each of
the directions to a different volunteer. In each test, the set
of directions for a particular route was read out loud by
one of the paper authors as the volunteer tried to follow
those directions. If the volunteer thought he/she was lost
the trial is finished and the directions were classified as
wrong/insufficient. If the volunteer ended up at the wrong
destination the directions were also classified as wrong or
insufficient. If the volunteer finished at the correct destination
the directions were classified as correct. In some scenarios
people got confused and thought if they did not already
have a very good knowledge of the environment they would
have been lost. These direction sets were also classified as
wrong. Note that some volunteers had an advantage over
generic users, since some volunteers had already given a set
of directions for the routes they were tested on. Therefore
we expect our evaluation of the average percentage of
time humans could follow other humans’ directions to be
potentially an overestimate of the general case.
Our subjects could correctly infer the final destination
region from someone else’s directions in 55 examples (on
average 68.75% of the time), and the MRF correctly inferred
the destination in 47 examples. Though both results leave
significant room for improvement, our automated approach
compares favorably with human performance. It also indi-
cates that this environment is challenging. Note that random
guessing would result in a correct answer only 7.8% of the
time, since there are 18 regions in the environment: this
would yield an expected number of 4.4 correct answers.
These results are displayed in Table I.
Despite its generally encouraging performance (compared
to humans), there were some routes that our algorithm
performed very poorly on, such as navigating from R16 to
R12. This was a short path from the elevators to another
office area, but the quickest path involves going through
R15, which is a sprawling office bracketed by two sets of
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Route : R08 to R04
Directions: “Head down the hallway with the open area
on your left, and railing on your left. At the end of
the hallway take a left, and head through the open area
with the computers on your right, and then head into the
conference room across the bridge on your right.”
Parsed keyword sequence:

1 hall 7 computer
2 left 8 right
3 balcony 9 conferenceroom
4 left 10 bridge
5 hall 11 right
6 left 12 conferenceroom

Recognized Path:

1 R08 (lounge) 5 R04 (conference room)
2 R10 (hall) 6 R05 (office)
3 R07 (hall) 7 R04 (conference room)
4 R05 (office)

Fig. 4. Sample route, directions given by one volunteer for this route,
extracted direction keywords provided as input to the algorithm, and the
output best region sequence of the algorithm.

glass doors. This area is quite confusing for humans, and
the directions given for this area often involved some extra
redundant observations and lots of additional comments. For
example, one set of directions given were:

1. With your back to the elevators, head
through the glass doors on your left.
2. Follow the hallway past the biolab,
and through the doors at the end, and
all the way down the hallway.
3. At the end, with the open area on
your right, take a left and head into
the office area.
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Fig. 5. Percentage of correct directions as a function of route path length.

. The extracted keywords for this sequence were ‘elevators’,
’doors’, ’null’, ’left’, ’hall’, ’doors’, ’hall’, ’right’, ’null’,
’left’, ’office’, ’office’. The most likely sequence of regions
found by the algorithm was ‘R16 elevators’, ’R15 office’,
’R11 hall’, ’R09 hall’, ’R07 hall’, ’R06 office’, ’R06 office’,
which is far past the desired end trajectory. Similar results
were found for this route from some of the other directions.
One interesting thing about this set of directions is that
information about side regions is given multiple times, such
as “past the biolab” and “with the open area on your right.”
We will discuss this further in the future work section.
However, it is exciting that in some cases the algorithm
performed much better than humans. For example, for the
route between R6 to R2 only 2 out of 6 people got the final
destination correctly, but the algorithm got it correct in all
6 cases. Figure 5 shows the results as a function of path
length. Using a MRF does significantly better than a HMM
as expected. Recall that the major difference between our
MRF model and the HMM model is whether the transition
probabilities are normalized. This normalization means that
highly connected regions will have a much lower transition
probability than regions with few adjacent regions. There-
fore, particularly as the path length gets longer, the HMM
will tend to favor paths with regions with few connections, in
order to maximize the probability. Our MRF model does not
have this disadvantage, and performs better, particularly as
the path length increases. Overall our MRF algorithm shows
encouraging results and with further improvements, it may be
possible to be competitive with human performance across
all path lengths, though further testing is needed.

V. FUTURE WORK

The work presented makes up a first encouraging initial
step towards our longer term goal of a completely au-
tonomous system for direction following. We are currently
working on the following extensions to the algorithm:

• Skipped observations. In giving directions, people
sometimes skip observations of regions by using higher
level action instructions. For example, “Leave the office
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area and walk with the wall on your right until you
see the kitchen” could be used to specify how to walk
from R12 to R2, but there are no observations given
of the regions R9, R6, or R5 that the follower must
traverse on the way to kitchen R2. We are currently
extending the algorithm to include potential skips in
the observation sequence (“null” observations in the
sequence where a state transition occured). We are
taking a string matching alignment approach to this
problem, and preliminary results on hand inserting skips
in the observation direction sequence are promising.

• Alternate descriptions. In our original model we assume
that people provide “feed forward” descriptions, in
which the only regions described are along the chosen
route. However, in our instruction set people sometimes
refer to regions or objects that are adjacent to the
region that a person or agent should be in presently,
such as “with the open area to your right.” People
also sometimes use negative information, such as “if
you have reached the drug store you have gone too
far.” Incorporating both types of information is likely
to significantly improve our algorithm’s performance. A
simple way to incorporate observations of side regions
would be to modify the observation model p(z|s) for
each region to include observations associated with the
region itself and with adjacent regions. In addition, in
certain tasks the speaker may backtrack to past regions,
though we expect that to be unlikely in the types of
problems we are interested in (since our current focus
is not on environment “tours”).

• Improved parsing. Our current parser automatically ex-
tracts the nouns and simple direction terms (such as
“right” or “left”) in the order they are presented. People
however use rich linguistic structure to encode their
directions, such as “turn into the office, after going
past the kitchen and the bathroom,” which would be
currently parsed so the kitchen and bathroom appear to
come after the office, instead of before.

• Automatic map and region generation. In the longer
term our goal is to use a robot to automatically build a
region based representation of the environment, perhaps
by using past hybrid metric-topological map building
algorithms (e.g. [12], [13]). During this map building
the robot will also take photos (such as shown in
Figure 3) and automatically detect what objects are
present in the photo, and associate these objects with the
appropriate map region. We have already made progress
on this challenge but our object detection method did
not yet have high enough recognition rates to be used in
the current presented work. After improving this we will
be able to use these regions and object detections in our
direction inference algorithm. We are also interested in
examining the impact of the chosen map segmentation
on the ability of the robot to infer the correct path: a
range of segmentations may enable successful inference.

• Interactive direction giving. We are also currently pur-
suing work where the original set of directions provided

is only the start of a dialogue between a human and a
robot: the robot can then ask clarification questions in
order to ascertain the correct path or destination. We are
taking a decision theoretic approach to this problem, in
which asking additional questions involves a cost of the
potential annoyance factor to the human.

VI. CONCLUSION

We have posed the problem of direction following as
a probabilistic inference problem, framing the objective as
inferring the hidden sequence of physical regions refered to
by a given set of human directions. Our model correctly
computed the true destination at a rate of 85% compared to
humans. We are encouraged by these results and think our
future work may make our approach even more competitive.
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