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Robust Power Allocation Algorithms for Wireless Relay Networks
Tony Q.S. Quek, Member, IEEE, Moe Z. Win, Fellow, IEEE, and Marco Chiani, Senior Member, IEEE

Abstract—Resource allocation promises significant benefits in
wireless networks. In order to fully reap these benefits, it is
important to design efficient resource allocation algorithms. Here,
we develop relay power allocation (RPA) algorithms for coherent
and noncoherent amplify-and-forward (AF) relay networks. The
goal is to maximize the output signal-to-noise ratio under
individual as well as aggregate relay power constraints. We show
that these RPA problems, in the presence of perfect global chan-
nel state information (CSI), can be formulated as quasiconvex
optimization problems. In such settings, the optimal solutions
can be efficiently obtained via a sequence of convex feasibility
problems, in the form of second-order cone programs. The
benefits of our RPA algorithms, however, depend on the quality
of the global CSI, which is rarely perfect in practice. To address
this issue, we introduce the robust optimization methodology
that accounts for uncertainties in the global CSI. We show
that the robust counterparts of our convex feasibility problems
with ellipsoidal uncertainty sets are semi-definite programs. Our
results reveal that ignoring uncertainties associated with global
CSI often leads to poor performance, highlighting the importance
of robust algorithm designs in practical wireless networks.

Index Terms—Relay networks, power allocation, amplify-and-
forward relaying, robust optimization, semi-definite program.

I. INTRODUCTION

RESOURCE allocation in wireless networks promises
significant benefits such as higher throughput, longer

network lifetime, and lower network interference. In relay
networks, the primary resource is the transmission power
because it affects both the lifetime and the scalability of the
network. Furthermore, regulatory agencies may limit the total
transmission power to reduce interference to other users. Some
important questions then arise naturally in practice:

∙ How can we control network interference by incorporat-
ing individual relay and aggregate power constraints in
our relay power allocation (RPA) algorithms?

∙ What are the fundamental limits on performance gains
that can be achieved with RPA when uncertainties exist
in the global channel state information (CSI)?
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∙ Is it possible to design RPA algorithms that are robust to
uncertainties in global CSI?

To address these issues of robustness, we adopt as in
[1], a robust optimization methodology developed in [2], [3].
Specifically, this methodology treats uncertainty by assuming
that CSI is a deterministic variable within a bounded set of
possible values. The size of the uncertainty set corresponds
to the amount of uncertainty on the CSI.1 This methodology
ensures that the robust counterpart of uncertain optimization
problem, i.e., optimization problem with uncertain global CSI,
leads to feasible solutions and yields good performance for all
realizations of CSI within the uncertainty set.

Here, we focus on an amplify-and-forward (AF) relay
network. In particular, we consider coherent and noncoherent
AF relaying, depending on the knowledge of CSI available
at each relay node. The AF relaying is attractive due to its
simplicity, security, power-efficiency, and ability to realize full
diversity order. Moreover, the AF relaying has been shown to
be optimal in certain scenarios[4]. There are several works
related to finding the optimal RPA under different conditions.
For example, in [5], the asymptotically optimal power and
rate allocation, as the channel bandwidth goes to infinity,
for Gaussian AF relay channels under a total network power
constraint is determined. In [6], the optimal RPA for a three-
node network in high signal-to-noise ratio (SNR) regime is
derived. The optimal RPA was derived for noncoherent AF
relay channels under a total network power constraint in
[7]. In [8], the optimal RPA for multihop noncoherent AF
relay channels under both individual and total relay power
constraints is derived. However, all the above works[5]–[8]
assume that perfect global CSI is available. In practice, such an
assumption is too optimistic since the knowledge of global CSI
is rarely perfect in practice, i.e., uncertainties in CSI arise as
a consequence of imperfect channel estimation, quantization,
synchronization, hardware limitations, implementation errors,
or transmission errors in feedback channels.2 In general,
imperfect CSI leads to performance degradation of wireless
systems[10].

In this paper, we develop RPA algorithms for coherent
and noncoherent AF relay networks[11], [12]. The problem
formulation is such that the output SNR is maximized subject
to both individual and aggregate relay power constraints. We
show that the coherent AF RPA problem, in the presence
of perfect global CSI, can be formulated as a quasiconvex
optimization problem. This problem can be solved efficiently
using the bisection method through a sequence of convex

1The singleton uncertainty set corresponds to the case of perfect CSI.
2Exactly how this global CSI can be obtained at the central network

controller is beyond the scope of this paper. Some related work can be found
in [9].
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feasibility problems, which can be cast as second-order cone
programs (SOCPs)[13]. We also show that the noncoherent AF
RPA problem, in the presence of perfect global CSI, can be
approximately decomposed into 2𝐿 quasiconvex optimization
subproblems. Each subproblem can be solved efficiently by
the bisection method via a sequence of convex feasibility
problems in the form of SOCP. We then develop the robust
optimization framework for RPA problems in the case of
uncertain global CSI. We show that the robust counterparts of
our convex feasibility problems with ellipsoidal uncertainty
sets can be formulated as semi-definite programs (SDPs).
Our results reveal that ignoring uncertainties associated with
global CSI in RPA algorithms often leads to poor performance,
highlighting the importance of robust algorithm designs in
wireless networks.

The paper is organized as follows. In Section II, the problem
formulation is described. In Section III, we formulate the
coherent and noncoherent AF RPA problems as quasiconvex
optimization problems. Next, in Section IV, we formulate the
robust counterparts of our RPA problems when the global CSI
is subject to uncertainty. Numerical results are presented in
Section V and conclusions are given in the last section.

Notations: Throughout the paper, we shall use the following
notation. Boldface upper-case letters denote matrices, boldface
lower-case letters denote column vectors, and plain lower-
case letters denote scalars. The superscripts (⋅)𝑇 , (⋅)∗, and
(⋅)† denote the transpose, complex conjugate, and transpose
conjugate respectively. We denote a standard basis vector with
a one at the 𝑘th element as 𝑒𝑒𝑒𝑘, 𝑛 × 𝑛 identity matrix as 𝐼𝐼𝐼𝑛,
and (𝑖, 𝑗)th element of 𝐵𝐵𝐵 as [𝐵𝐵𝐵]𝑖𝑗 . The notations tr(⋅), ∣ ⋅ ∣ and
∥ ⋅∥ denote the trace operator, absolute value and the standard
Euclidean norm, respectively. We denote the nonnegative and
positive orthants in Euclidean vector space of dimension 𝐾 as
ℝ𝐾

+ and ℝ𝐾
++, respectively. We denote𝐵𝐵𝐵 ર 0 and𝐵𝐵𝐵 ≻ 0 as𝐵𝐵𝐵

being positive semi-definite and positive definite, respectively.

II. PROBLEM FORMULATION

We consider a wireless relay network consisting of 𝑁r +
2 nodes, each with single-antenna: a designated source-
destination node pair together with 𝑁r relay nodes located
randomly and independently in a fixed area. We consider a
scenario in which there is no direct link between the source
and destination nodes and all nodes are operating in a common
frequency band.

Transmission occurs over two time slots. In the first time
slot, the relay nodes receive the signal transmitted by the
source node. After processing the received signals, the relay
nodes transmit the processed data to the destination node
during the second time slot while the source node remains
silent. We assume perfect synchronization at the destination
node.3 The received signals at the relay and destination nodes
can then be written as

𝑦𝑦𝑦R = ℎℎℎB𝑥S + 𝑧𝑧𝑧R, First slot (1)

𝑦D = ℎℎℎ𝑇F𝑥𝑥𝑥R + 𝑧D, Second slot (2)

3Exactly how to achieve this synchronization or the effect of small
synchronization errors on performance is beyond the scope of this paper.

where 𝑥S is the transmitted signal from the source node
to the relay nodes, 𝑥𝑥𝑥R is the 𝑁r × 1 transmitted signal
vector from the relay nodes to the destination node, 𝑦𝑦𝑦R
is the 𝑁r × 1 received signal vector at the relay nodes,
𝑦D is the received signal at the destination node, 𝑧𝑧𝑧R ∼
𝒩𝑁r(000,ΣΣΣR) is the 𝑁r × 1 noise vector at the relay nodes,
and 𝑧D ∼ 𝒩 (0, 𝜎2

D) is the noise at the destination node.4

Note that the different noise variances at the relay nodes
are reflected in ΣΣΣR ≜ diag(𝜎2

R,1, 𝜎
2
R,2, . . . , 𝜎

2
R,𝑁r

). Moreover,
𝑧𝑧𝑧R and 𝑧D are independent. Furthermore, they are mutually
uncorrelated with 𝑥S and 𝑥𝑥𝑥R. With perfect global CSI at
the destination node, ℎℎℎB and ℎℎℎF are 𝑁r × 1 known channel
vectors from source to relay and from relay to destination,
respectively, where ℎℎℎB = [ℎB,1, ℎB,2, . . . , ℎB,𝑁r ]

𝑇 ∈ ℂ
𝑁r and

ℎℎℎF = [ℎF,1, ℎF,2, . . . , ℎF,𝑁r]
𝑇 ∈ ℂ𝑁r . For convenience, we

shall refer to ℎℎℎB as the backward channel and ℎℎℎF as the
forward channel.

At the source node, we impose an individual source power
constraint 𝑃S, such that 𝔼{∣𝑥S∣2} ≤ 𝑃S. Similarly, at the
relay nodes, we impose both individual relay power constraint
𝑃 and aggregate relay power constraint 𝑃R such that the
transmission power allocated to the 𝑘th relay node 𝑝𝑘 ≜
[𝑄𝑄𝑄R]𝑘,𝑘 ≤ 𝑃 for 𝑘 ∈ 𝒩r and tr (𝑄𝑄𝑄R) ≤ 𝑃R, where
𝑄𝑄𝑄R ≜ 𝔼{𝑥𝑥𝑥R𝑥𝑥𝑥†R∣ ℎℎℎB} and 𝒩r = {1, 2, . . . , 𝑁r}.

For AF relaying, the relay nodes simply transmit scaled
versions of their received signals while satisfying power
constraints. In this case, 𝑥𝑥𝑥R in (2) is given by

𝑥𝑥𝑥R =𝐺𝐺𝐺𝑦𝑦𝑦R (3)

where 𝐺𝐺𝐺 denotes the 𝑁r × 𝑁r diagonal matrix representing
relay gains and thus5

𝑄𝑄𝑄R =𝐺𝐺𝐺
(
𝑃SℎℎℎBℎℎℎ

†
B +ΣΣΣR

)
𝐺𝐺𝐺†. (4)

The diagonal structure of 𝐺𝐺𝐺 ensures that each relay node
only requires the knowledge about its own received signal.
When each relay node has access to its locally-bidirectional
CSI, it can perform distributed beamforming.6 As such, this
is referred to as coherent AF relaying and the 𝑘th diagonal
element of 𝐺𝐺𝐺 is given by[4]

𝑔
(𝑘)
coh =

√
𝛽𝑘𝑝𝑘

ℎ∗B,𝑘

∣ℎB,𝑘∣
ℎ∗F,𝑘

∣ℎF,𝑘∣ (5)

where 𝛽𝑘 = 1/(𝑃S∣ℎB,𝑘∣2 + 𝜎2
R,𝑘). On the other hand, when

forward CSI is absent at each relay node, the relay node
simply forwards a scaled version of its received signal without
any phase alignment. This is referred to as noncoherent AF
relaying and the 𝑘th diagonal element of 𝐺𝐺𝐺 is given by[7], [8]

𝑔
(𝑘)
noncoh =

√
𝛽𝑘𝑝𝑘. (6)

4�̃� (𝜇, 𝜎2) denotes a complex circularly symmetric Gaussian distribution
with mean 𝜇 and variance 𝜎2. Similarly, �̃�𝐾(𝜇𝜇𝜇,ΣΣΣ) denotes a complex 𝐾-
variate Gaussian distribution with a mean vector 𝜇𝜇𝜇 and a covariance matrix
ΣΣΣ.

5Note that in (4), the source employs the maximum allowable power 𝑃S

in order to maximize the SNR at the destination node.
6Here, locally-bidirectional CSI refers to the knowledge of only ℎB,𝑘 and

ℎF,𝑘 at the 𝑘th relay node.
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It follows from (1)-(3) that the received signal at the destina-
tion node can be written as

𝑦D = ℎℎℎ𝑇F𝐺𝐺𝐺ℎℎℎB𝑥S + ℎℎℎ𝑇F𝐺𝐺𝐺𝑧𝑧𝑧R + 𝑧D︸ ︷︷ ︸
≜𝑧D

(7)

where 𝑧D represents the effective noise at the destination node,
and the instantaneous SNR at the destination node conditioned
on ℎℎℎB and ℎℎℎF is then given by

SNR(𝑝𝑝𝑝) ≜
𝔼

{
∣ℎℎℎ𝑇F𝐺𝐺𝐺ℎℎℎB𝑥S∣2 ∣ℎℎℎB,ℎℎℎF

}
𝔼 {∣𝑧D∣2 ∣ℎℎℎF }

=
𝑃Sℎℎℎ

𝑇
F𝐺𝐺𝐺ℎℎℎBℎℎℎ

†
B𝐺𝐺𝐺

†ℎℎℎ∗F
ℎℎℎ𝑇F𝐺𝐺𝐺ΣΣΣR𝐺𝐺𝐺

†ℎℎℎ∗F + 𝜎2
D

(8)

where 𝑝𝑝𝑝 = [𝑝1, 𝑝2, . . . , 𝑝𝑁r ]
𝑇 . Our goal is to maximize system

performance by optimally allocating transmission power of
the relay nodes. We adopt the SNR at the destination node
as the performance metric and formulate the RPA problem as
follows:

max
𝑝𝑝𝑝

SNR(𝑝𝑝𝑝)

s.t. tr (𝑄𝑄𝑄R) ≤ 𝑃R,
0 ≤ [𝑄𝑄𝑄R]𝑘,𝑘 ≤ 𝑃, ∀𝑘 ∈ 𝒩r.

(9)

Note that the optimal solution to the problem in (9) maximizes
the capacity of the AF relay network under perfect global
CSI since this capacity, given by 1

2 log(1 + SNR), is a
monotonically increasing function of SNR.

III. OPTIMAL RELAY POWER ALLOCATION

A. Coherent AF Relaying

First, we transform (9) for the coherent AF RPA problem
into a quasiconvex optimization problem as given in the
following proposition.

Proposition 1: The coherent AF relay power allocation
problem can be transformed into a quasiconvex optimization
problem as

𝒫coh : max
𝜁𝜁𝜁

𝑓coh(𝜁𝜁𝜁) ≜ 𝑃S

𝜎2
D

(𝑐𝑐𝑐𝑇𝜁𝜁𝜁)2

∥𝐴𝐴𝐴𝜁𝜁𝜁∥2+1

s.t. 𝜁𝜁𝜁 ∈ 𝒮
(10)

and the feasible set 𝒮 is given by

𝒮 =

{
𝜁𝜁𝜁 ∈ ℝ

𝑁r
+ :

∑
𝑘∈𝒩r

𝜁2𝑘 ≤ 1, 0 ≤ 𝜁𝑘 ≤ √
𝜂p, ∀𝑘 ∈ 𝒩r

}

where 𝜁𝑘 ≜
√

𝑝𝑘

𝑃R
is the optimization variable and 𝜂p ≜

𝑃/𝑃R. In addition, 𝑐𝑐𝑐 = [𝑐1, 𝑐2, . . . , 𝑐𝑁r ]
𝑇 ∈ ℝ

𝑁r
+ , and 𝐴𝐴𝐴 =

diag(𝑎1, 𝑎2, . . . , 𝑎𝑁r) ∈ ℝ
𝑁r×𝑁r
+ are defined for notational

convenience where

𝑐𝑘 =
√
𝛽𝑘𝑃R ∣ℎB,𝑘∣∣ℎF,𝑘∣ (11)

𝑎𝑘 =

√
𝛽𝑘𝑃R ∣ℎF,𝑘∣𝜎R,𝑘

𝜎D
. (12)

Proof: See Appendix A.
Remark 1: Note that 𝜁𝑘 denotes the fractional power allo-

cated to the 𝑘th relay node, and 𝜂p denotes the ratio between
the individual relay power constraint and the aggregate relay
power constraint, where 0 < 𝜂p ≤ 1. It is well-known that

we can solve 𝒫coh efficiently through a sequence of convex
feasibility problems using the bisection method[14]. In our
case, we can always let 𝑡min corresponding to the uniform RPA
and we only need to choose 𝑡max appropriately. We formalize
these results in the following algorithm.

Algorithm 1: The program 𝒫coh in Proposition 1 can be
solved numerically using the bisection method:

0. Initialize 𝑡min = 𝑓coh(𝜁𝜁𝜁min), 𝑡max = 𝑓coh(𝜁𝜁𝜁max), where
𝑓coh(𝜁𝜁𝜁min) and 𝑓coh(𝜁𝜁𝜁max) define a range of relevant
values of 𝑓coh(𝜁𝜁𝜁), and set tolerance 𝜀 ∈ ℝ++.

1. Solve the convex feasibility program 𝒫(SOCP)
coh (𝑡) in (13)

by fixing 𝑡 = (𝑡max + 𝑡min)/2.
2. If 𝒮coh(𝑡) = ∅, then set 𝑡max = 𝑡 else set 𝑡min = 𝑡.
3. Stop if the gap (𝑡max − 𝑡min) is less than the tolerance
𝜀. Go to Step 1 otherwise.

4. Output 𝜁𝜁𝜁opt obtained from solving 𝒫(SOCP)
coh (𝑡) in Step

1.

where the convex feasibility program can be written in SOCP
form as

𝒫(SOCP)
coh (𝑡) : find 𝜁𝜁𝜁

s.t. 𝜁𝜁𝜁 ∈ 𝒮coh(𝑡)
(13)

with the set 𝒮coh(𝑡) given by

𝒮coh(𝑡) =

⎧⎨
⎩𝜁𝜁𝜁 ∈ ℝ

𝑁r
+ :

⎡
⎢⎣

𝑐𝑐𝑐𝑇𝜁𝜁𝜁
√

𝑃S

𝑡𝜎2
D(

1
𝐴𝐴𝐴𝜁𝜁𝜁

)
⎤
⎥⎦ ર𝒦 0,

[
1
𝜁𝜁𝜁

]
ર𝒦 0,

⎡
⎣

𝜂p+1

2(
𝜁𝜁𝜁𝑇𝑒𝑒𝑒𝑘
𝜂p−1

2

)
⎤
⎦ ર𝒦 0, ∀𝑘 ∈ 𝒩r

⎫⎬
⎭ .

(14)

Proof: See Appendix B.

B. Noncoherent AF Relaying

Similar to the formulation of coherent AF RPA problem in
(10), we can expressed the noncoherent AF RPA problem as

𝒫noncoh : max
𝜁𝜁𝜁

𝑃S

𝜎2
D

∣𝑐𝑐𝑐𝑇𝜁𝜁𝜁∣2
∥𝐴𝐴𝐴𝜁𝜁𝜁∥2+1

s.t. 𝜁𝜁𝜁 ∈ 𝒮
(15)

where 𝒮 and 𝐴𝐴𝐴 are given in Proposition 1. The difference is
in 𝑐𝑐𝑐 = [𝑐1, 𝑐2, . . . , 𝑐𝑁r ] ∈ ℂ𝑁r , where

𝑐𝑘 =
√
𝛽𝑘𝑃R ℎB,𝑘ℎF,𝑘.

As a result, we cannot directly apply Algorithm 1 to solve
𝒫noncoh in (15). Instead, we introduce the following lemma
which enables us to decompose 𝒫noncoh into 2𝐿 quasiconvex
optimization subproblems, each of which can then be solved
efficiently via the algorithm presented in Algorithm 1.

Lemma 1 (Linear Approximation of Modulus[15]): The
modulus of a complex number 𝑍 ∈ ℂ can be linearly
approximated with the polyhedral norm given by

𝑝𝐿(𝑍) = max
𝑙∈ℒ

{
ℜ𝔢 {𝑍} cos

(
𝑙𝜋

𝐿

)
+ ℑ𝔪 {𝑍} sin

(
𝑙𝜋

𝐿

)}
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where ℒ = {1, 2, . . . , 2𝐿}, ℜ𝔢 {𝑍} and ℑ𝔪 {𝑍} denote the
real and imaginary parts of 𝑍 , and the polyhedral norm 𝑝𝐿(𝑍)
is bounded by

𝑝𝐿(𝑍) ≤ ∣𝑍∣ ≤ 𝑝𝐿(𝑍) sec
( 𝜋
2𝐿

)
.

and 𝐿 is a positive integer such that 𝐿 ≥ 2.
Proposition 2: The noncoherent AF relay power allocation

problem can be approximately decomposed into 2𝐿 quasi-
convex optimization subproblems. The master problem can be
written as

max
𝑙∈ℒ

𝑓noncoh(𝜁𝜁𝜁
opt
𝑙 ) (16)

where

𝑓noncoh(𝜁𝜁𝜁)

≜ 𝑃S

𝜎2
D

[
ℜ𝔢

{
𝑐𝑐𝑐𝑇𝜁𝜁𝜁

}
cos(𝑙𝜋/𝐿) + ℑ𝔪

{
𝑐𝑐𝑐𝑇𝜁𝜁𝜁

}
sin(𝑙𝜋/𝐿)

]2
∥𝐴𝐴𝐴𝜁𝜁𝜁∥2 + 1

and 𝜁𝜁𝜁opt𝑙 is the optimal solution of the following subproblem:

𝒫noncoh(𝑙) : max
𝜁𝜁𝜁𝑙

𝑓noncoh(𝜁𝜁𝜁𝑙)

s.t. ℜ𝔢
{
𝑐𝑐𝑐𝑇𝜁𝜁𝜁𝑙

}
cos(𝑙𝜋/𝐿)

+ℑ𝔪
{
𝑐𝑐𝑐𝑇𝜁𝜁𝜁𝑙

}
sin(𝑙𝜋/𝐿) ≥ 0,

𝜁𝜁𝜁 𝑙 ∈ 𝒮.
(17)

The feasible set 𝒮 is given by

𝒮 =

{
𝜁𝜁𝜁 ∈ ℝ

𝑁r
+ :

∑
𝑘∈𝒩r

𝜁2𝑘 ≤ 1, 0 ≤ 𝜁𝑘 ≤ √
𝜂p, ∀𝑘 ∈ 𝒩r

}

where 𝜁𝑘 ≜
√

𝑝𝑘

𝑃R
is the optimization variable and 𝜂p ≜

𝑃/𝑃R. In addition, 𝑐𝑐𝑐 = [𝑐1, 𝑐2, . . . , 𝑐𝑁r ]
𝑇 ∈ ℂ𝑁r , and

𝐴𝐴𝐴 = diag(𝑎1, 𝑎2, . . . , 𝑎𝑁r) ∈ ℝ
𝑁r×𝑁r
+ are defined as

𝑐𝑘 =
√
𝛽𝑘𝑃R ℎB,𝑘ℎF,𝑘 (18)

𝑎𝑘 =

√
𝛽𝑘𝑃R ∣ℎF,𝑘∣𝜎R,𝑘

𝜎D
. (19)

Proof: Similar to the proof of Proposition 1.
Remark 2: Note that 𝒮 and 𝐴𝐴𝐴 in Proposition 2 are exactly

the same as that in Proposition 1. The difference is in 𝑐𝑐𝑐
only. Unlike 𝒫coh, we now need to solve 2𝐿 quasiconvex
optimization subproblems due to the approximation of ∣𝑐𝑐𝑐𝑇𝜁𝜁𝜁∣
using Lemma 1.

Algorithm 2: Each of the 2𝐿 subproblems 𝒫noncoh(𝑙) in
Proposition 2 can be solved efficiently by the bisection method
via a sequence of convex feasibility problems in the form of
SOCP. The 2𝐿 solutions {𝜁𝜁𝜁opt𝑙 }2𝐿𝑙=1 then forms a candidate set
for the optimal 𝜁𝜁𝜁opt that maximizes our master problem.

Proof: The proof follows straightforwardly from Algo-
rithm 1.

IV. ROBUST RELAY POWER ALLOCATION

A. Coherent AF Relaying

Using the above methodology, we formulate the robust
counterpart of our AF RPA problem in Proposition 1 with
uncertainties in 𝐴𝐴𝐴 and 𝑐𝑐𝑐, as follows:

max
𝜁𝜁𝜁

𝑓coh(𝜁𝜁𝜁,𝐴𝐴𝐴,𝑐𝑐𝑐)

s.t. 𝜁𝜁𝜁 ∈ 𝒮, ∀ (𝐴𝐴𝐴,𝑐𝑐𝑐) ∈ 𝒰 (20)

where the feasible set 𝒮 is given in Proposition 1 and 𝒰 is
an uncertainty set that contains all possible realizations of
𝐴𝐴𝐴 and 𝑐𝑐𝑐. To solve for the above optimization problem, we
incorporate the uncertainties associated with 𝐴𝐴𝐴 and 𝑐𝑐𝑐 into the
convex feasibility program in (13) of Algorithm 1. Since (𝐴𝐴𝐴,𝑐𝑐𝑐)
only appears in the first constraint of (14), we simply need to
focus on this constraint and build its robust counterpart as
follows:

𝑐𝑐𝑐𝑇𝜁𝜁𝜁 ≥
√
𝑡𝜎2

D

𝑃S
(1 + ∥𝐴𝐴𝐴𝜁𝜁𝜁∥2), ∀(𝐴𝐴𝐴,𝑐𝑐𝑐) ∈ 𝒰 . (21)

In the following, we adopt a conservative approach which
assumes that 𝒰 affecting (21) is sidewise, i.e., the uncer-
tainty affecting the right-hand side in (21) is independent
of that affecting the left-hand side. Specifically, we have
𝒰 = 𝒰R × 𝒰L. Without such an assumption, it is known
that a computationally tractable robust counterpart for (21)
does not exist, which makes the conservative approach rather
attractive[2]. Our results are summarized in the next theorem.

Theorem 1: The robust coherent AF relay power allocation
problem in (20) can be solved numerically via Algorithm 1, ex-
cept that the convex feasibility program is now conservatively
replaced by its robust counterpart given as follows:

𝒫(robust)
coh (𝑡) : find 𝜁𝜁𝜁

s.t. 𝜁𝜁𝜁 ∈ 𝒮coh(𝑡,𝐴𝐴𝐴,𝑐𝑐𝑐),∀𝐴𝐴𝐴 ∈ 𝒰R, 𝑐𝑐𝑐 ∈ 𝒰L
(22)

with the sidewise independent ellipsoidal uncertainty sets 𝒰R

and 𝒰L given by

𝒰R =

⎧⎨
⎩𝐴𝐴𝐴 =𝐴𝐴𝐴0 +

∑
𝑗∈𝒩𝐴

𝑧𝑗𝐴𝐴𝐴𝑗 : ∥𝑧𝑧𝑧∥ ≤ 𝜌1

⎫⎬
⎭ (23)

𝒰L =

⎧⎨
⎩𝑐𝑐𝑐 = 𝑐𝑐𝑐0 + ∑

𝑗∈𝒩𝑐

𝑢𝑗𝑐𝑐𝑐𝑗 : ∥𝑢𝑢𝑢∥ ≤ 𝜌2

⎫⎬
⎭ (24)

where 𝒩𝐴 = {1, 2, . . . , 𝑁𝐴}, 𝒩𝑐 = {1, 2, . . . , 𝑁𝑐}, and 𝑁𝐴

and 𝑁𝑐 are the dimensions of 𝑧𝑧𝑧 and 𝑢𝑢𝑢, respectively. Then,
the approximate robust convex feasibility program 𝒫(robust)

coh (𝑡)
can be written in SDP form as:

find (𝜁𝜁𝜁, 𝜏, 𝜇)
s.t. (𝜁𝜁𝜁, 𝜏, 𝜇) ∈ 𝒲coh(𝑡)

(25)

such that (𝜁𝜁𝜁, 𝜏, 𝜇) ∈ ℝ
𝑁r
+ × ℝ+ × ℝ+ and the feasible

set 𝒲coh(𝑡) is shown at the top of this page, where 𝐴𝐴𝐴 =

[𝐴𝐴𝐴1𝜁𝜁𝜁,𝐴𝐴𝐴2𝜁𝜁𝜁, . . . ,𝐴𝐴𝐴𝑁𝐴𝜁𝜁𝜁] and 𝑐𝑐𝑐 =
[
𝑐𝑐𝑐𝑇1 𝜁𝜁𝜁, 𝑐𝑐𝑐

𝑇
2 𝜁𝜁𝜁, . . . , 𝑐𝑐𝑐

𝑇
𝑁𝑐
𝜁𝜁𝜁
]𝑇

.
Proof: The proof follows similar steps as in the proof of

Theorem 6 in [1].

B. Noncoherent AF Relaying

In the next theorem, we formulate the robust counterparts
of the 2𝐿 subproblems in Algorithm 2 with uncertainties
associated with 𝐴𝐴𝐴 and 𝑐𝑐𝑐.

Theorem 2: The robust noncoherent AF relay power alloca-
tion problem can be approximately decomposed into 2𝐿 sub-
problems. Under sidewise independent ellipsoidal uncertainty
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𝒲coh(𝑡) =

{
𝜁𝜁𝜁 ∈ ℝ

𝑁r
+ :

⎡
⎢⎢⎣
𝜇𝐼𝐼𝐼𝑁𝐴 000𝑁𝐴 𝐴𝐴𝐴

𝑇

000𝑇𝑁𝐴
𝜏
√

𝑃S

𝑡𝜎2
D
− 𝜇𝜌21 − 1 𝜁𝜁𝜁𝑇𝐴𝐴𝐴𝑇

0

𝐴𝐴𝐴 𝐴𝐴𝐴0𝜁𝜁𝜁
(
𝜏
√

𝑃S

𝑡𝜎2
D
− 1

)
𝐼𝐼𝐼𝑁r

⎤
⎥⎥⎦ ર 0,

⎡
⎣ (𝑐𝑐𝑐𝑇0 𝜁𝜁𝜁−𝜏)

𝜌2
𝐼𝐼𝐼𝑁𝑐 𝑐𝑐𝑐

𝑐𝑐𝑐𝑇
(𝑐𝑐𝑐𝑇0 𝜁𝜁𝜁−𝜏)

𝜌2

⎤
⎦ ર 0,

⎡
⎢⎢⎢⎢⎣

𝜂p+1
2 𝐼𝐼𝐼2

(
𝜁𝜁𝜁𝑇𝑒𝑒𝑒𝑘
𝜂p−1

2

)
(
𝜁𝜁𝜁𝑇𝑒𝑒𝑒𝑘
𝜂p−1

2

)𝑇

𝜂p+1
2

⎤
⎥⎥⎥⎥⎦ ર 0,

[
𝐼𝐼𝐼𝑁r 𝜁𝜁𝜁

𝜁𝜁𝜁𝑇 1

]
ર 0,

⎡
⎣ 𝜏

√
𝑡𝜎2

D

𝑃S√
𝑡𝜎2

D

𝑃S
𝜏

⎤
⎦ ર 0, ∀𝑘 ∈ 𝒩r

}

𝒲noncoh(𝑡, 𝑙) =

{
𝜁𝜁𝜁𝑙 ∈ ℝ

𝑁r
+ :

⎡
⎢⎢⎣
𝜇𝐼𝐼𝐼𝑁𝐴 000𝑁𝐴 𝐴𝐴𝐴

𝑇

𝑙

000𝑇𝑁𝐴
𝜏
√

𝑃S

𝑡𝜎2
D
− 𝜇𝜌21 − 1 𝜁𝜁𝜁𝑇𝑙 𝐴𝐴𝐴

𝑇
0

𝐴𝐴𝐴𝑙 𝐴𝐴𝐴0𝜁𝜁𝜁𝑙

(
𝜏
√

𝑃S

𝑡𝜎2
D
− 1

)
𝐼𝐼𝐼𝑁r

⎤
⎥⎥⎦ ર 0,

[
𝑀(𝑙)
𝜌2
𝐼𝐼𝐼𝑁𝑐 𝑐𝑐𝑐𝑙

𝑐𝑐𝑐𝑇𝑙
𝑀(𝑙)
𝜌2

]
ર 0,

⎡
⎣ [ℜ𝔢{𝑐𝑐𝑐𝑇0 𝜁𝜁𝜁𝑙} cos(𝑙𝜋/𝐿)+ℑ𝔪{𝑐𝑐𝑐𝑇0 𝜁𝜁𝜁𝑙} sin(𝑙𝜋/𝐿)]

𝜌2
𝐼𝐼𝐼𝑁𝑐 𝑐𝑐𝑐𝑙

𝑐𝑐𝑐𝑇𝑙
[ℜ𝔢{𝑐𝑐𝑐𝑇0 𝜁𝜁𝜁𝑙} cos(𝑙𝜋/𝐿)+ℑ𝔪{𝑐𝑐𝑐𝑇0 𝜁𝜁𝜁𝑙} sin(𝑙𝜋/𝐿)]

𝜌2

⎤
⎦ ર 0,

⎡
⎢⎢⎢⎢⎣

𝜂p+1
2 𝐼𝐼𝐼2

(
𝜁𝜁𝜁𝑇𝑙 𝑒𝑒𝑒𝑘
𝜂p−1

2

)
(
𝜁𝜁𝜁𝑇𝑙 𝑒𝑒𝑒𝑘
𝜂p−1

2

)𝑇

𝜂p+1
2

⎤
⎥⎥⎥⎥⎦ ર 0,

[
𝐼𝐼𝐼𝑁r 𝜁𝜁𝜁 𝑙
𝜁𝜁𝜁𝑇𝑙 1

]
ર 0,

⎡
⎣ 𝜏

√
𝑡𝜎2

D

𝑃S√
𝑡𝜎2

D

𝑃S
𝜏

⎤
⎦ ર 0, ∀𝑘 ∈ 𝒩r

}

sets 𝒰R and 𝒰L given by

𝒰R =

⎧⎨
⎩𝐴𝐴𝐴 = 𝐴𝐴𝐴0 +

∑
𝑗∈𝒩𝐴

𝑧𝑗𝐴𝐴𝐴𝑗 : ∥𝑧𝑧𝑧∥ ≤ 𝜌1

⎫⎬
⎭ , (26)

𝒰L =

⎧⎨
⎩𝑐𝑐𝑐 = 𝑐𝑐𝑐0 + ∑

𝑗∈𝒩𝑐

𝑢𝑗𝑐𝑐𝑐𝑗 : ∥𝑢𝑢𝑢∥ ≤ 𝜌2

⎫⎬
⎭ (27)

each subproblem can be solved efficiently using the bisection
method, except that the convex feasibility program is now
replaced with its approximate robust counterpart in the form
of a SDP:

𝒫(robust)
noncoh (𝑡, 𝑙) : find (𝜁𝜁𝜁 𝑙, 𝜏, 𝜇)

s.t. (𝜁𝜁𝜁 𝑙, 𝜏, 𝜇) ∈ 𝒲noncoh(𝑡, 𝑙)
(28)

such that for each 𝑙 ∈ ℒ, (𝜁𝜁𝜁, 𝜏, 𝜇) ∈ ℝ
𝑁r
+ ×ℝ+×ℝ+, and the

set 𝒲noncoh(𝑡, 𝑙) is shown at the top of this page, where

𝑐𝑐𝑐𝑙 =

⎡
⎢⎢⎢⎣

ℜ𝔢
{
𝑐𝑐𝑐𝑇1 𝜁𝜁𝜁𝑙

}
cos(𝑙𝜋/𝐿) + ℑ𝔪

{
𝑐𝑐𝑐𝑇1 𝜁𝜁𝜁𝑙

}
sin(𝑙𝜋/𝐿)

ℜ𝔢
{
𝑐𝑐𝑐𝑇2 𝜁𝜁𝜁𝑙

}
cos(𝑙𝜋/𝐿) + ℑ𝔪

{
𝑐𝑐𝑐𝑇2 𝜁𝜁𝜁𝑙

}
sin(𝑙𝜋/𝐿)

...
ℜ𝔢

{
𝑐𝑐𝑐𝑇𝑁𝑐

𝜁𝜁𝜁𝑙
}
cos(𝑙𝜋/𝐿) + ℑ𝔪

{
𝑐𝑐𝑐𝑇𝑁𝑐

𝜁𝜁𝜁𝑙
}
sin(𝑙𝜋/𝐿)

⎤
⎥⎥⎥⎦ ,

𝑀(𝑙) = ℜ𝔢
{
𝑐𝑐𝑐𝑇0 𝜁𝜁𝜁𝑙

}
cos(𝑙𝜋/𝐿) + ℑ𝔪

{
𝑐𝑐𝑐𝑇0 𝜁𝜁𝜁𝑙

}
sin(𝑙𝜋/𝐿) − 𝜏,

𝐴𝐴𝐴𝑙 = [𝐴𝐴𝐴1𝜁𝜁𝜁𝑙,𝐴𝐴𝐴2𝜁𝜁𝜁𝑙, . . . ,𝐴𝐴𝐴𝑁𝐴𝜁𝜁𝜁𝑙] .

Proof: The results follow straightforwardly from Algo-
rithm 2 and using similar steps leading to Theorem 1.

V. NUMERICAL RESULTS

In this section, we illustrate the effectiveness of our power
allocation algorithms for coherent and noncoherent AF relay
networks using numerical examples. We determine the RPAs
using our proposed algorithms with 𝜀 = 0.001 and 𝐿 = 4 in
Sections III and IV.7 We consider ℎℎℎB and ℎℎℎF to be mutually
independent random vectors with independent and identically
distributed elements which are circularly symmetric complex
Gaussian r.v.’s, i.e., ℎB,𝑘 ∼ �̃� (0, 1) and ℎF,𝑘 ∼ 𝒩 (0, 1) for
all 𝑘. The noise variances are normalized such that 𝜎2

R,𝑘 = 1
and 𝜎2

D = 1. For numerical illustrations, we use the outage
probability, defined as ℙ{SNR(𝑝𝑝𝑝) < 𝛾th}, as the performance
measure, where 𝛾th is the value of the target receive SNR and
it is set at 𝛾th = 10 dB. The uncertainty sets in Theorem 1 is
chosen such that 𝑁𝐴 = 1, 𝑁𝑐 = 1,𝐴𝐴𝐴1 = 𝐴𝐴𝐴0, and 𝑐𝑐𝑐1 = 𝑐𝑐𝑐0. We
consider 𝜌1 = 𝜌2 = 𝜌, where 𝜌 = 0 corresponds to perfect
knowledge of the global CSI and 𝜌 = 1 corresponds to an
uncertainty that can be as large as the size of the estimated
global CSI, i.e., 𝐴𝐴𝐴0 and 𝑐𝑐𝑐0.8

Figure 1 shows the outage probability as a function of
𝑃S/𝜎

2
D for the coherent AF relay network with 𝜂p = 0.1.

We consider relay networks with 𝑁r = 10 and 𝑁r = 20, and
compare the performance of uniform and optimal RPAs. When
𝑁r = 10, both the uniform and optimal power allocations

7Our proposed optimal and robust power allocation algorithms, respectively,
require solutions of convex feasibility programs in the form of SOCP and SDP.
We use the SeDuMi convex optimization package to obtain such numerical
solutions[16].

8Due to space constraint, we will show the numerical results for the robust
RPA for coherent AF relay networks.
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Fig. 1. Outage probability as a function of 𝑃S/𝜎
2
D for the coherent AF

relay network with 𝜂p = 0.1.
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Fig. 2. Outage probability as a function of 𝑃S/𝜎
2
D for the noncoherent AF

relay network with 𝜂p = 0.1.

result in the same performance. This can be explained by the
fact that it is optimal for each relay node to transmit at the
maximum transmission power 𝑃 when 𝜂p = 𝑃/𝑃R = 0.1.
When 𝑁r = 20, we first observe that lower outage proba-
bilities can be achieved for both power allocations compared
to the case with 𝑁r = 10, due to the presence of diversity
gains in coherent AF relay network. In addition, significant
performance improvements with optimal RPA compared to
uniform RPA can be observed since optimal RPA can exploit
the channel variation more effectively for larger 𝑁r to enhance
the effective SNR at the destination node.

Similar to Fig. 1, we show the outage probability as a
function of 𝑃S/𝜎

2
D for the noncoherent AF relay network

with 𝜂p = 0.1 in Fig. 2. Under uniform RPA, we observe
that the increase in the number of relay nodes does not yield
any performance gain. This behavior of noncoherent AF relay
network is consistent with the results of [17], and can be
attributed to the lack of locally-bidirectional CSIs at the relay
nodes, making coherent combining at the destination node im-
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Fig. 3. Effect of uncertain global CSI on the outage probability of the
coherent AF relay network using non-robust algorithm for 𝜂p = 0.1 and
𝑁r = 20.

possible. However, we can see that performance improves with
optimal RPA compared to uniform RPA, and this improvement
increases with 𝑁r. Comparing Figs. 1 and 2, even with optimal
RPA, the noncoherent AF relay network performs much worse
than the coherent AF case, since optimal RPA is unable to fully
reap the performance gain promised by coherent AF case due
to the lack of distributed beamforming gain.

Figure 3 shows the effect of uncertainties associated with
the global CSI on the outage probability of coherent AF
networks using non-robust RPAs when 𝑁r = 20 and 𝜂p = 0.1.
By non-robust algorithms, we refer to optimization algorithms
in Section III that optimize RPAs based only on 𝐴𝐴𝐴0 and 𝑐𝑐𝑐0
instead of the true global CSI 𝐴𝐴𝐴 and 𝑐𝑐𝑐, where 𝐴𝐴𝐴 = 𝐴𝐴𝐴0 + 𝑧𝐴𝐴𝐴1

and 𝑐𝑐𝑐 = 𝑐𝑐𝑐0 + 𝑢𝑐𝑐𝑐1.9 Clearly, we see that ignoring CSI
uncertainties in our designs can lead to drastic performance
degradation when the uncertainty size 𝜌 becomes large. In
this figure, we can see that when 𝜌 is less than 0.01, we may
ignore CSI uncertainties since the performance degradation
is negligible. However, performance deteriorates rapidly as 𝜌
increases.

Figure 4 shows the outage probabilities of coherent AF relay
networks as a function of the size of the uncertainty set 𝜌 using
robust RPAs when 𝑁r = 20 and 𝜂p = 0.1. For comparison, we
also plot the performance of uniform and non-robust RPAs in
these plots. We observe that non-robust RPAs still offer some
performance improvements over uniform RPAs as long as 𝜌
is not large. When 𝜌 is large, the effectiveness of non-robust
RPA algorithms is significantly reduced. On the other hand,
we see that robust RPAs provide significant performance gain
over non-robust RPAs over a wide range of 𝜌, showing the
effectiveness of our robust algorithms in the presence of global
CSI uncertainty.

VI. CONCLUSION

In this paper, we developed RPA algorithms for coherent
and noncoherent AF relay networks. We showed that these

9These results are generated based on the worst case scenario, where 𝑧 = 𝜌
and 𝑢 = −𝜌.
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Fig. 4. Outage probability as a function of size of uncertainty set 𝜌 for
coherent AF relay network with 𝑃S/𝜎

2
D = 3 dB, 𝜂p = 0.1, and 𝑁r = 20.

RPA problems, in the presence of perfect global CSI, can be
formulated as quasiconvex optimization problems. Thus, the
RPA problems can be solved efficiently using the bisection
method through a sequence of convex feasibility problems,
which can be cast as SOCPs. We developed the robust
optimization framework for RPA problems when global CSI
is subject to uncertainties. We showed that the robust coun-
terparts of our convex feasibility problems with ellipsoidal
uncertainty sets can be formulated as SDPs. Conventionally,
uncertainties associated with the global CSI are ignored and
the optimization problem is solved as if the given global
CSI is perfect. However, our results revealed that such a
naive approach often leads to poor performance, highlighting
the importance of addressing CSI uncertainties by designing
robust algorithms in realistic wireless networks.

APPENDIX A
PROOF OF PROPOSITION 1

First, to show that 𝒫coh is a quasiconvex optimization
problem, we simply need to show that the objective function
𝑓coh(𝜁𝜁𝜁) is quasiconcave and the constraint set in (10) is
convex. The constraint set in (10) is simply the intersection
of a hypercube with an SOC. Since the intersection of convex
sets is convex, the constraint set in (10) is again convex. For
any 𝑡 ∈ ℝ+, the upper-level set of 𝑓coh(𝜁𝜁𝜁) that belongs to 𝒮
is given by

𝑈(𝑓coh, 𝑡) =

{
𝜁𝜁𝜁 ∈ 𝒮 :

𝑃S

𝜎2
D

(𝑐𝑐𝑐𝑇𝜁𝜁𝜁)2

∥𝐴𝐴𝐴𝜁𝜁𝜁∥2 + 1
≥ 𝑡

}

=

⎧⎨
⎩𝜁𝜁𝜁 ∈ 𝒮 :

⎡
⎢⎣ 𝑐𝑐𝑐

𝑇𝜁𝜁𝜁
√

𝑃S

𝑡𝜎2
D(

1
𝐴𝐴𝐴𝜁𝜁𝜁

)
⎤
⎥⎦ ર𝒦 0

⎫⎬
⎭ . (29)

It is clear that 𝑈(𝑓coh, 𝑡) is a convex set since it can be
represented as an SOC. Since the upper-level set 𝑈(𝑓coh, 𝑡)
is convex for every 𝑡 ∈ ℝ+, 𝑓coh(𝜁𝜁𝜁) is, thus, quasiconcave.
Note that a concave function is also quasiconcave. We now
show that 𝑓coh(𝜁𝜁𝜁) is not concave by contradiction. Suppose
that 𝑓coh(𝜁𝜁𝜁) is concave. We consider 𝜁𝜁𝜁𝑎 and 𝜁𝜁𝜁𝑏 such that
𝜁𝜁𝜁𝑎 = 𝜁1𝑒𝑒𝑒1 and 𝜁𝜁𝜁𝑏 = 𝛿𝜁1𝑒𝑒𝑒1 for 0 ≤ 𝜁1 ≤ √

𝜂p, 𝜁21 ≤ 1,

and 0 < 𝛿 < 1. Clearly, 𝜁𝜁𝜁𝑎 and 𝜁𝜁𝜁𝑏 ∈ 𝒮. For any 𝜆 ∈ [0, 1],
we have

𝑓coh(𝜆𝜁𝜁𝜁𝑎 + (1− 𝜆)𝜁𝜁𝜁𝑏) =
𝑃S/𝜎

2
D

𝑎2
1

𝑐21
+ 1

𝜁2
1 [𝜆𝑐1+𝛿𝑐1(1−𝜆)]2

≜ 𝑔(𝜁1) (30)

where 𝑔(𝜁1) is clearly convex in 𝜁1. Due to convexity of 𝑔(𝜁1),
the following inequality must hold

𝑔(𝜆𝜁
(1)
1 + (1− 𝜆)𝜁(2)1 ) ≤ 𝜆𝑔(𝜁(1)1 ) + (1− 𝜆)𝑔(𝜁(2)1 ). (31)

Now, by letting 𝜁(1)1 = 𝜁1/[𝜆+ 𝛿(1−𝜆)] and 𝜁(2)1 = 𝛿𝜁1/[𝜆+
𝛿(1 − 𝜆)], we can rewrite (31) as

𝑓coh(𝜆𝜁𝜁𝜁𝑎 + (1− 𝜆)𝜁𝜁𝜁𝑏) ≤ 𝜆𝑓coh(𝜁𝜁𝜁𝑎) + (1− 𝜆)𝑓coh(𝜁𝜁𝜁𝑏).
(32)

Thus, we have showed that there exists 𝜁𝜁𝜁𝑎, 𝜁𝜁𝜁𝑏 ∈ 𝒮 and 𝜆 ∈
[0, 1], such that (32) holds. By contradiction, 𝑓coh(𝜁𝜁𝜁) is not
concave on 𝒮.

APPENDIX B
PROOF OF ALGORITHM 1

We first show that for each given 𝑡, the convex feasibility
program is an SOCP. For each 𝑡, the first constraint in (14)
follows immediately from (29), which is an SOC constraint.
Clearly, the aggregate relay power constraint in (10) can be
cast as an SOC constraint. Lastly, the individual relay power
constraints can be cast as SOC constraints as follows:

𝜁𝜁𝜁𝑇𝑒𝑒𝑒𝑘 ≤ √
𝜂p ⇔

∥∥∥∥
(
𝜁𝜁𝜁𝑇𝑒𝑒𝑒𝑘
𝜂p−1

2

)∥∥∥∥ ≤ 𝜂p + 1

2
. (33)

In summary, 𝒫(SOCP)
coh is an SOCP since 𝒮coh(𝑡) is equivalent

to the intersection of (𝑁r + 2) SOC constraints and the
objective function is linear.
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