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Abstract – A working predictive schedule can be useless 
because of the various external or internal disruptions in a 
job shop. Total rescheduling may cause problems such as 
shop floor nervousness. Thus, the job shop scheduling repair 
(recovery) approach aims at generating a solution satisfying
the updated constraints and making deviations minimized.
We propose an incremental temporal reasoning approach in 
this paper to solve job shop scheduling repair problems.
Specifically, such a problem is formulated as a disjunctive 
temporal problem (DTP), framed as an optimal constraint 
satisfaction problem (OCSP) formally, and finally solved by 
performing an algorithm integrating incremental temporal 
consistency and efficient candidate generation. Through 
involving human interactive mechanism, domain experts can 
make higher quality decisions by balancing makespan and 
deviations.

Keywords – Job shop scheduling repair (recovery),
incremental temporal reasoning, disjunctive temporal 
problems, optimal constraint satisfaction problems,
constraint–based scheduling 

I.  INTRODUCTION

Deviations from predictive schedules occur when the 
job shop experiences both external and internal 
disruptions such as machines break down, workers do not 
perform as expected, urgent jobs arrives, target dates or 
order quantities changes on short notice, wrong job 
quantities are produced, materials or supplies do not 
arrive when expected, parts are misplaced, and tools 
defects [1-3]. These disruptions appear unexpectedly 
during manufacturing and cause the original predictive 
schedules useless. Distinctly, scheduling is an ongoing 
reactive process where evolving and changing 
circumstances continually force reconsideration and 
revision of pre-established plans [4].

A simple approach would be to totally reschedule the 
system when the deviation occurs [5]. However, this 
approach is not encouraged in industry as the new 
schedule can differ considerably from the old one and this 
is not desirable since many other decisions such as 
assignment of personnel, delivery of raw material and the 
subsequent processing of the jobs in other facilities, may 
be severely disrupted. This phenomenon is commonly 
referred to as shop floor nervousness [6].

Therefore, another approach is scheduling recovery 
and repair [7, 8] that modifies the original predictive 
schedule to accommodate sudden disruptions avoiding the 
total rescheduling of the system as far as possible. In this 
paper, we develop an incremental temporal reasoning 

approach for scheduling repair. Specifically, a job shop 
scheduling repair problem, whose objective is generally to
minimize the deviations, is formulated as a disjunctive 
temporal problem (DTP), which is then framed as an 
optimal constraint satisfaction problem (OCSP). An 
algorithm developed from the conflict-directed A* 
algorithm (CDA*) [9] and the incremental temporal 
consistency algorithm (ITC) [10] is proposed to solve the 
OCSP.

II.  REACTIVE SCHEDULE REPAIR

A. Related Work

A pragmatic reactive scheduling repair system in job 
shop faces several challenges to design and implement.

First, reactive schedule repair can be evaluated based 
on the original predictive schedule (or the previous 
revised schedule) and large amount of information 
indicating the status of the job shop. In traditional way, it 
is time-consuming to collect the information from the job 
shop. However, RFID and related sensor technologies 
provide the potential to change the way we control 
manufacturing processes in a fundamental manner [11],
specifically gathering massive observable data in real time. 
In addition, tools such as reactive monitoring systems will 
manipulate these data and estimate the current status of 
the job shop, so as to support reactive schedule repairing.

The predictive schedules are usually based on
optimization objectives such as minimizing tardiness, 
maximizing resource utilization, etc. Any recovery or 
repair applied will cause a deviation from the original 
optimized schedule. Thus, a better schedule strategy is 
one that leads to minimum deviation of the performance 
measures while incorporating the necessary modifications 
and repair objectives. The focus is to implement a repair 
method that can handle the repair of the schedules without 
compromising on the quality of the schedules [12]. In 
other words, the objective of reactive schedule repair 
could be to minimize the deviation in performance during 
the repair while satisfying the constraints [13] such as 
routing of jobs, availability of machines, and priority 
assignment for jobs and machines.

Reactive schedule repair responses to unexpected 
disruptions during the execution of original predictive 
schedules. Thus, the minimum time frame is required to 
react to the disruptions so that the schedule is still active 
and not out of date by the time the revised schedule is 
prepared.

Eliciting effective problem solving knowledge from 
human experts is a difficult task, and human schedulers 
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typically lack the knowledge of solving large and 
complicated scheduling problems in the sophisticated 
manner [14]. Thus, human interactive mechanism may be 
involved in a reactive schedule recovery system allowing
those experts to make difficult decisions efficiently armed 
with the system assistance.

Several various kinds of methods are applied in a 
reactive environment for schedule recovery, such as
right-shift rescheduling, heuristic based approaches, 
affected operation rescheduling, multi-agent approaches, 
cased-based reasoning, constraint-based scheduling, fuzzy 
logic and neural network [2]. This paper will aim at 
constraint-based scheduling approaches because (1) the 
real-time status of job shop could be collected by RFID 
devices and manipulated by a reactive monitoring system,
which is built on a constraint-based reactive language 
(reactive model-based programming language, RMPL 
[15]); (2) rules and relationships in schedule 
specifications can be presented by constraints formally; (3) 
there are a lot of efficient algorithms and engines to solve 
the constraint-based problem. Miyashita et al. [14]
achieve the incremental accumulation and reuse of past 
experience through case-based reasoning, whereas 
constraint-based scheduling has been used for the 
propagation and resolution of the effect of repair. Spragg
et al. [16] used constraint based reactive rescheduling, 
which involves periodic schedule repair, based upon 
reassignment heuristics, supported by partial order 
backtracking, to maintain line balance which may be 
disrupted by workers absence or machines breakdown. 
[17] provided a review of using constraint satisfaction 
processing (CSP) technology for scheduling in job shop 
environment.

B. Formal Definitions

A job shop contains a set of machines M = {m1,
m2,…, mn} and a set of jobs J = {j1, j2,…, jn}. A job, ji,
consists of a set of operations Oi = {o1, o2,…, os}, where 
any two operations may be restricted by a sequence or 
parallel constraint. Formally, operations in Oi may be 
recurring, i.e. any two operations ox, oy�� Oi may have 
ox = oy. Generally, some jobs may have earliest start time 
and latest end time to restrict the job temporal constraints.

A job shop contains a set of operations O = {o1,
o2,…, on}, where Oi (for the job ji) � O. An operation, 
oi�� O, is able to be handled on a set of candidate 
machines Mi = {m1, m2,…, ms} � M (M denotes the set of 
all machines). Each operation also has a set of processing 
time, Ti = {ti,1, ti,2,…, ti,s}, corresponding to Mi.

Rules in a job shop contains: 1) Each machine can 
handle at most one operation at a time; 2) Each operation 
needs to be processed during an uninterrupted period of a 
given length on a given machine; 3) A job can wait an 
arbitrary amount of time between two operations (i.e. wait 
in buffer of a machine). 

A job shop scheduling (JSS) problem is often 
described by a three-field � | � | �. [18] The � field

specifies the environment, including relationships, of m
machines. The � field indicates a number of 
characteristics of n jobs, such as precedence relations and 
release dates. The � field is characterized as the objective 
to minimize the makespan for all the jobs. A JSS problem 
is to find a solution satisfying the constraints in the � field 
and optimizing the � field. Specifically, the constraints 
can be partitioned into three types: temporal constraints to 
restrict earliest start time and latest end time, temporal 
constraints to restrict operations sequence of a job, and 
temporal constraints to restrict operations sequence on a 
machine.

A job shop scheduling repair (JSSR) problem can 
be extended from the JSS problem. It contains the field �
and the field �, as well as an ongoing schedule given by 
solving Job Shop Scheduling Problem. Generally, part of 
the ongoing schedule is finished but some disruptions 
happen, such as a new job is added, the latest end time of 
an existing job is changed. To avoid the shop floor 
nervousness, the objective of the JSSR problem is to 
minimize the deviations from the ongoing schedule.

III. METHODOLOGY

We use an incremental temporal reasoning algorithm 
to solve the JSSR problem. A candidate schedule can be 
represented as a simple temporal network (STN). The 
candidate schedule is a solution when the STN is temporal 
consistent. In a typical JSS problem, the constraints of 
earliest start time, latest end time, and the sequence of 
operations in a job are deterministic. A schedule will be
made by arranging the sequence of operations on each 
machine. Formally, a JSSR problem can be formulated as 
a disjunctive temporal problem (DTP), which is able to be 
solved by employing temporal reasoning algorithms.

A. Disjunctive Temporal Problem (DTP)

Generally, a temporal reasoning problem is described
by points and intervals, where constraints can be either 
qualitative or quantitative. Qualitative constraints specify 
the relative position of paired objects, and quantitative 
constraints place absolute bounds, or restrict the temporal 
distance between points [19].

A simple temporal network (STN) is defined as a 
collection of real-valued time point variables V
corresponding to instantaneous events, admitting at most 
one interval constraint on any pair of time points [20],
where each interval constraint ci = [t1, t2] restricts the 
temporal distance. A disjunctive temporal problem
(DTP) has a similar definition as STN, but each constraint 
ci�� C is allowed to be disjunctive, in the form of ci,1 �
ci,2 � … � ci,n, where n may be any number [20].

When formulating a JSSR problem into a DTP, each
precedence relationship between two operations oi, oj on a
machine can be formulated as a disjunctive temporal 
constraint, oi either before or after oj. By making choice
for each disjunctive temporal constraint, either before or 
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after, a DTP can be reduced into a STN. Then a solution
may be found when the STN is temporal consistent.

Fig. 1 shows a formulation example, where the JSSR 
problem has 3 jobs and 3 machines. Each 6 horizontal 
points denote the start and end time points of a job’s
operations. Fig. 1 (a) represents the disjunctive temporal 
constraints in a DTP, which describe the operation 
precedence relationships on a machine. Specifically, “a1”
and “a2” consist of a disjunctive constraint that represents
the precedence relationship between the operations 
“job1.op1” and “job3.op1”. After making choice of “a1”,
“c2” and so on, the DTP could be reduced into a STN like 
Fig. 1 (b) that represents a candidate schedule. It worth 
noting that the dashed arcs represent the constraints 
restricting the earliest start time and the latest end time of 
the schedule.

Fig. 1. (a) Disjunctive constraints that describe the operation 
precedence relationships on a machine; (b) A STN that presents a

candidate schedule.

B. Optimal Constraint Satisfaction Problem (OCSP)

A constraint satisfaction problem (CSP), 	X, DX,
CX
, consists of a set of variables xj � X that range over 
a finite domain DXi � DX, and a set of constraints CX : X
� {True, False}. A solution is any assignment to X that 
satisfies CX. While an optimal constraint satisfaction 
problem (OCSP), 	CSP, Y, g
, consists of a CSP = 	X, DX,
CX
, a set of decision variables Y � X, and a 
multi-attribute cost function g : Y � R, that is mutually 
preferentially independent (MPI).

A DTP for a JSSR problem is easy to be framed as an 
OCSP, whose objective is to minimize the deviations 
from the ongoing schedule. Specifically, to frame a JSSR 
DTP into a OCSP, every pair of operations on the same 
machine is encoded as a set of decision variables Y. Each 
decision variable, yi � Y, has two values “before” and 
“after”, either of which is respectively assigned a cost ci
rendering the similarity to the old schedule. If there are m
operations on a specified machine, m(m-1)/2 pairs of 
decision variables will be constructed. For example, in a 

JSSR problem, “job1.op1”, “job2.op2” and “job3.op1” are 
on the same machine. Three decision variables are then 
constructed: “job1.op1/job2.op2”, “job1.op1/job3.op1”
and “job2.op2/job3.op1”. Constraints of earliest start time, 
latest end time and operations sequence of a job will be 
encoded as lower bound and upper bound form. 
Constraints of operations sequence on the same machine 
will be mapped to decision variables respectively.

C. Incremental Temporal Reasoning

In this paper, an incremental temporal reasoning 
algorithm, integrating the conflict-directed A* algorithm 
(CDA*) [9] and the incremental temporal consistency 
algorithm (ITC) [10], is used to solve the OCSP for a
JSSR problem. This algorithm constrains the major steps
as Fig. 2.

Fig. 2. The incremental temporal reasoning

Step 1: A JSSR problem is formulated as a DTP. The 
input contains the job shop model (n jobs, m machines, 
relationships of machines and operations, intervals of 
operations, etc.), the ongoing schedule, and the finished 
part of the ongoing schedule. The output is a DTP and 
related costs, which are generated by comparing 
disjunctive constraints and the ongoing schedule.

Step 2: A DTP and related costs are framed as an 
OCSP, where an OpSat form is used to represent and 
interpret it.

Step 3: If the first time, (a) there are not any known 
conflict in the OpSat. According to the decision variables 
and their costs, a candidate schedule will be selected, i.e. 
each decision variable will be assigned the value with the 
biggest cost so as to output a STN without any disjunctive 
constraints. Else, (b) there are some known conflicts. The 
CDA* algorithm is used to give a candidate schedule 
resolving all known conflicts. The output candidate 
schedule has the largest sum of costs of the decision 
variables after removing all candidates affected by known 
conflicts.

Step 4: If the first time, (a) just update the whole STN 
given by Step 3(a) to the ITC. Else, (b) there is an existing 
STN. Compare the new given STN (the candidate 
schedule) and the existing STN. The conflict of the 
existing STN (a negative cycle) is resolved and some 
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decision variables have changed values. Update these 
changes of the constraints to transform the existing STN 
to the new STN but maintaining the last search results, so 
that the following STN consistency checking can be 
continued incrementally based on the last search but not 
totally restarted.

Step 5: Check the updated STN consistency based on 
the last search. A STN can be easily to transformed as a 
distance graph. STN consistency can be checked by 
detecting negative cycles in the distance graph. Here 
FIFO label correcting algorithm is applied to detect 
negative cycles.

Step 6: If no negative cycles is found, the STN is 
temporal consistent and the repaired schedule is. The 
algorithm will be stopped here and output the consistent 
schedule as the final solution. If a negative cycle is found, 
it will be output as a conflict to update the sets of conflicts 
maintained in OpSat.

Step 7: Update the given conflict given by the step 6 
into the OpSat conflict set. Repeat the Step 3(b) to 
generate another feasible candidate schedule.

Specifically, one of the most important issues to 
affect computing performance is the STN consistency 
checking algorithm, which is specifically a FIFO label 
correcting algorithm in the original ITC algorithm [10].

The original algorithm is inefficient because of the
termination condition of detecting the negative cycles. It
will take too much unnecessary time to traversal the nodes 
until one of them is less than -nC, where n denotes the 
number of the nodes and C denotes the largest absolute 
value of some arc length. For example, in a 10 jobs, 10 
machines job shop problem, there are more than 200 
nodes and the largest absolute value of some arc (i.e. the 
largest interval upper bound) may be thousands.

Therefore, we improve the algorithm by using a much 
faster termination condition: “Run the FIFO label 
correcting algorithm of label correcting, and stop if you 
have scanned any node at least n times”. It can be easily 
proven by the theorem: “The FIFO label correcting 
algorithm finds the minimum length path from 1 to j for 
all j in N in O(nm) steps, or else shows that there is a 
negative cost cycle.” N is the set of nodes in the STN 
graph, n is the number of the nodes and m is the number 
of edges.

CDA* accelerates the search process of the traditional 
A* algorithm by eliminating subspaces around each 
inconsistent state. CDA* guides its search using conflicts, 
which are descriptions of states that are inconsistent with 
the OCSP. Specifically, CDA* generates a best valued 
candidate S that resolves all discovered conflicts. It tests S
for consistency against the CSP using any suitable CSP 
algorithm. When S tests inconsistent, one or more 
conflicts that are inconsistent in a manner similar to S are 
extracted.  When a new conflict is discovered, it is 
recorded and used to update the search queue of 
candidates to be explored, called kernels. CDA* then 
repeats to generate the next best candidate and test until 
the desired solutions are found or all candidates are 
eliminated.

IV.  EXPERIMENTAL RESULTS

An experimental case is build to test the algorithm 
performance. We develop a test case based on a job shop 
scheduling benchmark from Lawrence, which is also 
known as LA19 [21]. The original problem is a JSS
problem with 10 jobs and 10 machines, where the optimal 
solution is known to be 842 (see Fig. 3) computed within 
300s [22, Baptiste, 1995 #586]. To development our test 
case, we use the optimal schedule as an ongoing schedule, 
and consider an 11th urgent job, which is specifically
M0(32), M1(27), M2(50), M3(86), M4(67), M5(25), 
M6(53), M7(39), M8(44), M9(19). Then the schedule 
should be repaired to satisfy the resource constraints and 
the temporal constraints that may contain a new allowed 
makespan, at the same time has a minimum deviation 
from the original schedule.

Fig. 3. The ongoing schedule (LA19)

Fig. 4. The experimental result of repairing LA19 schedule

The experimental result of test case is given as Fig. 4.
Obviously, when a smaller allowed makespan is given, 
there will be more adjustments performed on the original 
job operations, and it would take longer to repair. In our 
test case, an allowed makespan of 1300 means there is no
need to adjust the original job operations, but place the 
new job after. While it may take almost longest (about 50s) 
to repair the schedule by giving an allowed makespan of 
910, which is also the nearest to the optimal makespan of 
the new JSS problem. However, since we frequently 
repair a schedule when it is on execution, the shop floor 
nervousness caused by too many adjustments should be 
avoided.

V.  CONCLUSION AND DISCUSSION
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Using the increment temporal reasoning, the JSSR 
problem can be abstracted as a disjunctive temporal 
problem (DTP). The DTP is framed as an optimal 
constraint satisfaction problem (OCSP), which can be 
solved by the OpSat engine. The OpSat uses the 
conflict-directed A* algorithm (CDA*) and the 
incremental temporal consistency algorithm (ITC) to 
solve the temporal constraints network. An experiment is 
given to test the whole algorithm framework.

Actually, the temporal plan network (TPN) [23] is 
used to encode the job shop schedule repair problem. 
However, because of the properties of the TPN, the 
disjunctive constraints from different nodes are difficult to 
represent. Thus, the JSSR problem is interpreted as a lot 
of possible choices in TPN. Even in a small size of JSSR, 
the choices are still a large size (n!)m. Thus finally, we 
specify the JSSR problem as a DTP and directly frame as 
an OCSP.

Certainly, there are some works to do in the future.
First, the current STN consistency checking algorithm, 
FIFO label correcting algorithm terminated by “n times”,
is not efficient enough. More negative cycle detection 
algorithms will be tried to integrate in the incremental
temporal reasoning mechanism to perform efficiently.
Next, we will try to prune some semantic duplicate 
constraints when performing negative cycle detection.
Finally, the current allowed makespan of the JSSR DTP is 
given by inputting. In the future, we will try to extend the 
current OpSat to represent the makespan issue using 
constraints or variables. Another kind of idea may be 
allow the OpSat to input a problem and some conflicts, 
which makes the OpSat also an incremental algorithm.
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