
MIT Open Access Articles

Incremental temporal reasoning in job shop scheduling repair

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Huang, Y. et al. “Incremental temporal reasoning in job shop scheduling repair.”
Industrial Engineering and Engineering Management (IEEM), 2010 IEEE International
Conference on. 2010. 1276-1280. Copyright © 2010, IEEE

As Published: http://dx.doi.org/10.1109/IEEM.2010.5674383

Publisher: Institute of Electrical and Electronics Engineers

Persistent URL: http://hdl.handle.net/1721.1/66211

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/66211

Abstract – A working predictive schedule can be useless
because of the various external or internal disruptions in a
job shop. Total rescheduling may cause problems such as
shop floor nervousness. Thus, the job shop scheduling repair
(recovery) approach aims at generating a solution satisfying
the updated constraints and making deviations minimized.
We propose an incremental temporal reasoning approach in
this paper to solve job shop scheduling repair problems.
Specifically, such a problem is formulated as a disjunctive
temporal problem (DTP), framed as an optimal constraint
satisfaction problem (OCSP) formally, and finally solved by
performing an algorithm integrating incremental temporal
consistency and efficient candidate generation. Through
involving human interactive mechanism, domain experts can
make higher quality decisions by balancing makespan and
deviations.

Keywords – Job shop scheduling repair (recovery),
incremental temporal reasoning, disjunctive temporal
problems, optimal constraint satisfaction problems,
constraint–based scheduling

I. INTRODUCTION

Deviations from predictive schedules occur when the
job shop experiences both external and internal
disruptions such as machines break down, workers do not
perform as expected, urgent jobs arrives, target dates or
order quantities changes on short notice, wrong job
quantities are produced, materials or supplies do not
arrive when expected, parts are misplaced, and tools
defects [1-3]. These disruptions appear unexpectedly
during manufacturing and cause the original predictive
schedules useless. Distinctly, scheduling is an ongoing
reactive process where evolving and changing
circumstances continually force reconsideration and
revision of pre-established plans [4].

A simple approach would be to totally reschedule the
system when the deviation occurs [5]. However, this
approach is not encouraged in industry as the new
schedule can differ considerably from the old one and this
is not desirable since many other decisions such as
assignment of personnel, delivery of raw material and the
subsequent processing of the jobs in other facilities, may
be severely disrupted. This phenomenon is commonly
referred to as shop floor nervousness [6].

Therefore, another approach is scheduling recovery
and repair [7, 8] that modifies the original predictive
schedule to accommodate sudden disruptions avoiding the
total rescheduling of the system as far as possible. In this
paper, we develop an incremental temporal reasoning

approach for scheduling repair. Specifically, a job shop
scheduling repair problem, whose objective is generally to
minimize the deviations, is formulated as a disjunctive
temporal problem (DTP), which is then framed as an
optimal constraint satisfaction problem (OCSP). An
algorithm developed from the conflict-directed A*
algorithm (CDA*) [9] and the incremental temporal
consistency algorithm (ITC) [10] is proposed to solve the
OCSP.

II. REACTIVE SCHEDULE REPAIR

A. Related Work

A pragmatic reactive scheduling repair system in job
shop faces several challenges to design and implement.

First, reactive schedule repair can be evaluated based
on the original predictive schedule (or the previous
revised schedule) and large amount of information
indicating the status of the job shop. In traditional way, it
is time-consuming to collect the information from the job
shop. However, RFID and related sensor technologies
provide the potential to change the way we control
manufacturing processes in a fundamental manner [11],
specifically gathering massive observable data in real time.
In addition, tools such as reactive monitoring systems will
manipulate these data and estimate the current status of
the job shop, so as to support reactive schedule repairing.

The predictive schedules are usually based on
optimization objectives such as minimizing tardiness,
maximizing resource utilization, etc. Any recovery or
repair applied will cause a deviation from the original
optimized schedule. Thus, a better schedule strategy is
one that leads to minimum deviation of the performance
measures while incorporating the necessary modifications
and repair objectives. The focus is to implement a repair
method that can handle the repair of the schedules without
compromising on the quality of the schedules [12]. In
other words, the objective of reactive schedule repair
could be to minimize the deviation in performance during
the repair while satisfying the constraints [13] such as
routing of jobs, availability of machines, and priority
assignment for jobs and machines.

Reactive schedule repair responses to unexpected
disruptions during the execution of original predictive
schedules. Thus, the minimum time frame is required to
react to the disruptions so that the schedule is still active
and not out of date by the time the revised schedule is
prepared.

Eliciting effective problem solving knowledge from
human experts is a difficult task, and human schedulers

Incremental Temporal Reasoning in Job Shop Scheduling Repair

Y. Huang1,2, L. Zheng1, Brian C. Williams2, L. Tang1, H. Yang1
1 Department of Industrial Engineering, Tsinghua University, Beijing, China

2 CSAIL, MIT, Cambridge, MA, USA
huangyi00@mails.tsinghua.edu.cn, lzheng@tsinghua.edu.cn, williams@mit.edu

978-1-4244-8503-1/10/$26.00 ©2010 IEEE 1276

typically lack the knowledge of solving large and
complicated scheduling problems in the sophisticated
manner [14]. Thus, human interactive mechanism may be
involved in a reactive schedule recovery system allowing
those experts to make difficult decisions efficiently armed
with the system assistance.

Several various kinds of methods are applied in a
reactive environment for schedule recovery, such as
right-shift rescheduling, heuristic based approaches,
affected operation rescheduling, multi-agent approaches,
cased-based reasoning, constraint-based scheduling, fuzzy
logic and neural network [2]. This paper will aim at
constraint-based scheduling approaches because (1) the
real-time status of job shop could be collected by RFID
devices and manipulated by a reactive monitoring system,
which is built on a constraint-based reactive language
(reactive model-based programming language, RMPL
[15]); (2) rules and relationships in schedule
specifications can be presented by constraints formally; (3)
there are a lot of efficient algorithms and engines to solve
the constraint-based problem. Miyashita et al. [14]
achieve the incremental accumulation and reuse of past
experience through case-based reasoning, whereas
constraint-based scheduling has been used for the
propagation and resolution of the effect of repair. Spragg
et al. [16] used constraint based reactive rescheduling,
which involves periodic schedule repair, based upon
reassignment heuristics, supported by partial order
backtracking, to maintain line balance which may be
disrupted by workers absence or machines breakdown.
[17] provided a review of using constraint satisfaction
processing (CSP) technology for scheduling in job shop
environment.

B. Formal Definitions

A job shop contains a set of machines M = {m1,
m2,…, mn} and a set of jobs J = {j1, j2,…, jn}. A job, ji,
consists of a set of operations Oi = {o1, o2,…, os}, where
any two operations may be restricted by a sequence or
parallel constraint. Formally, operations in Oi may be
recurring, i.e. any two operations ox, oy�� Oi may have
ox = oy. Generally, some jobs may have earliest start time
and latest end time to restrict the job temporal constraints.

A job shop contains a set of operations O = {o1,
o2,…, on}, where Oi (for the job ji) � O. An operation,
oi�� O, is able to be handled on a set of candidate
machines Mi = {m1, m2,…, ms} � M (M denotes the set of
all machines). Each operation also has a set of processing
time, Ti = {ti,1, ti,2,…, ti,s}, corresponding to Mi.

Rules in a job shop contains: 1) Each machine can
handle at most one operation at a time; 2) Each operation
needs to be processed during an uninterrupted period of a
given length on a given machine; 3) A job can wait an
arbitrary amount of time between two operations (i.e. wait
in buffer of a machine).

A job shop scheduling (JSS) problem is often
described by a three-field � | � | �. [18] The � field

specifies the environment, including relationships, of m
machines. The � field indicates a number of
characteristics of n jobs, such as precedence relations and
release dates. The � field is characterized as the objective
to minimize the makespan for all the jobs. A JSS problem
is to find a solution satisfying the constraints in the � field
and optimizing the � field. Specifically, the constraints
can be partitioned into three types: temporal constraints to
restrict earliest start time and latest end time, temporal
constraints to restrict operations sequence of a job, and
temporal constraints to restrict operations sequence on a
machine.

A job shop scheduling repair (JSSR) problem can
be extended from the JSS problem. It contains the field �
and the field �, as well as an ongoing schedule given by
solving Job Shop Scheduling Problem. Generally, part of
the ongoing schedule is finished but some disruptions
happen, such as a new job is added, the latest end time of
an existing job is changed. To avoid the shop floor
nervousness, the objective of the JSSR problem is to
minimize the deviations from the ongoing schedule.

III. METHODOLOGY

We use an incremental temporal reasoning algorithm
to solve the JSSR problem. A candidate schedule can be
represented as a simple temporal network (STN). The
candidate schedule is a solution when the STN is temporal
consistent. In a typical JSS problem, the constraints of
earliest start time, latest end time, and the sequence of
operations in a job are deterministic. A schedule will be
made by arranging the sequence of operations on each
machine. Formally, a JSSR problem can be formulated as
a disjunctive temporal problem (DTP), which is able to be
solved by employing temporal reasoning algorithms.

A. Disjunctive Temporal Problem (DTP)

Generally, a temporal reasoning problem is described
by points and intervals, where constraints can be either
qualitative or quantitative. Qualitative constraints specify
the relative position of paired objects, and quantitative
constraints place absolute bounds, or restrict the temporal
distance between points [19].

A simple temporal network (STN) is defined as a
collection of real-valued time point variables V
corresponding to instantaneous events, admitting at most
one interval constraint on any pair of time points [20],
where each interval constraint ci = [t1, t2] restricts the
temporal distance. A disjunctive temporal problem
(DTP) has a similar definition as STN, but each constraint
ci�� C is allowed to be disjunctive, in the form of ci,1 �
ci,2 � … � ci,n, where n may be any number [20].

When formulating a JSSR problem into a DTP, each
precedence relationship between two operations oi, oj on a
machine can be formulated as a disjunctive temporal
constraint, oi either before or after oj. By making choice
for each disjunctive temporal constraint, either before or

Proceedings of the 2010 IEEE IEEM

 1277

after, a DTP can be reduced into a STN. Then a solution
may be found when the STN is temporal consistent.

Fig. 1 shows a formulation example, where the JSSR
problem has 3 jobs and 3 machines. Each 6 horizontal
points denote the start and end time points of a job’s
operations. Fig. 1 (a) represents the disjunctive temporal
constraints in a DTP, which describe the operation
precedence relationships on a machine. Specifically, “a1”
and “a2” consist of a disjunctive constraint that represents
the precedence relationship between the operations
“job1.op1” and “job3.op1”. After making choice of “a1”,
“c2” and so on, the DTP could be reduced into a STN like
Fig. 1 (b) that represents a candidate schedule. It worth
noting that the dashed arcs represent the constraints
restricting the earliest start time and the latest end time of
the schedule.

Fig. 1. (a) Disjunctive constraints that describe the operation
precedence relationships on a machine; (b) A STN that presents a

candidate schedule.

B. Optimal Constraint Satisfaction Problem (OCSP)

A constraint satisfaction problem (CSP), 	X, DX,
CX
, consists of a set of variables xj � X that range over
a finite domain DXi � DX, and a set of constraints CX : X
� {True, False}. A solution is any assignment to X that
satisfies CX. While an optimal constraint satisfaction
problem (OCSP), 	CSP, Y, g
, consists of a CSP = 	X, DX,
CX
, a set of decision variables Y � X, and a
multi-attribute cost function g : Y � R, that is mutually
preferentially independent (MPI).

A DTP for a JSSR problem is easy to be framed as an
OCSP, whose objective is to minimize the deviations
from the ongoing schedule. Specifically, to frame a JSSR
DTP into a OCSP, every pair of operations on the same
machine is encoded as a set of decision variables Y. Each
decision variable, yi � Y, has two values “before” and
“after”, either of which is respectively assigned a cost ci
rendering the similarity to the old schedule. If there are m
operations on a specified machine, m(m-1)/2 pairs of
decision variables will be constructed. For example, in a

JSSR problem, “job1.op1”, “job2.op2” and “job3.op1” are
on the same machine. Three decision variables are then
constructed: “job1.op1/job2.op2”, “job1.op1/job3.op1”
and “job2.op2/job3.op1”. Constraints of earliest start time,
latest end time and operations sequence of a job will be
encoded as lower bound and upper bound form.
Constraints of operations sequence on the same machine
will be mapped to decision variables respectively.

C. Incremental Temporal Reasoning

In this paper, an incremental temporal reasoning
algorithm, integrating the conflict-directed A* algorithm
(CDA*) [9] and the incremental temporal consistency
algorithm (ITC) [10], is used to solve the OCSP for a
JSSR problem. This algorithm constrains the major steps
as Fig. 2.

Fig. 2. The incremental temporal reasoning

Step 1: A JSSR problem is formulated as a DTP. The
input contains the job shop model (n jobs, m machines,
relationships of machines and operations, intervals of
operations, etc.), the ongoing schedule, and the finished
part of the ongoing schedule. The output is a DTP and
related costs, which are generated by comparing
disjunctive constraints and the ongoing schedule.

Step 2: A DTP and related costs are framed as an
OCSP, where an OpSat form is used to represent and
interpret it.

Step 3: If the first time, (a) there are not any known
conflict in the OpSat. According to the decision variables
and their costs, a candidate schedule will be selected, i.e.
each decision variable will be assigned the value with the
biggest cost so as to output a STN without any disjunctive
constraints. Else, (b) there are some known conflicts. The
CDA* algorithm is used to give a candidate schedule
resolving all known conflicts. The output candidate
schedule has the largest sum of costs of the decision
variables after removing all candidates affected by known
conflicts.

Step 4: If the first time, (a) just update the whole STN
given by Step 3(a) to the ITC. Else, (b) there is an existing
STN. Compare the new given STN (the candidate
schedule) and the existing STN. The conflict of the
existing STN (a negative cycle) is resolved and some

Proceedings of the 2010 IEEE IEEM

 1278

decision variables have changed values. Update these
changes of the constraints to transform the existing STN
to the new STN but maintaining the last search results, so
that the following STN consistency checking can be
continued incrementally based on the last search but not
totally restarted.

Step 5: Check the updated STN consistency based on
the last search. A STN can be easily to transformed as a
distance graph. STN consistency can be checked by
detecting negative cycles in the distance graph. Here
FIFO label correcting algorithm is applied to detect
negative cycles.

Step 6: If no negative cycles is found, the STN is
temporal consistent and the repaired schedule is. The
algorithm will be stopped here and output the consistent
schedule as the final solution. If a negative cycle is found,
it will be output as a conflict to update the sets of conflicts
maintained in OpSat.

Step 7: Update the given conflict given by the step 6
into the OpSat conflict set. Repeat the Step 3(b) to
generate another feasible candidate schedule.

Specifically, one of the most important issues to
affect computing performance is the STN consistency
checking algorithm, which is specifically a FIFO label
correcting algorithm in the original ITC algorithm [10].

The original algorithm is inefficient because of the
termination condition of detecting the negative cycles. It
will take too much unnecessary time to traversal the nodes
until one of them is less than -nC, where n denotes the
number of the nodes and C denotes the largest absolute
value of some arc length. For example, in a 10 jobs, 10
machines job shop problem, there are more than 200
nodes and the largest absolute value of some arc (i.e. the
largest interval upper bound) may be thousands.

Therefore, we improve the algorithm by using a much
faster termination condition: “Run the FIFO label
correcting algorithm of label correcting, and stop if you
have scanned any node at least n times”. It can be easily
proven by the theorem: “The FIFO label correcting
algorithm finds the minimum length path from 1 to j for
all j in N in O(nm) steps, or else shows that there is a
negative cost cycle.” N is the set of nodes in the STN
graph, n is the number of the nodes and m is the number
of edges.

CDA* accelerates the search process of the traditional
A* algorithm by eliminating subspaces around each
inconsistent state. CDA* guides its search using conflicts,
which are descriptions of states that are inconsistent with
the OCSP. Specifically, CDA* generates a best valued
candidate S that resolves all discovered conflicts. It tests S
for consistency against the CSP using any suitable CSP
algorithm. When S tests inconsistent, one or more
conflicts that are inconsistent in a manner similar to S are
extracted. When a new conflict is discovered, it is
recorded and used to update the search queue of
candidates to be explored, called kernels. CDA* then
repeats to generate the next best candidate and test until
the desired solutions are found or all candidates are
eliminated.

IV. EXPERIMENTAL RESULTS

An experimental case is build to test the algorithm
performance. We develop a test case based on a job shop
scheduling benchmark from Lawrence, which is also
known as LA19 [21]. The original problem is a JSS
problem with 10 jobs and 10 machines, where the optimal
solution is known to be 842 (see Fig. 3) computed within
300s [22, Baptiste, 1995 #586]. To development our test
case, we use the optimal schedule as an ongoing schedule,
and consider an 11th urgent job, which is specifically
M0(32), M1(27), M2(50), M3(86), M4(67), M5(25),
M6(53), M7(39), M8(44), M9(19). Then the schedule
should be repaired to satisfy the resource constraints and
the temporal constraints that may contain a new allowed
makespan, at the same time has a minimum deviation
from the original schedule.

Fig. 3. The ongoing schedule (LA19)

Fig. 4. The experimental result of repairing LA19 schedule

The experimental result of test case is given as Fig. 4.
Obviously, when a smaller allowed makespan is given,
there will be more adjustments performed on the original
job operations, and it would take longer to repair. In our
test case, an allowed makespan of 1300 means there is no
need to adjust the original job operations, but place the
new job after. While it may take almost longest (about 50s)
to repair the schedule by giving an allowed makespan of
910, which is also the nearest to the optimal makespan of
the new JSS problem. However, since we frequently
repair a schedule when it is on execution, the shop floor
nervousness caused by too many adjustments should be
avoided.

V. CONCLUSION AND DISCUSSION

Proceedings of the 2010 IEEE IEEM

 1279

Using the increment temporal reasoning, the JSSR
problem can be abstracted as a disjunctive temporal
problem (DTP). The DTP is framed as an optimal
constraint satisfaction problem (OCSP), which can be
solved by the OpSat engine. The OpSat uses the
conflict-directed A* algorithm (CDA*) and the
incremental temporal consistency algorithm (ITC) to
solve the temporal constraints network. An experiment is
given to test the whole algorithm framework.

Actually, the temporal plan network (TPN) [23] is
used to encode the job shop schedule repair problem.
However, because of the properties of the TPN, the
disjunctive constraints from different nodes are difficult to
represent. Thus, the JSSR problem is interpreted as a lot
of possible choices in TPN. Even in a small size of JSSR,
the choices are still a large size (n!)m. Thus finally, we
specify the JSSR problem as a DTP and directly frame as
an OCSP.

Certainly, there are some works to do in the future.
First, the current STN consistency checking algorithm,
FIFO label correcting algorithm terminated by “n times”,
is not efficient enough. More negative cycle detection
algorithms will be tried to integrate in the incremental
temporal reasoning mechanism to perform efficiently.
Next, we will try to prune some semantic duplicate
constraints when performing negative cycle detection.
Finally, the current allowed makespan of the JSSR DTP is
given by inputting. In the future, we will try to extend the
current OpSat to represent the makespan issue using
constraints or variables. Another kind of idea may be
allow the OpSat to input a problem and some conflicts,
which makes the OpSat also an incremental algorithm.

ACKNOWLEDGMENT

We thank Qing Xiang, Kaiquan Wei, Henri Badaro,
Patrick Conrad and David Wang for their discussions and
suggestions.

REFERENCES

[1] R. O'Donovan, et al., "Predictable scheduling of a single
machine with breakdowns and sensitive jobs," in
International Journal of Production Research vol. 37, ed:
Taylor & Francis Ltd, 1999, p. 4217.

[2] A. S. Raheja and V. Subramaniam, "Reactive Recovery of
Job Shop Schedules – A Review," The International
Journal of Advanced Manufacturing Technology, vol. 19,
pp. 756-763, 2002.

[3] O. Gunther, et al., RFID in Manufacturing: Springer,
2008.

[4] S. Smith, "Reactive Scheduling Systems," Intelligent
Scheduling Systems, pp. 155-192, 1995.

[5] R. Shafaei and P. Brunn, "Workshop scheduling using
practical (inaccurate) data Part 2: An investigation of the
robustness of scheduling rules in a dynamic and stochastic

environment," in International Journal of Production
Research vol. 37, ed: Taylor & Francis Ltd, 1999, p. 4105.

[6] J. Dorn, "Case-based Reactive Scheduling," in Artificial
Intelligence in Reactive Scheduling, ed: Shapman and Hall,
1994, pp. 32-50.

[7] J. Efstathiou, "Anytime heuristic schedule repair in
manufacturing industry," Control Theory and Applications,
IEE Proceedings -, vol. 143, pp. 114-124, 1996.

[8] J. Efstathiou, "Formalising the repair of schedules through
knowledge acquisition," in Advances in Knowledge
Acquisition, ed, 1996, pp. 306-320.

[9] B. C. Williams and R. J. Ragno, "Conflict-directed A* and
Its Role in Model-based Embedded Systems," Discrete
Applied Mathematics, vol. 155, pp. 1562-1595, 2006.

[10] I.-h. Shu, et al., "Enabling Fast Flexible Planning Through
Incremental Temporal Reasoning with Conflict
Extraction," in the 15th International Conference on
Automated Planning and Scheduling (ICAPS 05),
Monterey, CA, USA, 2005, pp. 252-261.

[11] J. Kletti, Manufacturing Execution System - MES:
Springer, 2007.

[12] J. T. Lee, et al., "Mininum adjustment for repairing an
initial solution in reactive scheduling," Journal of KISS (B)
(Software and Applications), vol. 25, pp. 923-930, 1998.

[13] V. J. Leon, et al., "Robustness Measures and Robust
Scheduleing for Job Shops," IIE Transactions, vol. 26, pp.
32 - 43, 1994.

[14] K. Miyashita, "Case-based knowledge acquisition for
schedule optimization," Artificial Intelligence in
Engineering, vol. 9, pp. 277-287, 1995.

[15] B. C. Williams, et al., "Model-based programming of
intelligent embedded systems and robotic space
explorers," Proceedings of the IEEE, vol. 91, pp. 212-237,
2003.

[16] J. E. Spragg, et al., "Constraint-Based Reactive
Rescheduling in a Stochastic Environment," in the 4th
European Conference on Planning: Recent Advances in AI
Planning, 1997, pp. 403-413.

[17] C.-C. Cheng and S. Smith, "Applying constraint
satisfaction techniques to job shop scheduling," Annals of
Operations Research, vol. 70, pp. 327-357, 1997.

[18] J. K. Lenstra, et al., "Optimization and approximation in
deterministic sequencing and scheduling: A survey,"
Annals of Discrete Mathematics, vol. 5, pp. 287-326,
1979.

[19] R. Dechter, Constraint Processing: Morgan Kaufmann
Publishers, 2003.

[20] R. Dechter, et al., "Temporal constraint networks," Artif.
Intell., vol. 49, pp. 61-95, 1992.

[21] S. Lawrence, "Resource Constrained Project Scheduling:
An Experimental Investigation of Heuristic Scheduling
Techniques," Carnegie Mellon University, Pittsburgh,
Pennsylvania1984.

[22] D. Applegate and W. Cook, "A Computational Study of
the Job-Shop Scheduling Problem," INFORMS JOURNAL
ON COMPUTING, vol. 3, pp. 149-156, January 1, 1991
1991.

[23] P. Kim, et al., "Executing Reactive, Model-based
Programs through Graph-based Temporal Planning," in
the Seventeenth International Joint Conference on
Artificial Intelligence (IJCAI 2001), Seattle, Washington,
USA, 2001, pp. 487-493.

Proceedings of the 2010 IEEE IEEM

 1280

