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Abstract We consider a two-layer, one-dimensional lattice of neurons; one
layer consists of excitatory thalamocortical neurons, while the other is com-
prised of inhibitory reticular thalamic neurons. Such networks are known to
support “lurching” waves, for which propagation does not appear smooth, but
rather progresses in a saltatory fashion; these waves can be characterized by
different spatial widths (different numbers of neurons active at the same time).
We show that these lurching waves are fixed points of appropriately defined
Poincaré maps, and follow these fixed points as parameters are varied. In this
way we are able to explain observed transitions in behavior, and, in particu-
lar, to show how branches with different spatial widths are linked with each
other. Our computer-assisted analysis is quite general and could be applied to
other spatially extended systems which exhibit this non-trivial form of wave
propagation.
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1 Introduction

It is well-known that cortical tissue can support traveling waves of activ-
ity, both in vivo and in vitro [11,13,20,22,33,37,38]. Much effort has been
dedicated to the mathematical modeling of such waves [5,6,9,10,30,17,31,
26]. Traveling waves observed in continuum mathematical models can travel
smoothly, i.e. with a constant profile and speed. When the underlying medium
is a lattice (as would naturally arise in cell-level tissue modeling), the pertur-
bation introduced by this discreteness will often cause a slight modulation to
the constant traveling shape and wave speed. In contrast, however, a number
of models show “lurching” waves, which propagate in a saltatory fashion [34,
36,5,9,14–16]. In this mode of propagation a spatially-localized group of neu-
rons becomes active almost simultaneously; then, after some time, an adjacent
group becomes active almost simultaneously, and so on, and so the wave does
not have a constant profile (not even approximately). We note that the medium
does not have to be spatially discrete for lurching waves to exist. Several au-
thors have analyzed lurching waves in networks of integrate-and-fire [14–16]
or integrate-and-fire-or-burst [5] neurons, while others have presented and/or
analyzed results from networks of more biophysically-based ordinary differen-
tial equation (ODE) models [34,36]. In this paper we consider a model of the
latter type, with each neuron described by several smooth ODEs. The fun-
damental mechanism behind lurching waves in the models [14–16,5,34,36] is
post-inhibitory rebound, where a neuron (or group of neurons) fires only after
inhibitory input has worn off sufficiently.

Previous analyses of lurching waves have typically made a number of as-
sumptions; for example, that there is an infinite separation of timescales [36],
or that neurons fire only once as a wave passes [14–16]. We do not make such
assumptions here, and study lurching waves using the concepts and tools of
dynamical systems theory. Through careful numerical simulation and the use
of continuation techniques we explore the bifurcations of various families of
lurching waves, thereby gaining an understanding of the transitions between
them.

We consider a one-dimensional network (a lattice) containing a finite num-
ber of neurons, the state of each of which is described by a small number
of variables. Thus the state of the entire network is described by a high-
dimensional vector, and the evolution of this vector is given by a prescribed
vectorfield, which depends on various biophysical parameters. Localized waves
have activity (for example, elevated voltage) only in a small number of neigh-
boring lattice points at any given time. These waves persist as parameters are
changed, resulting in “branches” of solutions. The existence and stability of
these branches can be analyzed numerically using bifurcation theory [18,24].

A number of other approaches have been taken to study the propagation
of waves in neural systems. For spatially-continuous system models (whether
they arise in neuroscience or in other disciplines) moving to a traveling wave
frame typically reduces the model to a set of ODEs, and homoclinic orbits of
these represent spatially-localized traveling pulses with constant speed [29,10].
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If the spatial medium is continuous but periodically modulated in some way,
this modulation may be strong enough to cause waves to fail to propagate [8,
4,21,32,23,35]. Alternatively, the wave may travel in a saltatory fashion [7].

Some of our observations and conclusions are consequences of the homo-
geneity of the lattice and of the neuronal couplings i.e. the synaptic footprint.
This modeling assumption allows us to simplify the problem and focus on the
propagation and the transitions between different types of behavior. We plan
to consider more general footprints in the future.

The structure of this article is as follows: In Section 2 we will present the
model and demonstrate some of its possible behaviors. In Section 3 we discuss
the Poincaré map used to characterize periodic and quasi-periodic waves, and
present the continuation method used to trace branches of fixed points of the
map. In Section 4 we link the observations of direct numerical integration
with the stability/bifurcation and continuation results for periodic solutions,
constructing a coherent picture of the transitions observed. In particular, we
show nonlinear mechanisms underlying the transition between lurching waves
of varying spatial width. We conclude in Section 5 where we discuss our results
and outline future work.

2 Model

The model we consider consists of two one-dimensional arrays, each represent-
ing a layer of neurons (see Fig. 1). One layer consists of excitatory thalamo-
cortical (TC) neurons, each of which is described by variables vTC (voltage)
and hTC (relative suppressive influence), while the other layer consists of in-
hibitory reticular (RE) thalamic neurons, described by variables vRE and hRE.

Fig. 1 Structure of the neural network. In this schematic ω = 2 so that each RE neuron
receives excitatory input from the TC neuron at the same site and from the 4 immediately
neighboring TC neurons. TC neurons only receive inhibitory input from the RE neuron at
the same site.

For each lattice site i, where i ∈ [1 . . . N ], there are four differential equa-
tions describing the dynamics of the two neurons at that site:
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For future reference this set of autonomous ordinary differential equations can
be written as ẋ = f(x) where x ∈ R

4N . The positive integer ω defines the
width of the synaptic footprint for connections from the TC layer to the RE
layer. Each RE cell receives equally-weighted input from the TC cell at its
site, the ω TC cells immediately to its left, and the ω TC cells immediately to
its right. (Periodic boundary conditions are used.) In this work we considered
ω = 6. Each TC cell receives input only from the RE cell at the same site.

The functions that appear in equations (1–4) are smooth and have a sig-
moidal shape

m∞(v) =

[

1 + exp

(

−
(v − θm)

σm

)]

−1

,

h∞(v) =

[

1 + exp

(

−
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σh

)]

−1

,

s∞(v) =

[

1 + exp

(

−
(v − θs)

σs

)]

−1

,

τ∞(v) = τ1 + (τ2 − τ1)

[

1 + exp

(

−
(v − θτ )

στ

)]

−1

.

with parameters θs = −20 mV, σs = 2 mV, θh = −79 mV, σh = −5 mV,
θm = −65 mV, σm = 7.8 mV, θτ = −65 mV, στ = 4 mV, τ1 = 1 ms,
τ2 = 80 ms. Synaptic coupling is assumed to be instantaneous, via the function
s∞(v). As mentioned, the excitatory TC cells fire by post-inhibitory rebound,
i.e. they fire once released from inhibition, as demonstrated in Fig. 2.

The model (1–4) is very similar to that studied by Terman et al. [36], the
main difference being that we use instantaneous rather than dynamic synapses.
It is important to note that the voltage variables here do not show action
potentials, but rather follow the envelope of activity, as spiking currents have
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Fig. 2 A demonstration of post-inhibitory rebound in a single TC cell. Inhibition was
released at t = 200 msec, resulting in a single action potential.

been removed. Also, using voltage-dependent synapses as we do here (although
quite common [34,17]) is a significantly different approach from using event-
driven synapses [13–16].

By varying parameters in the model we observed several qualitatively dif-
ferent types of behavior; three representative ones are presented in Figure 3.
Figure 3(a,b) shows what we describe as a “smooth” wave, or a “1-lurcher.”
(The meaning of the parameter s will be explained below.) These activity
waves propagate from neuron to neuron, with each cell firing after the cell ad-
jacent to it has fired. The neuron firing times for such a smoothly propagating
wave fall on a straight line when plotted in the x−t plane. Moreover, the phase
portrait shows that each neuron in the lattice follows the same trajectory when
plotted in the vRE − vTC phase plane (or in any other two-dimensional pro-
jection). In this case one could argue that the discreteness of the propagation
medium causes only a “small” perturbation from a continuum traveling wave.

Figure 3(c,d) shows what we call a lurching wave — in this case, a “6-
lurcher”. As this lurching wave propagates, clusters of six neurons fire (ap-
proximately) together, so that the wave of activity “jumps” forward six lattice
positions at a time. The characterization “6-lurcher” comes from the fact that
neurons in this wave fire in clusters of six. The phase portrait for this solu-
tion shows that each neuron in a cluster of six realizes “its own” trajectory,
deviating slightly from those of the other neurons in the cluster. However, two
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(a) (b)

(c) (d)

(e) (f)

Fig. 3 Three representative types of behavior of the thalamic neuronal network given by
Eqns. (1–4). (a) space-time plot, (b) phase portrait of a smooth wave when s = 0.6; (c)
space-time plot, (d) phase portrait of a 6-lurcher when s = 0.8; and (e) space-time plot, (f)
phase portrait of torus B when s = 0.71. See text for the meaning of the parameter s and
an explanation of the names of these solutions.

neurons that occupy the same position in two different clusters will follow the
same trajectory — at different times.

This type of behavior, characterized by a spatiotemporal symmetry where
the same phenomenon arises later in time at a position shifted in space, can be
considered an extension of what has been given the picturesque name “ponies
on a merry-go-round” (POM) [2]. These POM solutions satisfy:

u(i, t) = u(0, t− iT/N) i = 0, . . . , N − 1
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where T is the time required by the entire network to go through one os-
cillation, u is any one of the variables that describes the state at a single
site (vTC, hTC, vRE, hRE), and i the spatial index. Smooth waves (1-lurchers)
satisfy this condition.

For d-lurching waves, where d is a positive integer, this symmetry can be
characterized by

u(i, t) = u(i mod d, t− (i/d)T/N) i = 0, . . . , N − 1

where i/d is integer division and the number i/d indicates the cluster to which
unit i belongs. Here we have assumed that N mod d = 0.

Figure 3(e,f) shows a third type of representative dynamic behavior. This
wave of activity does not propagate smoothly, and although the cells do at
first sight appear to fire in clusters, every neuron in the lattice follows its own
unique trajectory in the vRE − vTC phase plane. This type of behavior, which
we argue is quasi-periodic, will be discussed in more detail below.

The goal of this work is to understand these different types of traveling wave
solutions and, in particular, to characterize the transitions between them as
parameters vary. For realistic parameter values, Terman et al. [36] observed a
smooth wave solution similar to that shown in Fig. 3(a). For another selection
of parameter values they observed a lurching wave solution similar to that
shown in Fig. 3(c). The parameters used to obtain these two “representative”
solutions were all kept constant, with the exception of ǫTC, gTC, gRE and VCa.
We decided to follow a linear path in (ǫTC, gTC, gRE, VCa) space between these
two parameter sets, keeping all other parameters constant. We introduce the
non-dimensional parameter s to represent distance along this path, with s = 0
corresponding to the smooth wave solution and s = 1 corresponding to the
lurching wave solution. The four parameters of interest are thus written

ǫTC = 1 + 2s ,

gTC = 0.03 + 0.07s mS/cm2 ,

gRE = 0.1 + 0.2s mS/cm2 ,

VCa = 120− 30s mV .

Varying the parameter s will allow us to explore codimension-1 bifurcations
involving the stable smooth wave that exists when s = 0, the stable lurching
wave that occurs when s = 1, and possibly other solutions that arise in-
between. We find that most of the transitions take place in a narrow range of
the parameter s. Obviously, the model (1–4) has a large number of parameters,
and trying to understand the role of each of them in determining the type of
behavior seen is not feasible. By following a (largely arbitrary) 1-dimensional
line through parameter space we hope to observe “typical” (codimension-one)
bifurcations that would be seen by varying other single parameters alone. In
varying s we do not expect to observe all possible bifurcations that could occur
in (1–4), but we will be able to link the two main forms of wave propagation
seen (smooth and lurching) and detect bifurcations that could be followed as
two parameters are varied independently.
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All other parameters not yet specified were held constant throughout the
investigation. They are gTC

L = 0.01 mS/cm2, V TC
L = −75 mV, V TC

syn = 0 mV,

gRE
L = 0.2 mS/cm2, V RE

L = −80 mV, ǫRE = 2, V RE
syn = −80 mV, gCa = 1

mS/cm2, Cm = 1 µF/cm2.

3 Methods

In this section we discuss the methods we use to characterize the types of
solutions shown in Figure 3, and to follow them as parameters are varied,
detecting the associated bifurcations.

3.1 Poincaré maps

To characterize the solutions shown in Fig. 3 we use a Poincaré map, defined
on a Poincaré section. Such maps are commonly used to study periodic or
quasiperiodic behavior [18,24]. Suppose that our system ẋ = f(x) has a pe-
riodic orbit, Γ , as shown in Fig. 3 (a), on which the voltage of a specific TC
neuron (vTC

j ) is equal to a specified value (p0) twice, once with vTC
j increasing

and once with vTC
j decreasing. Our Poincaré section Σ is then defined to be

the hyperplane on which vTC
j = p0. The periodic orbit Γ intersects Σ twice,

at say y∗1 and y∗2 , at which vTC
j is increasing or decreasing, respectively.

The Poincaré map P : Σ → Σ is then defined for points y ∈ Σ in a
neighborhood of y∗1 :

y 7→ P (y)

where P (y) is the next intersection of the trajectory starting at y with Σ,
with vTC

j increasing. The point y∗1 is a fixed point of P since P (y∗1) = y∗1 . For

later use we define Σ to be the set of points x for which p(x) = vTC
j − p0 = 0.

The period of the periodic orbit Γ is the time taken for the wave solution to
traverse the entire network.

Given an initial point y0 ∈ Σ, the map P can be used to generate a
sequence of points using yn+1 = P (yn) for n = 0, 1, 2, . . .. If this sequence
repeats after M iterations, i.e. yi+M = yi and yi+m 6= yi for 1 ≤ m < M , the
solution is referred to as periodic with period M . In this case the wave will
have to traverse the domain M times before the network returns to the exact
same state. Another possibility is that the sequence y0, y1, . . . does not repeat;
instead, these points fill a topological circle on Σ. Solutions of this form are
referred to as quasi-periodic.

The spatiotemporal symmetry of the traveling wave solutions of interest
allows us to modify the Poincaré map described above. Consider the 3-lurcher
solution in Figure 4(a). Using a network with 60 lattice sites, 20 clusters of
three neurons each must fire for the wave to traverse the entire network and
return to its original position. Rather than wait for the wave to travel all the
way around the network, one can instead shift the pulse three sites to the
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left (assuming that the wave is propagating to the right) at time zero and
then allow the wave to propagate back to its original position. The 3-lurcher
solution will then be a fixed point of this operation.

(a) (b)

(c) (d)

Fig. 4 A demonstration of the use of Poincaré maps: (a) Space time plots of a 3-lurcher
for s = 0.716; and (b) torus A for s = 0.715; (c) A projection of the Poincaré map P1 of the
3-lurcher for s = 0.716; and (d) of the torus A for s = 0.715. Note how difficult it would be
for the eye to determine this crucial difference between the two top pictures.

We thus define the map Pd : Σ 7→ Σ as

y → Pd(y)

where Pd(y) is the next intersection of the trajectory starting at y with Σ,
with vTC

j increasing, given that the pulse described by y is shifted d positions

to the left at time zero. If d is chosen appropriately based on the properties of
the solution being investigated i.e. the cluster size, then a d-lurcher will be a
fixed point of Pd. Its period τ is defined to be the time it takes the wave to
propagate d positions in the lattice.

Using the shift-and-run mapping Pd is far more economical than using
the map P , because the decrease in the period reduces the integration time.
Moreover, for a large enough network, the period of the map Pd depends only
on the speed of wave propagation, i.e. the time needed for one cluster to fire,
while the period of P depends crucially on the actual size of the network. It
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should be clear that any solution that is periodic (quasi-periodic) under P is
also periodic (quasi-periodic) under Pd and that any solution that is stable
(unstable) under P is also stable (unstable) under Pd. Note that all of the
results shown in this paper were found using the map Pd, not P .

Figure 4 (c) shows a projection of the Poincaré map P1 for the 3-lurcher
shown in panel (a). The projection involves plotting vTC

j−1 versus v
TC
j+1 for points

on Σ, where vTC
j is used in the definition of Σ. This projection is used in all

subsequent figures in which P1 is plotted, except Fig. 15. Panels (b) and (d)
of Fig. 4 show a space-time plot and Poincaré map representation of another
solution we found, which we refer to as “torus A.” The 3-lurcher appears as
three points which form a period-3 orbit of P1: y1 7→ y2 7→ y3 7→ y1 7→ · · · ,
and each of these points is a fixed point of P3. On the other hand the torus A
appears as a set of points that wander in Σ and fill a closed invariant curve.

In more mathematical terms the Poincaré map Pd : Σ 7→ Σ can be defined
as

Pd(y)
def
= Φτ(y)(Sd(y)),

where Sd is a spatial shift of d sites to the left using periodic boundary condi-
tions (which can be implemented using multiplication by a 4N × 4N matrix),
Φτ (x

0) is the solution at time τ of the differential equation ẋ = f(x) with
initial condition x(0) = x0, and τ(x0) is the smallest positive time for which
p(Φτ(x0)(Sd(x

0))) = 0, with ∇xp · f evaluated at x = Φτ(x0)(Sd(x
0)) being

positive. Thus the map selects transverse crossings of Σ at which vTC
j is in-

creasing. To find a fixed point of Pd one would solve y = Pd(y) for y. The
period τ(y) is not an unknown, but is defined to be the time needed for the
solution starting at y to return to Σ, crossing in the appropriate direction. We
emphasize that although the map Pd was most useful for computing d-lurchers
and assessing their stability, the map P1 was used for all the figures showing
projections of Poincaré maps (except Fig. 15). Thus, a d-lurcher appears as d
points in these figures.

The effects of the periodic boundary conditions are worth mentioning here.
We use these so that the spatial shift Sd is well-defined, but we choose a domain
large enough that the region of active neurons is small relative to the domain
size, so that a pulse is largely unaffected by its own “tail” that it effectively
sees ahead of it. (See, for example, Figs. 3 and 4.) Thus our results should be
correct for solitary pulses traveling on an infinite domain, although possibly
with small finite-size corrections.

3.2 Numerical integration

Before embarking on a detailed study of the properties of the periodic and
quasi-periodic solutions seen above, we used direct time integration to generate
a partial summary of the possible stable solutions. Extensive direct numerical
simulation was performed using the following protocol. First, we started with a
perturbation in the vTC

i from the (spatially uniform) rest state. This generated
both left- and right-traveling waves, but by transiently changing the boundary
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conditions it was possible to eliminate the left-traveling wave. After some time
to wash out transient behavior, we started recording local maxima and minima
(in time) of the spatial average 〈vTC

i 〉; we stop after some large, fixed amount of
simulation time. Then we make a small increment in s, resume integration from
the last solution shape, wash out transients, and again record local maxima and
minima of 〈vTC

i 〉 for the new value of s. We continue until s = 1, and then plot
the observed local maxima and minima as a function of s. For this integration
we used a Fortran 77 implementation of Odessa [28], an integrator of stiff
ODEs with built-in sensitivity analysis, a feature that will play an important
role in the pseudo-arclength continuation discussed below.

Direct time integration will not converge to unstable solutions. However,
direct time integration does show the following facts about waves in the neural
network: (i) branches of localized waves persist as the parameter s is varied;
(ii) changes in stability of one wave may lead to a smooth transition to another
wave, or to an abrupt jump to a completely different one; (iii) more than one
wave can coexist for some ranges of the parameter s, resulting in hysteresis
as we move the parameter back and forth across these ranges. The results of
these slow sweeps in parameter space are described in Section 4.

3.3 Continuation

To obtain a more complete picture of the dynamics of the system we use
continuation techniques, which allow one to follow a branch of solutions, irre-
spective of its stability. By doing this we find unstable branches of solutions,
and understand better the behavior of the stable solutions and the ways the
stable branches connect with each other.

We are looking for fixed points of the Poincaré map Pd , corresponding
to lurching waves with spatial width (“clusters”) of size d. To implement a
continuation algorithm, we rewrite the problem of solving x = Pd(x) as the
problem of solving

x− Φτ (Sd(x)) = 0 (5)

and

p(Φτ (Sd(x))) = 0 (6)

where x ∈ R
4N and τ ∈ R are unknowns, together with the transversality

condition on the intersection of the trajectory with Σ. In this formulation,
Eq. (5) does not explicitly contain the fact that x is in Σ — that is given
by (6).

Assume that for a particular value of s, s = s0, we have found x0 and τ0
which satisfy (5) and (6) (by using Newton’s method, for example). To find
the next point on this branch of solutions we define the vector

y
def
=





x
τ
s



 ∈ R
4N+2
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which satisfies

G(y)
def
=





x− Φτ (Sd(x); s)
p(Φτ (Sd(x); s))

n(x, τ, s)



 = 0 (7)

where we explicitly include the dependence on the parameter s, and where
n(x, τ, s) is the pseudo-arclength condition:

n(x, τ, s) = θx x̂T (x− x0) + θτ τ̂ (τ − τ0) + θs ŝ (s− s0)−∆ξ (8)

where (x̂, τ̂ , ŝ) ∈ R
4N+2 is a normalized tangent to the branch of solutions and

θx, θτ , θs are positive weights which sum to 1. The step size ∆ξ is approxi-
mately equal to the distance in R

4N+2 between (x0, τ0, s0) and the point that
we are trying to find.

The system G(y) = 0 can be solved using Newton iterations: y(k+1) =
y(k) +∆y(k) where ∆y(k) is the solution of the linear problem

G(y(k)) +
∂G

∂y

∣

∣

∣

∣

y(k)

∆y(k) = 0

and

∂G

∂y
=





Id− JτSd −f(x(τ ; s); s) −rτ
∇xp(x(τ ; s)) ∇xp(x(τ ; s))

T f(x(τ ; s); s) ∇xp(x(τ ; s))
T rτ

θxx̂
T θτ τ̂ θsŝ





where x(τ ; s) = Φτ (x; s), and Jτ = ∂x(τ ; s)/∂x(0) and rτ = ∂x(τ ; s)/∂s are
the sensitivities of the time evolution with respect to initial condition and
parameter, respectively. Once Eq. (7) has been solved, the solution is labelled
y1, then x0, τ0 and s0 in (8) are replaced by x1, τ1 and s1, respectively, and
Eq. (7) is solved again, this time for y2, and so on.

The computation of the sensitivities just mentioned deserves some com-
ment. Components of the sensitivity with respect to initial condition (once
the iteration has converged, these constitute the so-called monodromy matrix)

Jτ ;i,j
def
=

∂xi(τ ; s)

∂xj(0)
where x(τ ; s) = Φτ (x(0); s) , i, j ∈ {1, 2, . . . , 4N}

can be computed “automatically” by Odessa in the following way: Taking
the partial derivative of both sides of the equation ẋ = f(x; s) with respect to
x(0),

∂f(x(t; s); s)

∂x(0)
=

∂

∂x(0)

(

dx(t; s)

dt

)

expanding the left hand side using the chain rule and switching the order of
differentiation on the right hand side one obtains

∇xf(x(t; s); s)
∂x(t; s)

∂x(0)
=

d

dt

(

∂x(t; s)

∂x(0)

)
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or in terms of Jt:
d

dt
Jt = ∇xf(x(t))Jt .

The solution of this homogeneous linear ODE is:

Jτ = Id +

∫ τ

0

∇xf(x(t)) dt ,

and is computed internally by Odessa.
The evaluation of the sensitivity with respect to the parameter s

rt;i(x(0); s)
def
=

∂xi(t; s)

∂s
where x(t; s) = Φt(x(0); s) , i ∈ {1, 2, . . . , 4N}

is computed along similar lines: Taking the time derivative of the previous
equation gives

d

dt
rt = ∇xf(x(t; s); s) rt +

∂f(x(t; s); s)

∂s
,

an inhomogeneous linear ODE that is also solved internally by Odessa, us-
ing the initial condition r0 = 0, in tandem with the computation of x(t; s)
and Jt. Note that the use of the shift-and-run map Pd, and the relatively
large number of ODEs involved, preclude the use of off-the-shelf limit cycle
continuation/bifurcation codes.

The procedure used here to compute fixed points of the Poincaré map Pd

converges for both stable and unstable solutions, assuming a small pseudo-
arclength step ∆ξ is used (so that initial guesses for the solution of Eq. (7) are
sufficiently close to the true solution); reasonable care is needed to adjust the
numerical tolerances used by Odessa in order to keep accumulated errors of
the time integration small.

The stability of the fixed points of the shift-and-run map Pd can be de-
termined by computing the eigenvalues of its linearization, JτSd. (In [23] a
similar “compound” matrix arises as a consequence of an internal symmetry).
Fixed points of the Poincaré map always have a trivial eigenvalue 1 associated
with the eigenvector f(x); any temporal shift of the periodic orbit x(t) is also a
fixed point of Φτ (Sd(x)) although the shifted orbit will not satisfy Eq. (6). The
remaining 4N − 1 eigenvalues of JτSd, µ1, µ2, . . . , µ4N−1, are the well-known
Floquet multipliers [24]. These multipliers characterize the growth or decay of
small perturbations from the fixed points of Poincaré map Pd. If all multipliers
satisfy |µ| ≤ 1 then the corresponding solution is stable. If there is at least
one multiplier outside the unit circle in the complex plane, the corresponding
solution is unstable. Bifurcations occur when one or more Floquet multipliers
cross the unit circle as parameters are varied. We are only varying one parame-
ter here, so the following bifurcations are expected generically: (i) saddle-node
bifurcation: a single multiplier passes through 1, (ii) period-doubling bifurca-
tion: a single multiplier passes through −1, and (iii) Hopf (more accurately,
Neimark-Sacker) bifurcation: a complex conjugate pair of multipliers passes
through the unit circle, with non-zero imaginary parts.
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4 Results

4.1 Numerical integration

Our aim is to understand the transitions involving spatially localized waves
that occur as the parameter s is varied. Figs. 3(a,c,e) and 4(a,b) show some
of the solutions that the model (1–4) supports. As discussed in Sec. 3, a more
complete picture of the stable solutions can be gained by systematically varying
s while performing integration of Eqs. (1–4). Fig. 5 shows the results of these
sweeps, where we plot local extrema (maxima and minima) of the spatial
average of the voltages vTC

i . We used long integration times T = 30000 for
every value of s to remove transients.

Three integration runs were carried out: (i) s = 0.695 → 1.0. In order
of observation, the (presumed) attractors seen are: the stable 1-lurcher (or
smooth wave, seen in Fig. 3(a)); a quasi-periodic solution (that we call “torus
A,” see Fig. 4(b)); a second torus (that we call “torus B,” see Fig. 3(e)); a
6-lurcher (see Fig. 3(c)); and a 12-lurcher. (ii) s = 0.735 → 0.7. Here, the
(again, presumed) attractors observed are: the 3-lurcher; torus A; and a 1-
lurcher. (iii) s = 0.735 → 0.8025. Here we start on the 3-lurcher, but then
jump to a 6-lurcher. Tori A and B coexist in a narrow range of s values. Torus
B has a larger difference between its reported maximum and minimum values
of 〈vTC

i 〉 than does torus A.

Using direct time integration we were able to find six different types of
stable solutions. Some of these coexist over ranges of s, leading to hystere-
sis as s is varied in different directions. Although Fig. 5 shows the attractors
that we have found, it gives no real indication as to why branches of solutions
terminate and/or link to one another as the parameter is varied. The relation-
ship between branches of qualitatively different solutions, and the presence of
unstable branches is now explored using continuation, as described in Sec. 3.3.

4.2 Continuation

We first present the results of following the 1-lurcher, 3-lurcher and 6-lurcher
branches and discuss the bifurcations they undergo; we will then present re-
sults regarding the two branches of stable observed tori. We will conclude by
presenting a schematic diagram rationalizing the behavior seen in Fig. 5. Note
that the shape of the continuation curves obtained depends on the choice of
Poincaré section (Eq. (6)), but the location of the bifurcations does not.

The smooth wave (1-lurcher) exists for all s ∈ [0, 1], and the results of
following it are shown in Fig. 6 (only 0.5 ≤ s ≤ 1 is shown). This branch is
stable for small s and undergoes a Hopf (more accurately, a Neimark-Sacker)
bifurcation at s = 0.702. The Floquet multipliers of this smooth wave are
shown at the bifurcation in Fig. 7 (a), and the magnitudes of some of them
are plotted as functions of s in Fig. 7 (b).



15

Fig. 5 The results of direct integration, as s is varied. Three different runs (plotted in
different colors) are superimposed. For each branch, both the local minima and maxima of
the spatial average of the vTC

i
are plotted. In the first run (plotted in red) s was increased

from 0.695 to 1.0. In the second run (plotted in green) we started at s = 0.735, on a 3-
lurcher, and decreased s to 0.7. For the third run (plotted in blue), s started at 0.735 and
was increased to 0.8025. Six different types of stable localized waves were found: 1-lurcher
(smooth wave), 3-lurcher, 6-lurcher, 12-lurcher, torus A, and torus B. Up to three such
attractors were observed to coexist for certain values of s.

The results of following the branch of 3-lurchers (i.e. fixed points of P3) are
shown in Fig. 8. We see that two branches are created in a saddle-node bifur-
cation at s = 0.7154, and both branches persist up to s = 1. The stable branch
created in the saddle-node bifurcation undergoes a subcritical period-doubling
bifurcation (we will link this later with the disappearance of an unstable 6-
lurcher) at s = 0.7718. The limited interval of s values for which a 3-lurcher is
stable agrees with the observations in Fig. 5. Note that sub- or super-criticality
of all of the bifurcations we find is determined by either linking together dif-
ferent branches of solutions found using continuation, or by direct numerical
simulation on either side of the bifurcation.

The results of following the branch of 6-lurchers (i.e. fixed points of P6)
are shown in Fig. 9. As in the case of 3-lurchers, two branches (one stable
and one unstable) are created in a saddle-node bifurcation at s = 0.714. One
of them persists up to s = 1, while the other terminates at the subcriti-
cal period-doubling bifurcation of the 3-lurcher, colliding with the branch of
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Fig. 6 Continuation of the smooth wave (1-lurcher). Solid: stable, dashed: unstable. The
point H indicates a supercritical Hopf bifurcation.

(a) (b)

Fig. 7 (a): Floquet multipliers of the 1-lurcher at the Hopf bifurcation (s = 0.702). Arrows
point to the multipliers crossing the unit circle. Several more cross at slightly higher values
of s. (b) Magnitudes of several of the largest magnitude Floquet multipliers as functions
of s. The arrow indicates the pair of complex conjugate multipliers (indicated in panel (a))
which first leave the unit circle.

3-lurchers at s = 0.7718. The stable branch created in the saddle-node bi-
furcation at s = 0.714 undergoes a supercritical period-doubling bifurcation
at s = 0.961. The unstable branch created at s = 0.714 undergoes several
saddle-node (sometimes, depending on the number of unstable eigenvalues,
saddle-saddle) bifurcations before terminating as s is increased, as shown in
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Fig. 8 Continuation of the 3-lurcher. Solid: stable, dashed: unstable. Points SN and SPD
correspond to a saddle-node and a subcritical period doubling bifurcation, respectively.
Asterisks along unstable branches indicate points at which additional Floquet multipliers
cross the unit circle.

the bottom panel of Fig. 9. Note that there is a small window of s values for
which two stable 6-lurchers coexist.

We now discuss in more detail the bifurcations of the branches followed
above and their relationship with the quasi-periodic solutions. As seen in
Figs. 6 and 7, the smooth wave undergoes a Hopf bifurcation at s = 0.702.
This bifurcation is supercritical and apparently non-resonant (the two com-
plex multipliers µ = exp(±iθ) exiting the unit circle are not low-order roots
of unity), leading to the creation of torus A as s increases through this value;
see Fig. 10. As s is increased, torus A increases in size, three “corners” or
“folds” start to appear in its projection using P1, and the orbit spends more
time near these corners; see Fig. 11. Torus A persists to s = 0.7153, which
is very close to the value at which the 3-lurcher is created in a saddle-node
bifurcation (s = 0.7154, see Fig. 8). In fact, plotting torus A at s = 0.7153
and the stable 3-lurcher at s = 0.7154 using P1 we see that the orbit on torus
A spends most of its time in the neighborhood of where the 3-lurcher will
appear; see Fig. 12. This strongly suggests that torus A arises “in association
with” the saddle-node bifurcation of the 3-lurcher as s is decreased; either the
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saddle-node occurs on the torus itself, or the torus is formed by global interac-
tions of the stable and unstable manifolds of the saddle 3-lurchers very close to
the saddle-node bifurcation marking their birth. The apparent sharp corners
of the invariant circle in the picture would argue for the global bifurcation
option, but we were not able to find any appreciable hysteresis that would be
consistent with this option. For s just less than the saddle-node bifurcation
value, a version of “phase walkthrough” [12,27] will occur, i.e. the system will
spend a long time seemingly in a 3-lurcher state, but every so often it will
“slip” and move to another seemingly stable 3-lurcher state, repeating this
pattern.

As seen in Figs 8 and 9, there is a subcritical period-doubling bifurcation
on the branch of 3-lurchers at s = 0.7718, and this is where one of the branches
of 6-lurchers terminates. This is shown more clearly in Fig. 13. In Fig. 14 we
plot, in the left column, a space-time representation of the stable 3-lurcher at
three different parameter values close to this bifurcation, and in the right col-
umn, a similar representation of the unstable 6-lurcher at the same parameter
values. We see that as the bifurcation is approached, the 6-lurcher develops two
subclusters and becomes more like the 3-lurcher, consistent with the behavior
shown in Fig. 13.

As we can see in Fig. 9, the stable 6-lurcher undergoes a period-doubling
bifurcation at s = 0.961. A real multiplier of P6 passes through −1 as s is
increased through this value, and the 6-lurcher is unstable beyond this point.
Instead, a 12-lurcher is now stable. Thus the bifurcation is supercritical. In
Fig. 15 we show both the stable 6-lurcher at s = 0.96 and the stable 12-lurcher
at s = 1.

Neither the continuation nor the direct time integration shed any light on
the mechanisms behind the creation or destruction of torus B. This quasi-
periodic solution is stable in a narrow range of s values (0.7011 < s < 0.7185)
and coexists with torus A, and 1-, 3-, and 6-lurchers. It does not seem to inter-
act with either the stable or unstable 6-lurcher. We plot this torus in Fig. 16,
where we see that the solution does not develop clusters and/or lurching; it
has the appearance of a modulation of a smooth wave. Also, the Poincaré map
does not seem to develop “corners” suggestive of global bifurcations, or have
regions of particularly high relative density.

We summarize our results with the schematic bifurcation diagram in Fig. 17,
which shows how the various solutions we have found link together. In our
opinion, the most important observation in this diagram is the link between
1- and 3-lurchers through a quasiperiodic scenario: 1-lurchers lose stability to
quasiperiodic solutions, while 3-lurchers are associated with frequency-locking
on these same quasiperiodic solutions. Period-6s and 12s are linked to period-
3s via period-doublings. We have only considered ω = 6 in this paper, and
observed lurchers of period 2ω, ω and ω/2. This seems to be largely coinciden-
tal, as preliminary investigations with other values of ω show stable lurchers
with periods not related to ω in this way (results not shown). As indicated in
the figure, the mechanisms behind the creation and destruction of torus B are
as yet unknown.
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Fig. 9 Top: continuation of the 6-lurcher. Solid: stable, dashed: unstable. Bottom: a zoom
of the rectangle shown in the top panel. SN and SS indicate saddle-node and saddle-saddle
bifurcations, respectively, while PD indicates a supercitical period-doubling bifurcation of
the 6-lurcher. SPD indicates the termination of the branch of 6-lurchers when the branch of
3-lurchers undergoes a subcritical period-doubling bifurcation (see Fig. 8).
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(a) (b)

Fig. 10 Torus A, created in a supercritical Hopf bifurcation of the 1-lurcher, at s = 0.7025.
(a) Space-time plot. (b) Poincaré map P1 showing the stable invariant circle corresponding
to torus A (blue) around the unstable fixed point corresponding to 1-lurcher (red).
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(a) (b)

(c) (d)

(e) (f)

Fig. 11 Behavior on the torus A as parameter s is increased from top to bottom: s = 0.705,
s = 0.71 and s = 0.715. Left column: space-time plots. Right column: Poincaré maps.



22

Fig. 12 Poincaré section representation of the torus A at s = 0.7153 (blue) and the stable
3-lurcher at s = 0.7154 (red). The solution on the torus A spends most of its time near
where the 3-lurcher will be created as s increases.

Fig. 13 The subcritical period-doubling bifurcation of the 3-lurcher. We see the branch of
unstable 6-lurchers terminating at the bifurcation.
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(a) (b)

(c) (d)

(e) (f)

Fig. 14 Space-time plots of the 3-lurcher and 6-lurcher near the subcritical period-doubling
bifurcation shown in Fig. 13. Left column: stable 3-lurcher. Right column: unstable 6-lurcher.
Top to bottom: s = 0.72, s = 0.73, s = 0.74. As s increases, the 6-lurcher develops two
subclusters and becomes increasingly similar to a 3-lurcher.
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(a) (b)

(c) (d)

Fig. 15 Period-doubling of the 6-lurcher. (a): the stable 6-lurcher visualised using a space-
time plot at s = 0.96 (b): the stable 6-lurcher (blue point) as a fixed point of the Poincaré
map P6 (s = 0.96). (c): the stable 12-lurcher visualised using a space-time plot at s = 1;
(d): the stable 12-lurcher (two blue points) and the unstable 6-lurcher (red point) plotted
using the Poincaré map P6 (s = 1).
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(a) (b)

(c) (d)

(e) (f)

Fig. 16 Torus B. (a) space-time plot and (b) Poincaré map at s = 0.7011; (c) space-time
plot and (d) Poincaré map at s = 0.703; and (e) space-time plot and (f) Poincaré map at
s = 0.7075.
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Fig. 17 A schematic diagram summarizing our current understanding of lurching waves.
The horizontal axis is not to scale, and the vertical axis is meant to be qualitative only. Up
to three stable solutions coexist for certain values of the parameters. The following symbols
are used: H for supercritical Hopf bifurcation; SN for saddle-node bifurcation; SS for saddle-
saddle bifurcation; PD for supercritical period-doubling bifurcation; SPD for subcritical
period-doubling bifurcation. GB marks a global bifurcation, that would explain the breakup
of torus A, associated with a saddle-node bifurcation of periodic orbit. Here “?” indicates a
tentative global bifurcation mechanism that deserves further investigation. Numbers along
branches indicate the number of Floquet multipliers outside the unit circle.
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5 Summary and Conclusions

In this paper we have undertaken a numerical investigation of lurching waves
in a particular one-dimensional neuronal network. By constructing Poincaré
maps, of which lurching waves are fixed points, we have been able to follow
these waves as parameters are varied, even when they become unstable. Our
current understanding of the relationships between the different lurchers is
shown schematically in Fig. 17. We were able to compute stable as well as un-
stable lurchers, link them to simulations of quasiperiodic waves, quantify their
stability and characterize several of their bifurcations. Note that others had
already found that lurching waves often appear following a Hopf bifurcation
of a smoothly traveling pulse [15]; we also find this (see Fig. 17), but com-
plement it with simulations of the quasiperiodic solutions and by showing the
appearance of lurching waves via frequency locking saddle-node bifurcations
associated with these tori. Regarding the speed of the different waves that we
have found, we note that for all of the branches that we followed, if two or
more N -lurchers coexist at a particular value of s and one of them is stable,
the stable solution had the highest speed. This is commonly seen for smoothly
propagating waves [15,16,6], but is in contrast with the results of Coombes for
lurching waves [5]. The cause of this discrepancy is at this point unclear, but
we point out that Coombes used event-driven rather than voltage-dependent
synapses and then assumed a Heaviside firing rate function, and used a differ-
ent connectivity to us (his model included non-local connections from RE to
TC cells) before reducing his two-layer model to one layer.

The computer-assisted analysis presented here is quite general and could be
applied to a number of other systems. While the model we studied is spatially
discrete, the “shift-and-run” map we introduced could be used for systems in
which space is continuous but some aspect of the model is periodically modu-
lated in space. For example, Runborg et al. [35] study a reaction-diffusion sys-
tem with spatially-periodic modulation of a parameter and observe a Neimark-
Sacker bifurcation from a “wiggling pulse” to a “breathing-wiggling pulse.”
Other neural models having spatially-periodic modulation of a parameter in-
clude [3,7]. Also, a number of spatially-homogeneous neural field models show
traveling fronts and pulses [25,6], and the ideas presented here could be useful
for studying the dynamics of these patterns once biologically-relevant spatial
modulations are included [8].

Our computer-assisted analysis goes, we believe, significantly beyond what
other authors have deduced in the study of lurching waves [5,14–16,36]. In par-
ticular, we have been able to link lurchers of different spatial widths through a
quasi-periodic scenario involving tori, frequency locking on them, and possibly
global bifurcations associated with frequency-locked solutions. The detailed
study of frequency locking, the associated resonance horn boundaries and the
global bifurcations indicative of their overlapping constitutes an intrinsically
two-parameter scenario [1,19]. Clearly, a two-parameter study starting at the
Hopf and important saddle-node bifurcations we found must be performed in
order to clarify the dynamics, and, possibly, link what we have observed with
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the “isolated” torus B. These rather extensive computations will be the sub-
ject of future work; it will be particularly interesting to explore the interaction
of this scenario with the discrete variation of the synaptic footprint.
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