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Fundamental Limits of Wideband Localization—
Part II: Cooperative Networks

Yuan Shen, Student Member, IEEE, Henk Wymeersch, Member, IEEE, and Moe Z. Win, Fellow, IEEE

Abstract—The availability of position information is of great im-
portance in many commercial, governmental, and military appli-
cations. Localization is commonly accomplished through the use
of radio communication between mobile devices (agents) and fixed
infrastructure (anchors). However, precise determination of agent
positions is a challenging task, especially in harsh environments
due to radio blockage or limited anchor deployment. In these situ-
ations, cooperation among agents can significantly improve local-
ization accuracy and reduce localization outage probabilities. A
general framework of analyzing the fundamental limits of wide-
band localization has been developed in Part I of the paper. Here,
we build on this framework and establish the fundamental limits
of wideband cooperative location-aware networks. Our analysis is
based on the waveforms received at the nodes, in conjunction with
Fisher information inequality. We provide a geometrical interpre-
tation of equivalent Fisher information (EFI) for cooperative net-
works. This approach allows us to succinctly derive fundamental
performance limits and their scaling behaviors, and to treat an-
chors and agents in a unified way from the perspective of localiza-
tion accuracy. Our results yield important insights into how and
when cooperation is beneficial.

Index Terms—Cooperative localization, Cramér–Rao bound
(CRB), equivalent Fisher information (EFI), information in-
equality, ranging information (RI), squared position error bound
(SPEB).

I. INTRODUCTION

T HE availability of absolute or relative positional infor-
mation is of great importance in many applications, such

as localization services in cellular networks, search-and-rescue
operations, asset tracking, blue force tracking, vehicle routing,
and intruder detection [1]–[8]. Location-aware networks gen-
erally consist of two kinds of nodes: anchors and agents (see
Fig. 1), where anchors have known positions while agents have
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Fig. 1. Cooperative localization: the anchors (A, B, C, and D) communicate
with the agents (1 and 2). Agent 1 is not in the communication/ranging range
of anchor C and D, while agent 2 is not in the communication/ranging range
of anchors A and B. Neither agents can trilaterate its position based solely on
the information from its neighboring anchors. However, cooperation between
agents 1 and 2 enables both agents to be localized.

unknown positions. Conventionally, each agent localizes itself
based on range measurements from at least three distinct an-
chors (in 2-D localization). Two common examples include the
global positioning system (GPS) [9], [10] and beacon localiza-
tion [11], [12]. In GPS, an agent can determine its location based
on the signals received from a constellation of GPS satellites.
However, GPS does not operate well in harsh environments,
such as indoors or in urban canyons, since the signals cannot
propagate through obstacles [7]–[9]. Beacon localization, on the
other hand, relies on terrestrial anchors, such as WiFi access
points or GSM base stations [11], [12]. However, in areas where
network coverage is sparse, e.g., in emergency situations, local-
ization errors can be unacceptably large.

Conventionally, high-accuracy localization can only be
achieved using high-power anchors or a high-density anchor
deployment, both of which are cost prohibitive and impractical
in realistic settings. Hence, there is a need for localization
systems that can achieve high accuracy in harsh environments
with limited infrastructure requirements [6]–[8]. A practical
way to address this need is through a combination of wideband
transmission and cooperative localization. The fine delay
resolution and robustness of wide bandwidth or ultrawide band-
width (UWB) transmission enable accurate and reliable range
(distance) measurements in harsh environments [13]–[18].1

Hence, these transmission techniques are particularly well
suited for localization. Cooperative localization is an emerging
paradigm that circumvents the needs for high-power, high-den-
sity anchor deployment, and offers additional localization

1Other aspects of UWB technology can be found in [19]–[25].
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accuracy by enabling the agents to help each other in estimating
their positions [5], [6], [26]–[28]. In Fig. 1, for example, since
each agent is in the communication/ranging range of only two
anchors, neither agents can trilaterate its position based solely
on the information from its neighboring anchors. However,
cooperation enables both agents to be localized.

Understanding the fundamental limits of localization is
crucial not only for providing a performance benchmark but
also for guiding the deployment and operation of location-aware
networks. Localization accuracy is fundamentally limited due
to random phenomena such as noise, fading, shadowing, and
multipath propagation. The impact of these phenomena has
been investigated for noncooperative localization [7], [8],
[29]–[31]. However, little is known regarding the bounds for
cooperative localization. In particular, bounds on the coop-
erative localization performance were previously derived in
[27] and [28] using only specific ranging models. In other
words, these works start from signal metrics, extracted from the
received waveforms.2 Such a process may discard information
relevant for localization. Furthermore, the statistical models
for those signal metrics depend heavily on the measurement
processes. For instance, the ranging error of the time-of-arrival
(TOA) metric is commonly modeled as additive Gaussian
[27], [28], [31]. However, other studies (both theoretical [15],
[38], [39] and experimental [8], [18]) indicate that the ranging
error is not Gaussian. Hence, when deriving the fundamental
limits of localization accuracy, it is important to start from the
received waveforms rather than from signal metrics extracted
from those waveforms.

In Part I [29], we have developed a general framework to
characterize the localization accuracy of a given agent. In this
paper, we build on the framework and determine fundamental
properties of cooperative location-aware networks employing
wideband transmission. The main contributions of this paper are
as follows.

• We derive the fundamental limits of localization accuracy
for wideband wireless cooperative networks in terms of
a performance measure called the squared position error
bound (SPEB).

• We employ the notion of equivalent Fisher information
(EFI) to derive the network localization information, and
show that this information can be decomposed into basic
building blocks associated with every pair of the nodes,
called the ranging information (RI).

• We quantify the contribution of the a priori knowledge
of the channel parameters and the agents’ positions to the
network localization information, and show that agents and
anchors can be treated in a unified way: anchors are special
agents with infinite a priori position knowledge.

• We put forth a geometric interpretation of the EFI matrix
(EFIM) using eigendecomposition, providing insights into
the network localization problem.

• We derive scaling laws for the SPEB for both dense and
extended location-aware networks, characterizing the
behavior of cooperative location-aware networks in an
asymptotic regime.

2Commonly used signal metrics include time-of-arrival (TOA) [7], [8], [15],
[17], [32], time-difference-of-arrival (TDOA) [33], [34], angle-of-arrival (AOA)
[7], [35], and received signal strength (RSS) [7], [36], [37].

The proposed framework generalizes the existing work on non-
cooperative localization [29] to cooperative networks, provides
insights into the network localization problem, and can guide
the design and deployment of location-aware networks.

The rest of the paper is organized as follows. Section II
presents the system model and the concept of SPEB. In
Section III, we apply the notion of EFI to derive the SPEB.
Then, in Section IV, we provide a geometric interpretation of
EFIM for localization and derive scaling laws for the SPEB. Fi-
nally, numerical results are given in Section V, and conclusions
are drawn in the last section.

Notation: The notation is the expectation operator
with respect to the random vectors and
denote that the matrix is positive definite and positive
semidefinite, respectively; denotes the trace of a square
matrix; denotes the transpose of its argument; de-
notes the th submatrix that starts from element

on the diagonal of its argument; denotes a
submatrix composed of the rows to and the columns
to of its argument; and denotes the Euclidean norm of
its argument. We also denote by the probability density
function (pdf) of the random vector unless specified
otherwise.

II. SYSTEM MODEL

In this section, we describe the wideband channel model and
formulate the localization problem. We briefly review the infor-
mation inequality and the performance measure called SPEB.

A. Signal Model

Consider a synchronous network consisting of anchors
(or beacons) and agents with fixed topology.3 Anchors have
perfect knowledge of their positions, while each agent attempts
to estimate its position based on the waveforms received from
neighboring nodes (see Fig. 1). Unlike conventional localiza-
tion techniques, we consider a cooperative setting, where agents
utilize waveforms received from neighboring agents in addi-
tion to those from anchors. The set of agents is denoted by

, while the set of anchors is
. The position of node is denoted by

.4 Let denote the angle from node to node
, i.e.,

and denote the corresponding unit
vector.

The received waveform at the th agent from the
th node can be written as [24], [41]

(1)

3We consider synchronous networks for notional convenience. Our approach
is also valid for asynchronous networks, where devices employ round-trip
time-of-flight measurements [25], [40].

4For convenience, we focus on 2-D localization where � � , and we will
later mention extensions to 3-D localization.
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where is a known wideband waveform with Fourier trans-
form and are the amplitude and delay, respec-
tively, of the th path,5 is the number of multipath compo-
nents, represents the observation noise, modeled as ad-
ditive white Gaussian processes with two-sided power spectral
density , and is the observation interval. The re-
lationship between the positions of nodes and the delays of the
propagation paths is

(2)

where is the propagation speed of the signal, and is
a range bias induced by nonline-of-sight (NLOS) propagation.
Line-of-sight (LOS) signals occur when the direct path between
nodes and is unobstructed, such that .

B. Error Bounds on Position Estimation

We first introduce as the vector of unknown parameters

where consists of all the agents’ positions

and is the vector of the multipath parameters associated with
the waveforms received at the th agent6

in which is the vector of the multipath parameters associated
with 7

Second, we introduce as the vector representation of all the
received waveforms, given by , where

in which is obtained from the Karhunen–Loève (KL) expan-
sion of [42], [43]. We tacitly assume that when nodes
and cannot communicate directly, the corresponding entry
is omitted in .

We can now introduce an estimator of the unknown pa-
rameter based on the observation . The mean squared error
(MSE) matrix of satisfies the information inequality [42]–[44]

(3)

5We consider the general case where the wideband channel is not necessarily
reciprocal. Our results can be easily specialized to the reciprocal case, where
we have � � � � � � � , and � � � hence � � � , for
� � �� �� � � � � � .

6In cases where the channel is reciprocal, only half of the multipath param-
eters are needed. Without loss of generality, we only use �� � � � �� � �
� � � 	 ��.

7The bias � � � for LOS signals. From the perspective of Bayesian esti-
mation, it can be thought of as a random parameter with infinite a priori Fisher
information [29].

where is the Fisher information matrix (FIM) for ,8 given
by

(4)

in which is the joint pdf of the observation and the pa-
rameter vector . For an estimate of the th agent’s position,
(3) implies that

One natural measure for position accuracy is the average
squared position error , which can be
bounded below by defined in the following.

Definition 1 (SPEB [29]): The SPEB of the th agent is de-
fined to be

Since the error of the position estimate is a vector, it
may also be of interest to know the position error in a particular
direction. The directional position error along a given unit vector

is the position error projected on it, i.e., , and its
average squared error can be bounded
below by defined in the following.9

Definition 2 (Directional Position Error Bound): The direc-
tional position error bound (DPEB) of the th agent with con-
straint is defined to be

where are unit vectors such that .

Proposition 1: The SPEB of the th agent is the sum of the
DPEBs in any two orthogonal directions, i.e.,

(5)

Proof: See Appendix I.

C. Joint PDF of Observations and Parameters

Evaluation of (4) requires knowledge of the joint distribution
. We can write , where is

the likelihood function, and is the a priori distribution of
the parameter .10 In this section, we describe the structure of
both functions in detail.

Since the received waveforms are independent condi-
tioned on the parameter can be expressed as [42], [43]

(6)

8With a slight abuse of notation, �� 


��� in (3) and (4) will be used for deter-
ministic, random, and hybrid cases, with the understanding that the expectation
operation is not performed over the deterministic components of 


 [43], [44].
Note also that for the deterministic components, the lower bound is valid for
their unbiased estimates.

9In higher dimensions, this notion can be extend to the position error in any
subspaces, such as a hyperplane.

10When a subset of the parameters are deterministic, they are eliminated from
�	



.



4984 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 56, NO. 10, OCTOBER 2010

where

(7)

When the multipath parameters are independent condi-
tioned on the nodes’ positions,11 can be expressed as

(8)

where is the joint pdf of all the agents’ positions, and
is the joint pdf of the multipath parameters con-

ditioned on the agents’ positions. Based on existing propagation
models for wideband and UWB channels [14], [25], the joint pdf
of the channel parameters can be further written as [29]

(9)

where for and .
Combining (8) and (6) leads to

(10)

where the first and second groups of summation account for the
information from anchors and that from agents’ cooperation, re-
spectively, and the last term accounts for the information from
the a priori knowledge of the agents’ positions. This implies
that the FIM for in (4) can be written as ,
where , and correspond to the localization informa-
tion from anchors, agents’ cooperation, and a priori knowledge
of the agents’ positions, respectively.

III. EVALUATION OF FIM

In this section, we briefly review the notion of EFI [29] and
apply it to derive the SPEB for each agent. We consider both
the cases with and without a priori knowledge of the agents’
positions. We also introduce the concept of RI, which turns out
to be the basic building block for the EFIM.

A. EFIM and RI

We saw in the previous section that the SPEB can be ob-
tained by inverting the FIM in (4). However, is a matrix
of very high dimensions, while only a much smaller submatrix

is of interest. To gain insights into localization

11This is a common model for analyzing wideband communication, unless
two nodes are close to each other so that the channels from a third node to
them are correlated. Our analysis can also account for the correlated channels, in
which case the SPEB will be higher than that corresponding to the independent
channels.

problem, we will employ the notions of EFIM and RI [29]. For
the completeness of the paper, we briefly review the notions in
the following.

Definition 3 (EFIM): Given a parameter vector
and the FIM of the form

where , and
with , the EFIM for is given by

(11)

Note that the EFIM retains all the necessary information to
derive the information inequality for the parameter , in a sense
that , so that the MSE matrix of the
estimates of is “bounded” below by . The right-
hand side of (11) is known as the Schur’s complement of matrix

[45], and it has been used for simplifying the Cramér–Rao
bounds (CRBs) [31], [32], [46].

Definition 4 (RI): The RI is a matrix of the form ,
where is a nonnegative number called the ranging information
intensity (RII) and the matrix is called the ranging direc-
tion matrix (RDM) with the following structure:

The RDM has exactly one nonzero eigenvalue equal
to with corresponding eigenvector , i.e.,

. Thus, the corresponding RI is “1-D” along the
direction .

B. EFIM Without a Priori Position Knowledge

In this section, we consider the case in which a priori knowl-
edge of the agents’ positions is unavailable, i.e., is elimi-
nated from (8). We first prove a general theorem, describing the
structure of the EFIM, followed by a special case, where there
is no a priori knowledge regarding the channel parameters.

Theorem 1: When a priori knowledge of the agents’ posi-
tions is unavailable, and the channel parameters corresponding
to different waveforms are mutually independent, the EFIM for
the agents’ positions is a matrix, structured as (12),
shown at the bottom of the next page, where and
can be expressed in terms of the RI

and

with given by (35) in Appendix II.
Proof: See Appendix II.

Remark 1: We make the following remarks.
• To obtain the SPEB of a specific agent, we can apply EFI

analysis again and further reduce into a EFIM.
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• The RI is the basic building block of the EFIM for local-
ization, and each RI corresponds to an individual received
waveform. The RII is determined by the power and
bandwidth of the received waveform, the multipath prop-
agation, as well as the a priori channel knowledge. Note
that each received waveform provides only 1-D informa-
tion for localization along the angle .

• The EFIM can be decomposed into localization in-
formation from anchors and that from agents’ cooperation.
The former part is represented as a block-diagonal matrix
whose nonzero elements are , for the th agent, and
each is a weighted sum of RDMs over anchors.
Hence, the localization information from anchors is not in-
terrelated among agents. The latter part is a highly struc-
tured matrix consisting of RIs . Hence, the localiza-
tion information from agents’ cooperation is highly inter-
related. This is intuitive since the effectiveness of the local-
ization information provided by a particular agent depends
on its position error.

Theorem 2: When a priori knowledge of the agents’ posi-
tions and the channel parameters is unavailable, the EFIM for
the agents’ positions is a matrix, structured as in
(12) with the RII given by

LOS signal
NLOS signal

where is the effective bandwidth of transmitted waveform

is the SNR of the first path in

(13)

and is called the path-overlap coefficient, which
depends on the first contiguous cluster12 in LOS signals.

Proof: See Appendix III.

Remark 2: We make the following remarks.
• The theorem shows that when a priori knowledge of

channel parameters is unavailable, the NLOS signals do
not contribute to localization accuracy, and hence these
signals can be discarded. This agrees with the previous

12The first contiguous cluster is the first group of nondisjoint paths. Two paths
that arrive at time � and � are called nondisjoint if �� � � � is less than the
duration of ���� [29].

observations in [8], [31], and [32] although the authors
considered different models.

• For LOS signals, the RII is determined by the first con-
tiguous cluster [29], implying that it is not necessary to
process the latter multipath components. In particular,
the RII is determined by the effective bandwidth , the
first path’s SNR, and the propagation effect characterized
by .

• Since , path overlap always deteriorates the ac-
curacy unless , in which the first signal compo-
nent does not overlap with later components

for .

C. EFIM With a Priori Position Knowledge

We now consider the case in which the a priori knowledge of
the agents’ positions, characterized by , is available. We
first derive the EFIM, based on which we prove that agents and
anchors can be treated in a unified way under this framework.
We then present a special scenario in which the a priori knowl-
edge of the agents’ positions satisfies certain conditions so that
we can gain insights into the EFIM.

Theorem 3: When a priori knowledge of the agents’ posi-
tions is available, and the channel parameters corresponding to
different waveforms are mutually independent, the EFIM for the
agents’ positions is a matrix, given by13

(14)

where

and

with given by (15), shown at the bottom of the
next page. Block matrix in (15) is defined as (27) in
Appendix II.

Proof: See Appendix IV.

13Note that � ��� in (14) does not depend on any particular value of the
random vector�, whereas� ��� in (12) is a function of the deterministic vector
�.

...
. . .

(12)
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Remark 3: The EFIM for agents’ positions is derived in (14)
for the case when a priori knowledge of the agents’ positions is
available. Compared to (12) in the Theorem 1, the EFIM in (14)
retains the same structure of the localization information from
both anchors and cooperation, except that all RIs in Theorem 3
are obtained by averaging the matrices over the possible
agents’ positions. In addition, the localization information from
the position knowledge is characterized in terms of an additive
component . This knowledge improves localization because

is positive semidefinite.

Based on the result of Theorem 3, we can now treat anchors
and agents in a unified way, as will be shown in the following
theorem.

Theorem 4: Anchors are equivalent to agents with infinite
a priori position knowledge in the following sense: when the

th agent has infinite a priori position knowledge, i.e.,
, then

where is the vector without rows to , and
is the matrix without rows to and

columns to .
Proof: See Appendix V.

Remark 4: The theorem shows mathematically that agents
are equivalent to anchors if they have infinite a priori position
knowledge, which agrees with our intuition. As such, it is not
necessary to distinguish between agents and anchors. This view
will facilitate the analysis of location-aware networks and the
design of localization algorithms: every agent can treat the in-
formation coming from anchors and other cooperating agents in
a unified way.

The general expression of the EFIM for the case with a priori
position knowledge is given in (14), which is much more in-
volved than that for the case without position knowledge in (12).
However, in the special case when

(16)

for the functions involved in the derivation of the EFIM
(see Appendix IV),14 we can gain insight into the structure of
the EFIM as shown by the following corollary.

14This occurs when every agent’s a priori position distribution is concentrated
in a small area relative to the distance between the agent and the other nodes, so
that ���� is flat in that area.

Corollary 1: When the a priori distribution of the agents’ po-
sitions satisfies (16), and the channel parameters corresponding
to different waveforms are mutually independent, the EFIM for
the agents’ positions is a matrix, structured as (17),
shown at the bottom of the page, where and can be
expressed in terms of the RI

and

where is the RII given in (35) evaluated at
, and is the angle from to .

Proof: See Appendix IV.

D. Discussions

We will now discuss the results derived in the previous sec-
tions. Our discussion includes 1) the EFIM for the agents in
noncooperative localization, 2) an application of the cooperative
localization to tracking, 3) a recursive method to construct an
EFIM for large networks, and 4) the extension to 3-D scenarios.

1) Noncooperative Localization: When the agents do not co-
operate, the matrices corresponding to the agents’ cooperation
in (12) in Theorem 1 and (17) in Corollary 1 are discarded. In
particular, the EFIM in Theorem 1 reverts to

and hence the EFIM for the th agent is equal to
. Similarly, the EFIM in Corollary 1 reverts to

Furthermore, when the agents’ positions are independent a
priori, and the EFIM
for the th agent can be written as .

2) Spatial Versus Temporal Cooperation for Localization:
Rather than multiple agents in cooperation, a single agent can
“cooperate” with itself over time. Such temporal cooperative
localization can easily be analyzed within our framework, as
follows.

Consider a single agent moving in sequence to different
positions according to piecewise linear walk and receiving
waveforms from neighboring anchors at each position. The

positions can be written as , and

(15)

...
. . .

(17)
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we can consider the scenario as agents in cooperation. The
likelihood of the observation is

where in which is the measurement
of the distance between and .15

By applying Theorem 1, we have the EFIM for as
where

and is given by (18), shown at the bottom of the page, in
which with denoting the angle
from to and

By further applying the notion of EFI, we can obtain the EFIM
for each position . Note that this analysis can be ex-

tended to cooperation among multiple mobile agents over time,
so that both cooperation over space and time are explored si-
multaneously.

3) Recursive Formula for EFIM: The structure of the EFIM
in (12) and (17) enables us to extend the EFIM when agents join
or leave the cooperative network. We will develop a recursive
formula to construct the EFIM in the following.

Consider a network with agents in cooperation without a
priori knowledge of their positions, and the EFIM for agents’
positions where can be ob-
tained by (12). If a new agent enters the cooperative network,
then the EFIM for the agents is given by

(19)

where is the EFIM for the th agent corresponding
to the localization information from anchors, is the lo-
calization information from the cooperation between the

th agent and the other agents, given by

15We assume that the agent has other navigation devices, such as inertial mea-
surement unit (IMU), odometer, or pedometer, to measure the distance between
positions.

and is given by

Note that when the a priori knowledge of the agents’ positions
is available, we need to consider the contribution of , and the
EFIM for the agents can be constructed in a similar way.

Similarly, when a certain agent, say , leaves the network,
we need to eliminate rows to and columns
to in , as well as subtract all corresponding for

from the diagonal of .
4) Extension to 3-D Localization: All the results obtained

thus far can be easily extended to the 3-D scenario, in which
. The SPEB of the th agent is defined as

. Following the steps leading to (12) and
(17), we can obtain a corresponding EFIM involving
the RDMs for and , where

with and denoting the angles in the spherical coordinates,
and .

IV. GEOMETRIC INTERPRETATION OF EFIM FOR LOCALIZATION

In this section, we present a geometric interpretation of the
EFIM for localization. This interpretation not only provides in-
sights into the essence of localization problems, but also facili-
tates the analysis of localization systems, design of localization
algorithms, and deployment of location-aware networks. We
begin with the noncooperative case, and then extend to the coop-
erative case. Based on these results, we derive scaling laws of the
SPEB for both noncooperative and cooperative location-aware
networks.

A. Interpretation for Noncooperative Localization

When an agent only communicates with neighboring anchors,
the EFIM can be written as16

(20)

where and are the eigenvalues of , with , and
is a rotation matrix with angle , given by

16To simplify the notation, we will suppress the agent’s index in the subscript.

. . .
. . .

. . .

(18)
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Fig. 2. Geometric interpretation of the EFIM as an information ellipse. In the
rotated coordinate system (rotated over an angle �), the major and minor axes
of the ellipse are given by

�
� and

�
�, respectively.

The first and second columns of are the eigenvectors corre-
sponding to eigenvalues and , respectively. By the properties
of eigenvalues, we have

Note in (20) that depends only on , and , and we
will denote by when needed.

Proposition 2: The SPEB is independent of the coordinate
system.

Proof: See Appendix VI.

Remark 5: The proposition implies that if we rotate the orig-
inal coordinate system by an angle prescribed by (20) and de-
note the agent’s position in the new coordinate by , then the
SPEB is

The EFIM in the new coordinate system is diagonal, and thus the
localization information in these new axes is decoupled. Con-
sequently, the SPEB is also decoupled in these two orthogonal
directions.

Definition 5 (Information Ellipse): Let be a positive-
definite matrix. The information ellipse of is defined as the
sets of points such that

Geometrically, the EFIM in (20) corresponds to an informa-
tion ellipse with major and minor axes equal to and ,
respectively, and a rotation from the reference coordinate, as
depicted in Fig. 2. Hence, the information ellipse is completely
characterized by , and . Note that the RI is expressed as

, and it corresponds to a degenerate el-
lipse. In the following proposition, we will show how an anchor
contributes to the information ellipse of an agent.

Proposition 3: Let and denote the
EFIM and the SPEB of an agent, respectively. When that agent

Fig. 3. Updating of the information ellipse for noncooperative localization. The
original information ellipse of the agent is characterized by ���� �� ��. The RI
from an additional anchor is given by ���� �� ��. The new information ellipse
of the agent then grows along the direction � , but not along the orthogonal
direction. The new information ellipse corresponds to ����� ��� ��).

obtains RI from a new anchor, the new EFIM for the
agent will be

where the parameters for the new information ellipse are

and

with . Correspondingly, the new SPEB becomes

(21)

Remark 6: The geometric interpretation for the proposition
is depicted in Fig. 3. For a fixed RII , we see from (21) that

can be minimized through (equivalently, through ) in
the denominator, leading to

and the minimum is achieved when . In such a
case, the anchor is along the direction of the eigenvector cor-
responding to the smallest eigenvalue . Observe also that the
denominator in (21) is equal to , which is proportional to
the squared area of the new information ellipse corresponding
to . Hence, for a fixed , the minimum SPEB is achieved
when the new anchor is along the minor axis of the information
ellipse corresponding to . Equivalently, this choice of an-
chor position maximizes the area of the new information ellipse.

On the other hand, the maximum SPEB occurs when the an-
chor is along the direction of the eigenvector corresponding to
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the largest eigenvalue , i.e., the major axis of the information
ellipse corresponding to . Equivalently, this minimizes the
area of the new information ellipse, and thus

and the maximum is achieved when . Note also that

where the left-hand side , and the
right-hand side .

B. Interpretation for Cooperative Localization

The EFIM for all the agents in cooperative location-aware
network is given, respectively, by (17) and (12) for the cases
with and without a priori position knowledge. Further applying
the notion of EFI, one can obtain the EFIM for individual agents.
In general, the exact EFIM expression for the individual agents
is complicated. However, we can find lower and upper bounds
on the individual EFIM to gain some insights into the localiza-
tion problem.

Proposition 4: Let denote the
EFIM for agent that corresponds to the localization informa-
tion from anchors, and let denote the
RI for that agent obtained from cooperation with agent . The
EFIM for agent can be bounded as follows:

where

(22)

(23)

with coefficients given by (44) and (46).
Proof: See Appendix VI.

Remark 7: The bounds for the EFIM can be written as
weighted sums of RIs from the neighboring nodes, and such
linear forms can facilitate analysis and design of location-aware
networks. Moreover, it turns out that when there
are only two agents in cooperation, leading to the following
corollary.

Corollary 2: Let and
denote the EFIMs for agents 1 and 2 from an-

chors, respectively, and let denote the
RI from their cooperation. The EFIMs for the two agents are
given, respectively, by (see also Fig. 4)

and

Fig. 4. Updating of the information ellipse for cooperative localization. Based
on the anchors, the �th agent has information � �� �. The cooperative infor-
mation between the two agents is given by � � ���� �� � �. The total
EFIM for agent 1 is then � �� � � � �� �� � � . The new information
ellipse grows along the line connecting the two agents.

where

and

with

for .

Remark 8: The results follow directly from Proposition 4. We
make the following remarks.

• Cooperation provides agent 1 with RI
with . Hence, agent 1 obtains an RII
from cooperation instead of the full RII . This degrada-
tion in RII is due to the inherent uncertainty of the second
agent’s position. We introduce the effective RII

.
• The effective RII has the following geometric interpreta-

tion. The value is the DPEB of agent 2 (based
solely on the anchors) along the angle between the
two agents. This implies that the larger the uncertainty of
agent 2 along the angle , the less effective cooperation
is. For a given , the effective RII increases
monotonically with , and has the following asymptotic
limits:
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Hence, the maximum effective RII that agent 2 can provide
to agent 1 equals the inverse of the DPEB of agent 2 (based
solely on the anchors) along the angle between the two
agents.

• When i) the two agents happen to be oriented such that
, and ii) agent 2 is certain about its position

along that angle , then and
, i.e., agent 2 can be thought of

as an anchor from the standpoint of providing RI to agent
1. From this perspective, anchors and agents are equivalent
for localization, where anchors are special agents with zero
SPEB, or equivalently, infinite in all directions.

C. Scaling Laws for Location-Aware Networks

In this section, we derive scaling laws of the SPEB for
both noncooperative and cooperative location-aware networks.
Scaling laws give us insight into the benefit of cooperation
for localization in large networks. As we will see, agents and
anchors contribute equally to the scaling laws for cooperative
location-aware networks.

We focus on two types of random networks: dense networks
and extended networks [47], [48]. In both types of networks,
we consider the anchors and agents randomly located
(uniformly distributed) in the plane. In dense networks, adding
nodes increases the node density, while the area remains con-
stant. In extended networks, the area increases proportional to
the number of nodes, while both the anchor and the agent densi-
ties remain constant. Without loss of generality, we consider one
round of transmission from each node to another. All transmis-
sion powers are the same, while large- and small-scale fading
can be arbitrary. Medium access control is assumed so that these
signals do not interfere with one another.

Definition 6 (Scaling of SPEB): Consider a network with
nodes randomly located in a given area. We say that the SPEB of
individual agents scales as for some function , de-
noted by , if there are deterministic constants

such that

(24)

where .

Theorem 5: In dense networks, the SPEB of each agent scales
as for noncooperative localization, and as

for cooperative localization.
Proof: See Appendix VII.

Theorem 6: In extended networks with an amplitude loss ex-
ponent ,17 the SPEB of each agent scales as

17Note that the amplitude loss exponent is �, while the corresponding power
loss exponent is ��. The amplitude loss exponent � is environment dependent
and can range from approximately 0.8 (e.g., hallways inside buildings) to 4 (e.g.,
dense urban environments) [49].

for noncooperative localization, and

for cooperative localization.
Proof: See Appendix VII.

Remark 9: We make the following remarks.
• In dense networks, the SPEB scales inversely proportional

to the number of anchors for noncooperative localization,
and inversely proportional to the number of nodes for coop-
erative localization. The gain from cooperation is given by

, and hence the benefit is most pronounced
when the number of anchors is limited. Moreover, it is
proven in Appendix VII that decreases exponentially
with the number of nodes.

• In extended networks with an amplitude loss exponent
equal to , the SPEB scales inversely proportional to the
logarithm of the number of anchors for noncooperative
localization, and inversely proportional to the logarithm of
the number of nodes for cooperative localization. This im-
plies that the SPEB in extended networks decreases much
more slowly than that in dense networks, and the gain from
cooperation is now reduced to .
Moreover, it is shown in Appendix VII that decreases
as .

• In extended networks with an amplitude loss exponent
greater than , the SPEB converges to a strict positive
value as the network grows. This agrees with our intuition
that as more nodes are added, the benefit of the additional
nodes diminishes due to the rapidly decaying RII provided
by those nodes. It can be shown that the SPEB converges
to a smaller value in the cooperative case than that in the
noncooperative case, i.e., a constant gain can be obtained
by cooperation.

V. NUMERICAL RESULTS

In this section, we examine several numerical examples per-
taining to cooperative localization and illustrate practical appli-
cations of our analytical results.

A. Effective RI

We first investigate the behavior of the effective RII from
Corollary 2 when two agents cooperate. The effective RII
is plotted in Fig. 5 as a function of the RII for

and various values of .
The corresponding asymptotic limits are also plotted for large
values of . We observe that effective RII increases from to

as the RII increases. For a fixed RII, the second
agent will provide the maximum effective RII at ,
along which angle the second agent has the minimum DPEB (i.e.,

). On the other hand, the second agent will provide
the minimum effective RII at , along which
angle the second agent has the maximum DPEB (i.e., ).

B. Benefit of Cooperation

We now consider the SPEB performance as a function of
the number of agents for cooperative localization. The network
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Fig. 5. Effective RII � � as a function of the RII � , for � �
��� � �� � � �� � � ��, and different angle of arrival � .

Fig. 6. Typical network deployment of two sets of anchors (set I: squares, set
II: diamonds) and � � �� agents. The agents are distributed uniformly over
the �������	��������	map, while the locations of the anchors are controlled
by 	.

configuration is shown in Fig. 6. The agents randomly (uni-
formly distributed) reside in a 20 m by 20 m area. There are
two sets of anchors [shown as squares (set I) and diamonds
(set II) in Fig. 6], with a configuration determined by the pa-
rameter . Since fading does not affect the scaling behavior as
shown Section IV-C, we consider a network with signals that
obey the free-space path-loss model for simplicity, so that the
RII .

Fig. 7 shows the average SPEB over all the agents as a func-
tion of the number of agents, obtained by Monte Carlo simula-
tion, for . We see that as the number of agents increases,
the average SPEB decreases significantly, roughly proportional
to the number of agents. Note that the anchor configuration set
II yields a lower SPEB. Intuitively, this is due to the fact that

Fig. 7. The average SPEB as a function of the number of agents in the network
for various anchor configurations �	 � ���.

Fig. 8. Ratio of upper and lower approximations of the SPEB, � ��� and
� ���, as a function of the number of agents for anchor set I, set II, and both.

the anchors in set II (distance from the center) cover the area
better than the anchors in set I (distance from the center).

Define the upper and lower approximations of agent ’s
SPEB as

and

where and are given by (22) and (23), re-
spectively, in Theorem 4. Fig. 8 shows the average ratio of
the lower and upper approximations of the SPEB, obtained by
Monte Carlo simulation, for anchor set I, set II, and both sets.
When there are only two agents in cooperation, the bounds
coincide, as we expect from Corollary 2. As the number of
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Fig. 9. The mean SPEB with respective to anchor deployment. There are� �

�� agents.

agents increases, the ratio deviates from , or equivalently,
the approximations become looser, due to the fact that upper
approximation ignores more cooperative information, and the
lower approximation considers more agents to be equivalent
to anchors. Nevertheless, the ratio converges to a positive
constant, implying that the upper and lower approximations
decrease at the same rate in an asymptotical regime, as shown
in the proof of Theorem 5.

C. Anchor Deployment

Finally, we investigate the effect of anchor deployment in
more detail. We consider a scenario with agents. The
anchor placement is controlled through (see Fig. 6). Fig. 9
shows the average SPEB as a function of for different anchor
configurations (set I, set II, and both sets). We see that the SPEB
first decreases, and then increases, as a function of . When
is close to , all the anchors are located closely in the middle
of the area, and hence the RIs from those anchors to a partic-
ular agent are nearly in the same direction. This will greatly in-
crease the error of each agent’s position since every is
close to singular, resulting in poor overall SPEB performance.
As the anchors begin to move away from the center, they pro-
vide RIs along different directions to each agent, which lowers
the average SPEB. Then, as the distances of the anchors to the
center increase further, the anchors become far away from more
and more agents. Hence, the RII decreases due to the path-loss
phenomena, and this leads to the increase in the average SPEB.
Observe also that anchor set I is better than anchor set II for
7 m. This is because, for a fixed 7 m, anchor set I can cover
a larger area. For 7 m, anchor set I suffers more from path
loss than anchor set II.

For the sake of comparison, we have also included the average
SPEB when eight anchors are deployed 1) according to set I
and II simultaneously, and 2) randomly in a [ 10 m, 10 m]
[ 10 m, 10 m] area. The figure shows that intelligent anchor
deployment can be beneficial compared to random deployment,
indicating the need for anchor deployment strategies.

VI. CONCLUSION

In this paper, we have investigated the fundamental limits
on the localization accuracy for wideband cooperative loca-
tion-aware networks. We have derived the SPEB by applying the
notion of EFI to characterize the localization accuracy. Since
our analysis exploits the received waveforms rather than specific
signal metrics, the SPEB incorporates all the localization infor-
mation inherent in the received waveforms. Our methodology
unifies the localization information from anchors and that from
cooperation among agents in a canonical form, viz. RI, and the
total localization information is a sum of these individual RIs.
We have put forth a geometrical interpretation of the EFIM based
on eigendecomposition, and this interpretation has facilitated the
theoretical analysis of the localization information for coopera-
tive networks. We have also derived scaling laws for the SPEB
in both dense and extended networks, showing the benefit of
cooperation in an asymptotic regime. Our results provide funda-
mental new insights into the essence of the localization problem,
and can be used as guidelines for localization system design as
well as benchmarks for cooperative location-aware networks.

APPENDIX I
PROOF OF PROPOSITION 1

Proof: The right-hand side of (5) can be written as

where we have used the fact .

APPENDIX II
PROOF OF THEOREM 1

We proceed in two steps: we first show that the EFIM is struc-
tured as in (12), and then derive the details of the RI.

A. Derivation of the EFIM Structure

When a priori knowledge of the agents’ positions is unavail-
able, the log-likelihood function in (10) becomes

(25)

where denotes the vector of the channel parameters containing
all with and . For notational
convenience, we now introduce

(26)

(27)
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as well as

Since for , the EFIM for can be derived
as

(28)

Structure of : Due to the structure in (25), we can
express as

where is a block-diagonal matrix, consisting
of block matrices, given by

On the other hand, is also a block matrix,
consisting of block matrices, given by (29), shown at the
bottom of the page.

Structure of : Since for ,
we find that

where is a block-diagonal matrix, consisting
of block matrices, given by

On the other hand, is also a block matrix,
consisting of block matrices, given by (30), shown at the
bottom of the page.

Structure of : Combining these results, we find that the
EFIM in (28) can be written as

(31)

from which we obtain (12). In (12),
and in which we have
introduced the RI

(32)

Note that in the derivation, we used

and

Since in (12) can be expressed in terms of the RIs
, for and , we will examine

next the details of the RIs.

B. Details of the RI

We now consider the detailed expression of the RI
in (32). We first introduce

and

(33)

where with

.
From (2) and (9), we note that and that

and only depend on
through . Using the chain rule, we have

and

and hence can be expressed as

(34)

(29)

(30)
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where ,
and is given by (35), shown at the bottom of the page, where

.

APPENDIX III
PROOF OF THEOREM 2

Proof: When a priori channel knowledge is unavail-
able, we have , and .
For NLOS signals, the RII in (35) becomes since

. For LOS signals, however, after some
algebra, the RII becomes

(36)
where since the Fisher
information for known is infinity. To simplify (36), we
partition as

where obtained from (33) through some
algebra. As in (36), we have

where

(37)

is called path-overlap coefficient [29].
We next show that only the first contiguous cluster contains

information for localization. Let us focus on . If the length
of the first contiguous cluster in the received waveform is ,
where , we have [29]

and

where , and is a
block matrix that is irrelevant to the rest of the derivation. Hence,
(37) becomes

which depends only on the first paths, implying that only
the first contiguous cluster of LOS signals contains information
for localization.

APPENDIX IV
PROOF OF THEOREM 3 AND COROLLARY 1

Proof: When the a priori knowledge of the agents’ position
is available, the derivation of EFIM (25) becomes

Following the notations and derivations in Appendix II-A, we
obtain the EFIM given by (14). This completes the proof of The-
orem 3. Note that the structure of (14) is similar to that of (31)
except the additional term .

The EFIM in (14) is applicable to general case. Note that
in this case cannot be further simplified as that in (34)

since we need to take expectation over the random parameter
in (32). However, when condition (16) holds for functions

, and ,
the expectations of those functions with respect to can be re-
placed by the values of the functions at . In such a case, the RI
in (15) can be written as

where is the RII given in (35) evaluated at , and is the
angle from to .

APPENDIX V
PROOF OF THEOREM 4

Proof: Consider a cooperative network with agents,
whose overall EFIM is given by (14). If agent has infinite a
priori position knowledge, i.e., ,
then we apply the notion of EFI to eliminate the parameter
vector in (14) and have

(38)

where we have used

(39)

Note that if we let , and
for in (38), the

(35)
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structure of (38) becomes the same as that of (14), with a dimen-
sion decrease by . Therefore, the new RI is fully
utilizable, i.e., agent with infinite a priori position knowl-
edge is effectively an anchor.

APPENDIX VI
PROOFS FOR SECTION IV

A. Proof of Proposition 2

Proof: If the current coordinate system is rotated by angle
and translated by , then the position of the agent

in the new coordinate system is . Consequently,
the EFIM for is

(40)

Due to the cyclic property of the trace operator [45], we imme-
diately find that

(41)

B. Proof of Proposition 4

Proof: Without loss of generality, we focus on the first
agent.

Lower Bound: Consider the EFIM shown in (42),
shown at the bottom of the page. It can be obtained from
by setting all for . This EFIM cor-
responds to the situation where cooperation among agents 2 to

is completely ignored. One can show using elementary al-
gebra that , which agrees with intuition since
the cooperation information among agents 2 to is not ex-
ploited. Applying the notion of EFI, we have the EFIM for the
first agent as

Since where
, we can express as

(43)

where . The coef-
ficient can be simplified as

(44)

where

Upper Bound: Consider the EFIM shown in (45), at
the bottom of the page. It can be obtained from by dou-
bling the diagonal elements and setting the off-diagonal
elements for . One can show using
elementary algebra that , which agrees with
intuition since more cooperation information among agents 2
to is assumed in (45). Applying the notion of EFI and fol-
lowing the similar analysis leading to (43) and (44), we obtain
the EFIM for agent 1 as

where

(46)

in which

with , and satisfying

...
. . .

(42)

...
. . .

(45)
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APPENDIX VII
PROOF OF THE SCALING LAWS

Lemma 1: Let ’s be independent identically distributed
(i.i.d.) random variables with uniform distribution over .
Then, for any , there exist an , such that

(47)

Proof: First, we note that replacing with pre-
serves the value of . Hence, we can consider ’s
to be i.i.d. and uniformly distributed in .

We order the ’s, such that
. Using order statistics [50], we find that the joint pdf

of the ’s is

(48)
where is the indicator function. From (48), the marginal pdf
of can be derived as [50]

Now consider a large for some integer , and let
. The function has a maximum at ,

and is monotonically decreasing in . Therefore,
we have

(49)

Since , there exists such that
. Note also that

and hence, for the same
. Similar arguments show that there exists

such that and
.

Combining the above results, we have with a probability

when . Therefore

(50)

where denotes an inequality with probability approaching one
as . Substituting , and noting that the summa-
tion in (50) considers only half the terms (with ), we arrive
at (47).

Moreover, the probability in (49) decreases exponentially
with , because if letting

(51)

and hence one can see that in (47) decreases exponentially with
.

Lemma 2: Let ’s be i.i.d. random variables with arbitrary
distribution on the support . If
for some , then

(52)

where is the order statistics of such that
, and .

Proof: Denote the probability density and distribution of
by and , respectively. Consider for some

integer and such that . Using the
order statistics, we have

where the first inequality follows from , the second

inequality is due to the extension of finite summation, and the
last inequality follows from . Replacing with
gives (52).

A. Proof of Theorem 5

Proof: We consider first the noncooperative case, followed
by the cooperative case. In either case, without loss of generality,
we focus on the first agent at position .

Noncooperative Case: We will show that
and ,18 which implies that

.

18Similar to the definition of notation �������, the notation ���� �

������� and ���� � ������� denote, respectively, that ���� is bounded
below by � ���� and above by � ���� with probability approaching one as
� � �, for some constant � and � .
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For an amplitude loss exponent , signal powers decay with
the distance following . We can express the RII
from a node at distance as

where is the minimum distance between nodes determined
by the node’s physical size, is the maximum distance be-
tween nodes determined by the fixed area associated with dense
network setting, and random variable accounts for the large-
and small-scale fading. Since for some ,
there exists such that for a given

. Thus, the RII from the th anchor is bounded as
with probability

where and .
On the one hand, we have

(53)

By the Cauchy–Schwarz inequality, we have

Since the inequality (53) together with the fact that
imply that , we

have that

Therefore, .
On the other hand, for the lower bound, we first order the

RII ’s, and then the probability of is
exponentially small by Lemma 2, i.e.,

(54)

for some constant . Let denote the set of anchors
with RII such that , and we have that

(55)

where the outage probability decreases exponentially with
. Moreover, since

(56)
applying Lemma 1 gives

(57)

for sufficiently large . The inequality in (55) implies that

and hence with probability ap-
proaching one as . Therefore,
with probability 1.

Note that since both the outage probability in (55) and
in (57) decrease exponentially with , the outage probability

of the scaling law in (24) decreases exponentially with
.

Cooperative Case: For the cooperative case, we will use the
lower and upper approximations of the EFIM from (22) and
(23). The upper approximation gives

where the inequality is obtained by treating all other agents to
be anchors, i.e., . In this case, there are equiv-
alently anchors, and similar analysis as in the
noncooperative case shows that .

On the other hand, from the lower approximation, we have,
with probability approaching one, that

(58)

where is a given lower bound on both the RII
and the effective RII . From Lemma 2, we

can find such for the dense network setting, because there exist
constants such that , and

with probability approaching one; defining
implies and since

. Applying Lemmas 1 and 2, and following
a similar line of reasoning as in the noncooperative case, we
find with probability approaching
one as . Thus, we conclude that the SPEB in
cooperative networks scales as .

B. Proof of Theorem 6

Proof: Let denote the density of anchor nodes uniformly
distributed in an extended network. Consider an area within dis-
tance to agent 1, then the expected number of anchors within
that area is . Following a similar analysis leading
to (54), we can show that the effect of large- and small-scale
fading together with path loss on the RII can be bounded as

for some constants
, with an outage probability exponentially decreasing with

and . This implies that, with probability approaching one,
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the large- and small-scale fading will not affect the scaling law,19

and hence we can consider the RII from a node at distance as

for the analysis of the scaling laws. Since each anchor is uni-
formly distributed in the given area, the pdf of the RII can be
written as

with mean

(59)

and second moment

(60)

Note that , we can show that the mean scales as

(61)

and the variance always scales as

(62)

When , it follows that, for fixed densities of anchors
and agents, with probability approaching
one as , which implies that .

We will show that when , the scales as
and for the noncooperative

case and cooperative case, respectively. Using a similar argu-
ment, we can easily show that for the SPEB scales as

and for the noncooperative
case and cooperative case, respectively.

Noncooperative Case : We introduce a random vari-
able . From (61) and (62), we
have

19It will be shown that the overall outage is dominated by the spatial topology
for a large number of nodes, and thus we can ignore the outage due to fading.

for some constant , and

This implies that scales as with prob-
ability approaching one, and hence .
Using a similar analysis as in Appendix VII-A, we can show
that .

For the upper bound, using the same argument as in Lemma
1, we can show that with probability approaching one, there are

anchors with angle and anchors with
angle to the agent. We denote these two disjoint
sets of anchors by and , and define

and

Then, we have

(63)

where the first inequality comes from , and the
second inequality is due to the fact that the SPEB increases if
we set for and for .20

Since both and scale as
with probability approaching one. There-

fore, the SPEB in noncooperative extended networks scales as
.

We finally check the probability of outage, i.e.,
is not in . For a fixed large , the distribution of

can be approximated as the normal distribu-
tion , and hence21

(64)

where is the tail probability function of standard normal
distribution. Approximations and bounds for the tail probability

20This can be seen from (56) that every element in the sum of the denominator
decreases if letting � � ��� for � � � and � � ��� for � � � .

21The notation �� denotes “on the order of.”
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function can be found in [51]–[53]. Moreover, when ,
a similar argument leads to

(65)

Cooperative Case : The cooperative case can be
proved similar to the above noncooperative case in conjunction
with the cooperative case of Theorem 5. It turns out that the
SPEB can be shown to scale as when all
other agents are considered to be anchors. We can also show
that, with probability approaching one, the SPEB scales as

, using the lower approximation of the
EFIM, and an argument similar to (63).
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