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Abstract

We apply machine-learning techniques to construct nonlinear nonparametric forecasting
models of consumer credit risk. By combining customer transactions and credit bureau
data from January 2005 to April 2009 for a sample of a major commercial bank’s customers,
we are able to construct out-of-sample forecasts that significantly improve the classifica-
tion rates of credit-card-holder delinquencies and defaults, with linear regression R2’s of
forecasted/realized delinquencies of 85%. Using conservative assumptions for the costs and
benefits of cutting credit lines based on machine-learning forecasts, we estimate the cost sav-
ings to range from 6% to 25% of total losses. Moreover, the time-series patterns of estimated
delinquency rates from this model over the course of the recent financial crisis suggests that
aggregated consumer-credit risk analytics may have important applications in forecasting
systemic risk.
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1 Introduction

One of the most important drivers of macroeconomic conditions and systemic risk is consumer

spending, which accounted for over two thirds of U.S. gross domestic product as of October

2008. With $13.63 trillion of consumer credit outstanding as of the fourth quarter of 2008

($10.47 trillion in mortgages $2.59 trillion in other consumer debt), the opportunities and risk

exposures in consumer lending are equally outsized.1 For example, as a result of the recent

financial crisis, the overall charge-off rate in all revolving consumer credit across all U.S.

lending institutions reached 10.1% in the third quarter of 2009, far exceeding the average

charge-off rate of 4.72% during 2003 to 2007.2 With a total of $874 billion of revolving

consumer credit outstanding in the U.S. economy as of November 2009,3 and with 46.1%

of all families carrying a positive credit-card balance in 2007,4 the potential for further

systemic dislocation in this sector has made the economic behavior of consumers a topic of

vital national interest.

The large number of decisions involved in the consumer lending business makes it neces-

sary to rely on models and algorithms rather than human discretion, and to base such algo-

rithmic decisions on “hard” information, e.g., characteristics contained in consumer credit

files collected by credit bureau agencies. Models are typically used to generate numerical

“scores” that summarize the creditworthiness of consumers.5 In addition, it is common for

lending institutions and credit bureaus to create their own customized risk models based on

private information about borrowers. The type of private information typically consist of

both “within-account” as well as “across-account” data regarding customers’ past behavior.6

However, while such models are generally able to produce reasonably accurate ordinal mea-

1U.S. Federal Reserve Flow of Funds data, June 11, 2009 release.
2Data available from the Federal Reserve Board at http://www.federalreserve.gov/releases/chargeoff/.
3See the latest release of Consumer Credit Report published by the Federal Reserve Board, available at

http://www.federalreserve.gov/releases/g19/Current/
4See the Survey of Consumer Finances, 2009 (SCF), released in February 2009 and available at

http://www.federalreserve.gov/pubs/bulletin/2009/pdf/scf09.pdf. This report shows that the me-
dian balance for those carrying a non-zero balance was $3,000, while the mean was $7,300. These values
have risen 25% and 30.4%, respectively, since the previous version of the SCF conducted three year earlier.
The SCF also reports that the median balance has risen strongly for most demographic groups, particularly
for higher-income groups.

5See Hand and Henley (1997) and Thomas (2009) for reviews of traditional and more recent statistical
modeling approaches to credit scoring.

6The impact of such relationship information in facilitating banking engagement has been studied exten-
sively in the area of corporate and small business lending (see, for example, Boot 2000) and, more recently,
in consumer lending (see Agarwal, Chomsisengphet, Liu and Souleles, 2009).
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sures, i.e., rankings, of consumer creditworthiness, these measures adjust only slowly over

time and are relatively insensitive to changes in market conditions. Given the apparent speed

with which consumer credit can deteriorate, there is a clear need for more timely cardinal

measures of credit risk by banks and regulators.

In this paper, we propose a cardinal measure of consumer credit risk that combines tra-

ditional credit factors such as debt-to-income ratios with consumer banking transactions,

which greatly enhances the predictive power of our model. Using a proprietary dataset from

a major commercial bank (which we shall refer to as the “Bank” throughout this paper

to preserve confidentiality) from January 2005 to April 2009, we show that conditioning

on certain changes in a consumer’s bank-account activity can lead to considerably more

accurate forecasts of credit-card delinquencies in the future. For example, in our sample,

the unconditional probability of customers falling 90-days-or-more delinquent on their pay-

ments over any given 6-month period is 5.3%, but customers experiencing a recent decline

in income—as measured by sharp drops in direct deposits—have a 10.8% probability of 90-

days-or-more delinquency over the subsequent 6 months. Such conditioning variables are

statistically reliable throughout the entire sample period, and our approach is able to gen-

erate many variants of these transactions-based predictors and combine them in nonlinear

ways with credit-bureau data to yield even more powerful forecasts. By analyzing patterns in

consumer expenditures, savings, and debt payments, we are able to identify subtle nonlinear

relationships that are difficult to detect in these massive datasets using standard consumer

credit-default models such as logit, discriminant analysis, or credit scores.

We use an approach known as “machine learning” in the computer science literature,

which refers to a set of algorithms specifically designed to tackle computationally intensive

pattern-recognition problems in extremely large datasets. These techniques include radial

basis functions, tree-based classifiers, and support-vector machines, and are ideally suited

for consumer credit-risk analytics because of the large sample sizes and the complexity of

the possible relationships among consumer transactions and characteristics.7 The extraor-

dinary speed-up in computing in recent years, coupled with significant theoretical advances

in machine-learning algorithms, have created a renaissance in computational modeling, of

which our consumer credit-risk model is just one of many recent examples.

7See, for example, Li, Shiue, and Huang (2006) and Bellotti and Crook (2009) for applications of machine
learning based model to consumer credit.
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One measure of the forecast power of our approach is to compare the machine-learning

model’s forecasted scores of those customers who eventually default during the forecast period

with the forecasted scores of those who do not. Significant differences between the forecasts

of the two populations is an indication that the forecasts have genuine discriminating power.

Over the sample period from May 2008 to April 2009, the average forecasted score among

individuals who do become 90-days-or-more delinquent during the 6-month forecast period

is 61.9, while the average score across all customers is 2.1. The practical value-added of

such forecasts can be estimated by summing the cost savings from credit reductions to high-

risk borrowers and the lost revenues from “false positives”, and under a conservative set of

assumptions, we estimate the potential net benefits of these forecasts to be 6% to 25% of

total losses.

More importantly, by aggregating individual forecasts, it is possible to construct a mea-

sure of systemic risk in the consumer-lending sector, which accounts for one of the largest

components of U.S. economic activity. We show that the time-series properties of our

machine-learning forecasts are highly correlated with realized delinquency rates (linear re-

gression R2’s of 85%), implying that a considerable portion of the consumer credit cycle can

be forecasted 6 to 12 months in advance. This has obvious implications for macroprudential

risk management.

In Section 2, we describe our dataset, discuss the security issues surrounding it, and

document some simple but profound empirical trends. Section 3 outlines out approach to

constructing useful variables or feature vectors that will serve as inputs to the machine-

learning algorithms we employ. In Section 4, we describe the machine-learning framework

for combining multiple predictors to create more powerful forecast models, and present our

empirical results. Using these results, we provide two applications in Section 5, one involving

model-based credit-line reductions and the other focusing on systemic risk measures. We

conclude in Section 6.

2 The Data

In this study, we use a unique dataset consisting of transaction-level, credit-bureau, and

account-balance data for individual consumers. This data is obtained for a subset of the

Bank’s customer base for the period from January 2005 to April 2009. Integrating trans-

action, credit-bureau, and account-balance data allows us to compute and update measures
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of consumer credit-risk much more frequently than the slower-moving credit-scoring models

currently being employed in the industry and by regulators. This data was assembled from a

number of different sources which we review in Section 2.1. Given the sensitive nature of the

data and consumer privacy protection laws, all individual identification data elements such

as names, addresses, and social security numbers were removed by the bank before sharing

the data with us, and all computations were performed on machines physically located at the

Bank’s office and within the bank’s electronic “firewalls”. We review these security protocols

in Section 2.2. In Section 2.3, we document some trends in debt balances and payments over

the sample period that clearly point to substantial but gradual deterioration in the financial

health of consumers over this period.

2.1 Data Sources

The raw data was provided to us in flat-file format. A set of programs were then used to pre-

process the data, producing higher-level variables or “feature vectors” and time-aggregated

to yield monthly observations that were stored in a database (see Figure 1). The following

is a description of each of these components.

Data Analytics Overview 

Flat Files 

Combined  
Database 

Data analytics 

Detailed analyses of 
consumer credit risk. 

Identify / Extract 
important features 

from combined 
dataset. 

© 2009 by Khandani, Kim, and Lo  Page 3 of 24 

Figure 1: Construction of an integrated database of transactions and credit bureau statistics
used in machine-learning model of consumer credit risk.
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Transactions Data

The Bank provided us with account-level transactions data for a subset of its customer base.

In addition to identifying each transaction’s amount and direction (inflow or outflow), this

dataset contains two other classification fields with each transaction: channel and category.

The channel refers to the medium through which the transaction took place; a complete

list of possible channels are: Automated Clearing House (ACH), Adjustments to Account

(ADJ), Automated Teller Machine (ATM), Online Bill Payment (BPY), Credit Card (CC),

Check (CHK), Debit Card (DC), Account Fees (FEE), Interest on Account (INT), Wire

Transfer (WIR), Internal Transfer (XFR) and Miscellaneous Deposit or Withdrawal (not in

another channel) (MSC). There was also very rare occurrences of an Unidentifiable Channel

(BAD).

The category classification is much broader and meant to capture the nature of the trans-

action. Examples of transaction categories include: restaurant expenditure, bar expenditure,

grocery, food, etc. In the raw data, we observed 138 categories, which were produced by

the Bank’s data team based on the information that was associated with each transaction.

Naturally, the level of accuracy and coverage varied greatly across channels. In particular,

transactions taking place via Credit Card (CC) or Debit Card (DC) channels had much

more accurate categories associated with them than those associated with ATM or Check

transaction channels.

The sheer size and scope of this dataset proved to be a significant challenge, even for

computing basic summary statistics. To develop some basic intuition for the data, we began

by computing the total number of transactions per month, total inflows, and total outflows

across all transactions for each individual in the database, and then constructed the same

metrics for each of the following channels separately: Automated Clearing House (ACH),

Automated Teller Machine (ATM), Credit Card (CC), Debit Card (DC), Interest on Account

(INT), Online Bill Payment (BPY) and Wire Transfer (WIR). These channels were chosen

because they represent the vast majority of the entire sample.

We also attempted to distill the most important information contained in the 138 cat-

egories by selecting a smaller set of data elements that broadly represent the key aspects

of consumers’ daily expenditures. In particular, Table 1 lists the subset of data items we

selected from the transactions level data.8 It should be emphasized that this data represents

8Note that not all of these items were used in creating our risk models because of legal restrictions (see
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an incomplete picture of a typical consumer’s expenditures. For example, the ultimate pur-

poses of transactions that take place via ATM and Check channels are not typically known.

Also, while employment-related payments (e.g., salary, bonus, etc.) are captured if they

are directed via ACH channel, these payments are missed and not classified if an individual

deposits a check or cash into his or her account. Similarly, any expense paid in cash is not

captured in this data. Finally, an individual may have banking relationships with multiple

institutions, hence the data from the Bank may be an incomplete view of the individual’s

financial activities. However, to the extent that such levels of incompleteness are stable

through time, the trends observed in the data may still be used to make inferences and pre-

dictions about the changing behavior of the population. While a certain degree of caution

is warranted because of these issues, the apparent success of the statistical models created

from this data (see Section 4.4 and 5) suggests that there is considerable incremental value

for consumer credit risk management even in this limited dataset.

Data from the Credit Bureaus

The Bank complements its account transactions data with credit file data provided by one

of the credit bureaus for their customers. This data consists of variables listed under the

“Individual Level” data items in Table 2. The generic credit score provided in this data,

which we shall refer to as CScore, is similar in terms of statistical properties and predictive

power to scores that are standard technique for measuring consumer credit quality.9 We

will use this credit score as a benchmark against which the performance of machine-learning

models of credit risk can be compared.

Figure 2 depicts the relationship between CScore for the months of January of 2005,

2006, 2007 and 2008 and the realized default frequency in the following 6 months. In each

case, we consider the initial CScore for individuals and calculate the default frequency in

the subsequent 6 months for each level of the score. In addition, we plot second-order-

polynomial-fitted curves in each graph, and Figure 2 shows that the CScore is remarkably

successful in rank-ordering future default frequencies. In Figure 3, we plot the four poly-

nomial approximations to compare the performance across different market conditions. As

economic conditions began deteriorating in 2007 and 2008, the curves started to shift to the

Section 2.2 for further discussion). The list of data items used in our analysis is given in Section 4.2 and
Table 4.

9See Avery et al. (2003) for an excellent review of consumer data.
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right, indicating a higher absolute default rate for each level of the CScore. This is to be

expected since the distribution of the CScore is static overtime as shown in Figure 4.

!

        CScore                                                                                  CScore
 
 
 
 
 
 
 
 
 
 
 
 
 
 
        CScore                                                                                 CScore

Low   High Low High

Low High Low High

Figure 2: Relationship between CScore and subsequent default frequency (over the next 6
months) for January of 2005, 2006, 2007, 2008. Second-order polynomial approximations
are also shown (solid lines).

In addition, this data contains information regarding all credit or loan facilities, also

referred to as “Trade Line”, that each customer has across all financial institutions. For

example, for a customer with a checking account with the Bank and a mortgage with another

lender, this dataset would contain the mortgage balance, age, payment history and other

relevant information without specifying the name of identity of the lender. Trade lines are

divided into the following six types: Auto (AUT), Mortgage (MTG), Credit Card (CCA),

Home Line of Credit (HLC), Home Loan (HLN), Other Loans (ILA), Other Lines of Credit

(LOC), and Speciality type (SPC). The data collected for each Trade Line are listed in Table

2 under the “Trade Line Level” column.
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   CScoreLow High

Figure 3: Second-order polynomial approximation of the relationship between CScore and
subsequent default frequency (over the next 6 months) for January of 2005, 2006, 2007, 2008.

Account Balance Data

We also match the transaction-level and credit-bureau data with information about account

balances from checking accounts and CDs that a customer has with the Bank. These items

are listed in Table 3.

2.2 Data Security

Given the sensitivity of consumer data, a number of steps were taken to preserve the confi-

dentiality of this data. First, the Bank de-identified all records—deleting all identification

information such as names, addresses, social security numbers, and customer age—before

they were transferred into databases to which we were given access. All computations were

performed on dedicated MIT computers installed on site at the Bank’s office, and all external

network connections for these computers were disabled. At no point during this project was

any raw consumer data transferred outside of the Bank’s electronic firewalls.

Moreover, several data items were excluded from our models due to legal restrictions such

8
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Figure 4: Histograms of CScore for January of 2005, 2006, 2007, 2008.

as the Fair Credit Reporting Act. In particular, all healthcare, insurance, unemployment,

government, treasury, account and file age information were excluded from our analysis (see

Section 4.2 and Table 4 for the list of data items used in our analysis).

2.3 Data Trends from 2005 to 2008

To provide some intuition for the empirical characteristics of the data, in this section we

document several trends in the data over the period from January 2005 to December 2008.

Since the main focus of our study is predictive models for credit-card defaults and delin-

quencies, we confine our attention in this section to observed trends in credit-card balances

and payments.
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Figure 5(a) shows the median, 75th, 90th, and 95th percentiles of credit-card balances,

based on the total balance across all credit cards. Because the data used in this calculation

are taken from the matched sample obtained from credit bureaus (see Table 2), the balance

represents the total balance across credit cards provided by all financial institutions, and is an

accurate representation of the total credit-card debt of individuals. This data shows that the

top 5% of the sample had credit-card debt of approximately $20,190 at the beginning of the

sample, which increased to $27,612 by the end of the sample. The patten of increasing credit-

card indebtedness is clear, and even more extreme for other percentiles of the distribution

as shown in Figure 5(a). For example, the median credit-card balance almost doubled from

$647 to $1,259 over this period.

While increasing credit-card debt probably does not bode well for systemic risk, it need

not represent a decline in the overall financial health of the consumer if the increased debt

was accompanied by a comparable increase in income. For example, if increasing credit-

card indebtedness is concurrent with a change in the usage among customers such that

those consumers with high incomes—and who had not previously carried positive credit-

card balances—started borrowing with their credit cards, this scenario may not represent a

substantial change in systemic risk. If, on the other hand, customers increase their credit-card

borrowing without any change in their income, the result would be an increase in systemic

risk. To attempt to distinguish between these two scenarios, we plot the ratio of credit-card

balances to monthly income in Figure 5(b).10 This figure shows that in the first half of the

sample, from January 2005 to January 2006, the increase in credit-card debt documented

in Figure 5(a) was concurrent with increased monthly income or a shift in usage such that

there was little or no change in the ratio of credit-card balances to income. However, starting

in January 2007, a different pattern emerges—the ratio of the balances to monthly income

starts to increase steadily. For example, for the top 5%, this ratio was approximately 11 for

the first half of the sample but increased by about 2.5 to reach 13.5 over the period from

January 2007 to December 2008.

While the trends shown in Figure 5(a) and 5(b) point to an increasing level of credit-card

debt, both in absolute terms and relative to income, over this period, this by itself may be

the result of a substitution effect where credit-card debt replaced another form of credit over

10We have used the average of monthly income, as measures by the “Employment Inflow” data shown in
Table 1, over the precessing 6 months, or as many month as available, as the denominator.
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this period. To explore this possibility, in Figure 5(c) we depict the same statistics for credit-

card payments during this period.11 We see that credit-card payments exhibited a positive

trend from January 2005 to July 2007, but the increase stopped after July 2007. Finally,

Figure 5(d) contains the ratio of credit-card payments to monthly income over this period,

which shows that while credit-card payments were increasing as a percentage of monthly

income for period of January 2005 to July 2007, this trend broke after July 2007.

However, this pattern must be interpreted with some care due to certain data issues.

In particular, as discussed above, the monthly income data is only captured by the bank’s

transaction categorization engine if it comes through ACH (such as direct deposit), and

there is no assurance that this system will capture an individual’s entire income, even if all

of it is deposited with the Bank (for example, income in the form of deposited checks would

not be categorized as income). Furthermore, there may be some outliers, as in the case

where individuals use their credit cards to purchase big-ticket items such as vacations or

major appliances, in which case their credit-card balances can exceed their monthly income.

Nevertheless, we believe that the patterns in Figures 5(a)–5(d) are still revealing with respect

to the deteriorating financial condition of consumers in months leading up to the financial

crisis.

Figures 6(a) and 6(b) contain other trends that confirm the developing problems in

consumer credit during this period. Figure 6(a) shows the ratio of monthly payments for

credit cards, auto loans, student loans, and mortgages to monthly income, and the pattern is

consistent with Figure 5(d); monthly payments across all debt instruments were increasing

as a percentage of monthly income (but again, we may not have identified all sources of an

individual’s income). To develop a better sense of these trends, Figure 6(b) plots the ratio

of debt payment to total monthly outflow over this period.12 The total outflow provides a

useful robustness check since the direction of each transaction (inflow or outflow) is known

with certainty, so the total monthly outflow is a complete picture of all expenditures from all

Bank accounts over the course of the month. The pattern that emerges from this analysis,

see 6(b), supports the trends in the previous figures.

The patterns reported in this section are a very small subset of the many trends that

11In particular, we use average credit-card payments over the preceding 6 months, or as many month as
are available.

12Total monthly outflow is measured as the average monthly outflow over the preceding 6 months, or as
many month as available.

11



are readily observed in this extremely rich data set. Even based on this very limited set of

metrics, it is clear that credit-card balances were increasing, both in absolute and relative

terms, long before the credit crisis hit, and similar trends were apparent among a broader

set of debt instruments. Such patterns suggest that predictive systemic risk indicators in

the consumer lending business are feasible.

3 Constructing Feature Vectors

The objective of any machine-learning model is the identification of statistically reliable

relationships between certain features of the input data and the target variable or outcome.

In the models that we construct in later sections, the features we use include data items such

as total inflow, total income, credit-card balance, etc. and the target variable is a binary

outcome that indicates whether an account is delinquent by 90 days or more within the

subsequent 3-, 6-, or 12-month window. In this section, we provide two illustrative examples

of the relationship between certain features and subsequent delinquencies to develop intuition

for both the data and our machine-learning algorithms. In Section 3.1, we consider high levels

of the ratio of credit-card balances to income, and in Section 3.2, we explore the impact of

sharp income declines.

3.1 High Balance-to-Income Ratio

For each month in our sample (January 2005 to December 2008), we estimate the probability

of 90-days-or-more delinquencies on any of the credit-card accounts in the following 3 and 6

months for all customers. We then compute the same estimates for customers with credit-

card-balance-to-income ratios greater than 10.13 This threshold is chosen arbitrarily, and is

meant to identify consumers experiencing great financial distress. As shown in Figure 5(b),

the top 5% of the sample have credit-card-balance-to-income ratios exceeding 10.

Figures 7(a) and 7(b) contain the outcome of this stratification for both 3-month and

6-month evaluation periods. Observe that the last month shown on the horizontal axis is

June or Sept 2008 since we need 6 or 3 months, respectively, to calculate subsequent realized

delinquency rates, and our sample ends in December 2008. Each axis also begins in June

13We define “credit-card balance” as the total credit-card balances across all financial institutions obtained
from credit bureau data. Also, we measure the rate of 90-days-or-more delinquencies on any credit-card
account across all financial institutions.
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(a) Historical Monthly Credit-Card Balance (b) Historical Monthly Credit-Card Balance to In-
come Ratio

(c) Historical Monthly Credit-Card Payment (d) Historical Monthly Credit-Card Payment to In-
come Ratio

Figure 5: Characteristics of credit-card balances, payments and their relationship to monthly
income, based on data from January 2005 to December 2008. In Panel (a), the credit-card
balance, which is the total balance across all credit cards of the customer in the month
ending shown on the horizontal axis, is shown. In Panel (b), the ratio of credit-card balance
to monthly income is shown. Panel (c) shows credit-card payments over this period while
Panel (d) shows the ratio of credit-card payments to monthly income. For this calculation,
the average income and credit-card payment over 6 months proceeding the date on the
horizontal axis or as many months as available, is used for the calculation. See Section 2 for
further details.
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(a) Historical Monthly Ratio of All Debt Payments
to Income

(b) Historical Monthly Ratio of All Debt Payments
to Total Outflow

Figure 6: Characteristics of payments of all forms of debt to monthly income and total
monthly outflow based on data from January 2005 to December 2008. Payments for the
following debt instruments are included in this calculation: auto loans, student loans, banks
loans, mortgages, and credit cards. The average of monthly figures over 6 months proceeding
the date on the horizontal axis or as many months as available, is used for this calculation.
See Section 2 for further details.

2005 since we use the average income level over the prior 6 months for the denominator,

hence we lose the first 6 months of the sample. This is consistent with the analysis presented

in Figure 5(a)–5(d) and Figure 6(a)–6(b).

As shown in Figures 7(a) and 7(b), customers with very high credit-card-balance-to-

income ratios are much more likely to experience delinquencies in subsequent 3- and 6-month

periods. Furthermore, the separation has become wider in the latter part of the sample.

To evaluate the reliability of the relationship identified in Figures 7(a) and 7(b), in Figures

8(a) and 8(b) we report the same statistics but on the limited sample of customers who were

current on all their credit-card accounts as of the conditioning date. The rate of future

delinquency is lower (compare the blue lines in Figures 7(a) and 7(b) with those in Figures

8(a) and 8(b)), but the gap between delinquency rates for typical customers and for highly

indebted customers is still clearly apparent.

This example illustrates the presence of statistically stable relationships that can be

exploited in creating a statistical model for predicting future delinquencies and defaults.

However, since the gap between the future delinquency rates of average customers versus

highly indebted customers has become wider in more recent periods, it is clear that the data

contain important non-stationarities. Therefore, any machine-learning model of delinquen-
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(a) Impact of High Balance-to-Income Ratios on Fu-
ture 3-Month Delinquency Rates

(b) Impact of High Balance-to-Income Ratios on Fu-
ture 6-Month Delinquency Rates

Figure 7: Delinquency rates of customers with high credit-card-payment-to-income ratios.
For each month, the rates of 90-days-or-more delinquencies during the following 3- or 6-month
window for all customers as well as customers with total-credit-card-debt-to-income ratios
greater than 10 are computed. The data covers the period from January 2005 to December
2008. A 6-month moving-average of income is the denominator used in calculating the ratio
of credit-card balance to income, hence the horizontal axis starts in June 2005 and ends in
June or Sept 2008 depending on whether 6- or 3-month forecast windows apply.

(a) Impact of High Balance-to-Income Ratios on Fu-
ture 3-Month Delinquency Rates

(b) Impact of High Balance-to-Income Ratios on Fu-
ture 6-Month Delinquency Rates

Figure 8: Delinquency rates for customers with high credit-card-payment-to-income ratios.
For each month, the rates of 90-days-or-more delinquencies during the following 3- or 6-month
window for customers who are current on all their credit-card accounts are computed, as well
as customers who are current and have total-credit-card-debt-to-income ratios greater than
10. The data covers the period from January 2005 to December 2008. A 6-month moving-
average of income is the denominator used in calculating the ratio of credit-card balance
to income, hence the horizontal axis starts in June 2005, and ends in June or Sept 2008
depending on whether 6- or 3-month forecast windows apply.
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cies and defaults must be re-calibrated frequently enough to capture such changes in a timely

manner. We will discuss this issue in more detail in Section 4.

3.2 Negative Income Shocks

A sharp and sudden drop in income—most likely due to unemployment—is a plausible

potential predictor of future delinquency and default, and we proceed in a fashion similar to

Section 3.1 to evaluate this possibility. The challenge is to identify income shocks that are

“significant”, i.e., large relative to his/her historical levels and variability of income. To that

end, in each month, we construct an income-shock variable by taking the difference between

the current month’s income and the 6-month moving-average of the income, and then divide

this difference by the standard deviation of income over the same trailing 6-month window.

By dividing the income drop by the estimated volatility, we are able to account for those

individuals with jobs that produce more volatile income streams. We can stratify the sample

according to this income-shock variable, and compare the 3- and 6-month subsequent 90-

days-or-more delinquency rates for individuals with and without significant income shocks

during each month in our sample (January 2005 to December 2008).

Figure 9(a) and 9(b) plots the 90-days-or-more delinquency rates for all customers (blue)

and for those customers with income-shock variables less than −2 (red). The gap between

the delinquency rates of these two groups is clear. Furthermore, like the balances-to-income

ratio of Section 3.1, this gap has also become wider over time, consistent with the patterns

in Figures 7(a)–7(b) and Figures 8(a)–8(b).

4 Modeling Methodology

In this section, we describe the machine-learning algorithms we use to construct delinquency

forecast models for the Bank’s consumer credit and transactions data from January 2005

to April 2009.14 This challenge is well suited to be formulated as a supervised learning

problem, which is one of the most widely used techniques in the machine-learning literature.

In the supervised learning framework, a learner is presented with input/output pairs from

past data, in which the input data represent pre-identified attributes to be used to determine

the output value. Such input data are commonly represented as a vector and, depending on

14There is an extensive literature on machine learning, and we refer readers to Bishop (2006), Duda et al.
(2000), and Vapnik (1998) for excellent overviews of this large and still-growing literature.
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(a) Impact of Income Ratio Drop on Future 3-
Month Default Rates

(b) Impact of Income Ratio Drop on Future 6-
Month Default Rates

Figure 9: Delinquency rates for customers experiencing negative income shocks. For each
month and customer, the income-shock variable is defined as the difference between the
current month’s income and the 6-month moving-average of income over the prior 6 months,
divided by the standard deviation of income over that period. For each month, the rates of
90-days-or-more delinquencies during the following 3- or 6-month window for all customers
as well as customers with income shocks less than −2 are calculated. The data covers the
period from January 2005 to December 2008. Because of the 6-month moving-average for
income, the horizontal axis starts in June 2005, and ends in June or Sept 2008 depending
on whether 6- or 3-month forecast windows apply.
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learning algorithm, can consist of continuous and/or discrete values with or without missing

data. The supervised learning problem is referred as a “regression problem” when the output

is continuous, and as a “classification problem” when the output is discrete.

Once such input/output data are presented, the learner’s task is to find a function that

correctly maps such input vectors to the output values. One brute force way of accom-

plishing this task is to “memorize” all previous values of input/output pairs. Although this

correctly maps the input/output pairs in the training data set, it is unlikely to be successful

in forecasting the output values if the input values are different from the ones in the training

data set, or when the training data set contains noise. Therefore, the challenge of supervised

learning is to find a function that generalizes beyond the training set, so that the resulting

function also accurately maps out-of-sample inputs to out-of-sample outcomes.

Using this machine-learning approach, we build a credit-risk forecast model that predicts

delinquencies and defaults for individual consumers. For example, an output of our model is

a continuous variable between 0 and 1 that can be interpreted (under certain conditions) as

an estimate of the probability of 90-days-or-more delinquency sometime within the next 3

months of a particular credit-card account, given specific input variables from that account.

Using this model, we address two questions:

1. How can this model be used to improve decisions about credit-line cuts?

2. What is the rate of credit-card delinquencies in the aggregate economy?

In addition, we need to take model accuracy into account in addressing these two questions,

and more detailed discussion of this and other modeling issues are provided in Section 5.

For both questions, selecting a parsimonious set of input variables that are relevant to credit

risk is critical, and requires intuition for the underlying drivers of consumer credit, which

cannot be resolved by the learning algorithm alone. The approach we described in Section 3

can be used to identify such variables, and Figure 10 summarizes our supervised learning

framework.

4.1 Machine-Learning Framework

We use generalized classification and regression trees (CART) (Breiman et al. 1984) to con-

struct our forecast models. CART is a widely used statistical technique in which a dependent
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Figure 10: A summary of the machine-learning algorithm used to construct the consumer
credit risk model.

or “output” variable (either continuous or discrete) is related to a set of independent or “in-

put” variables through a recursive sequence of simple binary relations (hence the reference to

a “tree”). The collection of recursive relations partitions the multi-dimensional space of inde-

pendent variables into distinct regions in which the dependent variable is typically assumed

to be constant (classification tree) or linearly related (regression tree) to the independent

variables with parameters unique to each region.

Figure 11 provides an illustration of a CART model with two non-negative independent

variables, {x1, x2}, also known as a “feature vector”, and a discrete dependent variable that

takes on two possible values, good and bad. The sequence of recursive binary relations

represented by the tree in Figure 11 partitions the domain of {x1, x2} into five distinct

regions determined by the parameters L1, . . . , L4. In particular, this model implies that all

realizations of {x1, x2} in which x1<L1 and x2<L2 is associated with a bad outcome, and all

realizations of {x1, x2} in which x1<L1 and x2≥L2 is associated with a good outcome. The

parameters {Lj} are chosen to minimize the distance between the dependent variable and

the fitted values of the tree using an appropriate distance metric (typically mean-squared

error), and forecasts may be readily constructed from new realizations of the feature vector

{x′1, x′2} by traversing the tree from its top-most node to the bottom.

The growing popularity of the CART model stems from the fact that it overcomes the

limitations of standard models such as logit and probit in which the dependent variable is

forced to fit a single linear model throughout the entire input space. In contrast, CART

is capable of detecting nonlinear interactions between input variables, which dramatically
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Figure 11: An example of a CART model for a discrete dependent variable with two out-
comes, good and bad, and two independent variables {x1, x2}.

increases the types of relations that can be captured and the number of independent variables

that can be used. Moreover, CART models produce easily interpretable decision rules whose

logic is clearly laid out in the tree. This aspect is particularly relevant for applications in

the banking sector in which “black-box” models are viewed with suspicion and skepticism.

CART models can easily be applied to problems with high-dimensional feature spaces.

Suppose we have N observations of the dependent variable {y1, . . . , yN} and its corresponding

D-dimensional feature vectors {x1, ..., xN}. We estimate the parameters of the CART model

on the training dataset by recursively selecting features from x ∈ {x1, ..., xD} and parameters

{Lj} that minimize the residual sum-of-squared errors. Of course, we must impose a “pruning

criterion” for stopping the expansion of the tree so as to avoid overfitting the training data.

One of the most widely used measures for pruning is the Gini measure:

G(τ) ≡
K∑
k=1

Pτ (k)(1− Pτ (k)) (1)

where τ refers to a leaf node of a CART model and Pτ (k) refers to the proportion of training

data assigned to class k at leaf node τ . Then the pruning criterion for CART model T is
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defined as,

C(T ) ≡
|T |∑
τ=1

G(τ) + λ|T | (2)

where |T | refers to a number of leaf nodes in CART model T , and λ refers to a regularization

parameter chosen by cross-validation. Once the pruning criterion reaches the minimum, the

CART algorithm will stop expanding the tree.

An issue that is common among credit-default data is highly skewed proportion of bad and

good realizations (credit defaults takes up of only 2% of our data set). There are several ways

to improve the forecast power of CART models in these cases, one of which is a technique

called “boosting”. Instead of equally weighting all the observations in the training set, we

can weight the scarcer observations more heavily than the more populous ones (see Freund,

and Shapire, 1996). This “adaptive boosting” technique trains the model on examples with

pre-assigned weights (initially equally weighted), and the weights are adjusted recursively

as a function of the goodness-of-fit. In particular, the weight for observation i at the nth

iteration is given by:

w
(n)
i = w

(n−1)
i exp [αn−1I(fn−1(xi) 6= yi)] (3)

and the data re-weighting coefficient αn−1 is defined as,

αn−1 ≡ ln

(
1− εn−1

εn−1

)
(4)

where I(·) is an indicator function that indicates whether the model has correctly predicted

the outcome yi given the input vector xi, and εn−1 is the weighted average error of the model

from the (n−1)th iteration.

Related approaches have been used by Atiya (2001), Shin et al. (2005), and Min et

al. (2005), in which artificial neural networks (ANN) and support vector machines (SVM)

were applied to the problem of predicting corporate bankruptcies. Ong et al. (2005) conclude

that genetic-algorithms-based consumer credit-scoring models outperform models based on

ANNs, decision trees, rough sets, and logistic regression. Martens et al. (2007) introduce

rule-extraction methods for SVMs that can generate consumer-credit models with human-
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interpretable rules and little loss in accuracy. Galindo and Tamayo (2000) test CART

decision-tree algorithms on mortgage-loan data to identify defaults, and also compare their

results to k-nearest neighbor (KNN), ANNs, and probit models. Huang et al. (2004) provide

an excellent survey of these and other related studies.

In the remainder of this section, we describe the attributes we selected for our inputs

and discuss the model’s performance. To identify the most powerful set of attributes, we

combine bank transaction, consumer credit, and account balance databases and process them

in parallel to construct our feature vectors (see Figure 1).

4.2 Model Inputs

Table 4 lists the data elements from the three sources discusses in Section 2.1 that were

used as inputs to our delinquency prediction model. As discussed in Section 2.2 not all data

elements can be used because of legal restrictions. We conducted extensive exploratory data

analysis, similar to illustrative examples in Section 3, and finalized the set of input variables

to be used in constructing our feature vectors listed in Table 4. For all transaction-related

items, their average values over the prior 6 months, or as many months as available, are

used.

4.3 Comparison to CScore

The empirical results of Section 2.1 show that the CScore is indeed useful in rank-ordering

customers by their delinquency and default rates, hence it should serve as a reasonable

benchmark for the machine-learning forecasts.

Figure 12 compares the machine-learning forecasts of 90-days-or-more delinquencies of the

Bank’s credit-card accounts to CScore for December 2008. The machine-learning forecasts

are constructed by training the model on delinquency data from October 2008 to December

2008 and using input data from September 2008 to construct the feature vectors, and then

computing “fitted values” using features in December 2008, which yields December-2008

forecasts of delinquencies in the 3-month period from January 2009 to to March 2009. CScore

scores from December 2008 are plotted on the x-axis and the corresponding December-2008

machine-learning forecasts are plotted on the y-axis.

This figure shows that machine-learning forecasts differ substantially from CScore scores.

In particular, there are a handful of accounts with relatively high CScore scores (note that
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higher CScore scores indicate higher credit quality or lower credit risk) that have high fore-

casted delinquency and default risk according to the machine-learning model. To provide

further intuition for these conflicts, in Figure 13 we reproduce the same plot but have in-

cluded color-coding for status of each account status as of the prediction date (December

2008)—green for accounts that are current (no late payments), blue for accounts that are

30-days delinquent, yellow for accounts 60-days delinquent, and red for accounts that are

90-days-or-more delinquent. Individuals with high CScore and high credit-risk forecasts are

those already delinquent in their payments as of the prediction date (in some cases 90-days-

or-more). However, those with low CScore but low forecasted credit risk are individuals

that are current in their payments. While these patterns are not meant to be a conclu-

sive comparison of the predictive ability of the two measures, Figure 13 does suggest that

machine-learning forecasts contain different information than traditional credit scores like

CScore. We provide a more quantitative assessment in the next section.
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Transaction Data
Transaction Count By Category (Cont.)
Total Inflow
Total Outflow Hotel expenses

Travel expenses
By Channel: Recreation

Department Stores Expenses
ACH (Count, Inflow and Outflow) Retail Stores Expenses
ATM (Count, Inflow and Outflow) Clothing expenses
BPY (Count, Inflow and Outflow) Discount Store Expenses
CC (Count, Inflow and Outflow) Big Box Store Expenses
DC (Count, Inflow and Outflow) Education Expenses
INT (Count, Inflow and Outflow) Total Food Expenses
WIR (Count, Inflow and Outflow) Grocery Expenses

Restaurant Expenses
By Category Bar Expenses

Fast Food Expenses
Employment Inflow Total Rest/Bars/Fast-Food
Mortgage payment Healthcare related expenses
Credit car payment Fitness expenses
Auto loan payment Health insurance
Student loan payment Gas stations expenses
All other types of loan payment Vehicle expenses
Other line of credit payments Car and other insurance
Brokerage net flow Drug stores expenses
Dividends net flow Government
Utilities Payments Treasury
TV Pension Inflow
Phone Collection Agencies
Internet Unemployment Inflow

Table 1: Inflows and outflows into accounts are collected by the Bank. Direction, amount,
channel, and category information is associated with each transaction. The elements outlined
in this table are collected and aggregated from a much larger set of channel and category
data collected by the the Bank. Not all fields are used because of legal restrictions, e.g.,
insurance, healthcare related, social security, collection agencies, unemployment and several
more were excluded.
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Individual Level Account Level

Credit Score Age of Account
File Age Open/Closed Flag & Date of Closure
Bankruptcy (Date & Code) Type (CC, MTG, AUT, etc)
MSA & Zip Code Balance

Limit if applicable
Payment Status
48-Month Payment Status History

Table 2: Data items extracted from credit bureaus. Not all fields extracted were used because
of legal restrictions, e.g., MSA, zip code, file age, and account age data were not used.

Deposit Data

Checking Account Balance CD Account Balance
Brokerage Account Balance IRA Account Balance
Saving Account Balance

Table 3: Balance data for accounts held with the Bank. Not all fields extracted were used
due to legal restrictions.
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Model Inputs

Credit Bureau Data Transaction Data (Cont.)

Total Number of Trade Lines Total expenses at discount stores
Number of Open Trade Lines Total expenses at big-box stores
Number of closed trade lines Total recreation expenses
Number and balance of auto loans Total clothing stores expenses
Number and balance of credit cards Total department store expenses
Number and balance of home line of credits Total other retail stores expenses
Number and balance of home loans
Number and balance of all other loans Total utilities expenses
Number and balance of all other lines of credit Total cable TV & Internet expenses
Number and balance of all mortgages Total telephone expenses

Balance of all auto loans to total debt Total net flow from brokerage account
Balance of all credit cards to total debt Total net flow from dividends and annuities
Balance of all home line of credit to total debt
Balance of all home loans to total debt Total gas station expenses
Balance of all other loans to total debt Total vehicle related expenses
Balance of all other lines of credit to total debt
Ratio of total mortgage balance to total debt Total logging expenses

Total travel expenses
Total credit-card balance to limits
Total home line of credit balances to limits Total credit-card payments
Total balance on all other lines of credit to limits Total mortgage payments

Total outflow to car and student loan payments
Transaction Data

Total education related expenses
Number of Transactions
Total inflow Deposit Data
Total outflow
Total pay inflow Savings account balance

Checking account balance
Total all food related expenses CD account balance
Total grocery expenses Brokerage account balance
Total restaurant expenses
Total fast food expenses
Total bar expenses

Table 4: The final inputs used in the machine-learning model of consumer credit risk.
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Low High

Figure 12: Comparison of December 2008 CScore (x-axis, and where higher values are asso-
ciated with lower credit risk) and machine-learning forecasts of 90-days-or-more delinquency
rates over subsequent 3-month windows using realized delinquency events from October to
December 2008 and September 2008 feature vectors. Once calibrated, the machine-learning
model is applied to the December 2008 feature vector, and the resulting “fitted values” are
plotted (y-axis) against the December 2008 CScores.
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Low High

Figure 13: Color-coded comparison of December 2008 CScore (x-axis, and where higher
values are associated with lower credit risk) and machine-learning forecasts of 90-days-or-
more delinquency rates over subsequent 3-month windows using realized delinquency events
from October to December 2008 and September 2008 feature vectors. Once calibrated, the
machine-learning model is applied to the December 2008 feature vector, and the resulting
“fitted values” are plotted (y-axis) against the December 2008 CScores. The color coding in-
dicates whether an account is current (green), 30-days delinquent (blue), 60-days delinquent
(yellow), or 90-days-or-more delinquent as of December 2008.
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Table 5: The 10 calibration and testing periods used in evaluating the performance of
machine-learning forecasts of consumer credit risk.

4.4 Model Evaluation

We now turn to a more rigorous evaluation of our models. We will focus on the model used

to produce forecasts of 90-days-or-more delinquencies over subsequent 3-month windows for

the period from January 2008 to April 2009. We choose this period because it includes the

most severe deterioration in consumer credit quality in recent history, providing a natural

laboratory for gauging the performance of machine-learning models during periods of finan-

cial dislocation. To minimize the effects of look-ahead bias, we only train the model based

on delinquencies over 3-month windows that were observable at the time of the forecast. For

example, the first model was calibrated using input data from January 2008 and realized

delinquencies over the 3-month window from February to April 2008, and then the parameter

estimates were applied to the input data in April 2008 to produce forecasts of delinquencies

over the 3-month window from May to July 2008. This rolling-window approach yields 10

calibration and testing periods listed in Table 5, and Table 6 reports sample sizes for each

of the 10 prediction periods. The percentage of 90-days-or-more delinquent accounts varies

from 2.0% to 2.5%.

The output of the machine-learning model is a continuous variable that, under certain

conditions, can be interpreted as an estimate of the probability of an account becoming 90-

days-or-more delinquent during the subsequent 3-month forecasting window. One measure

of the model’s success is the difference between the forecasts of those accounts that did
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Table 6: Sample sizes of accounts and 90-days-or-more delinquencies for each of the 10 3-
month evaluation windows from May 2008 to April 2009. This data is based on Bank-issued
credit cards only.

become delinquent and those that did not; if accounts that subsequently became delinquent

had the same forecasts as those that did not, the forecasts have no value. Table 7 reports the

difference between the average forecast associated with accounts that did and did not fall

into the 90-days-or-more delinquency category over the 10 evaluation periods. For example,

during the period from May to July 2008, the model’s average forecast among the 2.4% of

accounts (see Table 6) that did become 90-days-or-more delinquent was 61.2, whereas the

average forecast among the 97.6% of accounts that did not fall into this category was only

1.0. We should emphasize that these forecasts are truly out-of-sample, being based on input

data available at the end of April 2008, and calibrated using data from February to April

2008 (see Table 5). This implies significant forecast power in distinguishing between accounts

that will and will not become delinquent over subsequent 3-month periods. Moreover, this

forecast power does not diminish over the 10 calibration and evaluation periods, likely due

to the frequent re-calibration of the model that captures some of the changing dynamics of

consumer behavior documented in Section 3.

Another interesting challenge for the machine-learning model is the identification of

“straight-rollers”, accounts that are current as of the forecast date but become 90-days-

or-more delinquent within the subsequent 3-month window. Such accounts typically do not
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become current after short delinquencies, but usually “roll straight” into the most extreme

delinquency level that is commonly used an indication of likely default and a charge-off loss

for that bank. Recall from the examples of Section 3 (see, in particular, Figures 8(a) and

8(b)) that certain input variables do seem to be related to future delinquencies, even among

customers with current accounts as of the forecast date.

To evaluate the machine-learning model’s ability to identify straight-rollers, we compare

the model’s average forecast among customers who were current on their accounts but became

90-days-or-more delinquent with the average forecast among customers who were current and

did not become delinquent. Since this is a harder learning problem, we expect the model’s

performance to be less impressive than the values reported in Table 7. Nevertheless the

values reported in Table 8 still indicate that the model is remarkably powerful, and is clearly

able to separating the two populations. For example, using input date from April 2008,

the average model forecast among customers who were current on their account and did

not become 90-days-or-more delinquent from May to July 2008 was 0.7, while the average

forecast for straight-rollers was 10.3. And as before, the degree of separation is remarkably

consistent across the 10 evaluation periods listed in Table 8.
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Table 7: Performance metrics for machine-learning forecasts over 10 3-month evaluation
windows from May 2008 to April 2009. For each evaluation period, the model is calibrated
on credit-card delinquency data over the 3-month period specified in the Training Window
columns, and predictions are based on the data available as of the date in the Prediction
Date column. For example, the first row reports the performance of the model calibrated
using input data available in January 2008 and credit-card delinquency data from February to
April 2008, and applied to the April 2008 feature vector to generate forecasts of delinquencies
from May to July 2008. Average model forecasts over all customers, and customers that (ex-
post) did and did not become 90-days-or-more delinquent over the evaluation period are also
reported.
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Table 8: Performance metrics for machine-learning forecasts over 10 3-month evaluation
windows from May 2008 to April 2009 for “straight-rollers”, customers who are current as of
the forecast date but who become 90-days-or-more delinquent in following 3-month window.
For each evaluation period, the model is calibrated on credit-card delinquency data over the
3-month period specified in the Training Window columns and predictions are based on the
data available as of the date in the Prediction Date column, using only customers who are
current as of the forecast date. For example, the first row shows the performance of the
model calibrated using input data available in January 2008 and credit-card delinquency
data from February to April 2008, and applied to the April 2008 feature vector to generate
forecasts about delinquencies from May to July 2008.
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5 Applications

In this section we apply the models and methods of Sections 3 and 4 to two specific chal-

lenges in consumer-credit risk management: deciding when and how much to cut individual-

account credit lines, and forecasting aggregate consumer-credit delinquencies for the purpose

of enterprise-wide and macroprudential risk management.

The former application is of particular interest from the start of 2008 through early 2009

as banks and other financial institutions responded to the developing crisis with massive risk

reductions. In Section 5.1, we use input data from December 2008 to make forecasts about

individual-account delinquencies from January to March 2009, which are then compared with

realized delinquencies during that period to evaluate the out-of-sample predictive power of

our machine-learning model.

In Section 5.2, we investigate the robustness of machine-learning forecasts by comparing

their performance across subsets of the data stratified by the number of features available for

each account. We find that delinquencies among accounts with more features are significantly

easier to predict than those with few features. This difference underscores the potential value

of the conditioning information we have constructed from the combined data items in Table

4.

In Section 5.3, we combine individual-account forecasts to produce an aggregate fore-

cast of consumer-credit delinquencies, which we propose as a new measure of systemic risk.

Despite the fact that our data represents a small subset of the Bank’s customer base, the

machine-learning model is surprisingly effective in capturing the changing risk characteris-

tics of the population. In fact, our results indicate near-monotonic increases in aggregate

consumer-credit risk from January 2005 to April 2009, suggesting that consumer-based mea-

sures of financial distress may play an important role in macroprudential risk management.

5.1 Credit-Line Risk Management

Once a line of credit is extended to a customer by a bank, the bank actively monitors the

creditworthiness of the customer. The credit line may be increased or the interest rate

reduced in the case of improving creditworthiness, while the opposite may occur if there is

a decline in the customer’s credit profile. Therefore, the particular application considered

in this section is the primary focus of any consumer-credit business. For the business to
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be successful, credit-line decisions must be based on a model that captures changes in a

customer’s risk profile in a timely and accurate manner. In fact, during the sample period

of our dataset, the major decision facing banks and other consumer lenders was identifying

high-risk customers and taking the appropriate actions with respect to their credit lines,

i.e., lowering credit limits, increasing interest rates, or some combination of both. However,

to simplify our analysis, we assume that once a customer is identified as high-risk, his/her

remaining (unused) credit line will be reduced to zero.

As noted in Section 4, the type of problem in which the target variable or output is

binary is known as a classification problem in the machine-learning literature. Although the

forecasts produced by the model described in Section 4 can be interpreted, under certain

assumptions, as estimated delinquency probabilities, these numerical scores can be easily

converted to binary decisions by comparing the forecast to a specified threshold and classi-

fying customers with scores exceeding that threshold as high-risk. Setting the appropriate

level for this threshold involves a tradeoff. A very low threshold results in many customers

being classified as high-risk, and while it may correctly identify customer who are genuinely

high-risk and about to fall behind on their payments, this choice may also result in many low-

risk customers incorrectly classified as high-risk. On the other hand, a high threshold may

allow too many high-risk customers to be classified as low-risk, yielding greater subsequent

delinquencies and losses.

This type of trade-off is present in any classification problem, and involves the well-

known statistical balancing act between Type-I (false positives) and Type-II (false negatives)

error in classical hypothesis testing contexts. In the more practical context of credit-risk

management, the trade-off can be made explicitly by a cost/benefit analysis of false positives

vs. false negatives, and selecting the threshold that will optimize some criterion function in

which such costs and benefits are inputs. Before turning to this cost/benefit analysis, we

wish to develop further intuition for the statistical properties of this tradeoff.

To understand the statistical behavior of any classification algorithm, one commonly used

performance metric in the machine-learning and statistics literatures is a 2×2 contingency

table often called the “confusion matrix” for reasons that will become obvious once we define

its entries (see the left side of Figure 14).15 The two rows correspond to the two types of

15A confusion matrix is typically used in supervised learning to describe actual and predicted classifications
by the learning model. See Kohavi and Provost (1998) for a formal definition of this and other machine-
learning terminology.
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customers in our sample, low-risk or “Good” and high-risk or “Bad”, or ex post realizations

of delinquency. In our application, we define Good customers as those who did not become

90-days-or-more delinquent during the forecast period, and Bad customers of those who did.

The two columns correspond ex ante classifications of the customers into these same two

categories, Good and Bad. When any forecast model is applied to a given set of customers,

each customer falls into one of these four cells, hence the performance of the model can be

gauged by the relative frequencies of the entries (see Figure 14). In the traditional Neyman-

Pearson hypothesis-testing framework, the lower-left entry is defined as Type-I error and the

upper right as Type-II error, and the objective of the classical statistician is to find testing

procedures to reduce Type-II error (or maximize “power”) subject to a fixed level of Type-I

error (or “size”).

The right side of Figure 14 contains the confusion matrix for our machine-learning model

for December 2008 using a 3-month forecasting horizon from January to March 2009 and a

threshold of 20%, i.e., accounts with estimated delinquency probabilities greater than 20%

are classified as “Bad” and 20% or below as “Good”. For this month, the machine-learning

model classified 96.37%+0.44% = 96.81% of the accounts as good, of which 96.37% were,

in fact, good and 0.44% of which were bad, i.e., were 90-days-or-more delinquent sometime

during January to March 2009. Similarly, of the 0.44%+2.13%=2.57% that became 90-days-

or-more delinquent during the three-month forecast period, the model correctly identified

2.13% of the accounts, a correct-classification rate of 82.9%. Of course this success comes at

the cost of labeling 1.06% of customers who ended up not falling into the 90-days-or-more

delinquency state as bad.

Four specific performance metrics are typically computed from the entries of the confusion

matrix, and their formulas are given in Figure 14. “Precision” refers to the model’s accuracy

in instances that the model classified an account as bad, while “Recall” refers to the number

of bad accounts identified by the model divided by the actual number of bad accounts. “True

positive rate” and “false positive rate” are self-explanatory. Ideally, we would like our model

to have very high precision and recall, or, equivalently, to have a high “true positive rate” and

a low “false positive rate”. The role of the classification threshold is now clear: if a lender

wishes to aggressively identify bad accounts by using a lower threshold, such aggressiveness

will result in more incorrect classifications of good accounts as bad, leading to the opportunity

cost of lost interest income from cutting the credit lines of low-risk customers. Figure 15
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Figure 14: Confusion matrix framework, model performance metrics, and numerical example
based on December 2008 machine-learning forecasts of 90-days-or-more delinquencies over
the 3-month forecast horizon from January to March 2009. Rows correspond to actual
customer types (“Bad” is defined as 90-days-or more delinquent) and columns correspond
to forecasted types. TN: True Negative, FN: False Negative, FP: False Positive; TN: True
Negative.

illustrates such tradeoffs for four different threshold levels.

By applying our forecast model with varying levels of the classification threshold, we

can trace out explicitly the trade-off between true and false positives, and this trade-off is

plotted in Figure 16. The blue line, known as the Receiver Operating Characteristic (ROC)

curve in the machine-learning literature, is the pairwise plot of true and false positive rates

for various classification thresholds (green line), and as the threshold increases, Figure 16

shows that the true positive rate increases, but the false positive rate increases as well.

The ROC curve shows that the trade-offs are not linear, meaning that increase in true

positive rates is not always commensurate with the increase false positive rates. If the cost

of false positives is equal to the gain of true positives, the optimal threshold will correspond

to the tangent point of the ROC curve with the 45◦ line. If the cost/benefit trade-off is not

one-for-one, the optimal threshold is different, but can easily be determined from the ROC

curve. We have provided a simple optimization framework in the appendix for making such

trade-offs.

Table 9 presents a set of standard performance statistics widely used in machine learning

literature (see Appendix A.1 for their definitions) for each of the 12 models discussed in

Section 4 (see Table 5).16 Our models exhibit strong predictive power across the various

16The reported results are for classifiers based on the ROC-tangency classification threshold. In particular,
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Figure 15: Confusion matrices of machine-learning forecasts of 90-days-or-more delinquencies
for four classification thresholds. Rows correspond to actual customer types (“Bad” is defined
as 90-days-or more delinquent). The numerical example is based on the December 2008 model
forecast for the 3-month forecast horizon from January to March 2009.

performance metrics. The two simplest measures reported are the percentage of correctly and

incorrectly classified observations, and the reported values show that our models routinely

achieve approximately 99% correct classification rates. However, the correct-classification

rate is not necessarily a sufficient measure of a model’s predictive power when the distribution

of the dependent variable is highly skewed. Therefore, we report several more-sophisticated

performance measures to capture other aspects of our model’s predictive power.

The kappa statistic is a well-known relative measure of predictive success in classification

problems, where success is measured relative to purely random classifications. According to

Landis and Koch (1977), a kappa statistic between 0.6 and 0.8 represents “substantial”, and

a value greater than 0.8 implies “almost perfect” agreement. Table 9 shows that our model’s

kappa statistic ranges from 0.72 and 0.83, indicating strong agreement between real and

forecasted values, even after correcting for agreement due to chance. Both mean-absolute-

error and root-mean-squared-error measures also indicate significant predictive power, as

do the F -measures which are the harmonic means of the model’s precision and recall (see

Figure 14), which are 0.73 or greater, implying a good balance between high precision and

for each model we constructed the ROC curve, determined the threshold that corresponded to the 45-degree
tangency line, and used that threshold to classify observations into the two possible classes.
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Figure 16: A Receiver Operating Characteristic (ROC) curve and corresponding classification
threshold value of December 2008 machine-learning forecasts of 90-days-or-more delinquen-
cies over the 3-month forecast horizon from January to March 2009.
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Table 9: Standard performance statistics for machine-learning classification models of con-
sumer credit risk. Each model is calibrated based on the prior 3-months of data (Training
Period) and applied to the input data available on the Prediction Date. The results of classi-
fications versus actual outcomes over the following 3-months (Evaluation Period) are used to
calculate these performance metrics. See also Table 5 for the list of Training and Evaluation
Periods.
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high recall.

Finally, the area under the ROC curve is a widely used measure in the machine-learning

literature for comparing models (see Figure 16), and can be interpreted as the probability

of the classifier assigning a higher score, i.e., a higher probability of being of type-1, to a

type-1 observation than to a type-0 observation. The ROC area of our model ranges from

0.89 to 0.95, which again shows that our machine-learning classifiers have strong predictive

power in separating the two classes.

5.2 Robustness

Although the dataset used in our analysis is from a large consumer bank in the U.S., it does

not cover the entirety of a consumer’s spending and saving activities. Consumers usually

have business relationships with multiple banks and credit-card companies, hence it is rare

that all elements of the feature vectors we described in Section 4.2 are available for a given

account. To check the robustness of our model to missing features, we divide our data set into

equally sized samples separated by the availability of features. More sophisticated analysis

can be performed—using feature-selection techniques widely used in machine learning—to

assign weights on features by their importance, however in this study, we focus on the simpler

approach of rank-ordering the data by simply counting number of missing values, without

differentiating among the features that are missing.

After dividing the data set in this manner, for each group we perform 10-fold cross

validation (CV), i.e., stratifying the dataset into 10 bins, using 9 of them for training of

the model and the remaining one for testing, and repeating this step 9 times using different

set of bins for testing and training. Figure 17 contains the average confusion matrix (see

Section 5.1) across the 10-fold CV results for the 90-days-or-more delinquency forecasts over

a 6-month forecast horizon. The panels are labeled Group I through Group IV where Group

I contains accounts with the largest number of missing features, and Group IV contains

accounts with the fewest.

This analysis shows a significant improvement in both precision and recall values from

Group I to Group II. Group I customers are typically single-account holders, i.e., individuals

with only a checking account and a low number of transactions, also known as “thin-file”

customers because their files contain few records. However, as a customer’s file becomes

“thicker” with more transactions and accounts, the ability of machine-learning models to
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forecast future delinquencies improves, presumably because of the additional features avail-

able for such customers.

To get a sense to the economic significance of the improvement possible with his model,

figure 18 plots the Value Added (VA) measure (A.4) that is developed in Appendix A.2,17

estimated via the the 10-fold CV performed on four different forecasts of 90-days-or-more

delinquencies over forecast horizons of 3, 6, 9, and 12 months. As expected, the model’s

forecast accuracy becomes better as the prediction horizon lengthens because the forecast

problem is easier, e.g., predicting 90-days-or-more delinquency over a 12-month horizon is

considerably easier than over a 3-month horizon. Also, across all four models, there is a

significant improvement in VA from Group I to Group II, whereas the performance of the

model in Groups III and IV are comparable to that of Group II, with Group IV yielding

slightly lower performance.

17We assume an amortization period N = 3 years, a run-up before default of 30% (Bd = 1.3Br), and an
interest rate differential (r=5%).
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Group I                                                                        Group II
 
 
 
 
 
 
 
 
 
Group III                                                                      Group IV  
 

Figure 17: Average confusion matrices, averaged over 10 trials of machine-learning forecasts
of 90-days-or-more delinquency over a 6-month forecast horizon on data from January 2005
through April 2008, with each trial based on a randomly chosen 10% subset of the entire
dataset. For each trial, four models are estimated, one for each of four stratified sub-samples
of equal size, stratified by on the number of non-missing features. Group I is the sample of
accounts with the fewest available features (“thinnest”), and Group IV is the sample with
the most (“thickest”).
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Figure 18: Value-added of machine-learning forecasts of 90-days-or-more delinquency over
3-, 6-, 9-, and 12-month forecast horizons on data from January 2005 through April 2008,
for four equal stratified sub-samples of a randomly chosen 10%-subset of the data, stratified
by on the number of non-missing features. Group I is the sample of accounts with the fewest
available features (“thinnest”), and Group IV is the sample with the most (“thickest”).
Minimum and maximum VA values are calculated using 10-fold cross validation from the
entire data set using equation (A.4) with amortization period N = 3 years, run-up before
default of 30% (Bd=1.3Br), r=5%, and the ROC-tangency classification threshold.

5.3 Macroprudential Risk Management

Machine-learning forecasts for individual accounts can easily be aggregated to generate

macroeconomic forecasts of credit risk in the consumer lending business by simply tabulating

the number of accounts forecasted to be delinquent over a given forecast period and for a

specific classification threshold. The proportion of forecasted delinquencies in the population

may then be used as an indicator of systemic risk for consumer lending, and its properties
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can also be summarized with confusion matrices with different classification thresholds. In

this section, we construct such aggregate delinquency probabilities in the year prior to the

credit crisis of 2007–2009, and show that this approach yielded increasingly higher forecasted

delinquency probabilities, even during the boom years. This estimated trend suggests that

machine-learning techniques applied to combined transactions and credit scores are capable

of generating leading indicators of deterioration in consumer creditworthiness.

For purposes of aggregate risk measurement, a longer forecast horizon may be more appro-

priate, so we apply the same machine-learning algorithm of Section 4 to data from January

2005 to December 2008 and define the target variable as 90-days-or-more delinquency over

a 6- or 12-month forecast horizon. Figure 19(a) and 19(b) show the aggregate results the

machine-learning forecasts as compared to realized delinquencies for 6- and 12-month fore-

cast horizons using the ROC-tangency classification threshold (in which the trade-off between

true and false positive rates is one-to-one; see Section 5.1). The forecasted delinquencies are

highly correlated with realized delinquencies—with linear regression R2’s of 85% for both

horizons—hence our forecasts are capturing the dynamics of the consumer credit cycle over

the sample.

However, note that the forecasts consistently under-estimate the absolute level of delin-

quencies by a scalar multiple, which may be an artifact of the particular classification thresh-

old selected. To correct for this underestimation, and to reduce the effects of overfitting,

we use 10-fold cross validation to estimate the model’s recall value (the number of accounts

classified as bad as a percentage of the total number of bad accounts). Then we simply mul-

tiply the forecasted default rate by the reciprocal of this estimated recall rate. Figures 20(a)

and 20(b), which contain time series plots of the adjusted forecasts as well as the realized

aggregate delinquency rates, show that the adjustment factor is reasonably successful in cor-

recting the underestimation bias, yielding forecasts that are accurate both in terms of level

and dynamics.
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(a) Predicted and actual 90-days-or-more delin-
quency rates (6-month)

(b) Predicted and actual 90-days-or-more delin-
quency rates (12-month)

Figure 19: Forecasted and realized 90-days-or-more delinquency rates for 6- and 12-month
forecast horizons, with ROC-tangency classifier threshold, based on data from January 2005
to December 2008. The horizontal axis starts in July 2005 since some features require 6
months of training data, and ends June 2008 or December 2007 since either 6 or 12 months
of data are needed to calculate the realized delinquencies events to be compared again the
predicted values.

(a) Time series of actual and predicted 90-days-or-
more delinquency rates (6-month)

(b) Time series of actual and predicted 90-days-or-
more delinquency rates (12-month)

Figure 20: Time series of predicted and realized 90-days-or-more delinquency rates for 6-
and 12-month forecast horizons, with ROC-tangency classifier threshold, based on data from
January 2005 to December 2008. The horizontal axis starts in July 2005 since some features
require 6 months of training data, and ends June 2008 or December 2007 since either 6 or
12 months of data are needed to calculate the realized delinquencies events to be compared
again the predicted values.
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6 Conclusion

In the aftermath of one of the worst financial crises in modern history, it has become clear

that consumer behavior has played a central role at every stage—in sowing the seeds of crisis,

causing cascades of firesale liquidations, and bearing the brunt of the economic consequences.

Therefore, any prospective insights regarding consumer credit that can be gleaned from

historical data has become a national priority.

In this study, we develop a machine-learning model for consumer credit default and

delinquency that is surprisingly accurate in forecasting credit events 3 to 12 months in

advance. Although our sample is only a small percentage of the Bank’s total customer base,

the results are promising. Our out-of-sample forecasts are highly correlated with realized

delinquencies, with linear regression R2’s of 85% for monthly forecasts over 6- and 12-month

horizons. Moreover, crude estimates of the value-added of these forecasts yield cost savings

ranging from 6% to 23% of total losses. Given the scale of industry wide charge-offs during

2008, even a 6% cost-savings would amount to hudreds of millions of dollars.

From a macroprudential risk management perspective, the aggregation of machine-learning

forecasts of individuals may have much to contribute to the management of enterprise and

systemic risk. Current credit-bureau analytics such as credit scores are based on slowly

varying consumer characteristics, and therefore not as relevant for tactical risk management

decisions by chief risk officers and policymakers. We find that machine-learning forecasts are

considerably more adaptive, and are able to pick up the dynamics of changing credit cycles

as well as the absolute levels of default rates.

We believe that our results are indicative of considerably more powerful models of con-

sumer behavior that can be developed via machine-learning techniques, and are exploring

further refinements and broader datasets in ongoing research.
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A Appendix

In this appendix, we provide the definition for the performance metrics reported in Table 9

of Section 5.1 (Appendix A.1), and the details of the framework used to calculate the cost

savings reported in Section 5.2 (Appendix A.2).

A.1 Definitions of Performance Metrics

Suppose a binary classifier has been applied to a sample of N observations. For each ob-

servation i, the model produces the probability that the observation with feature vector xi

belongs to class 1. This predicted probability, f(xi) is then compared to a threshold and

observations are classified into class 1 or 0 based on the result of that comparison. For a

given level of threshold, let True Positive (TP) be the number of instances that are actually

of type 0 that were correctly classified as type 0 by the classifier, False Negative (FN) be

the number of instances that are actually of type 0 but incorrectly classified as type 1, False

Positive (FP) be the number of instances that are of type 1 but incorrectly classified as

type 0 and, finally, True Negative (TN) be the number of instances that are of type 0 but

incorrectly classified as type 1 (see Figure 14). Then one can define the following metrics to

evaluate the accuracy of the classifier:

Correctly Classified Instances (Rate) ≡ (TP + TN)/N

Incorrectly Classified Instances (Rate) ≡ (FP + FN)/N

kappa statistic ≡ (Pa − Pe)/(1− Pe) , Pa ≡ (TP + TN)/N ,

Pe ≡ [(TP + FN)/N ]× [(TP + FN)/N ]

Mean Absolute Error ≡ 1/N
N∑
i=1

|f(xi)− Ii|

Root Mean Squared Error ≡ 1/N
N∑
i=1

(f(xi)− yi)2

True Positive (TP) Rate ≡ TP/(TP + FN)

False Positive (FP) Rate ≡ FP/(FP + TN)

Precision ≡ TN/(TN + FN)

Recall ≡ TN/(TN + FP)

F -Measure ≡ (2× Recall× Precision)/(Recall + Precision)
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where f(xi) is the model’s predicted probability that a customer with feature vector xi is of

type 1, and Ii is an indicator that is equal to 1 if customer i is type-1 and 0 otherwise.

A.2 Framework for Calculating Value Added

In this section, we provide a simple framework for analyzing the value added of classification-

based algorithms for credit-line reduction. This framework requires some simplifying assump-

tions regarding the revenues and costs of the consumer lending business. As a starting point,

suppose that in the absence of any forecasts, a lender will take no action with respect to

credit risk, implying that customers who default or are delinquent will generate losses for

the lender, and customers who are current in their payments will generate financing fees

on their running balances. To make the analysis simpler, assume that all non-defaulting

customers have a running balance of Br, and defaulting customers also start with a balance

of Br but will increase their balance to Bd between the point at which the lender’s credit-risk

management decision is made and the point when they default. For example, an empirically

plausible set of parameters are Br=$1, 000 and Bd=$1, 200. As it will be clear shortly, only

the ratio of run-up balance, Bd−Br, and the running balance, Br, enters into the potential

savings calculation. In this particular example, the critical factor is the 20% run-up in the

balance before default.

While the lender’s loss from default is simply Bd, calculating the profit due to a customer

in good-standing requires further discussion. For now, let the present value of the profit from

such a customer be given by a fraction of the running balance, denoted by Pm for “Profit

Margin Rate”, which can be a function of the interest rate and the expected length of time

the account holder will use this credit line.18 Given these assumptions, we can calculate the

profit with and without a forecast model as follows:

Profit without Forecast = (TP + FN) ·Br · Pm − (FP + TN) ·Bd

Profit with Forecast = TP ·Br · Pm − FP ·Bd − TN ·Br .

18For simplicity, we make the assumption that all “good” customers who are subjected to a line reduction
immediately pay off their balances and close their accounts. To the extent that most customers do not
behave in this manner, our estimates of the potential cost-savings are conservative.
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Then the dollar savings is simply given by the difference:

Savings = TN(Bd −Br) − FN ·Br · Pm (A.1)

where

TN(Bd −Br) = Savings due to correct decision

FN ·Br · Pm = Opportunity cost due to incorrect decision .

We can simplify this even further by dividing the savings by the savings that would have

been possible under the perfect-foresight case, i.e., the case in which all bad customers, and

only bad customers, are identified and their credit was reduced. We will call this ratio the

“value added” (VA) of the forecast, which is given by:

Value Added ≡
TN− FN · Pm · Br

Bd−Br

TN + FP
(A.2)

Note that the final expression depends on the running and default balance only through the

ratio of the running balance to the difference between the default and running balance. For

example, it is clear from (A.1) that if this difference is zero, no value added can be achieved,

which is expected because it is only the difference between Bd and Br that can potentially

be captured by a correct and timely decision by the lender.

Before attempting to evaluate VA, we must first specify how the profit margin rate, Pm,

is calibrated. This factor is meant to capture the total financing charge that customers pay

to the lender on their outstanding balances. This value depends on the credit-card interest

rate as well as the speed with which customers pay off their balances. For simplicity, we

assume that the difference between the credit-card interest rate and the lender’s funding

cost is a fixed rate given by r, and customers pay back their entire credit card debt over an

N -year period. In this simple setting, the financing charge is an annuity hence Pm is given
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by: 19

Pm = r · 1− (1 + r)−N

r
= 1 − (1 + r)−N . (A.3)

Combining (A.2) and (A.3) yields the following expression for VA:

VA(r,N, TN, FN, FP ) =
TN− FN · [1− (1 + r)−N ] · [Bd

Br
− 1]−1

TN + FP
(A.4)

19In the interest of parsimony and simplicity, we have implicitly assumed that the lender’s funding cost is
also r. For example, if r=5% implies that the lender pays 5% for funds and charges an interest rate of 10%
on credit-card balances.
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