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Global Aerosol Health Impacts: Quantifying Uncertainties 

Noelle E. Selin*, Sergey Paltsev§, Chien Wang§, Aaron van Donkelaar†, and Randall V. Martin†#  

Abstract 
Atmospheric fine particulate matter <2.5 µm (PM2.5) can cause cardiovasculatory and respiratory damages and 

mortalities. Assessing population exposure to and damages from PM2.5 is important for policy, but measurement 
networks are only available in a few regions. We assess variation resulting from using different sources of 
concentration information to constrain PM2.5 exposure worldwide, and compare the magnitude of this variation to 
uncertainties in epidemiological exposure-response functions and economic valuation of health impacts. We find 
that only 10% of global population is in areas constrained by ground-based data. We calculate and compare 
regionally-averaged population-weighted concentrations using two atmospheric models: the MIT/NCAR CAM3 
aerosol-climate model, and the GEOS-Chem atmospheric chemistry model; and a satellite-derived PM2.5 product. 
We examine the contributions of different aerosol components to population-weighted PM2.5, and find large 
differences in exposure between U.S. and global populations. We use the MIT Emissions Prediction and Policy 
Analysis Health Effects model (EPPA-HE) to assess global health impacts and related economic costs, and conduct 
probabilistic uncertainty analysis of concentration-response functions. We use these combined approaches to 
project uncertainty ranges for health impacts and related economic costs from present-day PM2.5. We find large 
uncertainties in simulated PM2.5, especially globally; the magnitude of concentration variation among estimation 
methods is comparable to uncertainties in epidemiological functions and economic valuations. We identify major 
contributors to concentration variation, notably the parameterization of atmospheric dust. We estimate an annual 
global welfare cost of present-day (2000-2005) PM2.5 of US $280 billion (range US $120 – 510 billion), and related 
annual mortalities at 1.3 million per year (630,000 – 2.1 million).  
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1. INTRODUCTION  

Atmospheric fine particulate matter <2.5 µm (PM2.5) is extensively regulated due to its 
potential to harm human health. Evaluating population exposure to and potential damages from 
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PM2.5 is a critical first step in designing policies to mitigate damages. However, measurement 
networks for PM2.5 are available only in a few developed regions such as the U.S., Canada, and 
Europe. Atmospheric models and/or satellite data can be used to assess concentrations outside 
these regions, but ground-based measurement data constraints on these methods cover a limited 
fraction of the global population. Globally, quantifying the impacts of PM2.5 is characterized by 
uncertainties along the entire causal chain from concentrations to exposure to damages. Here, we 
assess the variation in using atmospheric models and satellite information to constrain PM2.5, 
focusing on the challenge of estimating exposure to the majority of the world’s population, 
which is outside regions covered by ground-based measurement data. We compare the 
magnitude of variation in concentration estimates to uncertainties in epidemiological 
concentration-response functions and economic valuation of health impacts. Atmospheric 
aerosols come from multiple sources and are a mixture of sizes and compositions (including 
sulfate, organic carbon, black carbon, nitrates, sea salt and mineral dust). We focus on fine 
particulate matter (PM2.5) consistent with data availability for exposure analysis (Russell and 
Brunekreef, 2009). We use this information to project a range of economic damages from 
present-day PM2.5. 

There is substantial and growing interest in using model-based analyses to assess health and 
economic impacts of present and future air pollution. Previous studies have estimated the number 
of mortalities and quantified uncertainties associated with present-day PM2.5 exposure using 
atmospheric models or concentration estimates. Liu et al. (2009) estimated that 380,000 excess 
mortalities globally in 2000 were associated with intercontinental transport of PM2.5. They 
consider uncertainties from aerosol concentrations (expressed as a uniform distribution within a 
factor of 2) and concentration-response functions (normally distributed) to estimate using Monte 
Carlo sampling an uncertainty range between 18-240% of estimated deaths. Anenberg et al. 
(2010) calculated the global burden of anthropogenic PM on premature mortalities as 3.5 ± 0.9 
(standard deviation, SD) million excess cardiopulmonary and 220,000 ± 80,000 (SD) lung cancer 
mortalities. They used a SD of 25% for present-day anthropogenic aerosol concentrations, as 
well as uncertainty in concentration-response functions, to calculate uncertainty ranges using a 
Monte Carlo approach. Cohen et al. (2005) used econometric urban aerosol projections to 
estimate that the global PM2.5 burden results in 800,000 annual excess mortalities, with a stated 
uncertainty interval of 50%.  

The U.S. EPA evaluated prospective air pollution-related damages associated with PM as part 
of their periodic assessments of the benefits and costs of the Clean Air Act (section 812). They 
conducted an uncertainty analysis using the Community Multiscale Air Quality (CMAQ) 
modeling system and the Environmental Benefits Mapping and Analysis Program (BenMap). 
They did not quantitatively assess the impact of air pollution modeling on uncertainty 
quantification, but they estimate that air quality estimation very likely contributes >10% to 
overall uncertainty in benefits assessment. However, their analysis is limited to the U.S., where 
an extensive database of PM2.5 measurements is available for model validation and calibration 
(U.S. EPA, 2010). 
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Here, we assess the global-scale uncertainties contributed by air quality information relative 
to uncertainties in health and economic benefits estimation at global scale. We use two global 
models and a satellite estimate of PM2.5 to compare the sensitivity of mortality estimates on 
global concentration fields, and assess the magnitude of the variation contributed by various 
concentration estimates with the uncertainty contributed by concentration-response functions. 
We use our results to identify the aspects of aerosol chemistry contributing to most uncertainty in 
comparison with health and economic outcomes, and estimate the global health and economic 
burden of present-day PM2.5. 

2. INPUTS AND MODEL DESCRIPTION 

2.1 Inputs and Model Description 

We compare PM2.5 estimates from three sources: 1) The GEOS-Chem global atmospheric 
chemistry and transport model; 2) the MIT aerosol climate model version of the NCAR 
Community Atmosphere Model version 3 (MIT/NCAR CAM3); and 3) a satellite PM2.5 product 
generated based on information from the MODIS (Moderate Resolution Imaging 
Spectroradiometer) and MISR (Multiangle Imaging Spectroradiometer) satellite instruments and 
modeled aerosol vertical profiles. 

The GEOS-Chem chemical transport model v. 8-01-04 (http://www.geos-chem.org/) (Bey et 
al., 2001) has been used in a number of air quality investigations. The GEOS-Chem aerosol 
simulation has a global resolution of 2°x2.5° latitude-longitude and includes sulfate-nitrate-
ammonium aerosols (Park et al., 2004), sea salt (Alexander et al., 2005) and secondary organic 
aerosol (Chung and Seinfeld, 2002). Dust is based on the mineral dust entrainment and 
deposition (DEAD) scheme of Zender et al. (2003) as implemented by Fairlie et al. (2007); we 
divide dust concentrations by two for consistency with recent updates to the GEOS-Chem dust 
parameterization (v. 8-03-01). To calculate PM2.5, we combine all sulfate-nitrate-ammonium 
aerosols, the smallest dust size bin (<1.0 µm), 38% of the second dust bin (1.0-1.8 µm) and the 
smaller sea salt bin (<0.5 µm dry radius), and assume 35% relative humidity for consistency with 
measurements upon which exposure-response functions are based. Modeled PM2.5 from GEOS-
Chem has been compared with surface measurements in previous studies (Park et al., 2004, 
2006; Liao et al., 2007).  

The MIT/NCAR CAM3 model is a multimode, two-moment interactive aerosol-climate 
model (Kim et al., 2008). It includes seven aerosol modes: three external mixtures of sulfate 
aerosol and one each for external black carbon (BC), external organic carbon (OC), sulfate/BC 
mixture, and sulfate/OC mixtures. We use a global resolution of 2°x2.5° latitude-longitude. To 
calculate PM2.5, we assume all seven aerosol modes are <2.5 µm. We add 14.6% to sulfate mass 
to account for the mass of associated nitrate aerosol not simulated, based on the ratio of global 
burden of nitrate (Feng and Penner, 2007) to sulfate (Kim et al., 2008). We adjust dry 
concentrations to 35% relative humidity as above. Dust is based on Mahowald (2007). Model 
BC, OC and sulfate were previously compared with surface observations by Kim et al. (2008).  
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Satellite PM2.5 information is based on the product of van Donkelaar et al. (2010). Van 
Donkelaar et al. use total column aerosol optical depth (AOD) from MODIS and MISR and 
coincident aerosol vertical profiles from GEOS-Chem to generate a 0.1°x0.1° map of global 
ground-level PM2.5. Geographic coverage of this product is >95%. They validate their product by 
comparing to a global suite of measurements and report good correlations between their product 
and measurements over North America (r=0.77) and elsewhere (r=0.83) (van Donkelaar et al., 
2010). The satellite estimate has a stated 1 SD uncertainty of 25%. 

2.2 Economic Modeling of Health Impacts 

We use the MIT Emissions Prediction and Policy Analysis model (Paltsev et al. 2005) with 
extensions to estimate and value air pollution health impacts (EPPA-Health Effects or EPPA-
HE). EPPA is a computable general equilibrium (CGE) model of the world economy. Previously, 
EPPA-HE was applied to assess the benefits of the U.S. Clean Air Act (Matus et al., 2008), the 
historical burden of and potential benefits of regulating European air pollution (Nam et al., 2010) 
and the global health and economic impacts of future ozone (Selin et al., 2009). The underlying 
economic assumptions of EPPA-HE are described in detail by Matus et al. (2008). The model 
includes sixteen global regions (see Annex Figure A1). Among other inputs, it takes as input the 
population-weighted pollutant concentration (here, PM2.5) for each region. This is calculated here 
based on gridded 2000 population (CIESIN, 2005).  

EPPA-HE calculates morbidities and mortalities from concentration-response functions for a 
five-year timestep (Table 1). Morbidities include hospital admissions, respiratory and 
cardiovascular endpoints in children, adults, the elderly, and the entire population. We consider 
mortality from both acute and chronic exposure. Concentration-response functions and 
associated costs are from the survey of Bickel and Friedrich (2005), adjusted from PM10 to 
PM2.5 where necessary by a factor of 0.6 as recommended by Bickel and Friedrich (2005). For 
mortalities from acute exposure, following Bickel and Friedrich (2005), we apply a value of a 
statistical life year (VOLY) approach and assume that each reflects 0.5 years of life lost. 
Mortalities from chronic exposure are applied to adults >30 years of age using a demographic 
model tracking age cohort exposure. We use age-specific baseline cardio-pulmonary mortality 
rates (Lopez et al., 2006), for high income (developed regions) and low-middle income countries 
(developing regions). Population age distributions are applied separately for developing and 
developed regions (United Nations, 2007). We track labor and leisure losses to the population 
through time assuming expected life span of 75 years.  

 Resources used for health care associated with PM2.5 morbidities are unavailable to the 
rest of the economy. Values associated with health endpoints reflect both treatment costs and 
willingness-to-pay (WTP) to avoid damages. Because information is not available on health 
costs in all regions, we calculate values from European costs for developed regions, and from 
China for developing regions (Selin et al., 2009). We use purchasing power parity (Heston et al., 
2002) to adjust costs for local conditions in each region. Labor and leisure lost from chronic  



Table 1. Concentration-response functions, costs and uncertainties. Concentration-response functions are in cases per (µg m-3) 
except where noted. Based on Bickel and Friedrich (2005), converted from PM2.5 using factor of 0.6. 

 Concentration-
response 
function 

5%-95% confidence 
interval 

Cost (US $ year 2000) Standard 
Error 
Cost ($) 

ENTIRE POPULATION      
Respiratory hospital admissions 1.17E-05 (6.38E-06, 1.72E-05)   2000 670 
Cerebrovascular hospital admissions 8.40E-06 (6.47E-07, 1.62E-05)  2000 670 
Cardiovascular hospital admissions 7.23E-06 (3.62E-06, 1.09E-05) 2000 670 
Mortality from acute exposure 0.10% (0.07%, 0.13%) 250000 1850 
Mortality from chronic exposure 0.42% (0.03%, 0.80%) Calculated in the model  
CHILDREN     

Chronic bronchitis  2.68E-03 (2.07E-04, 5.17E-03) 360 123 

Chronic cough 3.45E-03 (2.65E-04, 6.63E-03) 38 13 

Respiratory symptoms days 3.10E-01 (3.10E-01, 1.53E-01) 38 13 

Bronchodilator usage 3.00E-02 (-1.15E-01, 1.77E-01) 1 0.33 

Cough 2.22E-01 (3.83E-02, 4.05E-01) 38 13 

Lower respiratory symptoms (wheeze) 3.10E-01 (1.53E-01, 4.62E-01) 38 13 

ADULTS     

Restricted activity day 9.02E-02 (7.92E-02, 1.01E-01) 82 27 

Minor restricted activity days 5.77E-02 (4.68E-02, 6.87E-02) 38 13 

Respiratory symptoms days 2.17E-01 (2.50E-02, 4.05E-01) 38 13 

Chronic bronchitis 4.42E-05 (-3.17E-06, 9.02E-05) 190000 63000 

Bronchodilator usage 1.52E-01 (-1.52E-01, 4.62E-01) 1 0.33 

Cough 2.80E-01 (4.85E-02, 5.12E-01) 38 13 

Lower respiratory symptoms (wheeze) 2.17E-01 (2.50E-02, 4.05E-01) 38 13 

OVER AGE 65     

Congestive heart failure 1.11E-05 (8.52E-07, 2.14E-05) 12000 925 

Ischaemic heart disease 1.05E-05 (8.10E-07, 2.02E-05) 12000 925 
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exposure mortalities is valued endogenously by EPPA at the wage rate, which differs over time 
and among regions.  

For the analysis presented here, PM2.5 is assumed constant from 2000-2005, and costs are 
calculated based on the 2005 global economy. We consider here only damages from PM2.5 based 
on exposure in 2000-2005 and thus set prior concentrations to zero (we incorporate prior 
concentrations in sensitivity analysis). We calculate the effect on economic welfare (defined as 
consumption plus the value of leisure time) in year 2000 US $. Uncertainties in concentration-
response and cost estimates are based on the literature (Table 1). 

2.3 Uncertainty Evaluation 

We use a Monte-Carlo based approach (n=400) to quantitatively assess the uncertainties in 
concentration-response functions and economic valuation of health impacts. We assume that 
exposure-response functions and costs are normally distributed. We conduct uncertainty analysis 
similarly to the methodology used by Webster et al. (2008) and Selin et al. (2009). We apply 
Latin Hypercube sampling (Iman and Conover, 1982) to select from probability distributions of 
concentration-response functions and valuations, running EPPA-HE with these sets of inputs to 
calculate global economic welfare. Table 1 shows uncertainty ranges used to construct input 
parameter probability distributions. In sampling, we assume correlation at r=0.9 between 
concentration-response functions and among cost estimates to prevent sampling physically 
unrealistic combinations of very low response/cost for one parameter and very high for another. 

3. VARIATION IN CONCENTRATION ESTIMATES 

We assess the variation in population-weighted concentration using the three sources of 
concentration information. Population-weighted PM2.5 is an imperfect exposure estimate, but it 
approximates large-scale monitoring data used to develop concentration-response functions. 
Population-weighted averages have different characteristics than the area-weighted averages 
more commonly assessed in the atmospheric literature. Our approach differs from previous 
analyses of model and satellite error and uncertainty (e.g. Park et al., 2004; Kim et al., 2008; van 
Donkelaar et al., 2010) because it considers population-weighted effects.  

We first assess constraints on population-weighted exposure from ground-based 
measurements. We use data compiled by van Donkelaar et al. (2010), including data from the 
U.S. Interagency Monitoring of Protected Visual Environments (IMPROVE) 
(http://vista.cira.colostate.edu/improve/Data/data.htm), the U.S. Environmental Protection 
Agency Air Quality System Federal Reference Method sites 
(http://www.epa.gov/air/data/index.html), the Canadian National Air Pollution Surveillance 
Network (http://www.etc.cte.ec.gc.ca/NAPS/index_e.html), and 244 annually representative, 
ground-based PM2.5 measurements from published and unpublished data outside the U.S. and 
Canada. Table 2 shows the percentage of population covered by ground-based measurements, 
assuming each measurement is representative of a 1˚x1˚ gridsquare (roughly 95x95 km at 45˚ N) 
or a 0.1˚x0.1˚ gridsquare (roughly 10x10 km). Globally, measurement data represent only 10% 
of the population assuming a 1˚x1˚ gridsquare and 2% assuming a 0.1˚x0.1˚ gridsquare. There 
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are substantial regional differences – while 81% of the US population is within the same 1˚x1˚ 
gridsquare as a ground-based PM2.5 measurement, less than 1% of the African population is.  

 

Table 2. Percentage of population covered by ground-based measurement data. Calculated 
for each EPPA region, assuming data points are representative of a 1˚x1˚grid square or a 
0.1˚x0.1˚grid square. A map with regional abbreviations is provided in the Appendix. 

EPPA region % of population at 1˚x1˚ % of population at 0.1˚x0.1˚ 
AFR <1% <1% 
ANZ 56%   8% 
ASI 12%   2% 
CAN 74% 15% 
CHN   1% <1% 
EET 19%   2% 
EUR 41%   4% 
FSU <1% <1% 
IDZ <1% <1% 
IND <1% <1% 
JPN 23% <1% 
LAM   2% <1% 
MES   6%   1% 
MEX   8%   1% 
ROW   4% <1% 
USA 81% 13% 

 
Figure 1 shows population-weighted PM2.5 for each EPPA region, for each of the 

concentration sources, plus an estimate from ground-based data covering the fraction of 
population where data are available (Table 2). The largest concentrations are in developing 
regions such as China, Africa, the Middle East, India, and the Rest of the World (ROW) region 
that mostly includes less-developed economies of South/Central Asia. We find large differences 
(standard deviations among the different estimates up to 100%) in population-weighted PM2.5, 
especially outside data-constrained regions. The difference in PM2.5 alone is greater than 
uncertainty estimates in some previous literature. This is also comparable to the overall 25%-
200% uncertainty ranges previously assumed for estimated mortalities, which take into account 
not only concentration uncertainty but also epidemiological uncertainties (Anenberg et al., 2010; 
Liu et al., 2009).  We adopt this range as a lower bound of potential simulated uncertainty, as 
different simulations share some assumptions about emissions and processes and therefore 
cannot be interpreted as covering a true uncertainty range. We focus on the uncertainty in the 
simulations, as they provide the best source of information on global PM2.5 composition, and 
composition may affect the dose-response curve as discussed below. 

 Also shown in Figure 1 are GEOS-Chem and MIT/NCAR CAM3 simulations without 
fine mineral dust. A substantial portion of the difference between these two model estimates 
comes from dust, which is poorly constrained. These results are consistent with a recent global 
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intercomparison of dust aerosol optical depth (Huneeus et al., 2010), which found that models 
can differ from surface measurements by up to two orders of magnitude. It is unknown whether 
mineral dust in the PM2.5 range causes similar health outcomes as industrial aerosol. Anenberg et 
al. (2010) avoid some of this uncertainty as they consider only PM2.5 from anthropogenic sources 
and exclude mineral dust and sea salt. We show, however (section 4.3), that this omits the 
majority of global PM2.5 exposure. Even omitting mineral dust from our analysis, however, 
concentration differences between the two models are up to 150% for some regions, far 
exceeding the 25-50% used in previous studies.  

All three concentration sources have shown acceptable agreement with measurement data in 
previous studies (Kim et al., 2008; Park et al., 2004, 2006; Liao et al., 2007; van Donkelaar et 
al., 2010). With the same surface data set, comparing only in areas with available ground-based 
measurements, van Donkelaar et al. (2010) found significant spatial agreement with their 
satellite product. Our analysis is not a model performance evaluation. Comparisons with 
measurements in areas where surface measurements are available are an important constraint on 
model performance; however, as Table 2 shows, the use of surface measurements to estimate 
population-based exposure is severely constrained by data availability. Thus, none of the points 
in Figure 1 is intended to represent the “true” estimate; rather, we use different sources to 
illustrate the range, and do not intend to portray one source as performing better or worse. We 
note, however, that the satellite product is constrained by additional global-scale information 
(total-column aerosol optical depth from satellite), making it the only concentration source that 
incorporates data over the entire global population.  

 

4. SOURCES OF CONCENTRATION VARIATION 

We examined the sources and contributions of variation contributing to the differences among 
three PM2.5 estimates, including emissions, interannual variability, and various chemical 
components of aerosol.  

4.1 Emissions   

Different assumptions about emissions and atmospheric processing can explain some 
differences between the two models (GEOS-Chem and MIT/NCAR), though the satellite product 
is less dependent on this information. As used here, GEOS-Chem applies global emissions from 
the EDGAR FT2000 inventory (Olivier et al., 2001) for NOx, CO and SO2 and the GEIA 
inventory for VOCs.  These emissions are replaced with improved data for the U.S., Canada, 
Mexico and East Asia as described by van Donkelaar et al. (2008). For global BC and OC, the 
Bond et al. (2006) emissions are used except for the U.S. and Canada, where the Cooke et al. 
(1996) inventory is used. Interannual scaling is applied for emissions relative to the base year of 
the simulation (van Donkelaar et al., 2008). The MIT/NCAR model uses the EPPA inventory for 
BC, OC and SO2 (Mayer et al., 2000; Babiker et al., 2001; Wang, 2004; Asadoorian et al., 2006) 
and the GEIA inventory for biogenic VOCs. The EPPA inventory, using emission factors from 
Cooke et al. (1999), estimates substantially higher emissions for BC (14.4 Tg y-1) and OC (54.4
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Figure 1. Variation in population-weighted (P-W) PM2.5 concentration (µg m-3) calculated for each EPPA region from two 

models (GEOS-Chem, filled orange triangles, and MIT/NCAR CAM3, filled blue squares) and a satellite product (orange 
diamonds). Also shown are population-weighted concentrations estimated from surface data (black squares) that only 
cover a subset of the regional population (see Table 2). Open blue squares and open red triangles reflect CAM and GEOS-
Chem runs without contributions from dust. A map with regional abbreviations is provided in the Appendix.
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Tg y-1) than Bond et al. (8.0 and 33.8 Tg y-1, respectively). Previously, Kim et al. (2008) 
compared the sensitivity of modeled aerosol to emissions, using the Bond et al. and EPPA 
inventories. They reported differences up to 20% in total sulfate mass, and changes in BC and 
OC radiative forcing up to 57% and 30% respectively between the two inventories. This suggests 
a substantial combined influence on concentration variation among models due to emissions 
uncertainty in different regions. 

4.2 Interannual Variability  

To assess the contribution to variation from interannual variability, we calculated population-
weighted PM2.5  for each EPPA region from GEOS-Chem runs for 2001-2006, including both 
meteorological differences and year-to-year emissions variation. For 13 of 16 regions, the 
interannual difference is small; in Asia and Australia/New Zealand, interannual variation was 
within 40%. Interannual differences in the latter two regions are from differences in emissions 
associated with biomass burning. We conclude that interannual variability contributes only a 
small amount to uncertainty and variation in population-weighted PM2.5.  

4.3 Aerosol Components  

We assessed the influence of variation and uncertainty resulting from different PM2.5 
components. Recent work has suggested that different components such as BC and OC and some 
transition metals contribute most to overall PM toxicity (Lippmann and Chen, 2009). Because 
epidemiological studies relating PM2.5 to toxicity have been conducted in the U.S. based on bulk 
aerosol to which U.S. populations are exposed, comparing differences in exposure to aerosol 
components provides insight into the uncertainty contributed by applying U.S. epidemiological 
functions elsewhere. 

To assess the differences between U.S. and global aerosol composition, we used GEOS-Chem 
to calculate the regional population-weighted contribution of different aerosol components to 
PM2.5. Compared with area-weighting, population-weighting weights urban aerosol more heavily 
and is more relevant to estimating exposure.  

Shown in Figure 2 are population-weighted contributions for the U.S. (panel a) and the entire 
globe (panel b) for total PM2.5. This comparison shows that the PM2.5 to which the average 
global citizen is exposed is very different from that which the average U.S. resident encounters. 
Specifically, >30% of global population-weighted PM2.5 is dust. Combined with the conclusion 
above that the largest contribution to population-weighted concentration variation results from 
dust, which is poorly understood, this suggests that constraining non-anthropogenic aerosol is of 
primary importance in assessing global PM2.5 impacts.  

Figure 2 also shows the contribution of different aerosol components to anthropogenic PM2.5 
(where anthropogenic is defined as excluding dust and sea salt) (panels c,d). While contributions 
to global total population-weighted PM2.5 are very different from those in the U.S., contributions 
to anthropogenic population-weighted PM2.5 are more similar to the U.S. The largest difference 
is for nitrate.  
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Figure 2. Contribution to population-weighted PM2.5 by aerosol components in GEOS-

Chem. Top row shows contributions to total PM2.5 including dust and sea salt for a) the 
U.S. and b) global average.  Bottom row shows contributions excluding dust and sea 
salt (“anthropogenic”) for c) the U.S. and d) the globe.  

This analysis suggests that applying concentration-response functions from the U.S. may be 
unsuitable where total PM2.5 measurements include dust and sea salt. It is unknown whether dust 
in the PM2.5 range has similar health effects to other PM sources (Perez et al., 2008). Dust 
exposure has been associated in epidemiological studies with asthma (Bener et al., 1996), though 
this may be due to microorganisms present in dust rather than size (Griffin and Kellogg, 2004). 
Dust can also contain metals such as iron that may influence toxicity (Prospero, 1999). 

5. COSTS, MORTALITIES AND ASSOCIATED UNCERTAINTIES 

We quantitatively assess the influence of variation in concentration on assessment of PM2.5 
health impacts. We first use the EPPA-HE model to calculate global economic welfare losses 
associated with population-weighted PM2.5 estimated by the two models and the satellite product. 
We then use a Monte Carlo approach (Section 2.3) to quantitatively assess uncertainties in 
concentration-response functions and economic valuation of health impacts.  
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In our Monte Carlo analysis, we use deterministic population-weighted PM2.5 from each of 
the three sources, and vary concentration-response functions and associated economic valuations 
of case endpoints. We then run EPPA-HE for each of the sampled sets of inputs, and record 
global pollution-related welfare loss as the difference between EPPA-HE runs with and without 
pollutant damages.  

We show in Figure 3 (vertical lines) global welfare losses from EPPA-HE using 
concentrations from the two models and mean values of the epidemiological and economic 
parameters. Model values are shown with and without contributions from dust, which contributes 
substantially to the range in concentration as discussed above. Red columns represent the 
frequency (# of runs out of 400) where Monte Carlo analysis varying epidemiological and 
economic parameters resulted in global welfare loss in specified ranges, using satellite 
concentrations. The median annual global welfare loss from present-day PM2.5, calculated using 
satellite PM2.5 is US $340 billion; the 95% uncertainty range taking into account variation in 
epidemiological and economic parameters is US $190-540 billion. 

 

Figure 3. Uncertainty in welfare loss (US $billion) from PM2.5 due to variation in 
concentration estimates and uncertainty in concentration-response functions and 
economic costs. Black vertical lines show welfare loss associated with median values 
of ensembles using CAM and GEOS-Chem models, with and without dust. Histogram 
shows frequency distribution of welfare loss for a Monte Carlo simulation (number of 
simulations where total n=400), varying epidemiological and economic assumptions, 
using the satellite concentration estimate.  
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Table 3 shows welfare losses and uncertainty ranges for each concentration assumption. We 
estimate from this ensemble an overall uncertainty range for welfare loss due to present-day 
PM2.5 of median US $280 billion, with a range of US $120-510 billion per year. This is about 
0.3-1.1% of total 2005 global welfare.  

Table 3. Uncertainty ranges for annual global welfare cost (US $billion) and mortalities due 
to present-day PM2.5 for different concentration inputs. Mortalities include both those from 
chronic exposure (resulting from additional 2000-2005 exposure only) and acute exposure. 

Concentration Input Welfare Cost (US $billion) Mortalities (thousands) 

Confidence interval 2.5% 50% 97.5% 2.5% 50% 97.5% 
Satellite 190 340 540 960 1600 2200 
GEOS-Chem (no dust) 170 290 470 630 1050 1500 
GEOS-Chem (with dust) 210 360 580 930 1300 2000 
MIT/NCAR CAM (no dust)   90 160 260 520   860 1200 
MIT/NCAR CAM (with dust) 130 220 370 830 1400 1900 

 
Table 3 also shows confidence intervals for our estimates of mortalities due to both acute 

exposure as well as the chronic exposure resulting from present-day (2000-2005) PM2.5. We 
calculate a median estimate of total annual mortality from PM2.5 of 1.3 million per year (range 
630,000-2.1 million). This is within the range of previous estimates. 

We find that the range of global mean welfare loss resulting from different PM2.5 estimates is 
roughly the same magnitude as the range in global mean welfare loss due to uncertainty in health 
impacts and valuation. Further, our comparison of three concentration estimates does not cover 
the full uncertainty range in simulating atmospheric concentrations – thus we view this as a 
lower bound for simulated concentration uncertainties. 

We conduct sensitivity analyses to assess the influence of past concentrations on present-day 
mortalities, by setting past concentrations equal to present-day concentrations. This takes into 
account additional present-day deaths due to past exposure, but not the continuing economic 
effects of previous years’ deaths on the present-day economy. This increases our median and 
range of welfare cost to US $360 billion (US $150-$640 billion), and mortalities to 4.7 million 
(960,000-10 million). Fully estimating present-day costs of past PM2.5 requires concentration and 
economic information for all regions for 40+ years; such analyses have been conducted for the 
U.S. (Matus et al., 2008), Europe (Nam et al., 2010) and China (Matus et al., 2011). A previous 
study with EPPA-HE found that 89% of costs related to chronic PM exposure were from 
premature deaths occurring in previous years (Nam et al., 2010); our analysis only incorporates 
cumulative loss beginning in 2000. However, our analysis is perhaps more policy-relevant, as it 
better reflects the potential benefits from reducing present-day PM as policies cannot affect 
previous exposure.  
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6.  CONCLUSIONS  

We assessed the relative importance of errors from concentration estimates relative to those 
from concentration-response functions and health impact costs in calculating PM2.5 impacts. We 
compared three estimates of population-weighted PM2.5 globally to quantify and assess their 
variation. We used these concentration inputs to calculate an uncertainty range using Monte 
Carlo simulation for global mortalities and economic costs associated with PM2.5 health damages. 
We concluded that variation in atmospheric concentration estimates contributes comparable 
uncertainty to variation in concentration-response functions and economic data, and we 
estimated an uncertainty range for global PM2.5 health and economic damages. 

We used three different concentration estimates: the GEOS-Chem global atmospheric 
chemistry and transport model; the MIT/NCAR CAM3 model, and a satellite PM2.5 product 
based on information from the MODIS and MISR satellite instruments and modeled aerosol and 
vertical profiles. We calculated population-weighted PM2.5 for each estimate to drive the EPPA-
HE model, which calculated health and related economic damages based on chronic and acute 
exposure to PM2.5 for 2000-2005. We used Monte Carlo analysis to assess the influence of 
epidemiological and economic cost uncertainty on our results.  

Comparison of the variation in global population-weighted PM2.5 from the three sources 
showed most variation where fewer data constraints are available. Population-weighted 
concentrations across regions differed substantially, far above the 25-50% variation assumed in 
previous literature using models. A large fraction of the variation resulted from dust in the PM2.5 
range. Variations in anthropogenic aerosol only were up to 150%. Emissions difference among 
models was a large influence on variability, while interannual variability was small. The global 
average contribution of different aerosol components to total population-weighted PM2.5 differs 
greatly from the U.S. regional average, with more global PM2.5 contributed by dust; this suggests 
that concentration-response functions developed for U.S. aerosol may need to be revised for 
global applicability. Component contributions to population-weighted anthropogenic-only (non-
dust, non-sea salt) PM2.5 are more similar between U.S. and global averages. 

Estimates of global welfare (consumption plus leisure) were calculated using Monte Carlo 
ensembles of EPPA-HE, varying concentration-response functions and economic cost 
information. Median values for welfare cost using different concentration assumptions varied 
from US $160-360 billion. The 95% confidence interval taking into account variation in 
concentration-response functions and economic costs (with fixed concentrations from satellite 
data) was US $190-540 billion. We conclude that simulated atmospheric concentration variation 
contributes comparable uncertainty as concentration-response functions and economic data to 
global air pollution health estimation.  

The range in global welfare costs of present-day PM2.5 calculated from EPPA-HE ranged from 
of US $120-510 billion annually, with a median of US $280 billion. This is equivalent to about 
0.3-1.1% of 2005 global welfare. We estimate 1.3 million annual mortalities associated with 
global PM2.5 (with a range 630,000-2.1 million). Considering long-term damages from historical 
PM2.5, median estimated mortalities increased by roughly a factor of 3. Our methodology goes 



 

 15 

beyond the assumption of instantaneous response of mortalities to concentration changes and 
systematically calculates the potential economic benefits of policies to reduce chronic impacts.  

We estimated that taking into account present-day deaths from past exposure would increase 
costs to US $350 billion (US $150-$630 billion), and mortalities to 5 million (900,000-11 
million). A full accounting of welfare costs would also include losses from mortalities prior to 
the year 2000 and cumulative impacts of welfare losses and resource allocation prior to 2000. 
Our estimate, however, better reflects the potential for economic gains from reducing PM2.5.  

Our results suggest that quantifying global aerosol-related health damages, particularly using 
models, is as limited by atmospheric science uncertainties as by damage quantification 
uncertainties. Though increasing measurement network coverage can address some of these 
uncertainties, model information is necessary for policy scenarios or to assess the influence of 
changing climate. Increased model evaluation and intercomparisons for highly-populated regions 
in developing countries would improve our ability to use models to assess global health 
outcomes. We also suggest that PM2.5 from non-anthropogenic sources may be a substantial, yet 
underappreciated, source of uncertainty for global health.   

Ground-based stations provide few constraints on global population exposure to PM2.5. Given 
the large degree of variation in model estimates of present-day population-weighted PM2.5, 
despite agreement with available measurements, this suggests that measurement networks could 
substantially benefit from increased coverage and design improvements taking overall population 
distributions into account. Satellite information provides an additional data-based constraint on 
exposure outside these regions. Our analysis suggests that the 1 SD uncertainty of 25% in the 
satellite estimate (van Donkelaar et al., 2010) and global coverage, if accurate, places it among 
the best-constrained sources of exposure information globally.  

We address here only uncertainties we can quantify using models and other methods; the true 
uncertainty in quantifying aerosol health impacts is undoubtedly larger. Uncertainties that we 
cannot quantify at this time include potential error in: using area concentrations as a proxy for 
exposure; applying concentration-response functions from the U.S. and Europe to other countries 
(particularly developing countries); the degree to which damages are modified by differential 
access to health care; and quantifying the unknown health impacts of aerosols such as dust and 
sea salt. These and other uncertainties should be addressed in future research. 
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APPENDIX  

 

 
Figure A1. EPPA regions used in this study. Asterisks denote regions using data inputs for 

developing regions.  

 
 



REPORT SERIES of the MIT Joint Program on the Science and Policy of Global Change 

Contact the Joint Program Office to request a copy. The Report Series is distributed at no charge. 

1. Uncertainty in Climate Change Policy Analysis  
Jacoby & Prinn December 1994 

2. Description and Validation of the MIT Version of the 
GISS 2D Model Sokolov & Stone June 1995 

3. Responses of Primary Production and Carbon Storage 
to Changes in Climate and Atmospheric CO2 
Concentration Xiao et al. October 1995 

4. Application of the Probabilistic Collocation Method 
for an Uncertainty Analysis Webster et al. January 1996 

5. World Energy Consumption and CO2 Emissions:  
1950-2050 Schmalensee et al. April 1996 

6. The MIT Emission Prediction and Policy Analysis 
(EPPA) Model Yang et al. May 1996 (superseded by No. 125) 

7. Integrated Global System Model for Climate Policy 
Analysis Prinn et al. June 1996 (superseded by No. 124) 

8. Relative Roles of Changes in CO2 and Climate to 
Equilibrium Responses of Net Primary Production and 
Carbon Storage Xiao et al. June 1996 

9. CO2 Emissions Limits: Economic Adjustments and the 
Distribution of Burdens Jacoby et al. July 1997 

10. Modeling the Emissions of N2O and CH4 from the 
Terrestrial Biosphere to the Atmosphere Liu Aug. 1996 

11. Global Warming Projections: Sensitivity to Deep Ocean 
Mixing Sokolov & Stone September 1996 

12. Net Primary Production of Ecosystems in China and 
its Equilibrium Responses to Climate Changes  
Xiao et al. November 1996 

13. Greenhouse Policy Architectures and Institutions 
Schmalensee November 1996 

14. What Does Stabilizing Greenhouse Gas 
Concentrations Mean? Jacoby et al. November 1996 

15. Economic Assessment of CO2 Capture and Disposal 
Eckaus et al. December 1996 

16. What Drives Deforestation in the Brazilian Amazon? 
Pfaff December 1996 

17. A Flexible Climate Model For Use In Integrated 
Assessments Sokolov & Stone March 1997 

18. Transient Climate Change and Potential Croplands of 
the World in the 21st Century Xiao et al. May 1997 

19. Joint Implementation: Lessons from Title IV’s Voluntary 
Compliance Programs Atkeson June 1997 

20. Parameterization of Urban Subgrid Scale Processes 
in Global Atm. Chemistry Models Calbo et al. July 1997 

21. Needed: A Realistic Strategy for Global Warming 
Jacoby, Prinn & Schmalensee August 1997 

22. Same Science, Differing Policies; The Saga of Global 
Climate Change Skolnikoff August 1997 

23. Uncertainty in the Oceanic Heat and Carbon Uptake 
and their Impact on Climate Projections  
Sokolov et al. September 1997 

24. A Global Interactive Chemistry and Climate Model 
Wang, Prinn & Sokolov September 1997 

25. Interactions Among Emissions, Atmospheric 
Chemistry & Climate Change Wang & Prinn Sept. 1997 

26. Necessary Conditions for Stabilization Agreements 
Yang & Jacoby October 1997 

27. Annex I Differentiation Proposals: Implications for 
Welfare, Equity and Policy Reiner & Jacoby Oct. 1997 

28. Transient Climate Change and Net Ecosystem 
Production of the Terrestrial Biosphere  
Xiao et al. November 1997 

29. Analysis of CO2 Emissions from Fossil Fuel in Korea: 
1961–1994 Choi November 1997 

30. Uncertainty in Future Carbon Emissions: A Preliminary 
Exploration Webster November 1997 

31. Beyond Emissions Paths: Rethinking the Climate Impacts 
of Emissions Protocols Webster & Reiner November 1997 

32. Kyoto’s Unfinished Business Jacoby et al. June 1998 
33. Economic Development and the Structure of the 

Demand for Commercial Energy Judson et al. April 1998 
34. Combined Effects of Anthropogenic Emissions and 

Resultant Climatic Changes on Atmospheric OH 
Wang & Prinn April 1998 

35. Impact of Emissions, Chemistry, and Climate on 
Atmospheric Carbon Monoxide Wang & Prinn April 1998 

36. Integrated Global System Model for Climate Policy 
Assessment: Feedbacks and Sensitivity Studies  
Prinn et al. June 1998 

37. Quantifying the Uncertainty in Climate Predictions 
Webster & Sokolov July 1998 

38. Sequential Climate Decisions Under Uncertainty: An 
Integrated Framework Valverde et al. September 1998 

39. Uncertainty in Atmospheric CO2 (Ocean Carbon Cycle 
Model Analysis) Holian Oct. 1998 (superseded by No. 80) 

40. Analysis of Post-Kyoto CO2 Emissions Trading Using 
Marginal Abatement Curves Ellerman & Decaux Oct. 
1998 

41. The Effects on Developing Countries of the Kyoto 
Protocol and CO2 Emissions Trading  
Ellerman et al. November 1998 

42. Obstacles to Global CO2 Trading: A Familiar Problem 
Ellerman November 1998 

43. The Uses and Misuses of Technology Development as 
a Component of Climate Policy Jacoby November 
1998 

44. Primary Aluminum Production: Climate Policy, 
Emissions and Costs Harnisch et al. December 1998 

45. Multi-Gas Assessment of the Kyoto Protocol  
Reilly et al. January 1999 

46. From Science to Policy: The Science-Related Politics of 
Climate Change Policy in the U.S. Skolnikoff January 1999 

47. Constraining Uncertainties in Climate Models Using 
Climate Change Detection Techniques  
Forest et al. April 1999 

48. Adjusting to Policy Expectations in Climate Change 
Modeling Shackley et al. May 1999 

49. Toward a Useful Architecture for Climate Change 
Negotiations Jacoby et al. May 1999 

50. A Study of the Effects of Natural Fertility, Weather 
and Productive Inputs in Chinese Agriculture  
Eckaus & Tso July 1999 

51. Japanese Nuclear Power and the Kyoto Agreement 
Babiker, Reilly & Ellerman August 1999 

52. Interactive Chemistry and Climate Models in Global 
Change Studies Wang & Prinn September 1999 



REPORT SERIES of the MIT Joint Program on the Science and Policy of Global Change 

Contact the Joint Program Office to request a copy. The Report Series is distributed at no charge. 

53. Developing Country Effects of Kyoto-Type Emissions 
Restrictions Babiker & Jacoby October 1999 

54. Model Estimates of the Mass Balance of the 
Greenland and Antarctic Ice Sheets Bugnion Oct 1999 

55. Changes in Sea-Level Associated with Modifications 
of Ice Sheets over 21st Century Bugnion October 1999 

56. The Kyoto Protocol and Developing Countries  
Babiker et al. October 1999 

57. Can EPA Regulate Greenhouse Gases Before the 
Senate Ratifies the Kyoto Protocol?  
Bugnion & Reiner November 1999 

58. Multiple Gas Control Under the Kyoto Agreement 
Reilly, Mayer & Harnisch March 2000 

59. Supplementarity: An Invitation for Monopsony? 
Ellerman & Sue Wing April 2000 

60. A Coupled Atmosphere-Ocean Model of Intermediate 
Complexity Kamenkovich et al. May 2000  

61. Effects of Differentiating Climate Policy by Sector: 
A U.S. Example Babiker et al. May 2000  

62. Constraining Climate Model Properties Using 
Optimal Fingerprint Detection Methods Forest et al. 
May 2000  

63. Linking Local Air Pollution to Global Chemistry and 
Climate Mayer et al. June 2000  

64. The Effects of Changing Consumption Patterns on the 
Costs of Emission Restrictions Lahiri et al. Aug 2000 

65. Rethinking the Kyoto Emissions Targets  
Babiker & Eckaus August 2000 

66. Fair Trade and Harmonization of Climate Change 
Policies in Europe Viguier September 2000 

67. The Curious Role of “Learning” in Climate Policy: 
Should We Wait for More Data? Webster October 2000 

68. How to Think About Human Influence on Climate 
Forest, Stone & Jacoby October 2000 

69. Tradable Permits for Greenhouse Gas Emissions:  
A primer with reference to Europe Ellerman Nov 2000 

70. Carbon Emissions and The Kyoto Commitment in the 
European Union Viguier et al. February 2001 

71. The MIT Emissions Prediction and Policy Analysis 
Model: Revisions, Sensitivities and Results  
Babiker et al. February 2001 (superseded by No. 125) 

72. Cap and Trade Policies in the Presence of Monopoly 
and Distortionary Taxation Fullerton & Metcalf March ‘01 

73. Uncertainty Analysis of Global Climate Change 
Projections Webster et al. Mar. ‘01 (superseded by No. 95) 

74. The Welfare Costs of Hybrid Carbon Policies in the 
European Union Babiker et al. June 2001 

75. Feedbacks Affecting the Response of the 
Thermohaline Circulation to Increasing CO2 
Kamenkovich et al. July 2001 

76. CO2 Abatement by Multi-fueled Electric Utilities:  
An Analysis Based on Japanese Data  
Ellerman & Tsukada July 2001 

77. Comparing Greenhouse Gases Reilly et al. July 2001 
78. Quantifying Uncertainties in Climate System 

Properties using Recent Climate Observations  
Forest et al. July 2001  

79. Uncertainty in Emissions Projections for Climate 
Models Webster et al. August 2001 

80. Uncertainty in Atmospheric CO2 Predictions from a 
Global Ocean Carbon Cycle Model  
Holian et al. September 2001 

81. A Comparison of the Behavior of AO GCMs in 
Transient Climate Change Experiments  
Sokolov et al. December 2001 

82. The Evolution of a Climate Regime: Kyoto to 
Marrakech Babiker, Jacoby & Reiner February 2002 

83. The “Safety Valve” and Climate Policy  
Jacoby & Ellerman February 2002 

84. A Modeling Study on the Climate Impacts of Black 
Carbon Aerosols Wang March 2002 

85. Tax Distortions and Global Climate Policy  
Babiker et al. May 2002 

86. Incentive-based Approaches for Mitigating 
Greenhouse Gas Emissions: Issues and Prospects for 
India Gupta June 2002 

87. Deep-Ocean Heat Uptake in an Ocean GCM with 
Idealized Geometry Huang, Stone & Hill  
September 2002 

88. The Deep-Ocean Heat Uptake in Transient Climate 
Change Huang et al. September 2002 

89. Representing Energy Technologies in Top-down 
Economic Models using Bottom-up Information  
McFarland et al. October 2002 

90. Ozone Effects on Net Primary Production and Carbon 
Sequestration in the U.S. Using a Biogeochemistry 
Model Felzer et al. November 2002 

91. Exclusionary Manipulation of Carbon Permit 
Markets: A Laboratory Test Carlén November 2002 

92. An Issue of Permanence: Assessing the Effectiveness of 
Temporary Carbon Storage Herzog et al. December 
2002 

93. Is International Emissions Trading Always Beneficial? 
Babiker et al. December 2002 

94. Modeling Non-CO2 Greenhouse Gas Abatement 
Hyman et al. December 2002 

95. Uncertainty Analysis of Climate Change and Policy 
Response Webster et al. December 2002 

96. Market Power in International Carbon Emissions 
Trading: A Laboratory Test Carlén January 2003 

97. Emissions Trading to Reduce Greenhouse Gas 
Emissions in the United States: The McCain-Lieberman 
Proposal Paltsev et al. June 2003 

98. Russia’s Role in the Kyoto Protocol Bernard et al. Jun ‘03 
99. Thermohaline Circulation Stability: A Box Model Study 

Lucarini & Stone June 2003 
100. Absolute vs. Intensity-Based Emissions Caps 

Ellerman & Sue Wing July 2003 
101. Technology Detail in a Multi-Sector CGE Model: 

Transport Under Climate Policy Schafer & Jacoby July 2003 
102. Induced Technical Change and the Cost of Climate 

Policy Sue Wing September 2003 
103. Past and Future Effects of Ozone on Net Primary 

Production and Carbon Sequestration Using a Global 
Biogeochemical Model Felzer et al. (revised) January 2004 



REPORT SERIES of the MIT Joint Program on the Science and Policy of Global Change 

Contact the Joint Program Office to request a copy. The Report Series is distributed at no charge. 

104. A Modeling Analysis of Methane Exchanges 
Between Alaskan Ecosystems and the Atmosphere 
Zhuang et al. November 2003 

105. Analysis of Strategies of Companies under Carbon 
Constraint Hashimoto January 2004 

106. Climate Prediction: The Limits of Ocean Models  
Stone February 2004 

107. Informing Climate Policy Given Incommensurable 
Benefits Estimates Jacoby February 2004 

108. Methane Fluxes Between Terrestrial Ecosystems 
and the Atmosphere at High Latitudes During the 
Past Century Zhuang et al. March 2004 

109. Sensitivity of Climate to Diapycnal Diffusivity in the 
Ocean Dalan et al. May 2004 

110. Stabilization and Global Climate Policy  
Sarofim et al. July 2004 

111. Technology and Technical Change in the MIT EPPA 
Model Jacoby et al. July 2004 

112. The Cost of Kyoto Protocol Targets: The Case of 
Japan Paltsev et al. July 2004 

113. Economic Benefits of Air Pollution Regulation in the 
USA: An Integrated Approach Yang et al. (revised) Jan. 2005 

114. The Role of Non-CO2 Greenhouse Gases in Climate 
Policy: Analysis Using the MIT IGSM Reilly et al. Aug. ‘04 

115. Future U.S. Energy Security Concerns Deutch Sep. ‘04 
116. Explaining Long-Run Changes in the Energy 

Intensity of the U.S. Economy Sue Wing Sept. 2004 
117. Modeling the Transport Sector: The Role of Existing 

Fuel Taxes in Climate Policy Paltsev et al. November 
2004 

118. Effects of Air Pollution Control on Climate  
Prinn et al. January 2005 

119. Does Model Sensitivity to Changes in CO2 Provide a 
Measure of Sensitivity to the Forcing of Different 
Nature? Sokolov March 2005 

120. What Should the Government Do To Encourage 
Technical Change in the Energy Sector? Deutch May ‘05 

121. Climate Change Taxes and Energy Efficiency in 
Japan Kasahara et al. May 2005 

122. A 3D Ocean-Seaice-Carbon Cycle Model and its 
Coupling to a 2D Atmospheric Model: Uses in Climate 
Change Studies Dutkiewicz et al. (revised) November 2005 

123. Simulating the Spatial Distribution of Population 
and Emissions to 2100 Asadoorian May 2005 

124. MIT Integrated Global System Model (IGSM)  
Version 2: Model Description and Baseline Evaluation 
Sokolov et al. July 2005 

125. The MIT Emissions Prediction and Policy Analysis 
(EPPA) Model: Version 4 Paltsev et al. August 2005 

126. Estimated PDFs of Climate System Properties 
Including Natural and Anthropogenic Forcings  
Forest et al. September 2005 

127. An Analysis of the European Emission Trading 
Scheme Reilly & Paltsev October 2005 

128. Evaluating the Use of Ocean Models of Different 
Complexity in Climate Change Studies  
Sokolov et al. November 2005 

129. Future Carbon Regulations and Current Investments 
in Alternative Coal-Fired Power Plant Designs  
Sekar et al. December 2005 

130. Absolute vs. Intensity Limits for CO2 Emission 
Control: Performance Under Uncertainty  
Sue Wing et al. January 2006 

131. The Economic Impacts of Climate Change: Evidence 
from Agricultural Profits and Random Fluctuations in 
Weather Deschenes & Greenstone January 2006 

132. The Value of Emissions Trading Webster et al. Feb. 2006 
133. Estimating Probability Distributions from Complex 

Models with Bifurcations: The Case of Ocean 
Circulation Collapse Webster et al. March 2006 

134. Directed Technical Change and Climate Policy  
Otto et al. April 2006 

135. Modeling Climate Feedbacks to Energy Demand: 
The Case of China Asadoorian et al. June 2006 

136. Bringing Transportation into a Cap-and-Trade 
Regime  Ellerman, Jacoby & Zimmerman June 2006 

137. Unemployment Effects of Climate Policy Babiker & 
Eckaus July 2006 

138. Energy Conservation in the United States: 
Understanding its Role in Climate Policy Metcalf Aug. ‘06 

139. Directed Technical Change and the Adoption of CO2 
Abatement Technology: The Case of CO2 Capture and 
Storage Otto & Reilly August 2006 

140. The Allocation of European Union Allowances: 
Lessons, Unifying Themes and General Principles  
Buchner  et al. October 2006 

141. Over-Allocation or Abatement? A preliminary 
analysis of the EU ETS based on the 2006 emissions 
data 
Ellerman & Buchner December 2006 

142. Federal Tax Policy Towards Energy Metcalf Jan. 2007 
143. Technical Change, Investment and Energy Intensity 

Kratena March 2007 
144. Heavier Crude, Changing Demand for Petroleum 

Fuels, Regional Climate Policy, and the Location of 
Upgrading Capacity Reilly et al. April 2007 

145. Biomass Energy and Competition for Land  
Reilly & Paltsev April 2007 

146. Assessment of U.S. Cap-and-Trade Proposals  
Paltsev et al. April 2007 

147. A Global Land System Framework for Integrated 
Climate-Change Assessments Schlosser et al. May 2007 

148. Relative Roles of Climate Sensitivity and Forcing in 
Defining the Ocean Circulation Response to Climate 
Change Scott et al. May 2007 

149. Global Economic Effects of Changes in Crops, 
Pasture, and Forests due to Changing Climate, CO2 
and Ozone Reilly et al. May 2007 

150. U.S. GHG Cap-and-Trade Proposals: Application of a 
Forward-Looking Computable General Equilibrium Model 
Gurgel et al. June  2007 

151. Consequences of Considering Carbon/Nitrogen 
Interactions on the Feedbacks between Climate and 
the Terrestrial Carbon Cycle Sokolov et al. June  2007 



REPORT SERIES of the MIT Joint Program on the Science and Policy of Global Change 

Contact the Joint Program Office to request a copy. The Report Series is distributed at no charge. 

152. Energy Scenarios for East Asia: 2005-2025 Paltsev & 
Reilly July 2007 

153. Climate Change, Mortality, and Adaptation: 
Evidence from Annual Fluctuations in Weather in the U.S. 
Deschênes & Greenstone August 2007 

154. Modeling the Prospects for Hydrogen Powered 
Transportation Through 2100 Sandoval et al. 

  February 2008 
155. Potential Land Use Implications of a Global Biofuels 

Industry Gurgel et al.  March 2008 
156. Estimating the Economic Cost of Sea-Level Rise 
 Sugiyama et al.  April 2008 
157. Constraining Climate Model Parameters from 

Observed 20th Century Changes Forest et al. April 2008 
158. Analysis of the Coal Sector under Carbon 

Constraints McFarland et al. April 2008 
159. Impact of Sulfur and Carbonaceous Emissions from 

International Shipping on Aerosol Distributions and 
Direct Radiative Forcing Wang & Kim April 2008 

160. Analysis of U.S. Greenhouse Gas Tax Proposals 
Metcalf et al.  April 2008 

161. A Forward Looking Version of the MIT Emissions 
Prediction and Policy Analysis (EPPA) Model 

 Babiker et al. May 2008 
162. The European Carbon Market in Action:  Lessons   

from the first trading period  Interim Report 
 Convery, Ellerman, & de Perthuis June 2008 
163. The Influence on Climate Change of Differing 

Scenarios for Future Development Analyzed Using 
the MIT Integrated Global System Model Prinn et al. 
September 2008 

164. Marginal Abatement Costs and Marginal Welfare 
Costs for Greenhouse Gas Emissions Reductions: 
Results from the EPPA Model Holak et al. November 
2008 

165. Uncertainty in Greenhouse Emissions and Costs of 
Atmospheric Stabilization Webster et al. November 
2008 

166. Sensitivity of Climate Change Projections to 
Uncertainties in the Estimates of Observed Changes 
in Deep-Ocean Heat Content Sokolov et al. November 
2008 

167. Sharing the Burden of GHG Reductions Jacoby et al. 
November 2008 

168. Unintended Environmental Consequences of a 
Global Biofuels Program Melillo et al. January 2009 

169. Probabilistic Forecast for 21st Century Climate 
Based on Uncertainties in Emissions (without Policy) 
and Climate Parameters Sokolov et al. January 2009 

170. The EU’s Emissions Trading Scheme: A Proto-type 
Global System? Ellerman February 2009 

171. Designing a U.S. Market for CO2 Parsons et al. 
February 2009 

172. Prospects for Plug-in Hybrid Electric Vehicles in the 
United States & Japan:  A General Equilibrium Analysis 
Karplus et al. April 2009 

173. The Cost of Climate Policy in the United States 
Paltsev et al. April 2009 

174. A Semi-Empirical Representation of the Temporal 
Variation of Total Greenhouse Gas Levels Expressed 
as Equivalent Levels of Carbon Dioxide Huang et al. 
June 2009 

175. Potential Climatic Impacts and Reliability of Very 
Large Scale Wind Farms Wang & Prinn June 2009 

176. Biofuels, Climate Policy and the European Vehicle 
Fleet Gitiaux et al.  August 2009 

177. Global Health and Economic Impacts of Future 
Ozone Pollution Selin et al.  August 2009 

178. Measuring Welfare Loss Caused by Air Pollution in 
Europe: A CGE Analysis Nam et al.  August 2009 

179. Assessing Evapotranspiration Estimates from the 
Global Soil Wetness Project Phase 2 (GSWP-2) 
Simulations Schlosser and Gao September 2009 

180. Analysis of Climate Policy Targets under 
Uncertainty Webster et al.  September 2009 

181. Development of a Fast and Detailed Model of 
Urban-Scale Chemical and Physical Processing Cohen 
& Prinn  October 2009 

182. Distributional Impacts of a U.S. Greenhouse Gas 
Policy: A General Equilibrium Analysis of Carbon Pricing 
Rausch et al.  November 2009 

183. Canada’s Bitumen Industry Under CO2 Constraints 
Chan et al.  January 2010 

184. Will Border Carbon Adjustments Work? Winchester et 
al.  February 2010 

185. Distributional Implications of Alternative U.S. 
Greenhouse Gas Control Measures Rausch et al.  June 
2010 

186. The Future of U.S. Natural Gas Production, Use, and 
Trade Paltsev et al.  June 2010 

187. Combining a Renewable Portfolio Standard with a 
Cap-and-Trade Policy: A General Equilibrium Analysis 
Morris et al.  July 2010 

188. On the Correlation between Forcing and Climate 
Sensitivity Sokolov August 2010 

189. Modeling the Global Water Resource System in an 
Integrated Assessment Modeling Framework: IGSM-
WRS Strzepek et al. September 2010 

190. Climatology and Trends in the Forcing of the 
Stratospheric Zonal-Mean Flow Monier and Weare 
January 2011 

191. Climatology and Trends in the Forcing of the 
Stratospheric Ozone Transport Monier and Weare 
January 2011 

192. The Impact of Border Carbon Adjustments under 
Alternative Producer Responses Winchester February 
2011 

193. What to Expect from Sectoral Trading: A U.S.-China 
Example Gavard et al. February 2011 

194. General Equilibrium, Electricity Generation 
Technologies and the Cost of Carbon Abatement 
Lanz and Rausch February 2011 

195. A Method for Calculating Reference 
Evapotranspiration on Daily Time Scales Farmer et al. 
February 2011 



REPORT SERIES of the MIT Joint Program on the Science and Policy of Global Change 

Contact the Joint Program Office to request a copy. The Report Series is distributed at no charge. 

196. Health Damages from Air Pollution in China Matus et 
al. March 2011 

197. The Prospects for Coal-to-Liquid Conversion: A 
General Equilibrium Analysis Chen et al. May 2011 

198. The Impact of Climate Policy on U.S. Aviation 
Winchester et al. May 2011 

199. Future Yield Growth: What Evidence from Historical 
Data Gitiaux et al. May 2011 

200. A Strategy for a Global Observing System for 
Verification of National Greenhouse Gas Emissions 
Prinn et al. June 2011 

201. Russia’s Natural Gas Export Potential up to 2050 
Paltsev July 2011 

202. Distributional Impacts of Carbon Pricing: A General 
Equilibrium Approach with Micro-Data for Households 
Rausch et al. July 2011 

203. Global Aerosol Health Impacts: Quantifying 
Uncertainties Selin et al. August 2011 

 


	JP_Report_pmuncertainty_fkg2
	JP_Report_pmuncertainty_fkg2.2
	JP_Report_pmuncertainty_fkg2.3
	JP_Report_pmuncertainty_fkg2.4
	JP_Report_pmuncertainty_fkg2.5



