
Harnessing Metadata Characteristics for Efficient

Deduplication in Distributed Storage Systems

by

Matthew Goldstein

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2011

c© Massachusetts Institute of Technology 2011. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

November 8, 2010

Certified by. .
Robert T. Morris

Professor
Thesis Supervisor

Certified by. .
Jiri Schindler
NetApp ATG

Thesis Supervisor

Accepted by .
Arthur C. Smith

Chairman, Department Committee on Graduate Theses

2

Harnessing Metadata Characteristics for Efficient

Deduplication in Distributed Storage Systems

by

Matthew Goldstein

Submitted to the Department of Electrical Engineering and Computer Science
on November 8, 2010, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Computer Science and Engineering

Abstract

As storage capacity requirements grow, storage systems are becoming distributed,
and that distribution poses a challenge for space savings processes. In this thesis, I
design and implement a mechanism for storing only a single instance of duplicated
data within a distributed storage system which selectively performs deduplication
across each of the independent computers, known as nodes, used for storage. This
involves analyzing the contents of each node for objects with characteristics more
likely to have duplicates elsewhere, particularly using duplication within a node as
the indicative property - an object duplicated many times in a dataset will likely
be duplicated at least once in some node. An inter-node system is responsible for
efficiently collecting and distributing the information of these potential duplicates. A
test implementation was built and run on several data sets characteristic of common
storage workloads where deduplication is important, while distributing across 128
nodes. The efficiency of this implementation was analyzed and compared against the
savings when distributed across 128 nodes with deduplication performed only between
duplicate objects within each node, without inter-node deduplication. The inter-node
deduplication was found to increase the space saved by a factor of four to six times.
This represented in one case, a file storage server, only a quarter of potential savings
due to the majority of potential savings being in files with only a few duplicates.
This left a low probability of locating duplication within a single node. However in
another case, a collection of over 100 virtual machine images, nearly all potential
duplicates were found due to the high number of duplicates for each object, providing
an example of where this inter-node mechanism can be most useful.

Thesis Supervisor: Robert T. Morris
Title: Professor

Thesis Supervisor: Jiri Schindler
Title: NetApp ATG

3

4

Acknowledgments

I would like to thank my parents for their love and support all my life and for raising

me to have such a strong appreciation for curiosity and learning. I would also like

to thank my friends for keeping me happy and helping me to enjoy life even while

buried deeply working on this thesis.

5

6

Contents

1 Introduction 15

1.1 Deduplication . 17

1.2 Distributed Filesystems . 18

1.3 Design Outline . 20

1.4 Thesis Overview . 21

2 Motivation 23

2.1 Multiple nodes . 23

2.2 Distribution Policies . 24

3 Design 25

3.1 Reference Count Hinting . 25

3.2 Deduplication Process . 27

3.3 Metadata Structures . 28

4 Experimental Setup 31

4.1 Characteristic Datasets . 32

4.2 Data Aquisition . 34

4.2.1 Dataset Representation . 34

4.2.2 Direct Generation . 35

4.2.3 Duplication Dataset Generator 36

4.3 Storage System Setup . 38

4.3.1 Structure . 38

7

4.3.2 Loading . 39

4.4 Analysis Process . 39

5 Results 41

5.1 Distributed Duplication Characteristics 41

5.2 Object Hinting . 43

5.3 Block Hinting . 46

5.4 Overhead . 48

6 Conclusion 51

7 Related Work 53

7.1 Ceph . 53

7.2 Data Domain . 54

7.3 HYDRAstor . 55

A Dataset Representation 57

B Generation Tool Input 59

8

List of Figures

1-1 A generic distributed filesystem. Objects are presented at the contact

gateway. An oracle then distributes the objects to storage nodes and

stores the object to node mapping for later use. 19

3-1 The Deduplication Process. 1: The Global Deduplcation Daemon asks

each storage node for a set of potentially duplicated objects. 2: The

node-level deduplication scanner locates any internal duplicates to re-

port as interesting. 3: The node returns a list of interesting objects.

4: The global daemon asks each other node if it has any of these same

objects. 5: Node C reports that it also has one of the interesting ob-

jects. 6: The global daemon stores the duplicate object from node C

on node A where it can be internally deduplicated against the existing

identical copy. 7: The global daemon asks node C to delete its copy of

the duplicate. 27

4-1 CDFs of the number of duplicates contributing to space savings by

4KB block. 34

4-2 CDFs of the number of duplicates contributing to space savings by

object. 35

9

4-3 The Dataset Duplication Generation Tool. Given data characteristics,

a pool of the corresponding number of unique blocks is formed. An

object compiler assembles objects of the appropriate object size and

object-level duplication from this pool and builds a table of objects.

As the table is built it is written out to a file. The file is then imported

to a prototype object storage system. 37

5-1 Changes in the levels of object duplication space savings as the number

of nodes in the storage system increases, compared to the potential

savings in a centralized storage system. Deduplication is performed

only between objects within each node, without cross-node deduplication. 42

5-2 Changes in the space used to store the VMWare dataset without dedu-

plication, deduplication with the entire dataset on a single node, dedu-

plication within each node when distributed across 128 nodes, and

deduplication within each node when distributed across 128 nodes af-

ter cross-node moves due to object-level hinting. 43

5-3 Changes in the space used to store the Makita dataset without dedu-

plication, deduplication with the entire dataset on a single node, dedu-

plication within each node when distributed across 128 nodes, and

deduplication within each node when distributed across 128 nodes af-

ter cross-node moves due to file-level hinting. 44

5-4 Changes in the space used to store the Oracle dataset without dedu-

plication, deduplication with the entire dataset on a single node, dedu-

plication within each node when distributed across 128 nodes, and

deduplication within each node when distributed across 128 nodes af-

ter cross-node moves due to object-level hinting. 45

10

5-5 Changes in the space used to store the VMWare dataset without dedu-

plication, block deduplication with the entire dataset on a single node,

block deduplication within each node when distributed across 128 nodes,

and block deduplication within each node when distributed across 128

nodes after cross-node moves due to object-level hinting. 47

11

12

List of Tables

4.1 General characteristics of the three datasets used in the experiment. . 33

5.1 Overhead statistics for VMWare dataset distributed across 128 nodes. 48

5.2 Overhead statistics for Makita dataset distributed across 128 nodes. . 49

5.3 Overhead statistics for Oracle dataset distributed across 128 nodes. . 50

13

14

Chapter 1

Introduction

Deduplication is a technique used to reduce the amount of disk storage consumed by

content which is duplicated in multiple objects within a storage system. One common

approach to finding duplicated content is storing a cryptographic hash of every object

such that each object’s hash can be compared against those of every other object in

the system to find duplicates. When a duplicate is found, one copy of data is deleted

and replaced with a pointer to the other copy, saving space. While this has been

done easily in centralized storage systems, storage systems have grown and may now

be distributed over many independent nodes. This thesis is motivated by the issues

encountered when trying to perform deduplication in a distributed storage system.

These challenges come primarily from the fact that information is not fully shared

between individual nodes. Also, data distribution policies, which determine where

any given object is placed, are not congruent with data deduplication.

I propose using existing object characteristics to identify objects that are likely

duplicated across independent storage nodes rather than just within each individual

node. A system leveraging metadata already present for each object in the system

makes deduplication on the node level possible. I contend that it has little perfor-

mance or disk usage impact on any given component of the system but identifies

many of the duplicate objects. Restricting comparisons across nodes to the limited

scope of only objects identified at the node level makes locating duplicates across all

nodes of the system much more practical. I will use duplication within a node as

15

the metadata characteristic, or ”hint”, for the experiment of this thesis. The use of

this characteristic for hinting is based on the supposition that if an object is dupli-

cated many times within a dataset, there should be at least one node in which it is

duplicated at least once.

The main contribution of this thesis is a method to efficiently analyze individual

nodes of a distributed object storage system for content duplicated across nodes.

While deduplication could easily be done via a brute force method, the challenge

lies in doing deduplication in a manner which scales up with the number of nodes

without disrupting normal storage operations or consuming excessive disk space for

extra metadata. This method is managed in a manner which makes no assumptions

about the distribution of objects across nodes in a content-related context, functioning

efficiently despite a random distribution method.

The prototype system produced for the experiments of this thesis operates using

duplication within a node as the metadata characteristic, or ”hint”, for attempting

to find duplicates of an object on other nodes. The experimental system, working on

datasets distributed across 128 nodes, was compared with the savings on those same

distributed datasets by a mechanism eliminating duplicates only within each node

based on object hash, without inter-node deduplication. While such a mechanism

would find all potential duplicate objects if the dataset were stored on only one node,

distribution across all nodes makes it much less effective. The experimental system

was able to improve duplication space savings by a factor of 4 to 6 times. With a

dataset of many virtual machine images, this was nearly all potential duplication due

to the high number of duplicates of any given object. Cases such as this, with high

levels of duplication of objects, are where the cross-node deduplication mechanism

developed in this thesis is most effective. However, with a file storage dataset, the

improved savings still left the majority of potential savings unobtained; due to the

large portion of potential savings comes from files with few duplicates. This meant

that for many files no duplicates were located within any given node to trigger the

cross-node deduplication.

An attempt was made to use hinting based on individual block duplication in-

16

formation. However, I found that this was excessively computationally and memory

intensive. I also learned through this additional experimentation that hints at the

whole object level are much easier to deal with. This is because using a block hint

for moving objects leaves a hard problem of determining which objects to move to

which node in order to gain the most savings.

This work applies to share-nothing systems which distribute objects across in-

dependent storage nodes. In this context, there is not full sharing of information

between nodes, each node keeping object metadata including size and hashes to it-

self. An object can be a file, and extent of a larger entity such as a large networked

file representation, or a binary large object. I examine single instancing between

nodes on both the object and 4KB block level. I also make use of existing internal

deduplication within each node.

1.1 Deduplication

Deduplication is a form of compression whereby multiple instances of the same byte

sequence are removed and replaced with pointers to the location of the remaining

one within the system. This deduplication can be applied with a granularity of

objects such as entire files or individual blocks. File duplication happens for several

different reasons, depending on the source of the data. User files are sometimes

duplicated when a single user wants to make a backup of data which they are about

to edit or when multiple users are working on different copies of similar projects.

Similarly, duplicate files can appear when multiple people in the same organization

are sent the same file, such as a company report, to review. System files can also be

duplicated when software is built for multiple systems, with a full set of files kept for

each system. In an environment with virtualized computers and servers, system files

can be duplicated between images of computers with similar operating systems and

configurations.

When the storage system detects that it is writing data which it has written

before, it makes a reference to the original data rather than duplicating it. Because

17

deduplication is done at a storage system level with global context, the domain of

data being compressed is much larger than most other forms of compression, giving

the greatest opportunity for finding duplication. Also, because it is built into the

storage system, users do not have to specify each set of objects they wish to compress.

Reading deduplicated objects also does not need to use the extra CPU time that

other forms of decompression require. The processing overhead comes from finding

duplicates when the object is written. The duplicated data exists normally on the

disk and is read as quickly as any other data.

Deduplication can operate on several levels of granularity. Windows 2000 [1] does

full-file deduplication, storing a hash of the entire file. When a new file’s hash is

calculated, it is compared against the existing hashes and if there is a match the two

files are compared byte-for-byte. If the files are duplicates of each other, the new file

is not written to disk but a reference made to the existing file. Other systems, such

as Venti [6] or ASIS [4], operate similarly, but on a per-block level, keeping a hash of

each block on disk. When duplicates are found, a reference is made to the existing

block.

While some systems such as Venti and HYDRAstor [3] operate on data as it

enters the storage system, other systems, such as ASIS and the one considered in

this thesis, work offline and locate recently written objects which are duplicates of

existing ones. In this case, the new object is referenced to the old object and the

now-unused duplicate data is marked for deletion. In all of these cases, deduplication

operates by looking at some unit of storage and determining that two of these items

are the same. In this thesis, I look at each object as a whole in the object storage

system. Each object may have a different size, but none span multiple storage nodes.

1.2 Distributed Filesystems

As storage needs have grown, the model of large storage systems has moved towards

greater distribution. Rather than storing all objects on centrally controlled disks,

storage can be distributed across many devices, each one an independent storage

18

Figure 1-1: A generic distributed filesystem. Objects are presented at the contact
gateway. An oracle then distributes the objects to storage nodes and stores the object
to node mapping for later use.

node. This allows storage systems to easily increase capacity through the addition

of more nodes. Adding nodes improves access speeds by distributing the workload

across many nodes.

Several components are involved in the storage and recall of objects in such a

distributed system. Generically, as seen in Figure 1-1, objects are passed to the

system from a client at some gateway. The gateway accepts the object, and an oracle

determines some node in the system where it should be stored. The object is passed

to the storage node. A mapping of the object’s ID to storage node is given to some

metadata storage system. When a client requests a given object, the metadata storage

system is queried to determine which object storage node to contact. The object is

then retrieved from that node and passed back to the client.

The policy for object distribution across nodes varies by system. In some systems,

including Ceph [7] and HYDRAstor there is a consistent distribution algorithm based

on the object’s hash. In others, objects are placed in the node with the greatest free

space, least load, or any other number of factors. Obviously, a distribution based on

content such as Ceph’s would make locating duplicate objects extremely simple, but

such systems are choosing this optimization at the expense of performance. In this

thesis, I assume some mechanism which distributes objects randomly across nodes

without respect to content. I refer to this component of a system as the distribution

19

oracle.

1.3 Design Outline

Performing deduplication in the node-based filesystem has two related components.

The first is a method to deduplicate objects within a given node against each other

in a manner that is not prohibitively processing intensive. The second, related, com-

ponent is a method for determining potential deduplication between objects stored

in different nodes. This assumes the data has already been distributed across nodes

in some manner which is not deduplication-driven. I analyze object-level duplication

and determine which characteristics may help identify objects for deduplication. I

implement these characteristics in my system.

Intra-node deduplication is largely a solved problem; deduplication based on

hashes of objects or the common fixed-size or variable-size blocks, is available in

several commercial systems including NetApp ONTAP’s ASIS and DataDomain [9].

Hash based deduplication can be done by keeping a lookup table of all hashes of

objects within a given node. The storage overhead from the use of hash tables may

be reducible by using the hinting between nodes which I will be developing, but if

not it should not have to be too large because each node need only store the hashes

for its own objects so no global list is stored.

Determining potential deduplication between objects stored in different nodes

is harder than the intra-node case. I propose that while an exhaustive search for

all duplicates across the entire distributed system is cost-prohibitive, finding most

duplicates efficiently, without a giant central hash table should be possible with hints

based on metadata already available in the system. This depends on a dataset with

high levels of duplication, such that some pattern can be discerned while looking at

only a small portion of the data. I have developed a model of and prototyped such a

storage system using a metadata-dependent methods to perform deduplication hinting

and determine the effectiveness of this method.

20

1.4 Thesis Overview

The thesis is organized as follows. Chapter 2 discusses the motivation for this thesis,

why traditional approaches are impractical, what challenges this system faces. Chap-

ter 3 details the design of my system, including the duplication hinting characteristic

and the processes used to locate and move duplicates. Chapter 4 outlines the proce-

dure I followed for building the system and the tests I ran. Chapter 5 is an analysis

of the results of running this system with several test cases. Chapter 6 contains the

conclusions of this thesis and Chapter 7 is a review of related works.

21

22

Chapter 2

Motivation

This chapter examines the differences between a distributed storage system and a

centralized storage system, which motivates this thesis. This includes the scaling of

duplication detection in terms of both computation and memory usage. I then present

potential solutions and explain the conditions required for them to work.

2.1 Multiple nodes

Large distributed systems make traditional deduplication with content-based hashes

complex. Each node in a distributed system is responsible for the low-level details

of how it stores and references an object. As independent share-nothing nodes, each

node keeps these storage structures internally and is not made aware of the data in

other nodes. As deduplication is performed, that node manages reference counts to

each object to ensure that no object is removed if it is still referenced elsewhere.

This would be made much more difficult if there were also global references due to

deduplication across nodes which must be accounted for, so deduplication can only

occur within each node.

Deduplication was traditionally performed from a top level in previous storage

systems rather than delegating the responsibility to each node as in my system.

However, a table tracking the hashes of all objects across a storage system of multiple

Peta bytes in size would be too expensive to keep in memory, particularly when it is

23

continuously updated with new entries.

2.2 Distribution Policies

By distributing objects across nodes in a content-based manner, the problem of multi-

ple nodes could be easily solved. With a distribution oracle sorting objects by content,

as implemented by Ceph and Hydrastor [3], the task of identifying duplicates is made

simple as all duplicates of an object would already be on the same node. However,

sorting by content requires calculating some hash of the content which produces com-

putational overhead. This overhead is incurred by the storage system, or by clients,

requiring clients to be written for this particular storage system. Further, such a

content-based distribution oracle would not take into account the level of service re-

quired for a particular object if the object storage system provides a service level

agreement, or SLA, which could determine the amount of replication. Similarly, this

method does not allow smart distribution of objects across different nodes or on the

same node for more rapid sequential access depending on disk configuration.

Attributes besides hashes could be analyzed and global structures built to support

deduplication. However, in a system focused on performance, with deduplication as a

secondary consideration, complex structures which may impact performance cannot

be used in the storage pipeline. So, this system has the constraints of running purely

offline on each node in a manner that generates little to no metadata of its own in

order to minimize performance impact.

24

Chapter 3

Design

This chapter outlines the principles and mechanisms used in this thesis to locate

duplicates across nodes. The term ”hint” refers to a metadata characteristic indicative

of duplication, which this deduplication system uses as the basis for checking if a

particular object is duplicated in other nodes. The metadata structures used to

support deduplication are also discussed.

3.1 Reference Count Hinting

When looking for duplication across nodes in a storage system, any duplication of

an object within a single node may provide a hint that the object is duplicated

elsewhere as well. Consider a storage system with 100 nodes. Even with such a large

storage system, there is a good chance that similar objects will be written to a given

node. This is similar to the “Birthday Problem” [8] but with fewer dates. Even with

randomized object distribution, it would take only 13 copies of an object to have

a 50% chance of a collision within some node, and 95% at 24 copies. This thesis

considers random distribution because a uniform distribution of duplicates across

nodes will result in the fewest duplicates within a single node. A real distribution

mechanism may operate by file directory or some other characteristic, likely resulting

in more duplicates being located. As detailed in section 4.1, high levels of duplication

are common in large datasets.

25

If a node is already performing internal deduplication, it typically already stores

a reference count for any given object or block, whichever the node is deduplicating.

These counts are necessary when performing deduplication to ensure that if data is

changed or deleted there is no accidental deletion of other objects which previously

had identical data. Scanning a node for any objects with reference counts greater

than one will collect a set of potentially further-duplicated objects.

Reference count is the primary characteristic of cross-node hinting used in this

thesis. As corroborated by my experimental results, it works well for any dataset

with a high portion of possible duplication savings coming from objects with high

duplication count. Even if a dataset has a majority of unique objects with only a few

duplicates, it is possible for the high level of duplication in those objects with many

duplicates to offset this and account for more of the space savings. For example, in

a company with 100 employees while each may have a personal file that they have

duplicated and may not be found duplicated within a single node it only takes one

report sent to the entire company, and thus more likely to be duplicated and found

withing a single node, to account for just as much duplication savings. While reference

count may not be comprehensive in locating duplicates across nodes, it should find

some high percentage of them. The chances of finding duplicates this way increases

as the dataset being deduplicated has more duplication, making this characteristic

more useful in datasets with greater potential deduplication space savings.

Several other hinting mechanisms were considered but not used in the thesis ex-

periment. Service Level or SLA, such as the amount of redundancy for a particular

storage volume, and size both could serve to provide hints without requiring the extra

hash calculations. However, neither can completely identify potential duplicates on

its own and would only be useful as a compliment to a more complicated hinting

scheme. File-based attributes, looking for similar file names or directory structure,

were also considered but not used in this thesis because they do not apply to a general,

non file-based object storage system.

26

Figure 3-1: The Deduplication Process. 1: The Global Deduplcation Daemon asks
each storage node for a set of potentially duplicated objects. 2: The node-level
deduplication scanner locates any internal duplicates to report as interesting. 3: The
node returns a list of interesting objects. 4: The global daemon asks each other node
if it has any of these same objects. 5: Node C reports that it also has one of the
interesting objects. 6: The global daemon stores the duplicate object from node C
on node A where it can be internally deduplicated against the existing identical copy.
7: The global daemon asks node C to delete its copy of the duplicate.

3.2 Deduplication Process

Deduplication across nodes, as shown in Figure 3-1, begins with the system’s global

deduplication daemon requesting that each node compile a list of objects which have

characteristics within the node suggesting that the object may be duplicated across

nodes. In a running storage system, scanning for such objects may be done in a

variety of ways such as at write time, as a periodic local background activity on each

node, or as suggested earlier, as a response to an explicit request from the global

daemon. The method of identifying objects based on their duplication within the

node is performed for each object by a simple scan across the metadata of all objects

in the node. The node scanner adds suitable objects to the list of interesting objects

to be reported to the system-wide deduplication daemon.

Next, the global deduplication daemon compiles these per-node lists of interesting

objects into one list and queries each node to determine if that node also has any

of these objects. The node responds with a list of the intersection of the set of

objects it was asked about and the set of objects it stores, thereby identifying cross-

27

node duplicates. The duplication daemon then moves duplicate objects between the

nodes, bringing more duplicates into the same node and allowing for greater space

savings through intra-node deduplication.

Each of these steps requires a decision to determine what is reported and moved

where. I will refer to each decision-maker as an oracle. The first decision oracle is

each node’s initial reporting of interesting objects. While the experiment was run

identifying duplicate objects within a node as the hinting mechanism, it could also

easily be used to report duplicate blocks or other characteristics. The second oracle is

also at the node level. This oracle decides which of the objects already found to be of

interest elsewhere it should report as intersecting. Finally, the global deduplication

daemon decides which reported duplicates from the nodes should result in object

moves across nodes. In this experiment, the second oracles reports and the third

oracle moves all located intersections.

3.3 Metadata Structures

Within each node, there is a scanner process to search the contents of that node for

objects which have characteristics indicative of likely duplication with objects stored

on other nodes. To support this process, a hash is stored as metadata for each object

and as part of the descriptor for each block. This scanner will run on request across

each node and keep track of any objects which seem likely to be duplicates.

For inter-node deduplication, periodically, a global daemon will check with each

node for any likely duplicates. That node’s scanner will report any likely duplicated

objects it has found internally, sending the objects’ ID and hash. The node also sets

a checkpoint so it will not to report the same objects in the future. After the daemon

has obtained all likely duplicates across all nodes, it creates a list of unique instances

of duplicate objects. It then contacts each node again, asking if it has any of the

potential duplicate objects. To make this efficient, each node has already stored a

lookup table from hash to object ID. When any duplicates are found, that object’s

data is removed from all but one node and the mapping of each object with identical

28

content has its path set to the node containing the single instance of its data.

29

30

Chapter 4

Experimental Setup

This chapter describes the data acquisition and test infrastructure developed to per-

form the experiment of locating duplicated content across nodes in a distributed

storage system. This experiment determines if the reference count hinting scheme is

able to restore the deduplication savings lost by distributing a dataset across inde-

pendent nodes. First it analyzes the datasets to find the space savings possible in a

centralized storage system by comparing the hashes of all objects. Then it determines

the space savings lost when the content is distributed across independent nodes, com-

paring only the hashes of objects to others in the same node. Finally, it finds the

space savings after using the mechanism proposed in this thesis. Three sets of data

are used, ranging from 800GB to 1.4TB in size, each of a different origin, representing

a different type of workload. In order to perform the same set of experiments across

these datasets which were meant to be accessed in different ways, I created a format

to which all of the datasets were converted. For each dataset I created an acquisition

tool used to perform this conversion. For this experiment I built a distributed storage

system, as well as a tool to load the normalized datasets as represented in Appendix

A into the storage system.

31

4.1 Characteristic Datasets

The first of the three datasets is the contents of Makita, an internal NFS/CIFS

server at NetApp. Makita is used primarily to store files such as presentations and

documents, some of which may be shared outside the company. The storage on this

server is used by those in engineering, marketing, sales, and administrative positions.

The dataset contains 12.4 million files comprising 1.4TB of data and was obtained

directly through a tape backup of the server. Because the Makita dataset is file-

based, each object is a file, so there is no uniform per-object size. There is about

36% duplication on the whole-file level, meaning 36% of all files are duplicates of

some original file with identical contents, only differing by name or path. These files

account for about 24% of the space used in the dataset as most of the duplicated files

are smaller than average. The original data was stored by in 4KB filesystem blocks, so

block-level duplication was also examined, finding 37% duplication at the individual

4KB block level within the Makita dataset. Interestingly, most of the savings comes

from eliminating whole files with identical content.

The second dataset is the contents of an Oracle database server supporting ad-

ministrative tasks within Netapp. The dataset consists of an 800GB Oracle database

obtained directly through a tape backup. Oracle servers use Oracle’s Automatic Stor-

age Manager (ASM) to distribute table data across a storage system. ASM works

on 1MB chunks of the database at a time. Therefore, 1MB was used as the object

size for this dataset. On the object level, there is 13% duplication, while at the 4KB

block level, there is 46% duplication.

The third dataset is a 1.3TB image of a VMWare image farm of 113 Windows

XP virtual machines for internal use at VMWare. The dataset was collected by

reconstructing the image from a series of duplication characteristics in a paper by

Clements et al [2] using the tool described in section 4.2.3. VMWare’s VMFS handles

operations on a 1MB level. Therefore, 1MB was used as the object size for this

dataset. On the object level, there is 22% duplication while at the 4KB block level,

there is 82% duplication.

32

Dataset Characteristics
Makita Oracle VMWare

Size 1.4TB 800GB 1.3TB
Blocks 360,703,391 209,715,200 349,057,626
Objects 12,364,590 819,216 1,363,506
Object Size Size of File 1MB 1MB
Duplication
Object 23.9% 13.27% 21.7%
4KB Block 37% 45.95% 82.38%

Table 4.1: General characteristics of the three datasets used in the experiment.

As previously described, duplication space savings can operate on an object or

block level. While it is relatively simple to determine the raw amount of space saved

through deduplication, I would like to find out where the savings comes from, if there

are many blocks with only a few duplicates each or several blocks each duplicated

many times. I examined the contribution to total space savings by the number of

duplicates per unique object or block. As seen in figure 4-1, the Makita dataset derives

most of its savings from blocks with a low number of duplicates, with 50% of savings

from blocks duplicated less than 20 times. Little savings comes from individual blocks

with many duplicates, with blocks duplicated over 80,000 times accounting for only

one percent of savings. Meanwhile the Oracle dataset has most savings from blocks

with many duplicates each, with 50% of savings coming from blocks with at least 20

millon duplicates - blocks which were allocated to the Oracle database but not yet used

and still filled with all 0s. There are also many with 50 and 100 copies, accounting

for 20% of space savings. The VMWare dataset, on the other hand, derives most

of its savings from blocks duplicated around 100 times, accounting for 65% of total

savings. This matches the dataset’s origin as disk images of 113 virtual machines.

Looking at the deduplication in each dataset by object in Figure 4-2, we see

a slightly different trend. Makita still has most duplication coming from objects

with lower counts, now 77% under 20 duplicates, but nearly all of the Oracle object

duplication comes from a single object duplicated 100,000 times. This object seems

to consist of all 0s, presumably because the database has not grown to consume the

33

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

Duplicate Count per Block

CDF of shared block savings

Makita
Oracle

VMWare

Figure 4-1: CDFs of the number of duplicates contributing to space savings by 4KB
block.

entirety of the space allocated to it. The VMWare data graphed here is so different

due to the synthetic nature of the data’s generation, detailed in section 4.2.3, which

cut off object duplication at 120 duplicates.

4.2 Data Aquisition

Data was aquired from several different sources, so I created a cannonical format in

order to run the same experiments on all three datasets. This section describes that

representation and the tools used to convert each of the datasets from their initial

form.

4.2.1 Dataset Representation

In order to perform the same set of experiments across the three different datasets,

I converted all three to a canonical format. To run experiments on the datasets in a

timely fashion, storing a byte-for-byte representation of all data in each dataset was

impractical. Instead, I created a representative format containing only metadata.

34

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000 100000 1e+06

Duplicate Count per Object

CDF of shared object savings

Makita
Oracle

VMWare

Figure 4-2: CDFs of the number of duplicates contributing to space savings by object.

The metadata, including object and block-level hashes, was extracted and stored in

a special file format outlined in Appendix A which completely describes each object

in the dataset. The special format takes up only 1% of the space used by the original

data. The format consists of a comma-delimited file with each row representing a

new object in the dataset. The columns hold the object name, hash, size, filesystem

permissions, and then individual 4KB block hashes with each block in its own column.

While this means some rows may contain several hundred thousand columns, the

format does not require placeholders for these columns in every row.

4.2.2 Direct Generation

Both the Makita and Oracle datasets were generated in the above representation

directly from tape backups. To create the Makita dataset, I augmented a tool which

scanned all files in that filesystem. For each file, a buffer was filled with the contents

of the file. 4KB was read from this buffer at a time and hashed to generate the

block hashes for the record. I modified the tools such that for each file, a 128-bit

hash was taken of the entire file to be used as the hash for that object record in the

representation. The name was also recorded and a system stat call used to obtain the

35

size and permission bits on the file for its record. The file and block information were

combined and outputted in my canonical representation format. This is repeated for

all files in the dataset.

Oracle’s ASM manages storage of Oracle databases. ASM writes data directly

in 1MB chunks rather than as files as part of a filesystem. These chunks can either

be written to addresses on an iSCSI object known as a LUN or within a large file.

For network-based storage access, the database is presented to ASM as a LUN, to be

written to directly, though on the server doing the storage, the LUN may be kept as

one or more files. For the Oracle dataset, I obtained the file representation directly

from the server which stored the Oracle database LUN. This was performed using

special access provided by the debug mode of a non-production FAS system which

the LUN was loaded onto from the tape backup. I read 1MB at a time from the file

representation of the LUN, generated a hash of that 1MB chunk as the object hash

in the representation, and then generated hashes of each 4KB within that object for

the block hashes.

For VMWare, data was generated using the tool below from characteristics out-

lined in section 4.2.3.

4.2.3 Duplication Dataset Generator

For various reasons, full access to large datasets is not always possible for researchers.

However, in some cases, broad characteristics of the data, such as the frequency of

duplication in the dataset, is available, as was the case for the VMWare dataset. I

created a tool which characteristics of a dataset, recreates a representation of that

dataset with the same distribution of duplicated hashes as those characteristics. Given

the characteristics of a dataset’s duplication - the frequency of each duplication count,

as seen in Appendix B - it is possible to recreate a representative dataset in order to

test new deduplication methods. The original data is represented by unique surrogate

hashes of the data.

The tool takes as input the overall rate of object duplication as well as the CDF

from section 4.1, expressed as a data characteristics table of the dataset’s duplication.

36

Figure 4-3: The Dataset Duplication Generation Tool. Given data characteristics,
a pool of the corresponding number of unique blocks is formed. An object compiler
assembles objects of the appropriate object size and object-level duplication from this
pool and builds a table of objects. As the table is built it is written out to a file. The
file is then imported to a prototype object storage system.

This table contains, for each duplicate count, the number of unique blocks which each

has that duplicate count. For example, a duplicate count of 5 with a unique blocks

count of 100 would mean that unique blocks with four duplicates each make up 500 of

the blocks in the dataset. Using the data characteristics table, the tool then populates

a block pool of all unique blocks to distribute, each represented by a unique fake hash

which is its ID. Along with the hash for each unique block, the number of copies

already distributed and to be distributed is tracked in the pool.

To create object representations, an object compiler takes some specified number

of blocks and puts their IDs together to form an object. The object is placed at

a random position in the portion of the object table currently buffered in memory.

The number of blocks is specified to create the desired object size. If more object

duplication is needed to meet the specified full object duplication rate and the object

will itself be duplicated some n times, only blocks with n copies remaining to be

distributed are selected so that several clones of this object can be placed. When the

current object table buffer is full, these object records are flushed to the object table,

a representation file on disk using the dataset representation in the section above;

the buffer then is filled again. A larger buffer improves the distribution of duplicated

objects across the representation file, so buffers one-tenth the size of the full dataset

37

were used.

This tool could be used on any dataset’s characteristics to produce a representation

suitable for research purposes beyond this thesis experiment’s method of locating and

relocating duplicates across nodes in a distributed storage system. It could be useful

for data duplication research which would like to use, without need for byte-for-byte

access, realistic workloads to determine if some new method may work well with for

space savings on that particular workload. The input format used by this tool is

fairly simple to create from an existing dataset. In fact, the fields used by the tool

may already exist for datasets which have been analyzed for duplication properties.

While the generation tool is fairly simple in concept, the implementation becomes

quite involved when trying to build a version which can scale to large datasets, in

this case over 1TB in size. Any researcher who wants the generation it provides may,

rather than build their own, benefit from this tool’s use.

4.3 Storage System Setup

This section describes the storage system used for the thesis experiments. This in-

cludes a description of the individual nodes and their assembly as well as the process

of loading the datasets from the canonical representation into the storage system.

4.3.1 Structure

To test my thesis, I built a prototype simulating a distributed storage system. To

build the system, I augmented a storage emulator developed originally by NetApp

for their internal use of modeling a distributed storage system with individual nodes.

These nodes have the facilities to allocate space and to store objects which they

are given. I created my system in C++ as a user-level process. The process reads

a configuration file specifying the number of nodes to simulate and the distribution

mechanism for objects across the nodes. Based on this configuration, the system then

creates the specified number of instances of the storage nodes. This is all performed

from the same user-level process, so all communication between the overall system

38

and each of the nodes is conducted locally by function calls. No RPCs are used. The

system-wide deduplication is managed by a global daemon running as a thread at the

overall system level.

While the storage nodes were capable of basic object storage, I modified the

code in several ways to make deduplication and this experiment practical. First, I

added object and block hash fields to the metadata for each object stored in a node.

Second, I created a new storage function, which creates only the metadata record

for a new object, including hash, but does not use disk space to store the actual

data represented. Third, I added functions to the nodes to locate duplicate object

internally, as described in the deduplication process section below, in such a way that

the full system could have each node report on its internal duplication.

4.3.2 Loading

To load the dataset representation as described in section 4.2.1, the storage system

is instantiated with the number of storage nodes as specified in the configuration

file. Each line of the dataset representation file is read in and parsed into component

attributes, and a request to store an object’s metadata is made to a node. In this

experiment, the distribution is randomized, as this seemed to be the method which

would produce the poorest in-node duplication characteristics for a generic dataset.

Because only the metadata was stored and no actual data blocks are written, it was

possible to keep many copies of the dataset spread across different numbers of nodes

for rapidly running series of experiments.

4.4 Analysis Process

I compared levels of deduplication across each dataset while varying the number of

nodes in the system and employing different cross-node deduplication methods. The

deduplication process within each node reports on the number of duplicates found,

which is aggregated by the global deduplication daemon. This information is collected

before and after each experiment to determine the effectiveness of the experiment.

39

Duplication is reported as the percentage of storage space saved. That is, the

number of duplicate objects or blocks which are duplicates of an original relative to

all objects or blocks in the original dataset. For example, if a dataset contains only

two objects and each is exactly the same, this will count as a single duplicate and be

reported as 50% duplication.

40

Chapter 5

Results

This chapter describes the effects on deduplication from distributing a dataset across

varying numbers of nodes and the results of using the cross-node deduplication meth-

ods developed in this thesis. In both cases, the level of deduplication is evaluated as

a fraction of the total duplicates in the dataset, found by comparing the hashes of

all objects present in the dataset. I also analyze the performance impact cross-node

deduplication has on the prototype system. I collected data on the levels of dedupli-

cation across the nodes of the prototype distributed storage system while performing

the experiments already outlined in this thesis. These results were obtained to de-

termine if the reference count hinting system is capable of restoring the duplication

space savings lost by distributing a dataset across many nodes.

5.1 Distributed Duplication Characteristics

The first results were collected without using cross-node hinting, locating duplicates

only within each node based on object hash. This was done in order to determine

the level of space savings lost through distribution, without using my reference count

hinting scheme. These results were compared to the savings found by comparing

all object hashes across the entire dataset, as in a centralized storage system. In a

distributed storage system, the object placement policies which cause duplicates to

not be placed within the same node, eliminating potential space savings. I measured

41

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

 1 4 8 16 32 64 128

P
er

ce
nt

 o
f T

ot
al

 D
up

lic
at

es
 L

oc
at

ed

Number of Storage Nodes Dataset is Distributed Across

Object Duplication Savings Rates with Varying Numbers of Distribution Nodes

Oracle
VMWare

Makita

Figure 5-1: Changes in the levels of object duplication space savings as the number
of nodes in the storage system increases, compared to the potential savings in a
centralized storage system. Deduplication is performed only between objects within
each node, without cross-node deduplication.

the effect on deduplication from distributing a dataset across a distributed storage

system. The potential savings of a cross-node hinting system is the amount of dedu-

plication space savings that is lost when that dataset is split across nodes. For each of

the three datasets whose characteristics are discussed in Chapter 4, a new copy of the

distributed storage system was instantiated with 4,8,16,32,64, and 128 storage nodes.

The storage system was then populated with the dataset, with random distribution

of objects across nodes. Each node performed deduplication internally on the object

level as well as on the block level in section 5.3.

As seen in Figure 5-1, the Oracle dataset loses very little space savings as it is

distributed across more nodes. This makes sense given that, as seen in Figure 4-2,

most duplication in the Oracle dataset comes from a few objects with many duplicates.

Datasets with mostly medium and low-count duplication take a very small hit to space

savings. Makita, with mostly lower-count duplication has its space savings cut to 1/5

of the original level by distributing across 128 nodes. Similarly, the VMWare dataset,

with low and medium count duplicates dropped to just under 1/4 of the original level

42

0

250

500

750

1000

1250

Base Single Node 128 Nodes Cross-node

S
pa

ce
 u

se
d

in
 G

B

VMWare Dataset Space Usage with Object Deduplication

22% space
 savings 3/4 of

 potential
savings lost

5%

21%

Figure 5-2: Changes in the space used to store the VMWare dataset without dedupli-
cation, deduplication with the entire dataset on a single node, deduplication within
each node when distributed across 128 nodes, and deduplication within each node
when distributed across 128 nodes after cross-node moves due to object-level hinting.

of space savings. With the exception of the Oracle dataset, at least 1/2 of space

savings is lost with distribution across more than 32 nodes, indicating that file and

virtual machine storage has high potential for space savings with a cross-node hinting

system.

5.2 Object Hinting

I performed experiments using the proposed cross-node hinting method on datasets

distributed across 128 nodes to determine what fraction of the potential duplicates

the hinting scheme locates. I selected this number because it was on the tail end of

distribution losses and makes each node store 10GB of data, the target size for the

experimental system under development at NetApp. In the accompanying graphs,

the ”Base” bar indicates the size of the dataset without any deduplication while

the ”Single Node” bar indicates the size with all potential duplicates found, as in a

centralized storage system. As seen in the results for the VMWare dataset in Figure

43

0

250

500

750

1000

1250

1500

Base Single Node 128 Nodes Cross-node

S
pa

ce
 u

se
d

in
 G

B

Makita Dataset Space Usage with File Deduplication

24% space
 savings 19/20 of

 potential
savings lost

 3/4 lost

6%

Figure 5-3: Changes in the space used to store the Makita dataset without dedupli-
cation, deduplication with the entire dataset on a single node, deduplication within
each node when distributed across 128 nodes, and deduplication within each node
when distributed across 128 nodes after cross-node moves due to file-level hinting.

5-2, the 22% difference between the ”Base” and ”Single Node” bars is the maximum

savings inherent in the data through object deduplication. This is the maximum level

the hinting method would like to attain. The 5% savings on the ”128 nodes” bar is

the space savings using only in-node object deduplication as in Section 5.1, after

distributing the dataset across 128 nodes, representing a loss of 3/4 of the potential

savings.

After identifying duplicates within each node and locating duplicates of these

across other nodes, duplicates of each object were moved to the same single node

and the new in-node duplication level examined again. This is the 21% shown on

the ”Cross-node” bar. This represents only a loss of 2% compared to the ”Single

node” savings, which is expected given that the greatest amount of duplication in

this dataset comes from objects duplicated around 100 times. Refer back to Figure

4-2 for more details. The time and space costs associated with this space savings will

be discussed later, in Section 5.4.

The Makita dataset, at 24% space savings, has similar potential object duplica-

44

0

200

400

600

800

Base Single Node 128 Nodes Cross-node

S
pa

ce
 u

se
d

in
 G

B

Oracle Dataset Space Usage with Object Deduplication

13% savings 12.2% 12.3%

Figure 5-4: Changes in the space used to store the Oracle dataset without dedupli-
cation, deduplication with the entire dataset on a single node, deduplication within
each node when distributed across 128 nodes, and deduplication within each node
when distributed across 128 nodes after cross-node moves due to object-level hinting.

tion to VMWare, but loses much more savings, down to 1%, when distributed with

deduplication performed only within each node based on object hashes. This is due to

the lower portion of objects with high duplicate counts. Similarly, when using hint-

ing to move duplicated objects across nodes, duplication space savings grows only

to 6%. While this is only 1/4 of the potential savings, it represents an increase to

five times greater space savings than without cross-node hinting. The reason why

the hinting technique fails to find most of the deduplication opportunities is that the

Makita dataset has a majority, about 3/4, of savings in objects duplicated less than

20 times, as outlined in section 4.1. So, thse objects were less likely to be found

duplicated within any given node and thus there was no attempt to deduplicate them

across nodes. With non-randomized distribution, locating duplicates within nodes

may be more likely, resulting in greater space savings, but given the large portion of

low-count duplication, much more savings should not be expected using this method

on the makita dataset.

The Oracle dataset has only a 1% loss of space savings when moving from a single

45

node to 128 nodes, leaving little room for improvements through cross-node hinting.

This lack of loss comes from the duplication characteristics of the Oracle dataset,

with most duplication savings found in objects with at least 20 million duplicates.

This leaves the deduplication within nodes alone as sufficient, given that 128 unique

copies of an object are negligible by comparison. In my experiment, only a 0.1% gain

was seen by using the cross-node hinting mechanism, because the predominance of

high-count duplicates left little room for improvement at all.

Overall, whole object deduplication-based hinting and cross-node object move-

ment achieves much better space savings than the space savings in a distributed sys-

tem without these methods, where deduplication is performed only between objects

within the same node. It is also possible that after using these methods, a stor-

age node could perform another form of deduplication internally, such as on a block

level, potentially achieving even greater space savings. In Section 5.4 we describe the

run-time overheads associated with object movement.

5.3 Block Hinting

Deduplication with hinting based on individual 4KB blocks has the potential to find

duplicates missed by the full object method. This is because there are more blocks

than full objects, so there is a greater probability of finding at least one block of

an object larger than 4KB duplicated within a single node than the whole object. I

constructed an experiment similar to the extent-based deduplication hinting above,

but using hinting based on duplication of individual 4KB blocks within each node

instead of full objects. This change increases the number of hashes being checked

for duplicates in each node by two orders of magnitude. Due to the prototype im-

plementation running on only a single computer, there was insufficient memory to

handle this duplicate identification for each node as well as the overall deduplication

daemon. This supports the motivation of this thesis, that full tracking of every block

in a distributed storage system by some central node is too resource intensive to be

practical, which is what the prototype was really attempting to do.

46

0

250

500

750

1000

1250

Base Single Node 128 Nodes Cross-node

S
pa

ce
 u

se
d

in
 G

B

VMWare Dataset Space Usage with Block Deduplication

82% space
 savings

 57% of
 potential
 savings
 lost

35%
40%

 51% of
 potential
 savings
 lost

Figure 5-5: Changes in the space used to store the VMWare dataset without dedu-
plication, block deduplication with the entire dataset on a single node, block dedupli-
cation within each node when distributed across 128 nodes, and block deduplication
within each node when distributed across 128 nodes after cross-node moves due to
object-level hinting.

Partial results were obtained for block-level deduplication with the VMWare

dataset, as seen in Figure 5-5. The first three bars are as in the graphs above,

with the 35% savings with 128 node distribution representing a 57% loss of savings

over the 82% ideal block deduplication savings. While it was not possible to run

the experiment using block hinting, I was able to obtain results on the level of block

deduplication after the extent-based hinting from the section above, with 40% savings

representing only 51% lost. This small gain in space savings is due to the mismatch

between hinting and moving at the object level but deduplicating at the block level.

While a duplicated object was moved between nodes its component blocks may have

been duplicates of other blocks in its original node, possibly causing a loss of space

savings rather than a gain. This is not the case for all objects, so there is still some

gain, but it is not as great a portion of potential savings as that gained when both

hinting and deduplicating with objects.

47

Node Hashes Before 10,000
All Interest Objects 4,500
Objects Moved 284,000
Objects Saved After 289,000
Node Hashes After 7,750

Table 5.1: Overhead statistics for VMWare dataset distributed across 128 nodes.

5.4 Overhead

Cross-node hinting, as with any form of deduplication, will require some overhead

both in data structures and the time taken to run any deduplication algorithms,

but this per-node hinting method attempts to limit the amount done by any given

node in the system, including the central deduplication daemon. In order to identify

duplicates within each node, step 2 in Figure 3-1, the set of all object hashes is stored

in memory as an ordered set, along with a mapping from each object hash to its ID

within the storage node for faster access. In the VMWare dataset, as seen in Figure

5.1, this is a set of about 10,000 hashes per node. Set insertions take log n time, so

given some o objects in the system, inserting them into a set can be done in O(o log o)

time.

In step 3, the central deduplication daemon collects the duplicates identified by

each node, removing any duplicates already identified by another node, and storing

only the unique interesting object hashes, u, across the entire system, only 4, 500 in

the VMWare dataset. Each node is then asked in step 4 to locate any matches to the

duplicates identified in other nodes, which can be done by comparing those u object

hashes to the set of hashes already stored by each node. This can be performed in

O(u log u) time.

After collecting matches between nodes in step 5, the global deduplication daemon

asks all but one node with each duplicate to move that duplicate to that one node in

step 6. My naive implementation simply had the first node to identify each duplicate

internally take the duplicates from the other nodes, such that a node with 8 copies of

an object internally might be asked to move them to another node with only 2 copies

rather than the other way around simply because one was identified after the other.

48

Node Hashes Before 89,400
All Interest Objects 61,600
Objects Moved 2,000,500
Objects Moved 86.5GB
Node Hashes After 80,400

Table 5.2: Overhead statistics for Makita dataset distributed across 128 nodes.

In the VMWare dataset, this resulted in 284,000 objects moved between nodes, which

is approximately 284GB of data, representing the majority of the 289,000 duplicate

objects identified after this process completes. After this process is complete, each

node continues to store a set of all hashes internally, but due to the aggregation this

averages only 8,400 per node, consuming very little memory.

The prototype implementation ran only once across the dataset in a single-threaded

manner such that each node was asked to identify duplicates one at a time. In a full

implementation, this would be done in parallel by all nodes at once, adding no com-

putation or storage factor per node as more nodes are added to the system. Further,

with a system running continuously and a periodic deduplication cycle, identification

of duplicates need only be performed on or with objects added to each node since the

last cycle, cutting the time required.

The overhead involved in deduplication for the Makita and Oracle datasets is

found in Figures 5.2 and 5.3. While the Makita data is similar to that of the VMWare

dataset, for Oracle nearly the entire set of duplicates was moved between nodes, for

very little gain, due to the Oracle dataset having so much duplication from a few

objects duplicated many times. This could be avoided with a more intelligent method

for determining moves after duplicates across nodes are located, by keeping track of

the number of duplicates already present in each node and setting a maximum level

at which there would be a move.

49

Node Hashes Before 5,600
All Interest Objects 71
Objects Moved 99,700
Node Hashes After 5,600

Table 5.3: Overhead statistics for Oracle dataset distributed across 128 nodes.

50

Chapter 6

Conclusion

As storage systems grow, it is necessary to distribute data over many storage nodes.

While some systems base their object distribution on content, this is a secondary

consideration in other systems, so potential space savings is lost as duplicates are

placed on different nodes. This thesis examined a method with little overhead for

regaining space savings by locating duplicated data across nodes.

Identifying and moving duplicate full objects between nodes, as demonstrated with

the VMWare dataset, can achieve nearly the same level of object duplication space

savings as is possible in a centralized system. As duplicate objects are identified,

moving all copies of that object to a single node requires little decision-making. By

contrast, if duplicate blocks are identified, even given sufficient memory to track all of

those blocks, deciding which object moves would result in the greatest space savings is

an NP-hard problem. Meanwhile, if object-based deduplication is already happening

within each node, there is little extra memory overhead involved in the cross-node

duplicate identification.

Using objects for hinting between nodes does not restrict a node’s internal dedu-

plication. A node can use block-level deduplication internally and make use of space

savings both from duplicate blocks in the duplicate extents as well as anyother block

duplication present. Using block or object-based deduplication internally, object-

based cross-node hinting can provide improved space savings with little overhead in

a distributed storage system.

51

52

Chapter 7

Related Work

I consulted many papers in the development of this thesis. The theoretical distributed

system for which the hinting system was developed is largely based on Ceph and Hy-

drastore, which are similar distributed storage systems with a focus on deduplication.

The Data Domain paper referenced made use of caching in a way which indicated

that hinting could be successful.

7.1 Ceph

Ceph [7] is an object storage file system which decouples the storage of objects from

the metadata about those objects. When a file is requested, the Ceph client contacts a

metadata server to open the file. The metadata server is able to respond quickly, and

the client is not required to contact the object server actually holding the data; rather,

the client is given the file inode which the client can use to determine which placement

group the file is in. Mapping of files to placement groups is done with a consistent

hashing algorithm operating on the file’s inode, which makes file access simple, though

it does reduce the potential node locality of multiple related files. From placement

groups, of which there are around 100, clients are kept aware of which object servers

are hosting which placement groups. This extra layer of abstraction is useful for

allowing dynamic allocation of resources and adding new servers.

This is a simple distributed object storage system which makes deduplication

53

possible across nodes by managing the distribution of objects across nodes based on

content. While each node is able to do the deduplication internally, seeming to solve

the problem this paper addresses, this is only possible because the clients perform

an expensive hash calculation. This thesis instead assumes the system must be ad-

dressable by existing filesystem protocols, making the former approach impractical.

Nevertheless, Ceph stands as a good reference on how a distributed filesystem with

deduplication as a high priority might work.

7.2 Data Domain

The Data Domain file system [9] is a deduplicating file system designed for streaming

data such as backups. As data comes in, it is broken into variable-length segments

by content. A summary vector, which uses a Bloom filter of SHA-1 hashes of the

segments, is queried to determine if the segment should be stored or if there may be

a duplicate of this vector already stored. If the segment is to be stored, it is placed in

the next available container. Containers are written to serially until filled and cannot

have data removed, such that if data is read back in the same order it was written

caching of containers will result in fast reads. If the summary vector indicates that a

duplicate segment has already been stored, each container’s metadata is checked for a

matching segment hash and when found the container for the new segment references

the container for the existing one. Due to the stream locality within containers, the

next segment to be written is also likely to be deduplicated against a segment in the

same container, so caching of container metadata speeds up the deduplication process

while writing.

While the streaming locality properties do not apply to a general object store, they

show that if one segment in a file has deduplication against another file, subsequent

segments may as well. This could be useful in reducing the work of finding potential

deduplication between nodes in a distributed system under a filesystem workload

similar to the file-based hinting described in Chapter 3 of this thesis. The use of a

Bloom filter to make central tracking of possible deduplication also seems like a useful

54

structure. Taking file sequentiality more generally as metadata about an object, this

paper shows that given some sampling, if two objects are duplicates of each other and

have some metadata which matches, then other objects which match on that bit of

metadata are more likely to be duplicates as well, which is the basis of this thesis.

7.3 HYDRAstor

HYDRAstor [3] is a deduplicating secondary storage system designed for fast writing

of long streams of data across a grid of storage nodes. As data comes in, it is divided

into variable-sized blocks based on content, and an SHA-1 hash is taken. Based on

the prefix of the hash, the supernode for that block is selected and checked to see if a

duplicate exists, in which case a pointer is inserted to the existing block. Otherwise,

the block is distributed in fragments across the peer nodes of that supernode. These

fragments are created using erasure codes with degrees of redundancy selected on a

per-block level.

Like Ceph, HYDRAstor provides deduplication as a primary goal of the storage

system, similarly distributing data across nodes based on content. While this system

does not require client hash calculation and awareness, the calculation is still placed

on the highest level, producing a potential bottleneck which would not be tolerated in

a performance-focused system. The fragment distribution could be used to improve

deduplication across nodes in a hinting system because each fragment is small, so

there are more chances for duplicates being located within a node, with a probability

greater than that of a full object’s being duplicated within a node, as tested in

this thesis. That information could then be used to deduplicate other fragments of

the same object between other nodes. This, however, would be dependent on the

implementation of storage at each node and is not broadly applicable.

55

56

Appendix A

Dataset Representation

The text below is a sample of four objects in the dataset representation format. Each

line represents a new object. The fields are: name, hash, size, permissions, block

hash, block hash,...,block hash

/html//home/index.html,1222dbbb99b88c5abdb28ecda3bd0a96,66538,644,469
ea2c2579b81326a6630596efec79b,9e4e51024b0af29493b24ee18b6323c8,7c0decc0657ca1e38
b5ed41f12ab505c,17576e3dc8cd338df8889aca57b8cdd4,66b362ff84762bb3541c5df3e963879
9,7cf5c500f2d305be8050960e81b7e638,e60bed5770b02b18ee3ebddc4ae91d6f,835a702a7ee1
0ea04fd1fdf7225a162,d3d1f9b41607a94bc0b6194ca087d43,8319b6fa4a9ae801810129a9c67c
1cbd,22b2fc4b324da7a13d5192ea7f4b2142,5a67c9e474f9f2a991765e712910c156,5a3966db1
a4b5ab9363fe963c9afb45d,346e1545ce5b67769f5aafd415cab30,a51202ccf2358574d3050863
8c3d2b0,602b3372d4872e71f037aec2d26c81ff,83c9c320a626ec8f6296da4bd863ba11

/html//home/index.html.old,e90ef6b3666d70344d7a65eeb7419ba4,66531,644
,b0b7220453edd7bd160ffd9c481b3556,a2ede70d22ac564faa9f6a8756808688,bdbfdceeb29eb
12ede12badb0a6cee8,d9212c4c4a382507e2597b572b621a18,26754bd2279d55d7b7db50162a68
5108,27c87f8cc21a25281f716272d846703,dddb305ff821e0f048ca863e7cf3c33c,9178f6bda3
8b6804c06e155bc6c7d242,a1d8c2b26bf25bf5a2b72fc532f0eaf0,670cbe97eba13bbaf0265c21
cd0d50e0,77d9f4c54045d28787c6d1a830e2d2,d548aed420cf0b0ec32322e8d06df821,edcea98
33fe93ec1f061c6244c68067f,45018a681e7541a48909b805dc115771,3737ce92ac425a17c684b
7ead953aa08,5ca5ed1a3500fe7597ad0e74ca2f62e,eab0853eb89956a39e5ecdc0ec8e337d

/html//home/index_alpha.html,392bb0e6883b5d191a085f0775c0f17f,75892,6
44,9d8224e2efd0f7687c70325c3e9bedbd,d1a1ba896e194f550ccee118eda6c0,ef35da35ee973
720ba5aff8af5fef1e4,10884be51b6886ad352fe5fccd00ed87,a79bd46f6cc8cbd3a91e1f14ed2
b18ca,4562d1df835fa929f44068ad6dc86b98,c178ba392f99fb6797932297f0988583,831f975f
38b15814758803f153a5f30,2e54744c2147189299188bd7b1fa5a99,edfeadb8ad97232442f59a4
756612cd8,ca00fcb5b7f1ec6c2f5fa9eca9174be1,99e58129e2e668e571481ea9ef8e7aca,c0b8
615b663a4807d3fdce2f79000305,61fc517b834ef130f1186cb476406c14,435663ca63794f44a0
78757035782f4d,1fa397d4b7580b2bc21430bdbafbdc56,68028d908d3432bdc4019f82511380d4
,4891a3dc9a14b575808b885b235e4840,ac8dc5f9bf1eddab6df2226da37edfcc

/html//home/.DS_Store,e407d022ebd2484fdd09d819300c90e4,6148,777,82c9b
e8713bbd3edcbb5e3af8efdc4f,52bf97f1529aa9e9b7c7e47dd548cb0

57

58

Appendix B

Generation Tool Input

This is a sample of the first thirty lines of the input to the Duplication Dataset

Generation Tool for the VMWare dataset. The right column is the count of instances

for each block, while the left column is the number of unique blocks with that count

of instances. This data can be graphed to produce the CDF of space savings found

in figure 4-1.

Uniques Count
45470312 1
6555889 2
2008324 3
1289601 4
819171 5
589635 6
421182 7
333212 8
258537 9
174660 10
241312 11
152619 12
154370 13
142634 14
132451 15
134092 16
98119 17
72556 18
62479 19
55415 20
37812 21
40887 22
46013 23
51424 24
38973 25
53168 26
39507 27
39788 28
34637 29
26617 30

59

60

Bibliography

[1] WJ Bolosky, S Corbin, D Goebel, and JR Douceur. Single instance storage in
Windows (R) 2000. In USENIX ASSOCIATION PROCEEDINGS OF THE 4TH
UNSENIX WINDOWS SYSTEMS SYMPOSIUM, pages 13–24, SUITE 215, 2560
NINTH ST, BERKELEY, CA 94710 USA, 2000. Usenix Assoc, USENIX ASSOC.
4th Usenix Windows Systems Symposium, SEATTLE, WA, AUG 03-04, 2000.

[2] Austin Clements, Irfan Ahmad, Murali Vilayannur, and Jinyuan Li. Decentralized
deduplication in san cluster file systems. In Proceedings of the USENIX Annual
Technical Conference, June 2009.

[3] Cezary Dubnicki, Leszek Gryz, Lukasz Heldt, Michal Kaczmarczyk, Wojciech Kil-
ian, Przemyslaw Strzelczak, Jerzy Szczepkowski, Cristian Ungureanu, and Michal
Welnicki. Hydrastor: a scalable secondary storage. In FAST ’09: Proccedings of
the 7th conference on File and storage technologies, pages 197–210, Berkeley, CA,
USA, 2009. USENIX Association.

[4] Bill May. Netapp deduplication for fas. NetApp Technical Reports, (TR-3505),
April 2008.

[5] C Policroniades and I Pratt. Alternatives for detecting redundancy in storage
systems data. In USENIX ASSOCIATION PROCEEDINGS OF THE GENERAL
TRACK 2004 USENIX ANNUAL TECHNICAL CONFERENCE, pages 73–86,
SUITE 215, 2560 NINTH ST, BERKELEY, CA 94710 USA, 2004. USENIX Assoc,
USENIX ASSOC. 2004 USENIX Annual Technology Conference, Boston, MA,
JUN 27-JUL 02, 2004.

[6] S Quinlan and S Dorward. Venti: a new approach to archival storage. In USENIX
ASSOCIATION PROCEEDINGS OF THE FAST’02 CONFERENCE ON FILE
AND STORAGE TECHNOLOGIES, pages 89–101, SUITE 215, 2560 NINTH ST,
BERKELEY, CA 94710 USA, 2002. USENIX Assoc, USENIX ASSOC. Confer-
ence on File and Storge Technologies (FAST 02), MONTEREY, CA, JAN 28-30,
2002.

[7] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell D. E. Long, and Carlos
Maltzahn. Ceph: A scalable, high-performance distributed file system. In Usenix
Association 7th Usenix Symposium on Operating Systems Design and Implementa-
tion, pages 307–320, SUITE 215, 2560 NINTH ST, BERKELEY, CA 94710 USA,

61

2006. USENIX Assoc, USENIX ASSOC. 7th USENIX Symposium on Operating
Systems Design and Implementation, Seattle, WA, NOV 06-08, 2006.

[8] Eric W. Weisstein. Birthday problem. From MathWorld–A Wolfram Web Re-
source. http://mathworld.wolfram.com/BirthdayProblem.html, December 2009.

[9] Benjamin Zhu, Kai Li, and Hugo Patterson. Avoiding the disk bottleneck in
the data domain deduplication file system. In PROCEEDINGS OF THE 6TH
USENIX CONFERENCE ON FILE AND STORAGE TECHNOLOGIES (FAST
‘08), pages 269–282, SUITE 215, 2560 NINTH ST, BERKELEY, CA 94710 USA,
2008. USENIX; NetApp; Google; Microsoft Res; pdsi; Seagate; SNIA; hp invent;
IBM; Natl Sci Fdn; Sun Microsyst; Yahoo, USENIX ASSOC. 6th USENIX Con-
ference on File and Storage Technologies, San Jose, CA, FEB 26-29, 2008.

62

