URBAN RESIDENTIAL INFRASTRUCTURE NETWORKS

BY
Reinhard K. Goethert
B. Arch.

North Carolina State University (1968)

SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS OF THE DEGREE OF MASTER OF ARCHITECTURE
at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
June 4, 1970

Signature of Author

$$
\text { Department of Architecture June } 4,1970
$$

Certified by
Thesis Supervisor

Accepted by
Chairman, Departmental Committee on Graduate Students

Rotch

DISCLAIMER OF QUALITY

Due to the condition of the original material, there are unavoidable flaws in this reproduction. We have made every effort possible to provide you with the best copy available. If you are dissatisfied with this product and find it unusable, please contact Document Services as soon as possible.

Thank you.

Page 13 has some text cut off. This is the best copy available.

June 4, 1970

Dean Lawrence B. Anderson
School of Architecture
Massachusetts Institute of Technology
Cambridge, Massachusetts
Dear Dean Anderson:
In partial fulfillment of the requirements for the degree of Master of Architecture, I hereby submit my thesis entitled "Urban Residential Infrastructure Networks."

Respectfully submitted,

Reinhard K. Goethert

Reinhard K. Goethert
Submitted to the Department of Architecture June 4, 1970; in partial fulfillment of the requirements for the degree of Master of Architecture.

ABSTRACT:

1. The context of the thesis is in the urban residential areas with primary regard for the physical planner.
2. The secondary nature and the generous design parameters of current practice in the development of infrastructure systems is re-examined in light of the staggering demand for new hous.ing stock within the next twenty years.
3. The large percent of the costs of urbanization that are directed into the investment of infrastructure systems is outlined in regard to the consequences of various layout patterns.
4. The major emphasis of the thesis involves a detailed survey of the primary infrastructures, but includes surveys of less vital networks also.
5. The collection and distribution systems of the infrastructure found in residential areas (water supply, sewer network, and storm drainage network) is stressed with respect toward the physical elements for proper planning.
6. Physical magnitudes and quantities are developed for the various networks for reference purposes to aid in the design process of the physical planner.
7. Comparisons are presented where available between practices in the United States and practices in developing countries, with primary focus on South America.

THESIS SUPERVISOR: Horacio Caminos, Professor of Architecture

The thesis is developed as an information document for urban residential planners. Current knowledge by planners of urbanizations include most of the physical and social aspects but preclude a concise, complete information background of utility networks. Generally, current planning volumes only include a sketchy data presentation with the underlying assumption that such aspects should be dealt with only on highly specialized engineering levels.

Infrastructure networks, particularly water, sewer and storm drainage, comprise a large percent of the cost of new urbanizations. Data from South America states that between 35% to 72% of the total costs of urbanizations are directed towards utility service requirements.

The residential infrastructure must be re-examined from many aspects but the fact that these elements constitute a major portion of the total cost of urbanization is the prime reason for a careful evaluation of current practices. Even a small saving in these utility systems would allow additional funds to be spent on other needed aspects of urbanization. The infrastructure cost becomes a large obstacle when discussed in the light of developing countries.

The planner should be more aware of where a major portion of the urbanization expenditures are invested. Apparently a contradiction exists in that the major portion of the planner's efforts are directed toward a minor portion of the urbanization costs.

The traditional approach of utility planning places its role as in a secondary service position; after a design has been established, the engineer installs a utility network that will answer the demands of the proposal, cost notwithstanding. The cost of the network layout will generally be the most efficient and economical under the circumstances, but perhaps the layout is not the most reasonable and economical when considered with the demands of the utility network as the determinate.

Undoubtedly there are various ways of developing urbanization which would benefit the added conditions of utility networks instead of forcing the utility network to be completely subservient to prior decisions.

The information here presented perhaps will make the planner more aware of the design conditions which a service network is forced to provide.

In the developing countries, and perhaps in the U.S. within the next 25 years as the population doubles, the traditional role of "secondary servant" of the utility networks will be reversed. Since the demand and need for housing is practically unlimited, the parameters of a utility network when optimized with minimum cost and highest efficiency should be a major design constraint of large scale urbanizations. With the infrastructure cost comprising a large percentage of total
urbanization costs, better planning policies must be followed where the constraint of utility systems must be included.

CONTENTS

INTRODUCTION
 2

CONTENTS 5
UNITS OF MEASUREMENT 8
I. THE INFRASTRUCTURE NETWORKS
A. THE WATER SUPPLY NETWORK 101. The Network Contexta. Componentsb. Required Components
c. Relative cost of components
2. Distribution Context
a. Componentsb. Quantity of water required
c. Percentage use of water
d. Quantities of water for fir flows

1) Requirements2) Fire stations
e. Pressure requirements
2) Function2) Comparison of standards3. Layout Context39a. General requirementsb. Standard layout examples
c. Examples of use
4. Sizing of pipes48
a. Quality of service
b. Parametersc. Diameter/dwelling/length relationd. Density relation
5. Developing Country Context 87
a. General deficiencies
b. Percentages of supply deficiencies1) Urban area2) South America
c. Relative costs
d. Planning for growth
1) Quantity
2) Costs
e. The value of meters
f. Conclusions and recommendations
B. THE SEWER NETWORK 98
1. The Network Context 99
a. Componentsb. Required components
c. Costs
2. Collection Context 109
a. Componentsb. Quantities
3. Layout Context 112
a. Criteria
b. Strategies
4. Sizing of Pipes 114
a. Diameter/trench depth/length
b. Diameter/dwellings
C. THE STORM DRAINAGE NETWORK 119
5. The Network Context 120
6. Collection Context 125
a. Quantity requirements
b. Runoff percentages
c. Combined or separate systems
D. THE ELECTRICAL NETWORK 130
7. The Network Context 132
8. Distribution Context 138
a. Layoutb. Street lights
E. THE TELEPHONE NETWORK 141
F. THE GAS NETWORK 143
G. THE STEAM NETWORK 144
H. THE REFUSE NETWORK 145
9. The Network Context 146
a. Componentsb. Disposal costsc. Composition of refuse
10. Quantities of refuse 155
11. Future Refuse Systems 157
II. COMPARISON AND CORRELATION OF THE INFRRASTRUCTURES 160
A. COMPARISON OF THE WATER NETWORKS 161
B. SEQUENCING OF THE NETWORKS 162
C. COST FACTORS 163
12. Relative Costs in the United States2. Relative Project Costs
D. LAYOUT CONTEXT 1651. Cross-sectional layouts2. Duplicate Layouts
13. Alleys
14. Areaways5. Easements
E. COMPARISON OF DESIGN PERIODS 174
F. PIPE CONTEXT 178
15. Requirements
16. Materials3. Material to size available
17. Capacity to size relation
18. Pipe Costsa. Cost per linear footb. Cost per unit capacity
III. BIBLIOGRAPHY 191

UNITS USED IN REPORT

	UNITS UNIQUE TO WATER ENGINEERING	BRITISH SYSTEM （foot，pounds， second）	METRIC SYSTEM （meter，kilo－ gram，second）	CONVERSION CONSTANTS
	head（hd）	pounds per square inch （psi）	kilograms per square centi－ meter （ $\mathrm{k} / \mathrm{cm}^{2}$ ）	$\begin{array}{lll}\mathrm{hd}=\mathrm{psi} & \mathrm{x} & .434 \\ \mathrm{psi}=\mathrm{k} / \mathrm{cm}^{2} & \mathrm{x} & .34 \\ \mathrm{k} / \mathrm{cm}^{2}=\mathrm{psi} & \mathrm{x} & .07\end{array}$
号		feet per second （fps）	meters per second （mps）	$\begin{aligned} & \mathrm{mps}=\mathrm{fps} \times 3.28 \\ & \mathrm{fps}=\mathrm{mps} \times .305 \end{aligned}$
		gallons per capita per day （gpcd）	liters per capita per day （lpcd）	$\begin{aligned} & \text { gpcd=lpcd } \times 3.78 \\ & \operatorname{lpcd}=\operatorname{lpcd} \times .265 \end{aligned}$
$\begin{aligned} & \text { 各 } \\ & \text { 分 } \end{aligned}$	gallons per minute （gpm）	cubic feet per second （cfs）	cubic meters per second （cms）	$\begin{aligned} & \mathrm{cfs}=\mathrm{cms} \times 35.4 \\ & \mathrm{cms}=\mathrm{cfs} \times .0283 \\ & \mathrm{gpm}=\mathrm{cfs} \times 448.8 \end{aligned}$
		gallons （gal） acres （ac）	liters （1．） hectares （ha）	$\begin{aligned} & \text { gal=3.785 liters } \\ & \text { liters=0.2647gal } \\ & \mathrm{ac}=.4047 \mathrm{ha} . \\ & \mathrm{ha}=2.471 \mathrm{ac} \end{aligned}$
		people per acre （ p / ac ）	people per hectare （p／ha）	$\begin{aligned} & \mathrm{p} / \mathrm{ac}=.4047 \mathrm{p} / \mathrm{ha} \\ & \mathrm{p} / \mathrm{ha}=2.471 \mathrm{p} / \mathrm{ac} \end{aligned}$
		$\begin{aligned} & \text { feet } \\ & (\mathrm{ft}) \end{aligned}$	meters （m）	$\mathrm{ft}=0.3048$ meters $\mathrm{m}=3.281$ feet

All pipe diameters are given in inches．Common practice in the North and south American continents is to use the size under which the pipes are manufactured，generally in North America and thus in inches．

STORM DRAINAGE

SCOPE OF THE STUDY
1: The context is considered to be in the urban residential context only

2: The major portion of the study is concentratcd in the DISTRIBUTION and COLLECTION components of the water network since these components will have the greatest direct impact on the planning of a urbanization

Today, about 1200 million people live in urban areas. In 1980, there will be about 1700 million (a 42% increase) and by the year 2000 there is the possibility of a population of more than 2500 million (a 47% increase). This vast scale of urban population growth is a measure of the magnitude of future water needs.

The provision of the urban water supply is a basic factor in economic development. If no adequate supplies exist, economic losses result. Manpower is wasted, production may decline of goods and foods, fire protection may become impossible and other urban improvement schemes such as housing and urban sanitation may fail.

Generally the pollution of water with human wastes is the chief reason for the spread of the enteric diseases. Such pollution constitutes a potential health hazard in all densely populated areas where drinking water is not supplied through a pipe network from properly treated supplies.

The primary uses of water are drinking, cooking, washing, and as a vehicle for the transport of human wastes. The largest percentage of water is used for waste transportation in the sewer network.

COMPONENTS OF THE WATER SUPPLY NETWORK

COMPONENT:
WELLS,SPRINGS, INFILTRATION GALLERIES

FUNCTION: receives water from underground seepage

RESPONSIBILITY: dependent on scale; large scale developer furnishes; small scale individual

CONTROL: collection systems deeded
in all cases regional board controls
size is dependent on rainfall, evaporation rate, and runoff
hilly terrain is best for use of the catchment area
a 25-50 year design period
supply determines scale cities over 500,000

New York, Boston
large scale econmical supply
dry seasons may affect supply; may require long distance transmission lines

COLLECTION- TRANSMISSION- TREATMENT - DISTRIBUTION

COMPONENT: Transmission lines
FUNCTION: Conveys water from collection source to area of use; generally from watershed areas or distant lakes not used in connection with wells, adjacent lakes.

RESPONSIBILITY: developer finances and installs
CONTROL: deeded to city
CHARACTERISTICS: generally composed of pipe sizes over $24^{\prime \prime}$ or large covered channels; 48" not an uncommon size of pipe. For this use, New York City uses 180" \& 204" pipe.
gravity flow systems mostly used and are the most economical. Sometimes the water is pumped if necessary. 20-25 yr. design period.
transmission lines should be kept to a minimum in length because of the high cost for installation.

SCALE OF
DEVELOPMENT: " determined by supply available, distance determined by the size of pipe and resultant pressure loss of transmission lines.

COMPONENT:
FUNCTION:

RESPONSIBILITY:
CONTROL:

CHARACTERISTICS: treatment process consists of removing solids and purifying. Objectionable taste, odor, temperature and color are altered to desired quality of water.
a service storage system is generally used to store the water supply after purifying.
prime but remote areas may be developed by staging the filtration system. Only initial needs are met; they may then be economically annexed by the city as expansion occurs.
initial costs are high.
20-25 year design period

TREATMENT SYSTEMS - CONT'D.

STEPS IN PROCESS OF TREATMENT:
aeration: oxidation of iron, removal of CO_{2} and other dissolved gases, and addition of oxygen to water
sedimentation: settling out of heavy suspended matter; process speeded by addition of ALSO_{4} to coagulate colloidal matter
filtration: removal of solid particles
disinfection: addition of chemical which kills bacteria causing disease; usually chlorine is used.

Treatment plants generally have a capacity of $1 / 2$ to $1 / 3$ of the required capacity for the system.

SCALE OF DEVELOPMENT: Limited by supply and cost which developer is willing to assume.

DISTRIBUTION SYSTEMS - CONT'D.

ADVANTAGES :	```avoids dupli- cation of large feeder lines```	provides flow backup if break occurs, allows easy maintenance, fits pattern of streets easily.
DISADVANTAGES:	water 1iable to quick stagnation	Many duplicate lines
	No cross connections in reserve for repairs	No clear idea as to how water flows in system
	usually difficult to size for fire flows	

A developer is generally faced with three alternatives for the distribution of water for a proposed urbanization.

1: Connection to an existing system
2: Development of a new system
3: Reliance on individual systems
Whether the site under consideration is located within a major distribution grid, as in an urban area, or outside a major distribution grid, as in newly developed fringe areas, the alternatives remain the same. The various components necessary for each decision are illustrated in the following chart.

REQUIRED COMPONENTS

WATER SUPPLY SOURCE

	EXISTING WATER SYSTEM	NEW SYSTEM	INDIVIDUAL SYSTEM
COLLECTION	not applicable	best source from rivers, lakes. well fields are more expensive	wells, cisterns
TRANSMISSION	(required if outside distribution area)	transmission lines should be minimized because of cost	not applicable
TREATMENT	not applicable	must meet U.S. public health standards	(sometimes chlorine treatment necessary)
DISTRIBUTION	connection of new system of mains and services to existing grid;might require pressure boost pumps	new distribution grid of mains and services must be laid	pumped flow to dwelling required
SCALE OF DEVELOPMENT	limited by city supply available; min.economical density: 10/ha.	limited by water supply and amount invested; min. economical density $10 \mathrm{p} / \mathrm{ha}$.	individual lots; less than 10 p/ha.
ADVANTAGES :	lower costs, a proven reliable system	no dependence on city system if the supply is inadequate or faulty	an economical supply
DISADVANTAGES	if city supply is faulty, reliance on bad system	high first cost; duplication of city system	seasonal variation possible, danger of pollution, must tie-in with city

The total first cost for a system is approximately $\$ 300$ per person in the United States, based on estimates in 1965.

This figure may be contrasted with costs of $\$ 25$ per person in developing countries as recommended by the World Health Organization in 1965. One must keep in mind, however, that consumption per person is appreciably lower and the type of service demanded is of a different standard in developing countries with predominately low income sectors.

			ACCESS POINTS				24	
		+-					DISTRIBUTI	COmponents
			INDIVIDUAL					
Component:	distribution mains	distribution lines	gervice lines	Standpipes	fLow meters	free flow connections	fire hydrants	VaLVES
function:	Supplies water to distribution lines	supplies water to house lines	supplies water to individual dwellings	supplies public faucet	controls flow of water	allows use of any amount, controls by amount; controls by cost of water	accessible water sources to smother fires	$\begin{aligned} & \text { provides main- } \\ & \text { tenance and } \\ & \text { failure cutoffs } \end{aligned}$
Responsibility:	developer finances and installs, if oversized (for expansion) city usually contributes to costs		house lines are individual	installed by city or developer	individual		installed by deve	oper
CONTROL: CHARACTERISTICS:	deeded to city in both cases		house lines are individual	deeded to city		Elat rate of water per time unit usually higher water use than if with metered by a factor of 2	deeded to city	
	pipe sizes $12^{\prime \prime}$ and over are considered mains (U.S.)		3/4" min. house pipe USA Code; to $11 / 2 " ;$ sometimes 1/2"	pipe size determined by expansion potential	use of meters cuts use of water by approximately one-		may only be placed on 6 " pipe for adequate flow capacity	usually placed at intersections
	max. pressure of 130 psi, 40 average, 20 psi min. sized with 250 gpcd capacity usually cast or spun iron; asb pvc or reinforced concrete als	pressure ranges from 20 to 60 psi, 40 average bestos-cement, o used	min. pressure 8 psi for fauc flow capacity varies from 20 to 150 gpcd (US)	capacity of 1.5 to 5 gpca, dependent on distance from standpipe. 5 gpcd standard designed for temporary use of full development	half requires extra pressure for operation, high friction loss first cost is high,	metered by a factor of 2 does not require extra pressures for operation	pressures of 20 to 60 psi allowed if fire department have pumper trucks; pressures above 60 psi necessary if no truck augunentation available	$\begin{aligned} & \text { spacing is } 100 \mathrm{~m} \\ & \text { to } 200 \mathrm{~m} \text {. } \end{aligned}$
	designed for peak daily flows 20-25 year design capacity	designed for peak hourly flows	copper most common pipe; steel, lead and pvc also used in pipes		\$35-70 (US) recommended when cost of operation high,	no installation costs recommended if there is an inefficient	fire flows of approximately 175-250 gpm required, dependent on size of community	
	average miles of mains per 1000 population: 2.6: range: communities	extension; 4": not suitable if growth of demand; extensions 8": for reinforcement lines	designed for probability of use per minute designed for full use		quantity of water limited, and treatment of water required	collection and read ing service and if water is relatively cheap and available	spacing of hydrants from 60 m . to 125 m ., dependent on property value; usually street intersections	
SCALE OE DEVELOPMENT:	400/600 meter distribution grid	each block of development	individual dwelling	100 to 300 meter				

DETERMINANTS: The quantity of water used by an area or by a person determines the supply necessary which the collection facilities must furnish. The quantity of water varies with several factors.

1. size of community
2. location of community in relation to climatic conditions; cities in northern areas generally use more water than comparable cities in the south.
3. rainfall; the more rainfall, the lower the water use since less water is expended for gardens and lawns.
4. character of an area; three classifications are used in connection with water demands: industrial, commercial and residential; residential areas may be broken down into high, medium and low cost areas, low cost areas generally use less water.
5. pressure; the higher the pressure, the more water used; more water is lost through leaks and the waste of water is increased in the faucets.
6. quality; better quality of water is known to instill confidence in its users and result in an increased use.
7. air conditioning; the seasonal demand of water for air conditioning use increases usage by as much as 5 to 7 times.
8. sewers; the installation of sewers increases water use from 50% to 100%.
9. cost of water; slight variations of water use are noted as the cost of water decreases.
10. use of meters; installation of meters decreases use by approximately $1 / 2$.
11. rise in standard of living.

QUANTITY OF WATER DEMANDED - CONT'D.

MAIN DETERMINANTS:

1. Future population estimates, dependent on growth rates, migration shifts, etc.
2. Design year of system selected; a 20 year system must be designed larger than a 10 year system.
3. Per capita consumption of water.

UNITS:
-gallons per person per day: usual means of measurement
-acre feet of water: used in storage areas, reservoirs
-gallons per minute: rate of water demand.

DESIGN
IMPLICATIONS: The developer must know the area in which he is building in order to adequately judge the amount required, past use of neighboring areas may be used as guidelines.

When planning for various projects with variable income characteristics, the developer must include future potential use as standards of living rise, with the increase of airconditioners, more pumping fixtures, and if not previously included, sewer lines.

WATER DEMAND PER PERSON PER DAY

Per Person Per Day	
Liters	Gallons

Physiological minimum_1_(1 quart)

Range of use in the United States: 35 to 546 gallons/person/day Range of use in England: 20 to 40 gallons/person/day

FACILITY	GALLONS PER DAY	UNIT	COMMENTS
SCHOOLS	15	per pupil	without gym, showers, cafeteria STORES
OFFICES	25	per pupil	with gym, showers, cafeteria RESTAURANTS
100	per toilet	room	
	12	per worker per patron	without bar

Based on US standard practice

Based on study of 100 largest cities in the United States, 1962. (R:9)

The major water use by the water closet should be re-examined in light of alternative disposal methods. The savings here would almost double the number of consumers which may be supplied with water.

Although the amount of water used yearly for fire fighting is small, the amount required for adequate protection for the area in the U.S.A. usually determines the size and supply of the entire system, especially in the smaller towns. Pumps, pipe sizes, supply requirements and storage facilities are all sized for the fire flow and usually not for the demands of per capita consumption.

HYDRANT FLOW REQUIREMENTS: minimum of 175 gpm in low risk areas;
250 to 300 gpm in high risk areas;
(four are required per area) 600 gpm used in normal design at each hydrant

SYSTEM FLOW REQUIREMENTS: dependent on population and general structural conditions of area. $1,000 \mathrm{gpm}$ for 1000 population $12,000 \mathrm{gpm}$ for 200,000 population with max. of $20,000 \mathrm{gpm}$.

DURATION OF FIRE FLOWS: five hours for towns of less than 2,500 population; ten hours for larger cities.

PRESSURE REQUIREMENTS:

> 20 psi minimum if mobile pumpers available (usually found in large cities); over 60 psi if pumpers not used (usually found in small cities); in some cities separate high pressure lines are located in areas of high intensity/high land value which are primarily used for fire fighting; booster pumps are used by some cities to augment the system pressure when a fire develops; waste losses are reduced and simpler operations result (found in medium to large cities).

The maximum amount of water needed in a system is the sum of the fire flows and the demands of the population. In practice, usually 40 gallons per person are added to take care of fire requirements, in the belief that the chance of a fire and the maximum peak demand of consumption are unlikely to occur at the same time.

It is estimated that 60% of the pipe network cost is due to oversizing of the system for fire flow standards. Perhaps other techniques as foam or fog systems for controlling fires should be investigated for smaller communities.

British requirements are not standardized nationally, but are left to each water system to decide. Usually the system is not designed for fire flows and the demands of consumption are first met; fire flow requirements are secondary. Therefore, it is not surprising that 50% of all pipes in London are 4 '; whereas 6" is standard in the U.S.

The importance of fire flows in the United States context should not be underrated. The pipe network, the water source, hydrant spacing and even appointment of water officials are some of the criteria used in judging municipalities by the Fire Underwriters. A deficiency scale of one to ten is established by the Underwriters by which each community is rated. A low rating results in high fire insurance premiums for the city and its residents. The cautious attitude toward fire dangers in the United States is understandable when onelooks back into its brief 200 year history. It will be seen that most of the major cities have suffered a severe or complete fire loss. San Francisco, Chicago and Boston are but a few that have suffered intensive damage due to fires. Perhaps the local availability of wood and its extensive use in structures allowed these holocasts to occur. Today, however, fire proof buildings are required. Perhaps the fire requirements of the past should be reevaluated in planning new developments.

FIRE ENGINE STATION REQUIREMENTS

REQUIRED SPACING:

RECOMMENDED LOCATIONS:
at intersections, off main streets, ample space from curbs

LOCATIONS TO AVOID:
near railroad tracks,other barriers, hillsides, on bottom of hills, on main streets, on one way streets

FUNCTION:

SOURCES :

UNITS:

The amount of pressure in the system determines the rate of flow, or velocity, of the water. The higher the pressure, the greater the volume of water that will pass a given point.

Pressure is lost through friction of the pipe walls, fittings and bends. Thus, indirectly, the amount of pressure determines the distance that water will flow through a given pipe. For example, a $6^{\prime \prime}$ pipe will serve dwellings for a distance of x meters at y pressure; if one doubles the pressure, the pressure of $2 y$ will serve dwellings for a distance of approximately $2 x$ meters.

Pressure is the potential energy unit of water. Two ways are used to develop increased pressure.

1. Elevation: gravity provides the energy.
2. Pumping: energy is induced artificially through the transfer of energy from electrical or mechanical modes.

Feet of head: historical measure from a gravity source
Pounds per square inch (PSI): pressure per unit area
Kilograms per square centimeter: metric pressure per unit area

PRESSURE REQUIREMENTS - CONT'D.

CRITERIA: \quad 1. Minimum pressure needed for faucet flow is 8 psi. Thus, a minimum pressure of 8 psi should remain at the farthest reaches of the network for satisfactory service. (US).
2. Adequate pressure must be in a system to service an entire network along the lengths of pipe used. The minimum standard in the USA is 20 psi.
3. Pipes should be sized to achieve a minimum pressure (or friction) loss. 3-5 ft. head loss per 1000 ft . for 24"; 25 ft./1000 for $4 "$ pipe.
4. Pressures over 60 psi are not needed for fire flow requirements.
5. A pressure of 130 psi is considered to be the upper limit.

DESIGN
IMPLICATIONS: Pressure over 60 psi induces high leakage losses in a system.

The higher the pressure, the more water consumption per person.

Pressures over 60 psi necessitate stronger and consequently more costly pipe.

Since larger pipes have a smaller circumference to volume ratio, the friction (or pressure) loss will be proportionally less, so larger pipes allow greater lengths.

*High services are areas where elevation changes force higher than normal pressures in order to reach the peak elevations; elevation changes of more than 200^{\prime} normally require separate service areas.
($\mathrm{R}: 6,9$)

CINVA (Organization of American States)
APHA (American Public Health Association)

14 to 21 psi
55 psi
75 psi

Pressures above 60 psi require higher technical skills for jointing and proper pipe bedding. Stronger pipe and consequently more expensive pipe are required for the higher pressures. High pressures above 60 psi result in high leakage losses and increased consumption of water by the consumer.

In the U.S., 60 psi is the maximum recommended for a system if a pumper fire truck is utilized by the city. Pressures above 60 psi, and up to 130 psi, are recommended if the city relies on pipe pressures for fire fighting.

CINVA standards do not take into consideration fire flow requirements. The standards proposed are reasonable from technical proficiency aspects and use demands of developing countries.

APHA (US) plans for fire flows but the use of pumpers is required. Pressures are adequate for 4 to 5 story service as demanded in municipal areas.

AID standards, designed for low income developing areas, are impracticable. The system would be adequate for fire flows without the use of pumpers, which the case would be in developing areas. However, the technical skills needed for installation and the added expense of piping and water consumption nullify the gains for fire fighting. Developing areas are not likely to have a trained professional body of technicians available for water network installation. The higher costs of pipe and consumption are also not able to be justified when viewed from developing economic systems with their inherent capital shortages.

CRITERIA: \quad. Adequate pressure of system to allow flow of water between grid spacing; dependent on pipe diameter, demand and initial system pressure.
2. Sufficient linkages in network to continue service to all dwellings in case of failure or fire demands.
3. Layout must respond to fire demand at all dwellings; the spacing of hydrants is based on the length of common fire hoses. Thus, networks must be within 100 meters of all dwellings or fire protected areas.
4. Networks must be sized to fulfill demands imposed on it from peak loads.
5. The network should use the minimum number of pipe sizes as possible.

Main layout:
use of two smaller mains on separate blocks better than one large main
trunk mains (major feed lines) should not be located on major circulation routes
lines should be spaced 10' from sewers and at least l2" above sewer line to prevent infiltration
min. pipe size is $6^{\prime \prime}$ (U.S.).
Dead ends:
min. size is 8"; 4" are used for short runs (U.S.)
dead ends should be avoided if possible, fungus growth, high maintenance factors, regular cleaning of lines to inhibit stagnant water and poor fire fighting ability discourage common use.

```
STANDARD LAYOUT PROCEDURE (US)
```

The standard layouts are based on fire flow parameters. The pipe sizes and the spacing are considered precise enough to only warrant the exact determination of the major supply lines.

GENERAL REQUIREMENTS:
Gate values are spaced every 240 meters; in high value areas spacing is 150 meters
Hydrants are spaced from 60 to 92 meters
A PSI of 30 is recommended; 20 PSI is accepted in non-peak hours; a residual pressure of 10 PSI is required

LIMITS OF ONE-WAY LAYOUT:
8" minimum dead-end size, no defined length limit
LIMITS OF TWO-WAY LAYOUT:
6" \rightarrow - $-(183$ meters (smallest allowable pipe size)
8" \rightarrow \&over 183 meters; for high value areas

RESULTANT GRID LAYOUT:

(R:9)

This layout is developed for domestic use only; it will not meet standard fire flow conditions; pipe sizes of less than $6^{\prime \prime}$ will not support fire hydrant flow requirements.

LIMITS OF ONE-WAY LAYOUT:
$2^{\prime \prime} \rightarrow \cdots \cdots . . . \mid 92$ meters
$3 ">-192$ meters

LIMITS OF TWO-WAY LAYOUT: (maximum cross-main spacing is 183 m.)

$3^{\prime \prime} \rightarrow-\cdots-\cdots-\leqslant 183$ meters

$6^{\prime \prime} \rightarrow$ no defined limits

RESULTANT GRID LAYOUT:

(R:6)

LOT AREA:
DENSITY:

320 square meters
80 people/ha.

20 dwellings/ha

AVERAGE INCOME: $\$ 5630 / \mathrm{yr}$

(R:53)

WASHINGTON PARK, Boston

LOT AREA:
DENSITY:
125 people/ha
31 dwellings/ha

(R:53)

XISTLi:G WiATLR NETWORKS

WASHINGTON PARK

SOUTH END, Boston
LOT AREA: 144 square meters

DENSITY: $\quad 170$ people/ha
100 dwellings/ha

(R:53)

SIZING OF PIPE LAYOUTS

The intent of this section is too give the planner an idea of the magnitudes and variables of pipe diameter to number of dwellings served

RELATION OF FLON TO NUMBER OF DWELLINGS SERVED: P VALUES

This chart shows the various probilities of consumption related to the number of dwelling units as proposed by various authors. From this chart the quality of service, or ' P ' value, is derived. The curve which best approximates the lines on the chart is the parabola: $\quad(G P M)^{2}=2(P)(D U)$

CURVES AS PROPOSED BY VARIOUS AUTHORS

1. Maximum demand $=9 \times$ average daily flow
2. Maximum demand $=100+25$ (no. of $D U)^{1 / 2}$ for less than 625, Calif.
3. Fixture unit basis,flush tanks;l bath,lof.u. per house
4. Kuranz; flush valve system
5. Kuranz; flush tank system
6. Taylor; small house, small lot, very little lawn sprinkling
7. Taylor; average $2-3$ bedroom house, average lawn sprinkling
8. Fixture units; 2-bath house, 19 F.U. at peak discharge
9. Fixture units; 2-bath house, 19 F.U. average discharge
($\mathrm{R}: 6,159$)

The graph is based on the average American family size of 3.0 (approximately) people per family. An average family population of 6.0 persons per family as found in many of the developing countries would not shift the graph down by a factor of two; but would increase the probability of use by some factor of less than two.

HIGHEST QUALTIY OF SERVICE: upper parabola curve of flow and dwelling relation; $\mathrm{P}=500$.

A single dwelling unit is considered to use approximately 33 gpm at peak flow.

The dwelling would have:
2 bathroom groups
1 kitchen group
4 outdoor faucets
1 service sink
washer, air conditioner, and lawn sprinkling
IMMEDIATE QUALITY OF SERVICE: middle parabola curve of flow and dwelling relation; $\mathrm{P}=82.5$

A single dwelling is considered to use approximately 13 gpm peak flow.

The dwelling would have:
2 bathroom groups
1 kitchen group
2 outdoor faucets
1 service sink
little lawn sprinkling, some washer use
MINIMUM QUALITY OF SERVICE: lower parabola curve of flow and dwelling relation; $\mathrm{P}=12.5$.

A single unit is considered to use approximately 5 gpm at peak flow

A single unit would have the following:
1 water closet
l kitchen faucet
1 bath faucet

```
FORMULA USED IN DETERMINING FLOW VALUES
```

The Hazen Williams formula based on empirical studies in the late 1800 's is still accepted by hydraulic enginners as being a reasonable means of computation. Various of this formula have been proposed but most engineers resort to this formula in practical applications.

$$
\begin{aligned}
& \mathrm{V}=0.0131 \mathrm{CH}^{0.54} \mathrm{D}^{0.632} \\
& \mathrm{Q}=0.0103 \mathrm{CH}^{0.54} \mathrm{D} 2.63
\end{aligned}
$$

$\mathrm{V}=$ velocity in feet per second
$\mathrm{C}=$ coefficient of friction, varies with pipe interior and age; $\mathrm{C}=100$
$H=$ head friction loss, feet per 1000 feet of pipe $D=d i a m e t e r$ of pipe in feet
$Q=$ rate of flow in cubic feet per second

QUALITY OF SERVICE
Three levels of the quality of service are used:

1. High quality: $P=500$ above average dwelling in regard to water consumption 2. Intermediate quality: $\mathrm{P}=82.5$ average water consumption per dwelling 3. Low quality: $P=12.5$ minimum consumption of water

VELOCITIES OF FLOW

Velocity=2 feet per second
A minimum condition of water flow; below this value, water tends to stagnate and fine sediments settle out into the pipe network

Velocity=4 feet per second Considered an economical flow for minimum friction loss with reasonable pressure requirements

Velocity=6 feet per second Considered to be the upper economical range of water flow; above this value the high friction loss requires higher pressures with a greater pumping cost; higher pressures require stronger pipe and result in high water waste through leakage (flows may go up to 15-20 fps when fire flows dictate)

LENGTH
The length values are derived from the allowed friction loss, pipe diameter, and velocity parameters.

A pressure drop of 12 psi is considered to determine the length. Initial pressure in the most extreme case is taken to be 20 psi, the recommended lowest pressure in a residential situation. The end pressure is taken as 8 psi ; the pressure required for proper faucet flow.

Fire flows are not considered in the determination of the length. An additional 600 gpm would be required to be added to the gpm derived from the velocity parameters.

The length is the maximum distance the water would flow in a one way system (feed from one end only) under the stated parameters.

FLOW CHART OF DWELLINGS TO PIPE DIAMETER

QUALITY OF SERVICE 'P'

NUMBER OF DWELLINGS allowed per given pipe diamter and velocity

The intent of this section is to show the resultant densities from variations of pipe diameters, water velocity, and size of area served. The density values are given in dwellings per hectare.

PARAMETERS: VELOCITY
Velocity of 2 feet per second:
Minimum condition of water flow to prevent stagnation and silting of pipes

Velocity of 4 feet per second; Considered an economical flow for use in design of areas

Velocity of 6 feet per second:
Considered to be the upper range of economical flows in pipes.

QUALITY OF SERVICE
The three standard qualities of service are used: high, intermediate, and low.

```
THEORY OF FLOW INTO PIPE GRID
```

1: It is assumed that a grid composed of four sides would have equal diameters of pipe on its sides.

2: It is assumed that the capacity of a pipe on the grid side is related to the demand of the grid by a factor of two. The amount of flow of a pipe on a side of the grid is one quarter of the amount of the flow demanded by the entire area of the grid served.

3: It is assumed that the entire capacity of water of the pipe flow is expended. Since the pipe network is nested hierachly, each succeeding pipe size would furnish the demands of the next smaller size below it in rank.

LIMITS OF THE DENSITY VALUES

In the United States context with approximately 3.0 persons per family, the density value of 500 dwellings per hectare is taken as the upper reasonable limit. The upper limit is based on the maximum density of 1500 persons per hectare as found in Hong Kong .

For developing countries or situations where 6 persons per family is the rule, the limit of 250 dwellings per hectare is taken as the upper limit.

Values above 500 dwellings per hectare are not printed on the chart but are noted as '****'.

LIMITS OF THE FRICTION LOSS VALUES

A loss of 25 feet of head for a 4" pipe per 1000 feet is considered to be the maximum allowed; for a $24^{\prime \prime}$ pipe, the allowed head loss is 4 feet of head per 1000 feet. Consequently, the charts are noted with "HIGH" above the pipe diameter if the graph of the limits are exceeded. As the pipe approaches zero (the worst condition) the friction loss approaches 30 feet of head per 1000 feet.

FORMULA: Allowed head loss=30-pipe diameter in inches

LIMITS OF THE SIDE LENGTH VALUES
The length conditions as derived in the first set of charts is the basis for determining if a pipe is capable of supporting a grid side dimension as indicated on the chart. If this length is exceeded by the grid side, 'A" is printed beside the density value. The length conditions could be satisfied if the parameters were changed, but with 20 psi initial and 8 psi the termination point, the lengths given govern.

RELATION OF THE CHART VALUES TO THE DISTRIBUTION GRID

FLOW CHART OF DENSITY VALUES

velocity value is WITH P Value of			2.0		3.			
			500.0					
PIPE	diame	ERS $=$	1.	2.		4.	5.	6.
100.	- GRII	SIDE	0.	2.	8.	25.	61.	126.
200.	- GRiO	SIDE	0.	0.	2.	6.	15.	31.
300.	- GRID	SIDE	0.	0.	1.	3.	7.	14.
400.	- GRII	SIDE	0.4	0.	0.	2 .	4.	8.
500.	- GRID	SIDE	$0 . A$	0.	0.	1.	2.	5.
600.	- GRID	SIDE	O.A	0.	0.	1.	2.	3.
700.	- GRID	SIDE	$0 . A$	$0 . A$	0.	1.	1.	3.
800.	- GRIO	SIDE	O.A	0.4	0 .	0.	1.	2.
900.	- GRID	SIDE	O.A	$0 . A$	0 .	0.	1.	2.
1000.	- GR II	SIDE	O.A	$0 . A$	0.	0.	1.	1.
1100.	- GRIo	SIDE	$0 . A$	0.1	$0 . A$	0.	1.	1.
1200.	- GRID	SIDE	O.A	O.A	O. A	0.	0.	1.
1300.	- GRI]	SIDE	O.A	0.1	$0 . A$	0.	0.	1.
1400.	- GRIO	SIDE	O.A	0.1	O.A	0.	0.	1.
1500.	- GRIU	SIDE	$0 . A$	0.4	O.A	0.	0.	1.
1600.	- GRit	SIDE	$0 . A$	$0 . A$	0.4	0.4	0.	0.
1700.	- GRIJ	SIDE	O.A	0.4	$0 . \Delta$	O. A	0 .	0.
1800.	- GR IO	SIDE	$0 . A$	0.4	O.A	$0 . A$	0.	0.
1900.	- GRIt	SIDE	O.A	0.4	$0 . A$	$0 \cdot A$	0.	0.
2000.	- GRID	SIDE	O.A	$0 . A$	O.A	O.A	O.A	0.
2100.	- GRIO	SIDE	O.A	$0 . A$	$0 . A$	$0 . A$	O.A	0.
2200.	- GRID	SIDE	0.4	$0 . A$	O.A	$0 . A$	O.A	0.
2300.	- GRID	SIDE	O.A	O.A	O.A	0.1	$0 . A$	0.
2400.	- GRID	SIDE	0.4	0.4	$0 . A$	O.A	O.A	0.
2500.	- GRin	SIDE	$0 . A$	0.A	0.1	0.4	O.A	$0 . A$
2600.	- Grio	SIDE	$0 . A$	0.4	0.4	0.4	$0 . A$	$0 . A$
2700.	- GRID	SIDE	O.A	$0 . A$	O.A	$0 . A$	0.4	0.4
2800.	- GR ID	SIDE	O.A	0.4	$0 . A$	0.4	0.4	0.4
2900.	- GRIO	SIDE	$0 . A$	$0 . A$	$0 . \wedge$	$0 . A$	$0 . A$	0.4
3000.	- GR ID	SIDE	0.4	C. A	0.4	0.4	$0 . A$	0.4
3100.	- GRID	SIDE	$0 . A$	0.4	O.A	0.1	$0 . A$	0.A
3200.	- GR II	SIDE	O.A	$0 . A$	$0 . A$	0.4	0.4	O.A
3300.	- GRID	SIDE	O.A	0.1	O.A	C.A	$0 . A$	$0 . A$
3400.	- GR ID	SIDE	O.A	0.4	O.A	0.1	0.4	O.A
3500.	- GRID	SIDE	O.A	0.1	O.A	0.4	0.4	O. A
3600.	- GRI)	SIDE	0.1	$0 . A$	O.A	$0 . A$	O.A	O.A
3700.	- GRID	SIDE	0.1	0.4	$0 . A$	$0 . A$	$0 \cdot A$	0.4
3800.	- GRID	SIDE	O.A	O.A	$0 . A$	O.A	$0 \cdot \mathrm{~A}$	0.4
3900	- GRIO	SIDE	$0 . A$	0.4	D. A	0.4	$0 . A$	0.4
4000.	- GRID	SIDE	O.A	O.A	O.A	$0 . A$	O.A	O.A

high means friction loss above acceptable limits

high means frict ion loss above acceptable limits
velocity value is
4.0

WITH P Value of
12.5

PIPE	diame	ERS $=$	1.	2.	3.	4.	5.	6.
100.	GRID	SIDE	$16 . A$	249.	****	****	****	****
200.	GR ID	SIDE	4.A	$62 . A$	315.	****	****	****
300.	GRII)	SIDE	2.A	28.A	140.	442.	****	****
400.	GRIO	SIde	$1 . A$	16.A	79.A	248.	****	****
500.	GR IO	SIIDE	$1 . A$	10.A	50.A	159.A	388.	****
600.	GR ID	SIDE	O.A	7. A	35.A	110.A	269.A	****
700.	GR ID	SIDE	O.A	5.A	26.A	81. A	198.A	410.A
800.	GRID	SIDE	O.A	4.A	20.A	62.A	151.A	314.A
900.	GRID	SIDE	0.A	3.A	16.A	$49 . A$	120.A	248.A
1000.	GRID	SIDE	O.A	2.A	13.A	$40 . A$	97. A	201.A
1100.	GRID	SIDE	$0 . A$	2. 4	10.A	33.A	80.A	166.A
1200.	GR ID	SIDE	$0 . A$	2.A	9.4	28.A	67.A	139.A
1300.	GR Io	SIDE	$0 . A$	1.4	7.4	24.A	57.A	119.A
1400.	GRII	SIdE	D.A	1.A	6. A	20.A	49.A	102.A
1500.	GR II)	SIDE	$0 . A$	1. 4	6.A	18.A	43.A	89.A
1600.	GR II)	SIDE	$0 . A$	1. A	5.A	16.A	$38 . A$	78.A
1700.	GRID	SIDE	$0 . A$	1.A	4.A	$14 . \mathrm{A}$	34.A	69.A
1800.	GRII)	SIDE	$0 . A$	1.4	4.1	12.A	30.A	62. A
1900.	GRID	side	$0 . A$	1.A	3. A	11. A	27.A	56.A
2000.	GR It	SIDE	$0 . A$	1.A	3. A	10.A	24.A	50.A
2100.	GRID	SIDE	$0 . A$	1.A	3.A	9.A	$22 . A$	46.A
2200.	GRID	SIDE	$0 . A$	1. A	3.4	8. A	20.A	$41 . A$
2300.	GRID	SIDE	$0 . A$	C.A	2.A	8.4	18.A	38.A
2400 .	GRID	SIDE	O.A	$0 . A$	2.A	$7 . A$	17.A	35.A
2500.	- GRID	SIDE	O.A	0.4	2.A	6.A	16.A	32.A
2600.	GRIO	SIDE	D.A	0.4	2.A	6.A	14. A	30.A
2700.	GRID	SIDE	O.A	0.4	2.A	5.A	13.A	28.A
2800.	GRID	SIde	$0 . A$	C. A	2.4	5.A	12.A	26.A
2900.	GRID	SIDE	$0 . A$	0.1	1. A	5. A	12.A	24.A
3000.	GRIO	SIDE	O.A	0.1	1. A	4.A	11.A	22.A
3100.	- GRID	SIDE	$0 . A$	0.4	1.4	4.4	10.4	21.A
3200 。	- GRID	SIDE	$0 . A$	O.A	1.4	$4 . A$	9.A	20.A
3300.	- rikil	SI JE	$0 . A$	O. A	$1 . A$	4.A	9.A	18.4
3400 。	- GRID	SIDE	$0 . A$	0.1	1.A	3. A	8. A	17.A
3500.	GRID	SIDE	$0 . A$	0.4	1.A	3. A	8.A	16.A
3600.	GRII)	SIDE	$0 . A$	C. A	1. A	3. A	7.A	15.A
3700 .	- GRID	SIDE	$0 . A$	O.A	1. A	3. A	$7 . A$	$15 . A$
3800.	GRII	SIDE	$0 . A$	0.4	1.A	3.4	7.4	$14 . A$
3700 .	- GR IO	SIDF	0.1	$0 . A$	1.4	3.A	6.A	$13 . A$
4000.	- GRIO	SIDE	0.1	O.A	1.4	2.A	6.4	13.A

high mfans fricition loss above acceptable limits

[^0]VFLOCITY VALUE is WITH P Value cF

PIPE	DIAME	ERS $=$	1.	2.	3.	4.	5.	6.
100.	GRID	SIDE	O.A	6.	31.	99.	242.	****
200.	GR ID	SIDE	0.4	2. A	8.	25.	61.	126.
300.	GR IO	SIDE	$0 . A$	1.A	3.	11.	27.	56.
400.	GRIO	SIDE	O.A	O.A	2.A	6.	15.	31.
500.	r,RID	SIDE	C.A	$0 . A$	1.A	$4 . A$	10.	20.
600.	GRID	SIDE	$0 . A$	O.A	1.A	3.A	7. A	14.
700.	GRID	SIDE	O.A	$0 . A$	1.A	2.4	5.A	10.A
800.	GR ID	SIDE	$0 . A$	$0 . A$	0.1	2.A	4.A	8. A
900.	GRII	SIDE	$0 . A$	$0 . A$	0.A	1.A	$3 . A$	6. A
1000.	GRID	SIDE	$0 . A$	$0 . A$	$0 . A$	1.A	2.A	5.A
1100.	GR IO	SIDE	O.A	C. A	$0 . A$	$1 . A$	2.A	4. A
1200.	GRID	SIDE	O.A	$0 . A$	O.A	1.A	2.A	3. A
1300.	GRID	SIDE	O.A	0.4	0.1	1.A	1.A	3.4
1400.	GRIO	SIDE	0.1	$0 . A$	0.4	1.A	1. A	3.4
1500.	GRID	SIDE	$0 . A$	0.4	O.A	0.4	1.A	2.A
1600.	GR ID	SIDE	O.A	0.4	$0 . A$	$0 . A$	1.A	2.4
1700.	GRID	SIDE	$0 . A$	$0 . A$	0.4	O.A	1.A	2.4
1800.	GRID	SIDE	$0 . A$	$0 . A$	0.4	$0 . A$	1.A	2.A
1900.	GR II)	SIDE	C.A	$0 . A$	D.A	$0 . A$	1. A	1.A
2000.	GRIO	SIDE	O.A	0.4	0.4	$0 . A$	$1 . A$	1. A
2100.	GRID	SIDE	C.A	$0 . A$	0.4	$0 . A$	1.A	1.A
2200.	GRIO	SIDE	$0 . A$	0.4	0.4	$0 . A$	1. A	1.A
2300.	GRID	SIDE	O.A	O.A	0.4	O.A	$0 . A$	1.A
2400.	GR ID	SIDE	O.A	$0 . A$	O.A	$0 . A$	O.A	1.A
2500.	GRID	SIDE	$0 . A$	$0 . A$	0.1	D. A	0.4	1.A
2600.	GRID	SIDE	O.A	$0 . A$	$0 . A$	O.A	$0 . A$	1.A
2700.	GRID	SIDE	$0 . A$	O.A	$0 . A$	$0 . A$	$0 . A$	1. A
2800.	GRID	SIDE	$0 . A$	$0 . A$	0.4	O.A	$0 . A$	1.A
2900.	GRID	SIDE	O.A	O.A	0.1	$0 . A$	C.A	1. A
3000 .	- GRII	SIDE	$0 . A$	O.A	0.4	0.4	$0 . A$	1. A
3100.	GRII)	SIDE	O.A	O. A	O.A	O.A	0.4	1.4
3200.	GR IO	SIDE	$0 . A$	O.A	$0 . A$	O.A	O.A	$0 . A$
3300.	- GRI')	SIDE	O.A	$0 . A$	$0 . A$	$0 . A$	$0 . A$	O. A
3400 .	GRII)	SIDE	O.A	D.A	$0 . A$	$0 . A$	$0 . A$	$0 . A$
3500.	GRII)	SIDE	O.A	C.A	0.1	$0 . A$	0.1	O.A
3600.	GRI'	SIDE	O.A	0.4	0.4	$0 . A$	$0 . A$	$0 . A$
3700.	- GRID	SIDE	C.A	0.1	O.A	$0 . A$	$0 . A$	$0 . A$
3800.	- GRIO	SIDE	$0 . A$	0.4				
3900.	GRII)	SIDE	0.4	$0 . A$	O.A	$0 . A$	0.4	O.A
4000.	GR I!)	SIDE	0.4	O.A	O.A	O.A	O.A	O.A

HIGH MFANS FRICTICN LOSS ABOVE ACCEPTABLE LIMITS

PIPE	DIAMET	TERS $=$	8.	10	12.	14.	16	18.
100.	GRID	SIDE	＊＊＊＊	＊＊＊＊	＊＊＊＊	＊＊＊＊	＊＊＊＊	＊＊＊＊
700.	GRID	SIDE	＊${ }^{\text {＊}}$＊${ }^{\text {市 }}$		＊＊＊＊	＊＊＊＊＊	＊${ }_{\text {＊}}^{\text {＊}}$	あれれ
300.	GR ID	SIDE	＊＊＊＊	＊水为夷	＊＊＊＊	＊＊＊＊	＊＊＊＊	＊＊＊＊
400.	GRIn	SIDE	＊＊＊＊	\％＊＊＊		＊＊＊＊	＊＊＊＊	＊＊＊＊
500.	GRIO	SIDE	＊	＊＊＊＊		＊＊大＊	＊＊＊＊	＊＊＊＊
600.	GRIT	SIDE	440．	＊＊＊＊	＊＊＊＊	＊＊＊＊	＊＊＊＊	れ＊＊＊
700.	GRII	SIDF	374.	世＊れ次	＊＊＊＊	＊${ }_{\text {＊}}^{\text {为 }}$	＊＊＊＊	＊＊＊＊
800.	GRIT	SIDE	249 。	＊	＊${ }_{\text {＊}}^{\text {＊}}$	＊${ }_{\text {＊}}^{*}$＊	＊＊＊＊	＊＊＊＊
900.	GRID	SIDE	196．	477 。	＊＊＊＊	＊＊＊＊	＊＊＊＊	＊＊＊＊
1000.	GRII	SIDE	159.	387.	＊＊＊＊	＊＊＊＊＊	＊＊＊＊	＊＊＊＊
1100.	GRID	SIDF	131.	320.	＊＊＊＊	＊＊＊＊	＊＊＊＊	＊＊＊＊
1200.	GRIn	SIDF	110.	269.	＊${ }_{\text {＊}}^{\text {＊}}$	＊＊${ }_{\text {＊}}^{*}$	＊＊＊＊	＊＊＊＊
1300.	GRID	SIDE	94.	229.	474.	あれ＊${ }^{\text {\％}}$	＊ $\boldsymbol{*}^{*}$＊${ }^{\text {ck }}$	＊＊＊＊
1400.	GR ID	SIDE	81.	197.	409．	＊＊＊＊	＊＊＊＊	＊＊＊＊
1500.	GRIn	SIDF	70.	172.	356.	＊＊＊＊	＊＊＊＊	＊＊＊＊
1600.	GRID	SIDE	62.	151.	313.	＊＊＊＊	＊＊＊＊	＊＊＊＊
1700.	GR ID	SIDE	55.	134.	277.		＊＊＊${ }_{\text {＊}}$	＊＊＊＊
1800.	GR In	SIDE	49.	119.	247	458.	＊＊＊＊	＊＊＊＊
1900.	GRID	SIDE	44.	107.	222.	411.	＊＊＊＊	＊＊＊＊
2000.	GRII	SIDE	40.	97.	200.	371.	＊＊＊＊	＊＊＊＊
2100.	GRIT	SIDE	36.	88.	182.	3.36	＊${ }_{\text {＊}}^{*}$＊	＊＊＊＊
2200.	GRIO	SIDF	33.	80.	166	306．	＊＊＊＊	＊＊＊＊
7300.	GRIn	SIDE	30.	73.	151.	280.	478．	＊＊＊＊
2400.	GRID	STDE	28.	67.	139.	258.	439.	＊＊＊＊
2500.	GRIO	SIDE	75.	62.	128.	237.	405.	＊＊＊＊
2600.	GRID	SIDE	23.	57.	119.	219.	374.	＊＊＊＊
2700.	GR ID	SIDE	21.	53.	110.	203.	347 ．	＊＊＊＊
2800.	GRID	SIDF	20.	49.	102.	189.	323.	＊＊＊＊
7900.	GRID	SIDE	19.	46.	95.	176.	301.	481.
3000.	GR ID	SIDE	18.	43.	89.	165.	281.	450.
3100.	GRID	SIDE	16.	40.	83.	154.	263.	421.
3200.	GR IT	SIDE	15.	38．	78.	145.	247.	395.
3300.	GR ID	SIDE	15.	36.	74.	136．	232.	372.
3400.	GRID	SIDE	14.	33.	69.	128.	219.	350.
3500.	GR ID	SIDE	13．A	32．	65.	121.	206.	331.
3600.	GRID	SIDE	12．A	30.	62.	114.	195.	312.
3700.	GR ID	SIDE	12．A	28.	59.	108．	185.	296.
3800.	GRII	SIDE	$11 . A$	27.	55.	103.	175.	280.
3900.	GRIn	SIDE	10．A	25.	53.	98.	166.	266.
4000.	GR ID	SIDE	10．A	24.	50.	93.	158.	253．

VFLORITY VALIE IS			2.0				70			
WITH P VALUE DF					82					
DIPE DIAMETERS $=$			8.	${ }_{* * * *}^{10}$	$12 .$	$\begin{array}{r} 14 . \\ *+* * \end{array}$	$\underset{* * * *}{16}$	$\begin{array}{r} 18 \\ * * * \end{array}$		
100.	- GRID	SIDF	****							
200.	- GR In	SIDE	****	*****	****	****	****	****		
300.	- GR ID	SIDE	267.	*****	****	****	****	****		
400.	- GRID	STDE	150.	366.	****	****	****	****		
500.	- GRID	SIDE	96.	234.	486.	***	****	****		
600.	- GRIn	SIDE	67.	163.	337.	****	****	****		
700.	- GRID	SIDE	49.	120.	248.	459.	****	****		
800.	- GRID	SIDE	38.	92.	190.	351.	****	****		
900.	- GRID	SIDE	30.	72.	150.	277.	473.	****		
1000.	. GRID	SIDE	24.	59.	121.	225.	383.	****		
1100.	- GRID	SIDE	20.	48.	100.	186.	317.	****		
1200.	- GRID	SIDF	17.	41.	84.	156.	266.	426.		
1300.	- GR In	SIDE	14.	35.	72.	133.	227.	363.		
1400.	- GR ID	SIDE	12.	30.	62.	115.	196.	313.		
1500.	- GRID	SIDE	11.	26.	54.	100.	170.	273.		
1600.	- GRID	SIDF	9.	23.	47.	88.	150.	240.		
1700.	- GRID	SIDE	8.	20.	42.	78.	133.	212.		
1800.	- GRID	SIDE	7.	18.	37.	69.	118.	189.		
1900.	- GRID	SIDE	7.	16.	34.	62.	106.	170.		
2000	- GRID	SIDE	6.	15.	30.	56.	96.	153.		
2100.	- GRID	SIDE	5.	13.	28.	51.	87.	139.		
2700.	- GRID	SIDE	5.	12.	25.	46.	79.	127.		
2300	- GRID	SIDE	5.	11.	23.	42.	72.	116.		
2400.	- GRID	SIDF	4.	10.	21.	39.	67.	107.		
2500.	- GRID	SIDE	4.	9.	19.	36.	61.	98.		
2600.	- GRID	SIDE	4.	9.	18.	33.	57.	91.		
7700.	- GRID	SIDE	3.	8.	17.	31.	53.	84.		
7800.	- GRID	SIDE	3.	7.	1.5	29.	49.	78.		
7900.	- GRid	SIDE	3.	7.	14.	27.	46.	73.		
3000	- GR ID	SIDE	3.	7.	13.	25.	43.	68.		
3100.	- GRID	SIDE	2.	6.	13.	23.	40.	64.		
3200	- GRID	SIDF	2.	6.	12.	22.	37.	60.		
3300	- GRID	SIDE	2.	5.	11.	21.	35.	56.		
3400.	- GRID	SIDE	2.	5.	11.	19.	33.	53.		
3500.	- GR ID	SIDE	2. A	5.	10.	18.	31.	50.		
3800.	- GRID	SIDF	2. A	5.	9 。	17.	30.	47.		
3700	- GRID	SIDE	$2 . A$	4.	9 。	16.	28.	45.		
3800	- grio	SIDE	$2 . A$	4.	8.	16.	27.	42.		
3900.	- GRIn	SIDF	?. A	4.	8.	15.	25.	40.		
4000	- GRID	SIDF	2. A	4.	8.	14.	24.	38.		

$$
2.0
$$ WITH P VALUE DF 500.0

HIGH MFANS FRICTION LOSS ABOVE ACCEPTARLE LIMITS
VFIOCITY VALUF IS
WITH P VALUE OF

PIPF	Diame	TRS $=$	8.	10.	12.	14.	16.	18.
100.	GRID	SIDE	****	****	****	****	***	****
200.	GRID	SIDE	*****	****	****	****	****	****
300.	GR In	SIDE	****	****	*****	****	****	****
400.	GR ID	SIDE	****	*****	****	****	****	****
500.	GRID	SIDE	384.	****	****	****	***	****
600.	GRID	SIDE	267.	****	****	***	***	****
700.	GR ID	SIDE	196.	478.	****	****	****	****
800.	GR ID	SIDE	150.	366.	*****	****	****	****
900.	GR In	SIDE	119.	289.	****	****	****	****
1000.	GR In	SIDE	96.A	234.	486.	****	****	****
1100.	GR ID	SIDE	79.A	194.	401.	****	****	****
1200.	GR ID	STDE	67.A	163.	337.	****	****	****
1300.	GRID	SIDE	57. A	$130 . A$	287.	****	****	****
1400.	GR ID	SIDE	49. A	120.A	248.	459.	****	****
1500.	GRID	SIDE	43.A	104.A	216.	400.	****	****
1600.	GRID	SIDE	38.A	92.A	190.A	351.	****	****
1700.	GRID	SIDE	33.A	81.4	168. ${ }^{\text {A }}$	311.	****	****
1800.	GRID	SIDF	30.A	72.A	150.A	277.	4.73.	****
1900.	GRID	SIDE	27.A	65.A	135.A	249.A	425.	****
2000.	GR TD	SIDE	24.A	59.A	121.A	225.A	383.	****
2100.	grin	SIDE	22.A	53.A	110.A	204. A	348.	****
2700.	GRID	SIDE	20.A	48. A	100.A	186. A	$317 . A$	****
7300.	GRID	SIDF	18.A	44. A	92. A	170.A	290.A	464.
2400 .	GR ID	SIDE	17.A	41. A	84. A	156.A	266.A	426.
2500.	GR ID	SIDE	15.A	$37 . A$	78. A	144. A	245.A	393. A
2600.	GR ID	SIDE	14.4	35.A	72. A	133.A	227.A	363.A
7700.	GRIn	SIDF	13.A	32.A	67. A	123.A	210.A	337.A
2800.	GR In	SIDE	12.A	30.A	62.A	115.A	196.A	313. A
2900.	grin	SIDF	$11 . A$	28. A	58. A	107.A	182.A	292. A
3000.	GRID	SIDE	11.A	26. A	54. A	100.A	170.A	273.A
3100.	GRID	SIDE	10.A	24. A	51. A	94. A	160.A	255.A
3200.	GRID	SIDE	9.A	23.A	47.A	88. A	150.A	240.A
3300.	GR ID	SIDE	$9 . A$	22.A	45.A	83.A	141.A	225.A
3400.	GRID	SIDF	8.A	20.A	42. A	78. A	133.A	212.A
3500.	GRID	SIDE	8. A	19.A	40.A	73.A	125.A	200.A
3600.	GRTD	SIDF	7. A	18.A	37. A	69.A	118.A	189.A
3700.	GRID	SIDE	7.A	17.A	35.A	66. A	112.A	179.A
3800.	GRID	SIDE	7.A	16.A	34.A	62.A	106.A	170.A
3900.	GRID	SIDE	6. A	15.A	32. A	59.A	101.A	161.A
4000.	GRID	SIDF	6. A	15. A	30. A	56. A	96. A	153.A

[^1]VFLDCITY VALUE IS WITH P VALUE OF

> 4.0
> 500.0

PIPE	OIAMETERS $=$	8.	10.	12.	14.	16.	18
100.	GRIT SIDE	****	****	****	****	****	****
200.	GRID SIDE	396.	****	****	****	****	****
300.	grio side	176.	430.	***	****	****	****
400.	GRID SIDE	99.	247 .	****	****	****	****
500.	grid SIde	63.	155.	320.	****	****	****
600.	GRID SIDE	44.	107.	223.	412.	****	****
700.	GRID SIDE	32.	79.	164.	303.	****	****
800.	grid side	25.	60.	125.	232.	395.	****
900.	GRİ SIDE	20.	48.	99.	183.	312.	500.
1000.	GRID SIDF	16.A	39.	80.	148.	253.	405.
1100.	grid SIDE	13.A	32.	66.	123.	209.	335.
1200.	grit side	11.A	27.	56.	103.	176.	281.
1300.	GRID SIDE	$9 . A$	23.A	47.	88.	150.	240.
1400.	GRID SIDE	$8 . A$	20.A	41.	76.	129.	207.
1500.	GRID SIDE	7.A	17.A	36.	66.	112.	180.
1600.	GRID SIDE	6. A	15.A	31. A	58.	99.	158.
1700 .	GRID SIDE	5.A	13.4	28.A	51.	88.	140.
1800.	GRID SIDE	5.A	12.A	25.A	46.	78.	125.
1900.	GRID SIDE	$4 . A$	11. A	22.A	41. A	70.	112.
2000.	GRID SIDF	$4 . A$	10.A	20.A	37. A	63.	101.
2100.	GRID SIDE	$4 . A$	9.A	18. A	34. A	57.	92.
2200.	GRID SIDE	3.A	8. A	17. A	31.A	52. A	84.
3300.	GRID SIDE	$3 . A$	7. A	15.A	28.A	48. A	77.
2400 .	grid SIDE	3.A	7.1	14.A	26.A	44. A	70.
7500 .	GRID SIDE	$3 . A$	6.A	13. A	24.A	40. A	65. A
2600.	- GRID SIDE	$2 . A$	6. A	12. A	22.A	37.A	60.A
2700.	GRID SIDE	$2 . A$	5.A	11. A	20.A	35.A	56. A
7800.	GRID SIDE	2.4	5. A	10.A	19.A	32.A	52.A
2900.	- GRTD SIDE	$2 \cdot A$	5. A	10.A	18.A	30.A	48. A
3000.	GRID SIDE	$2 \cdot A$	4. A	9.4	16.A	28.A	45.A
3100 .	grin side	$2 . A$	4. A	8. A	15.A	26.A	42. A
3200 .	- grio side	$2 . A$	4. A	$8 . A$	14.A	25.A	40. A
3300.	GRİ SIDF	1.A	4.A	7.A	14.A	23.A	37. A
3400.	- grin Side	1.A	3. A	7. A	13.A	22.A	35.A
3500 .	- GRID SIDE	1.A	3. A	7. A	12.A	21.A	33. A
3600.	- GRİ SIDE	1.A	3. A	6.A	11. A	20.A	31.A
3700.	- GRID SIDE	1.4	3. 4	6. A	11. A	18.A	30. A
3800.	- GRID SIDE	$1 . A$	3.A	6.1	10.A	18.A	28. A
3900.	- GRID SIDE	1.A	3. A	5. A	10.A	17.A	27. A
400	GRIn SI	1.A	2.A	5. A	9.A	16.A	25.A

hIGH MFANS FRICTION LOSS ABOVE ACCEPTABLE LIMITS

PIPE	DIAMET	ERS $=$	20.	22 。	24.	26	28 。	30.
100.	GRID	SIDE	＊＊＊	※为必为	\％＊＊＊	＊＊＊＊	＊＊＊＊	＊＊＊${ }^{\text {＊}}$
200.	GR IC	SIDE	＊$\# * *$＊		＊${ }_{\text {\％}}^{* * *}$	＊＊＊＊	＊＊＊＊	＊れ＊
300.	GRIC	SIDE	＊＊＊＊		＊＊＊＊	\％exts	＊＊＊＊	＊＊＊＊
400.	GRID	SIDE				为为为	＊＊＊＊	＊乐＊
500.	GRID	SIDE	\＃＊＊＊＊	＊ $\boldsymbol{7}_{*}^{*}$－	＊＊番采		为为\％	＊＊＊＊
600.	GRID	SIDE	＊＊＊	＊＊+ \％	戌立＊＊			＊＊＊＊
700.	GRTD	SIDE	＊＊＊${ }^{\text {¢ }}$	水安沙方	\＃	あれあ离		＊＊＊＊
800.	GRIC	SICE	＊＊＊	＊＊＊＊	＊\＃＊＊		＊＊＊＊	
900.	GRIC	SICE	＊ 2 W＊${ }^{\text {\％}}$	＊紋＊	＊${ }^{*}$ \％${ }^{*}$	＊＊${ }^{\text {w }}$	＊＊＊＊	＊＊＊＊
1000.	GRIC	SIOE	※\＃＊${ }^{*}$			＊＊＊＊	＊${ }_{\text {kx }}^{\text {\％}}$	＊＊＊＊
1100.	GRIC	SIOE		＊${ }_{\text {\＃}}^{\text {\＃}}$	－ \％$_{\text {＊}}$＊	＊が娄	＊＊＊＊	＊＊＊＊
120 C	GRID	SIDE	＊＊＊＊	＊＊＊	＊郎＊	20\％		＊20＊＊
1300.	GRID	SIDE	＊＊＊＊	＊\times＊＊			＊＊＊＊	＊${ }_{\text {＊}}^{*}$＊
1400.	GRID	SICE	＊＊χ^{*} \％		＊＊${ }^{\text {＊}}$＊	＊林＊	＊＊＊＊	＊＊＊＊
1500.	GRID	SIDE	＊	＊＊＊${ }^{*}$	＊＊＊＊		＊	＊＊＊＊
1600.	GRIC	SICE	＊＊＊＊	＊＊＊＊	＊＊が菏	＊＊＊＊${ }^{*}$	＊＊＊＊	＊＊＊＊
17 CC ．	GRID	SIDE	＊＊＊${ }_{\text {x }}$	＊＊＊＊		＊＊＊＊	＊＊＊＊	＊＊＊＊
1800.	GRIL	SIDE	＊＊＊＊			\＃${ }^{\text {\％}}+\ldots$	＊木必＊	＊＊＊＊
1900.	GRIL	SIDE		＊＊＊＊	4＊＊	\＃\＃\＃	＊${ }_{\text {＊}}$＊	＊＊＊＊
2000.	GRID	SIDE	が米六	\％安示	あ事误＊	＊＊${ }_{\text {W }}$	2＊＊＊	＊＊＊＊
2100.	GRIC	SIDE	＊＊＊		7次乐为		＊＊＊＊	＊＊＊
2200.	GRID	SIDE	＊＊＊＊	\＃＊＊＊）	＊＊＊＊	＊＊＊＊	＋＊＊＊	＊＊＊＊
2300.	GRID	SIDE	加为为积	＊$x^{\text {a }}$	＊＊＊＊＊	以边为	＊＊が	＊＊＊＊
2400.	GK ID	SIDE			－	－\％	＊${ }^{*}$＊${ }^{*}$	＊＊＊＊
2500.	GRIC	$\leq I C E$	＊＊＊＊		＊+ ＊${ }^{\text {\％}}$		＊＊＊＊	＊＊\＃＊
26 CC ．	GRID	SIDE	＊					＊χ_{*}^{*}＊
2700.	GR ID	SIDE	＊＊＊＊	7x＋30	あ女如碞			＊＊＊＊
2800.	GRIC	SICE	＊＊＊＊		4＊＊＊${ }^{\text {\％}}$	x乐》	＊＊＊＊	＊＊＊＊
2900.	GRID	SIDE	あれがった。	W6\％			\＃＊＊＊	＊${ }_{\text {＊}}$＊
3000.	GRIL	SICE	＊$\#$ ¢	＊${ }^{4}$ \％	＊＊＊＊	303 ${ }^{3}$	4： \％＊＊	＊${ }_{\text {＊}}^{\text {＊}}$＊
3100.	GKID	SIUE		－7x	为沙＊＊	2x．0\％tit	＊${ }_{\text {\％}}^{\text {为 }}$＊	＊＊＊＊
3200.	GK ID	SIDE	＊ 4 ¢ ${ }^{\text {\％}}$		＊＊3 ${ }^{*}$		あれが安	＊＊＊＊
3300.	GRIC	SIDE	xc＊＊＊				＊＊＊＊	＊${ }_{\text {－}}^{\text {＊}}$＊
3400 ．	GKID	SIDE			＊＊x_{0}＊	－ 4 －	＊＊＊＊	＊＊＊＊
3500.	GRIC	SICE	＊＊＊＊		4＊＊${ }^{\text {\％}}$		＊＊＊＊	あれ＊＊
360 C ．	GRID	SIDE	47ヶ。		＊＊＊＊＊	＊＊＊${ }^{\text {\％}}$	＊＊${ }^{*}$＊	＊＊＊＊
3700.	GRIO	SIDE	451.	－x＊＊	\％\％	※为》	＊＊＊＊	＊${ }^{*}$＊＊
3800.	GRID	SIOE	427.	－${ }^{\text {a }}$	＊准为安	＊＊あ\％	＊＊＊	＊＊＊＊
3900.	GR IC	SIDE	$4 C 6$		「それない	次米＊＊	市\＃玄れ	＊＊＊＊
4000 ．	GR IC	SICE	386.	4－x ${ }^{4}$	＊＊＊＊	※＊＊＊	＊＊＊＊	＊＊＊＊

VELOCITY VALUE IS
2.0

WITH P VALUE CF
32．5

PIPE	ciame	$\leqslant=$	20.	22.	24.	26.	28.	30.
100.	GR IO	SICE	＊＊＊＊＊	＊＊＊＊	＊＊＊＊	＊＊＊＊	＊＊＊＊	＊＊＊＊
200.	GRID	SILE	＊＊＊＊＊	まれ	＊＊＊＊	＊尔＊＊	＊＊＊＊	＊＊＊＊
300.	GRID	SIDE	\＃＊	\％2065	\％＊＊＊	\＃＊＊＊	\＃＊＊＊	＊＊＊＊
400.	GR IC	SIDE	＊＊＊＊			＊	＊	＊＊＊＊
500.	GRID	SIDE	＊＊＊＊	＊${ }_{\text {¢ }}$ 中	＊	＊＊＊＊	＊＊＊＊	＊＊＊＊
600.	GR IC	SIUE	＊＊＊＊	＊＊＊＊		＊＊＊＊＊		＊＊＊＊
700.	GRIC	SICE	＊＊${ }^{\text {a }}$ \％	＊＊＊＊	＊＊＊＊＊	\＃＊＊＊	＊＊＊＊	＊＊＊＊
800.	GRID	SIDE	＊＊＊＊	＊＊＊＊＊	＊＊＊＊	＊＊＊＊	＊＊＊＊	＊＊＊＊
900.	GRIC	SICE	＊＊＊＊	＊＊＊＊	＊＊＊＊＊	－${ }_{\text {－}}$＊	＊＊＊＊	＊＊＊＊
1000.	GRIC	SIDE	＊＊＊＊	＊\％＊＊	＊＊＊＊＊	＊+ ＊＊	＊＊＊＊	＊＊＊＊
1100.	GRIL	SIDE	＊ $\boldsymbol{*}^{*}$＊	\＃＊＊＊	＊	＊＊＊＊	＊＊＊＊	＊＊＊＊
1200.	GRIC	SICE	＊＊＊＊	＊＊＊＊	＊＊＊＊	＊xiv＊	＊＊＊＊	＊＊＊＊
1300.	GRID	SIDE	＊＊＊＊＊	$4 \% * *$	＊＊＊＊	＊＊＊＊	＊＊＊＊	＊＊＊＊
1400 ．	GRID	SIDE	477.	＊＊＊＊		＊＊＊＊	＊＊＊＊	＊＊＊＊
1500．	GRID	SIDE	415.	＊＊＊＊	＊＊＊＊	＊＊＊＊	＊＊＊＊	＊＊＊＊
1600.	GKID	SIDE	365.	＊＊＊＊＊	＊＊＊＊＊	2＊＊＊＊	＊＊＊＊	＊＊＊＊
1700.	GRIL	SICE	323．	473.	＊＊＊＊＊	＊＊＊＊	＊＊＊＊＊	＊＊＊＊
180C．	GRID	SIDE	289.	422.	＊＊＊＊	＊＊＊＊	＊＊＊＊	＊＊＊＊
1900.	GR IC	SIDE	259.	279.	\＃－\％\％＊	\％	＊＊＊＊	＊＊
2000.	CRIL	SIDE	234.	342 。	484.	\＃\％＊＊	＊＊＊＊	＊＊＊＊
2100.	GRID	SIDE	212.	310.	439.	＊＊＊＊	＊＊＊＊	＊＊＊＊
2200.	GR ID	SIUE	193.	283.	400.	＊＊＊＊	＊＊＊＊	＊＊＊＊
2300.	GRID	SICE	177．	259.	366.	＊＊＊＊	＊＊＊＊	＊＊＊＊
2400.	GRIU	SIDE	$1 \in 2$.	238．	336.	463.	＊＊＊＊	＊＊＊＊
2500.	GRIC	SICE	150.	219.	310.	427.	＊＊＊＊	＊＊＊＊
2600.	GRID	SIDE	138.	2102 ．	287.	395.	＊＊＊＊	＊＊＊＊
2700.	GRID	SIDE	128.	18ε 。	266.	366.	492．	＊＊＊＊
2800.	GRID	SICE	119.	174.	247.	340.	457.	＊＊＊＊
2900.	GRIE	SICE	111.	163.	230.	317.	426.	＊＊＊＊
3000.	Grio	SIDE	104.	152.	215.	296.	398.	＊＊＊＊
3100.	GRIC	SICE	97.	142.	202.	278.	373．	492.
3200.	GRIC	SICE	91.	134.	189.	26）	350.	461.
3300.	GRIC	SIDE	86.	12ϵ ．	178.	245.	329.	434.
3400．	GRIC	SICE	81.	118.	168.	231.	210.	409.
3500.	GRid	SIDE	76.	112.	158.	218.	293.	386.
3600.	GRIC	SIDE	72.	10t．	149.	206.	277.	365．
3700．	GKID	SIDE	68.	100.	141.	195.	262.	345.
3800.	GRID	SIDE	65.	55.	134.	185.	248.	327.
3900.	GRID	SIDE	61.	90.	127.	175.	236.	311.
4000.	Grio	SIDE．	58.	86.	121.	167.	224.	295.

HIGH MEANS FRICTICN LOSS AEJVE ACCEPTABLE LIMITS

VELCCITY VALUE IS WITH P VALUE CF			$\begin{array}{r} 2.0 \\ 500.0 \end{array}$				77	
PIPE	DIAME	ERS $=$	20.	22.	24.	26.	28.	3 C
100.	GRIC	SIDE		＋${ }^{\text {a }}$ \％	＊＊＊＊＊	＊＊＊＊	＊＊＊＊	＊＊＊
200.	－GRIC	SIDE	＊＊＊＊＊	＊＋＊＊	\％\times＊＊		＊＊＊＊	＊＊＊＊
300.	－GRIC	SICE	＊＊＊＊	＊ ＊*＊	＊＊${ }_{\text {\％}}$＊	＊＊＊＊	＊＊＊＊	＊＊＊＊
400.	－GRID	SIDE	＊＊＊：＊	\％：\％＊＊	＊	＊＊＊＊	＊＊＊＊	＊＊＊＊
500.	－GRIU	SIDE	\％\ddagger＊$\%$ \％	＊ 5 \％	＊心禹安	＊＊＊＊＊	＊＊＊＊	＊＊＊＊
600.	－GRID	SIDE	428.	＊＊＊	＊＊＊＊	\％＊＊	＊＊＊＊	＊＊＊＊
700.	－GRID	SIDE	315.	461.	＊\times－	＊＊＊＊＊	＊＊＊＊	＊＊＊＊
800.	－GRIC	SIDE	241.	353.	499.	＊＊＊＊＊	＊＊＊＊	＊＊＊＊
900.	GRIO	SICE	190.	279 。	395.	\％＊＊＊	＊＊＊＊	＊＊＊＊
1000	－GRIC	SIDE	154.	22t．	320.	440.	＊x＊＊＊	＊＊＊＊
1100.	－GRIC	SICE	127.	187.	264.	364.	489.	＊＊＊＊
1200.	－GRID	SIDE	107.	157.	222.	306.	411.	＊＊＊＊
1300.	－GRIC	SICE	91.	134.	189.	260.	35 C ．	461.
1400.	－GRID	SIDE	79.	115.	163.	225.	302.	398.
1500.	－GRID	SIDE	65.	100.	142.	196.	263.	346.
1600.	－GRIC	SICE	60.	83.	125.	172.	231.	305.
1700.	GRID	SIDE	53.	78.	111.	152.	205.	270.
1800.	GRIC	SIDE	48.	7 C ．	99.	136.	183.	241.
1900.	－GR ID	SIDE	43.	E．	89.	122.	164.	216.
2000.	－GRID	SICE	39.	56.	80.	110.	148.	155.
2100.	－GRID	SIDE	35.	51.	72.	100.	134.	177.
2200.	－GRID	SIDE	32.	47.	66.	91.	122.	161.
2300.	GRIC	SICE	29.	43.	60.	83.	112.	147.
2400.	－GRID	SIDE	27.	39.	55.	76.	103.	135.
2500.	－GRIC	SICE	25.	36.	5 ．	70.	95.	125.
2600.	－GRID	SIDE	23.	33.	47.	65.	88.	115.
2700.	－GRIC	SICE	21.	31.	44.	60.	81.	107.
2800.	－GRID	SIDE	20.	29.	41.	56.	75.	99.
2900．	－GRID	SIDE	18.	27.	38.	52.	70.	93.
3000.	－GRIL	SICE	17.	ご，	3ϵ ．	49.	6 ¢．	87.
3100.	－GRIC	SICE	16.	23.	33.	46.	62.	81.
3200.	－GKID	SIDE	15.	22.	31.	43.	58.	76.
3300.	－GRID	SIDE	14.	21.	25.	40.	54.	72.
3400 ．	－GRID	SICE	13.	20.	28.	38.	51.	67.
3500.	－GRID	SIDE	13.	18.	26.	36.	48.	64.
3600.	－GRIL	SICE	12.	17.	25.	34.	46.	6 C ．
37 CC ．	－GRID	SIDE	11.	16.	23.	32.	43.	57.
3800.	－GRID	SIDE	11.	16.	22.	3 C	41.	54.
3900.	－GRIC	SICE	10.	15.	21.	25．	39.	51.
4000.	－GRID	SIDE	10.	14.	20.	28.	37.	49 ．

[^2]
high neans fricticn loss above acceptable limits
velocity value is
4.0
witt P Value cf
82.5

PIPE	diane	ERS $=$	20.	22.	24.	$2 t$.	28.	30.
100.	GR IC	SICE	＊＊${ }^{\text {\％}}$	\％ 4	＊＊＊＊	＊	＊＊＊＊＊	＊＊
200.	grid	SICE	\％$\%$ \％$\%$ \％	＊$\%$	x，\％\％\％	－x＋4\％	＊＊＊＊	＊＊＊＊
300.	GR ID	SIDE．	＊＊＊${ }_{\text {\％}}$		※\＃\＃＊	20 \％＊＊	＊＊＊＊	＊＊＊＊
400.	GRID	SIDE	＊＊＊	＊＊＊	＊＊＊＊	\＃＊＊＊＊	＊＊＊＊	＊＊＊＊
500.	GRID	SIDE	＊＊＊＊		ヶ\％＊：	＊＊x_{0} \％	＊＊＊＊	＊＊＊＊
600.	GRIC	SICE	＊＊＊＊	＊＊＊＊	＊	※て＊＊	＊＊	＊＊＊＊
700.	GRID	SICE	＊＊＊＊	6：	\＃\＃＊＊＊	＊ ＊$^{\text {＋}}$	＊＊＊＊	＊
800.	GR ID	SIDE	＊＊＊＊		※＊＊＊＊	＊＊＊＊	＊＊＊＊＊	＊＊＊＊
900.	GRIC	SICE．	＊＊＊＊	4＊＊＊	＊＊＊＊＊	＊＊＊＊＊	＊＊＊＊	＊＊＊＊＊
1000.	GKID	SIDE	＊＊＊＊		＊＊＊＊	＊＊＊＊	＊＊＊＊	＊＊＊＊
1100.	GR IC	SIDE	＊＊＊＊	\％\rightarrow \％	＊＊＊＊	＊＊＊＊	＊＊＊	＊＊＊＊
1200．	GRIC	SICE	＊＊＊	＊＊．\times \％	＊＊＊＊	＊＊	＊＊	＊
1300.	GK ID	SIDE	＊＊＊＊	\％＋ \％$^{\text {\％}}$	＊＊＊＊	＊＊＊＊	＊	＊＊＊
1400.	GRIC	SIDE	＊＊＊＊	＊＊＊	＊＊＊＊	＊＊＊＊	＊＊＊＊	＊＊＊＊
1500.	GRID	SIDE	＊＊＊＊	＊＊＊＊	＊＊＊＊＊	＊＊＊＊	＊＊＊＊	＊＊＊＊
1600.	GRIL	SIDE	＊＊＊＊	＊＊＊＊	＊＊＊＊	＊＊＊＊	＊＊＊	＊＊＊＊
1700.	GRID	SICE	＊＊＊＊		＊+ ＊${ }^{\text {\％}}$	＊＊＊＊	＊＊＊＊	＊
180C．	GRID	SIDE	＊＊＊＊	＊＊＊＊＊＊	＊＊＊＊＊	x＊＊＊	＊＊＊＊	＊＊＊＊
1900.	GRIC	SICE	＊＊＊＊	＊＊＊＊	＊＊＊＊	\＃れが＊	＊ata＊	＊＊＊＊
2000.	GRID	SIDE	＊＊＊	＋＊＊＊	＊＊＊＊	＊＊＊＊	＊＊	＊＊＊＊
2100.	GRIC	SIDE	＊＊＊＊	＊＊＊＊	＊＊＊＊	＊＊＊＊	＊＊＊＊＊	＊＊
2200.	GRID	SIDE	＊ャ＊＊	－	＊＊＊＊＊	＊＊＊＊	＊＊＊＊	＊＊＊＊
2300.	GRIC	SIDE	＊＊	＋ \％*＊	＊＊＊＊	＊＊＊＊	$x+7 \times 8$	＊＊＊＊
2400.	GRIC	SIDE	＊があれ	\＄＊＊x ${ }^{\text {a }}$		＊＊＊＊	＊＊＊＊	＊＊＊＊
2500.	GR IL	SICE	＊＊＊	＊＊	＊＊＊		＊＊＊＊：	＊＊＊＊
260 C ．	GRIC	SICE	＊＊＊＊	＊＊$\#$ ，	＊\％＊	＊＊＊＊	＊＊＊	＊＊
2700.	grio	SIDE	＊＊＊＊			＊＊＊＊	＊＊＊＊	＊＊＊＊
2800.	GR ID	SICE	477．A	＊\％＊＊	\％＊＊＊	＊＊＊＊	＊＊＊＊	＊＊＊＊
2900.	GRID	SIDE	$445 . A$	x．x\％＊＊	\％\times＊＊	＊＊＊＊	＊＊＊＊	＊＊＊＊
3000.	GRID	SIDE	$415 . \wedge$	x\％\％	＊＊＊	＊＊＊＊	＊＊＊	＊＊
3100.	GRIC	SJCE．	389.4	4＊＊＊A	＊＊＊＊	＊＊＊＊	＊が＊＊	＊＊＊＊
320 C ．	GRID	SILE	365．A	＊＊＊＊＊A	＊＊＊＊	＊＊＊＊	＊＊＊＊	＊＊＊＊
3300.	GR IC	SIDE	343. A	＊	\％＊＊＊	＊＊＊＊	＊＊＊＊	＊＊＊＊
34 CO ．	GRIC	SICE	323．A	473.4	＊＊＊＊	＊＊＊＊	＊＊＊＊	＊＊＊
3500.	－GRID	SIDE	$305 . A$	447．A	7＊＊＊＊	＊＊＊＊	＊＊＊＊	＊＊
3600.	．GR ID	SIDE	289．A	＜22．A	＊＊＊＊${ }^{\text {\％}}$	＊＊＊＊	＊＊＊＊	＊＊＊＊
3700.	GRIC	SIDE	273．A	$400 . A$	$\cdots * * * A$	＊＊＊＊	＊＊＊＊	＊＊＊＊
3800.	GRIO	SIDE	259．A	379．A	＊\times＊＊＊${ }^{\text {a }}$ A	＊＊＊＊	＊＊＊＊	＊＊＊＊
3900.	－GRIL	SICE	246．A	$369 . A$	＊＊＊＊＊	$* * * * A$	＊＊＊	＊＊＊＊
400 C ．	grio	SICE	234．A	342．A	484．A	＋x＊＊A	\＆＊	＊＊＊＊

higf means frictirn loss abcve acceptable limits

[^3]| velicity value is WITH P VALUE CF | | | 2.19 | | | | 81 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | 12 | | | | | |
| PIPE | ciame | TEKS $=$ | 32. | 34. | 30. | 48. | 72. | 76. |
| 100. | －GRIC | SICE | 4 | 4＊$*$＊ | | ＊＊＊ | ；＊＊＊＊＊ | ＊＊＊＊ |
| 200. | GKID | SIDE | ＋ | ＊为为示 | $3 \mathrm{Ax} \times \mathrm{*}$ | P：\times cex | $3 * * *$ | ＊＊＊＊ |
| 300. | －GR ID | SICE | mexar | ＊$\#=\%$ | $4 \times 32 \mathrm{C}$ | \％＊＊＊ | 24x | ＊＊＊＊ |
| 400. | －GRID | Sine | 4s： | \％ | ＊＊＊＊ | ＊＊＊＊ | ＊＊＊＊ | ＊＊＊＊ |
| 500. | GKID | SIDE | wryex | aros： | 1，\％\％ | | ＊＊＊＊＊ | ＊\％\％＊ |
| 6013. | GRIC | SIDE | ＊ix＝ | 4＊＊＊ | ＊＊＊＊ | ＊ | | ＊＊＊＊ |
| 700. | GRID | SICE | ＊＊＊＊ | ＊$* * *$ | 3： x ＊＊ | ＊＊＊＊ | \％＊＊＊ | ＊＊＊ |
| 800. | －GR IC | SIDE | ＊ 4.4 \％ | ＋${ }^{4}$ | | \％＊＊＊ | 5＊＊＊＊ | ＊＊＊＊＊ |
| 900. | －ERIC | SIDE | | 4＊＊＊ | ＊＊＊＊ | \％ $\mathrm{x} \times \mathrm{m}$＋ | \％ 3 \％＊＊ | ＊＊＊＊ |
| 1000. | Grio | SIDE | ＊ 0×2 | W＊： | ＊＊ 4.50 | ＊か＊＊ | ＊＊＊＊ | ＊＊＊＊ |
| 1100 ． | －GR ID | SIDE | | | ＊＊＊ | ＊＊＊ | \％＊＊＊ | ＊＊＊＊ |
| 1200． | GRIC | SIDE | \＃＊＊＊＊ | ＊＊＊ | 7＊＊＊＊ | ＊＊＊＊ | ＊＊＊＊ | ＊＊＊＊＊ |
| 130 C ． | －GRID | SIDE | 3xam | Fimy | 3：＊＊ | x．x．5： | \％\％ | ＊＊＊＊ |
| 1400. | －GRIC | SICE | ＊＊＊＊ | | \％为为为 | \％ront | | \＃家\％ |
| 1500. | －GRID | SICE | ＊＊＊＊ | | | ＊＊＊＊ | \％ 4 ＊＊ | ＊＊＊＊ |
| 1600 ． | －GR IL | SIDE | ＊＊＊＊ | 4， 4×4 | \％\％＊＊ | $x+4{ }^{\text {x }}$ | 30＋6＊ | ＊＊＊＊ |
| 1700． | －GRID | SIDE | ＊＊＊＊ | 4 ma | ＊\＃＊＊ | xtax | 36＊＊ | ＊＊＊＊ |
| 1800. | －GR ID | SIDE | 5＊\％m | \times \％$x_{5}=$ | $x: \pm \pm$ \％ | | ＊＊＊＊ | ＊＊＊＊＊ |
| 1900. | －GR ID | SIDE | ＋ ＊$_{\text {\％}}$ | ＊＊＊ | ＊＊＊＊＊ | $x: \%$ 为 | ＊＊＊＊${ }^{\text {a }}$ | ＊ |
| 2000. | －GRID | SIDE | \＃ 6×2 | ＊\％\％${ }^{\text {\％}}$ | ＋4＊＊ | 2＊＊＊＊ | ＋ 4 ＊＊ | ＊＊＊＊ |
| 2100. | GRIO | SIDE | ＊世\％\％ | ＊＊：3： | ＊ 4×4＊＊ | ＊＊： \％$^{\text {a }}$ | ＊＊＊＊ | ＊＊＊＊ |
| 2200. | －GRIC | SICE | x＋x＊ | \％s\％${ }^{\text {a }}$ | ＊＊＊＊ | \％$\%$ \％ 2 \％ | ＋\％＊＊ | ＊＊＊＊＊ |
| 2300. | －GRIC | side | $x: \pm x$ | \％W6： | ＊＊＊ | \％x：mer | ＊＊＊＊ | ＊＊＊＊ |
| 2400. | －GR ID | SICE | ＊\％ 2ix $^{\text {d }}$ | \％ $4 \times$ | \＃＊＊＊ | M 5 rx ： x | ＊＊＊＊＊ | \％\％＊＊ |
| 2500. | －GRID | SIUE | ＊ $4 \times$ \％ | 4，$x=5 \times 5$ | x－ | | － | |
| 260C． | －GKIO | SIUE | － 6 com | 4×4.4 | \％$\%$ \％\times \％ | | ＊＊＊＊＊ | ＊＊＊＊ |
| 2700. | －GRIL | SICE | ＊＊＊＊ | ＊＊＊＊＊ | ＊＊＊＊ | $x+$＊x x^{*} | | ＊＊＊＊＊ |
| 2800. | －GRID | SICE | ＊＊＊＊ | ＊＊＊ | w＊＊＊ | $x \times x$＊ | ＊＊＊＊ | ＊＊＊＊ |
| 2900． | －GR IL | SIDE | ＊＊ | | | $\% * \% *$ | ＊＊＊＊ | ＊＊＊＊ |
| 3000. | －GRIO | SICE | $x: m i x$ | | re＊＊ | 2，\％ 4 \％\times | xter： | ＊＊＊＊ |
| 3100 。 | －GRID | SICE | \＃＊＊： | x\％s：\％ | ＊＊3＊ | xi＊＊＊ | ＊＊＊＊ | ＊＊＊＊ |
| 3200. | －GRIC | SIDE | x $x+4$ | ＊ $4 *$ \％ | | ＊x＊ | 34\％ | ＊が＊ |
| 3300 。 | －GRIC | SICE | mx | ＋ $3 \times$ | \％4\％ | ＊＊＊${ }_{\text {\％}}$ | \％＊＊＊ | ＊＊＊＊ |
| 3400 。 | －GR IL | SIDE | \％+ \％$\%$ \％ | P4x\％ | | ＊${ }^{3} 4$ | ＋\％＊＊ | ＊＊＊＊ |
| 3500 。 | －gRIC | SICE | x＋x | $x \times 76$ | ＊ $4+$＊ | \％ 4×3 | 3＊＊＊ | や世女＊ |
| 3600． | －GRID | SIDE | | ＋\％－0： | \％ | ＊＊ | | ＊＊＊＊ |
| 3700 ． | －grio | SIDE | ＊$\ddagger+0$ | 4x：3\％ | | ＊） | $\pm * * *$ | ＊＊＊＊＊ |
| 3800. | －GRID | SICE | x为为 | \＃sim | Wx＋ | ＊＊＊＊＊ | $x * x+$ | ＊＊＊＊ |
| 3900． | －GR IC | SIDE | | $x \mathrm{xam}$ | \＃xass：x | ＊ 4×4 | ＊＊＊＊ | 2＊＊＊＊＊ |
| 4000. | －eric | SICE | 4\％20：＊ | $\rightarrow+x$ | | $4{ }^{+4 \%}$ | ＊＊＊＊ | ＊＊＊＊ |

high means fricticn loss arcye acceptahle limits

higr means frictici lioss above acceptable limits

PIPE	CIAME	TERS $=$	32.	24.	36.	48.	72.	96.
100.	GRIC	SICE		＋4＊	\＃\＃＊＊	＊\％戠	＊＊＊＊	＊＊＊＊
200.	GRID	SIDE		4＊＊	xtwis		＊${ }_{\text {\％}}$	＊示为中
300.	GRID	SIDE	\＃6両平	4\％	4\％	＊ 4×7	\％＊\％	
400.	GRIC	SIDE		2－4，			k＊＊＊	※米れ
500.	－GRIC	SICE	＊＊＊＊	示》茹			れやすめ	＊\times＊＊
60C．	GRID	SIDE	＊＊	\＃wx	\＃5	$x * * *$	米示为为	＊＊＊＊
700.	－GRIO	SIDE	－ ＊$_{\text {\％}}$ \％			\％ω^{*}＊	＊＊${ }_{\text {W }}^{\text {x }}$	
800.	GRID	SIDE	水为为不	＊＊＊	＊＊＊＊	＊x_{6}^{*}＊	44＊＊	＊＊＊＊
900.	－GAID	SIDE	xestix；${ }^{\text {a }}$	＊			＊＊＊＊	＊＊＊＊
1000.	－GRIL	SICE	4＊	＊＊＊	＊＊＊＊		二小¢	
1100.	GRID	$\triangle I C E$		47：4\％		＊4＊${ }^{4}$	＊＊＊＊＊	＊＊＊＊
1200.	－GR ID	SIDE		＊x＊	＊＊＊＊		为为为和	＊＊＊＊
1300.	GRIC	SIDE				＊＊＊＊	\％${ }_{*}^{*}$＊＊	＊＊＊＊
1400.	－GRID	SIDE	\＃ $1 \times 2 \times$	\％	＊＊＊＊＊	＊＊＊＊	＊＊＊＊	かれ\＃\＃
1500.	－GRID	SIDE	448.		＋2＊＊＊	》安㱜亦	＊＊＊＊	＊＊＊＊＊
1600.	GRID	SIDE	394.		＊＊＊＊	＊$* * *$	＊＊＊＊	＊＊＊
1700	GRID	SIDE	349	445.	＊ 4 ＊＊	世＊＊＊	＊＊＊＊	＊＊＊＊
1800.	CRIC	SICE	311.	397 。	499.		\％本われ	＊＊＊＊
1900.	GRID	SIOE	279.	356.	447 。	＊＊＊		＊＊＊＊
2000	－GRIC	SICE	252．	こ21．	404.	\％＊＊＊	＊＊＊＊	＊＊＊＊
2100	GRID	SICE	229.	291.	366.		＊＊＊＊	＊＊＊＊
2200.	GRID	SIDE	208．	266.	334.	＊＊＊${ }^{*}$	＊＊＊＊	＊＊＊＊
2300.	－GRIO	SIDE	191.	24.	305.			＊＊れ
2400.	GRID	SIDE	175．	223.	280.	＊＊＊＊	＊＊＊＊	＊ 3 ＊＊
2500.	－GRID	SIDE	161.	2it．	258.		＊＊＊＊＊	＊＊＊＊
2600.	GRIC	SICE	149.	190.	239.	＊－${ }^{*}$		＊＊＊＊
2700.	GRID	SIDE	138.	176.	222.	＊乐事束	＊＊め禹	＊※＊＊
2800.	－GRID	SIDE	129.	164.	206	＊	的め＊＊	＊＊＊＊
2900.	－GRIC	SIDE	120.	153．	192.	＊＊2＊	\＃＊＊${ }_{\text {\％}}$	＊＊※＊
3000.	－GRIO	SIDE	112.	143.	179.			あれ如
3100.	－GRID	SIDE	105.	134.	168.		为为为	女せも＊
3200.	－GRIL	SIDE	99.	126.	158.	498.	＊＊＊＊	＊＊＊＊
3300.	－GRID	SIDE	c．3．	118.	148.	468.	出本乐隺	
3400.	－GRIL	SICE	87.	111.	140.	441.		\＃以大＊
3500.	－GRID	SIDE	82.	105．	132.	416.	＊＊＊＊	＊戠＊
3600.	－GRIC	SIDE	78.	99.	125.	393.	以芴》	
3700	－GRIL	SICE	74.	94.	118.	372 。	＊＊＊＊	＊＊＊＊
3800.	－GKID	SIDE	7 C	89.	112.	353.		＊${ }_{\text {－}}^{*}$＊
3900.	－GRIT	SIDE	66.	$\varepsilon 5$.	106.	335.	＊＊＊＊	＊＊＊＊
4000.	－GRID	SIDE	63.	80.	101．	319.	＊$\ddagger * *$	が番＊

HIGF MEANS FRICTION LISS ABOVE ACCEPTABLE LIMITS

velocity value is WITH P Value cF			$\begin{array}{r} 4.0 \\ 12.5 \end{array}$				84	
PIPE	DIAME	TERS $=$	32.	34.	36.	48.	72.	96.
100.	GRID	SIDE	＊＊＊＊	3t＊＊		＊＊${ }_{\text {＊}}$＊	＊＊＊＊	＊＊＊＊
200.	GRID	SICE	＊ 4 ¢ ${ }^{\text {a }}$		＊＊＊＊＊	\＃＊＊＊	＊＊＊＊＊	＊＊＊＊
300.	GRID	SICE			\％${ }^{\text {a }}$	＊＊＊＊	\％＊＊＊	＊＊＊＊
400.	GRID	side	＊＊＊＊	$\cdots * * *$	＊＊＊＊		＊＊＊＊	＊＊＊＊
500.	－GRID	SIDE	＊${ }_{\text {\％\％\％}}$	＊＊＊＊		$x \rightarrow 7 \mathrm{~F}$	飞れあれ！	＊＊＊＊
600.	GRIC	SIDE		＊＊＊	＊＊＊${ }^{\text {\％}}$ \％	＋89\％	＊＊＊＊	＊＊＊＊
700.	GRID	sIDE	＋＊＊＊		\％＊＊＊	\％ 3 为 ${ }^{\text {\％}}$ \％	r＊＊＊＊	＊＊＊＊
800.	－GRIL	SIDE	＊＊＊＊		＊＊＊＊	＊；＊＊＊	2：＊＊＊	＊＊＊＊
90C．	GRID	SIDE	\％＊＊＊＊	＋	＊＊＊＊	＊＊＊＊	\％${ }^{*}$＊	＊＊＊＊
1000.	－GRIC	SICE	＊${ }^{*}$＊＊	－ $\sin _{4} 4$	＊＊＊＊	＊＊＊＊	＊＊＊＊＊	＊＊＊＊
1100.	－GRID	SIDE	＊＊＊＊	42\％	＊＊＊＊＊	＊		＊＊＊＊
1200．	GR IC	SIDE	\＃＊＊＊＊	－ \％$_{\text {\％}}$ \％	＊＊＊＊	＊\％＊＊＊	＊＊＊＊	＊＊＊＊
1300.	－GRIC	SIDE	＊＊＊＊		＊＊＊＊	＊＊＊＊	＊＊＊＊	＊＊＊＊
14 CO ．	GRID	side	－6\％＊	＊＊＊＊＊	＊＊＊＊＊	W＊＊＊	※＊＊＊	＊＊＊＊
1500.	－GRIC	SIDE	＊＊＊＊	\＃\＃${ }_{\text {\％}}$	＊＊＊＊	＊＊＊＊	＊＊＊＊	＊＊＊＊
1600.	－GR ID	SICE	＊＊＊＊	＊＊＊＊		＊＊＊＊	＊＊＊＊	＊＊＊＊
1700.	－GRIC	SIDE	＊＊＊＊		＊＊＊＊	\％＊＊＊	4＊＊＊	＊＊＊＊
1800.	GRID	SIDE	＊＊＊＊	＊＊＊$\%$	＊あれ＊	＊＊＊＊	＊＊＊＊＊	＊＊＊＊
1900.	GRIC	SICE	＊＊＊＊	＊＊＊＊＊	＊＊＊＊	＊＊＊＊	＊$\times 4 \times$	＊＊＊＊＊
2000．	GRID	SIDE	W＊＊＊	＊＊＊云	＊＊＊＊＊＊	＊＊＊＊	＊＊＊＊	＊＊＊＊
2100.	－GR IC	SIDE	＊＊＊＊	＊$\#$ \％＊	＊＊＊＊		＊\＃\％	＊＊＊＊
2200.	－GRID	SIDE	＊＊＊＊	＊x x ＊	＊＊＊＊	＊＊＊＊	＊＊＊＊	＊＊＊＊
230C．	GRID	SICE	\％${ }_{\text {x }}$		＊＊＊：	＊＊＊＊	＊：30＊	＊＊＊＊
2400.	－GRIC	SIDE	＊5\％＊	W\％\％\％	＊＊＊＊	T\＃${ }^{\text {a }}$ ：	＊＊＊＊＊	＊x：＊
2500.	－GRID	SICE	＋$x+4$	－${ }^{*}$	＊＊＊354	＊	＊＊＊＊＊	＊＊＊＊
2600.	GRIC	SIDE	＊＊＊＊＊	＊－x	\％＊＊\％．	\％	＊＊＊＊＊	＊＊＊＊
2700.	－GRIC	SICE			＊＊＊＊＊	＊＊＊＊	x：＊＊＊＊	＊＊＊＊
280C．	GRID	SIDE		＊＊＊＊＊	，	＊＊＊＊	＊＊＊＊	＊＊＊＊
2900.	－GRID	SIOE	\＃＊＊＊	＊＊＊＊	＊＊＊＊＊	＊＊＊＊	＊＊＊＊	＊＊＊＊
3000.	GRIC	SIDE	＊＊＊＊＊	＋ 4 ＋ 4	＊＊＊＊	＊＊＊＊	＊＊＊＊	＊＊＊＊＊
3100.	－GRID	SIOE	＊+ 为	4－3x	\％＊＊＊＊	》＊＊＊	＊＊＊＊	＊＊＊＊
3200.	－GRIC	SICE	＊＊＊＊	＊＊＊${ }^{\text {\％}}$	\％\％\％＊	＊＊＊＊	＊＊＊＊：	＊＊＊＊
3300.	GRID	SICE	＊ 5 \％$\%$ \％	tix ma	＊＊＊＊＊	＊＊＊＊	＊＊＊＊	＊＊＊＊
3400.	－GR ID	SIDE	＊＊＊＊＊			＊＊＊＊＊	＊＊＊＊	＊＊＊＊
3500.	－GRID	SIDE	＊＊＊＊＊	＊$+\cdots$ \％	＊＊＊＊	＊＊＊＊＊	＊＊＊＊＊	＊＊＊＊
3600.	－GRID	SIDE		$x+x=$	＊＊＊＊	＊＊＊＊	＊＊＊＊	＊＊＊＊
3700.	－GRIC	SICE	\＃4\％${ }^{4}$	＊＊＊＊	サ＂\％	＊ $4 \times$ \％${ }^{\text {\％}}$	＂＊＊＊	＊＊＊＊＊
3800．	－GRID	SIDE	F\％\％＊	＊$x^{*} \times$	＊＊＊＊＊	＊＊＊＊＊	＊＊＊＊	＊＊＊＊
3900.	－GR ID	SIDE	＊＊＊＊	＊＊＊＊	\＃\％れ＊	＊＊＊＊	\％\％＊＊	＊＊＊＊
4000.	－GRID	SIDE	＊$x \rightarrow *$	＊\％	＊＊＊＊		※われ＊	＊＊＊＊

PIPE	CIAME	TERS $=$	32.	34.	36.	4ε.	72.	96.
10 C ．	GRIO	SIDE	x＋3＊		$x * * * *:$	＊\times＊＊	$\geqslant 2 * *$	＊＊＊＊＊
200.	GR 10	SIDE	\％\％\％		いだった	碞为中		\％＊＊＊
300.	GRID	SIDE	x	23\％			$x+x$	＊＊\＃＊
40 C ．	gialo	SIDE	\％ ¢ $_{\text {\％}}$	－x＞\％	＊\times \％$\%$ \％	\％＊＊＊	＋\％${ }^{\text {\％}}$	＊＊＊＊＊
500.	GRIC	SICE	x．x^{*}	H20\％	P．4．4．4	＊ $614 \times$	\＃$=$ \％$\%$ \％	
60C．	GRID	$\leq I L E$		＋8\％	20，	＊＊＊＊	＊：＊＊＊	4＊＊＊
700.	GR IC	SIDE		为㤩		＊\％\％＊	\％	＊\％\％＊
80C．	GRIO	SICE	9\％es\％	\＃4\％		＊＊＊＊	＊＊＊${ }^{\text {\％}}$	＊＊＊＊
900.	GRID	SIDE	これ\％\％		\％	2\％＊＊	2\％s\％	\＄＊＊＊＊
1000.	GRIC	SIEE	＊4＊＊＊	－ 2×7＊＊	＊＊＊＊	\＃为为为	m；\times \％＊＊	\％ $4 \times 2 \times 4$
1100.	GRIL	SIDE	＊＊＊＊	＊＊＊ere	＊＊＊＊	＊＊＊＊	＊＊＊＊＊	＊＊＊＊
1200.	GRIU	SIDE	\＄$\ddagger+*$	＊	＊＊＊＊	＊${ }_{\text {\％}}^{\text {\％}}$＊	＊＊＊＊	＊＊＊＊
1300.	GRID	SIDE	＊\times＊${ }^{\text {\％}}$	＊+ ＊ 4	＊＊＊＊	3．6\％＊	\％＊＊＊	＊＊＊＊
1400.	GR ID	SIDE	\＃＊＊＊	x＜4．	＊＊い岡	＊＊＊＊	3＊＊＊＊	＊＊＊＊
1500.	GR ID	SIDE	＊ 4 ＊	\％ 2×4	＊－7＊＊	＊＊＊＊	\％${ }_{\text {\％}}$ 为为	＊＊＊＊
1600.	GRIC	SIUE	＊＊＊＊	4）＋	4安为		＊＊＊＊＊	＊＊＊＊
170C．	GRID	SIDE	＊＊＊＊	¢\％＊＊＊		\＃＊＊＊	＊＊＊＊	＊＊＊＊
1800.	GR IO	SICE			\％		＊＊＊＊	＊＊＊＊
1900.	GRIC	SIDE	＊＊＊＊	\％ッチ＊	＋	＊＊＊＊		＊＊＊＊
2000.	GKID	SIDE	\％+ \％		－x\％	＊＊＊＊	4＊＊＊＊	\＃が芜
2100.	GRIC	SICE	，\％$\%$ \％$\%$	＊ッ＊＊	W\％＊＊	＊＊＊＊	x．3．7＊	＊＊＊＊
2200.	GR IC	S16E	＊あ＊－	＊）		＊＊＊＊＊	\％＊＊	＊\times \％＊＊
2300.	GRID	SICE	2． 3×4	$7 \pm \rightarrow$ \％	＊\％\％	＊＊＊＊	＊＊＊＊	＊＊＊＊＊
2400.	GRID	SIDE	2＊＊	\％ 6 \％	＊6\％	＊\＄3\％	＊ 2 \％＊＊	＊＊＊＊＊
2500.	GR IO	SIDE	＊＊＊＊	$x_{5}+5 \times$	30，$\times 2 \times 5$	＋xat	＊$* * * *$	＊＊${ }^{\text {\％}}$＊
2600．	GRID	side		$4 x+\%$	\％$* * \times 0$		＊＊＊＊	＊＊＊＊
2700.	GRID	SIDE	2\％＊＊	＊＊＊＊		＊＊＊＊		＊＊＊＊
2800.	GRID	SIDE	\％ m \％	＋ 4 m	7\％	＊＊＊＊	＊＊＊＊＊	＊）
2900.	GRID	SIDE	\％$\% \times \times$	\％	\％\％＊＊	Wも＂＊	＊＊＊＊	x．$* * *$＊
3000.	gric	SICE	3x＋m	＋4＊＊：	\％romx	\％ 3 \％	＊＊＊＊．16	＊＊＊＊
3100.	GRID	SIDE	Wxac：	＊ 3 4	$x+-m$	＊＊＊＊	＊＊＊＊	＊＊＊＊
3200.	GRIC	SIDE	\％ 5 \％	＊xamis	ricoct		\＃\％＊＊	＊ 2 ＊＊
3300 。	GRIC	SICE	x． 4 s \％	$x+4$		2．bs\％	\％－＊	＊＊＊＊
3400.	GKID	SIDE	＊＊＊＊\％	12954\％	＊＊\％	＊ 3 \％ 2 \％	＊\％\％${ }^{\text {\％}}$	＊＊＊＊
3500.	GRIL	SILE	2．$\%$ \％	＋ 4 \％	－ $4.4 \times$	\％	\％＊＊	出亦＊＊
360.	GRID	SIDE	\％rem	＋\％s．0．	\％－s，			＊＊＊＊
3700.	GR IC	SIDE	$2: x \%$	\％n＊	\％ 26.6	3： $\mathrm{x}=2 \times$	$x: \# x+x$	
3800 ．	GRID	SICE	\％交为	$\cdots 3$	Wreme：	¢：	＊＊＊＊	＊＊＊＊
3900.	gnID	SIDE	＊： $\mathrm{x}=\mathrm{x} \times \mathrm{x}$ \％	2．．．．am：	10．0．\％	c．42\％		4＊＊＊
4000 ．	GR IC	SIDE	－＊\％－	＂ッ＊	0\％\％	\％r9x\％		＊＊＊＊＊

high means fricticn less aecvf acceptable limits

Water supply has become a critical factor in public health and economic development in most parts of the world, particularly in the developing countries. Deficiencies and backlogs have created conditions that call for immediate efforts by governments and local agencies to promote the construction of new supplies and to improve existing schemes.

A study made by the World Health Organization in 1963 in the developing countries of Africa, Latin America and Asia concisely points out the problems faced by those countries. The very considerable shortages in urban water supply reported for nearly every country in this study are obviously a result of a complex set of conditions--among them urban trends, limited national economic resources, shortage of investment capital, inept and inadequate operation and management, lack of training facilities, poor financial support for water systems, and in some cases, insufficient action on part of the governments. The study identified the factors which in their opinion have the greatest effect on the cause of water deficiencies. They are as follows:

1. Although the improvement of water supplies in developing countries depends largely on government support, many governments do not make water requirements a matter of governmental policy.
2. Schemes for community water supplies are often not included in national development plans.
3. Urban water needs are often insufficiently represented in the general development of water resources because no priority policies have been established and no general master plans are in effect.
4. The most significant factor is the lack of adequate financial support.
5. Inept and inadequate operation and management, lack of an effective administrative machinery and lack of a technical staff to promote and design water supply systems and to improve existing systems are additional handicaps faced by developing countries.
6. The legislation is inadequate, water rights are poorly defined, and clear demarcation of responsibilities are lacking.
7. The role of ministries of health in community water supply development are not always defined.

Because of the factors stated above, over 70% of the urban population has an inadequate system of piped water, or is being supplied with unsafe water, or both. This existing backlog is overshadowed by the anticipated backlog due to the rapid population expansion. With whatever effort is now made to close the existing gap or improve present conditions, it must be doubled over the next 15 years to provide future needs. By 1977, approximately 450 million urban dwellers in the developing countries will be in need of new, extended, or improved water supplies.

Unless these deficiencies are eliminated, present shortages will continue to exist. If no piped water is available, people turn to sources that are likely to be unsafe and consequently expose themsdves to various water borne diseases.

(R:19)

TROPICAL SOUTH AMERICA

TEMPERATE SOUTH AMERICA

WATER INFRASTRUCTURE COSTS

The data is taken from recently planned projects in central America. The total cost is considered to include urbanization costs only (land and services).
$\square \because \because$ storm water system
$\square \square$ sewer system
$0 \times 80 \times \times \mathrm{B}$ water system
100\%

PANAMA

NI CARAGUA

HONDURAS
EL SALVADOR
GUATEMALA

* combined system

PLANNING FOR FUTURE NETWORK CAPACITIES

Developing countries are faced with two possible situations in their future planning of utility systems.

GEOMETRIC INCREASE OF WATER DE-- MAND DUE TO RISING STANDARDS WITH - INCREASES DEMAND PER PERSON (2 to 5 times the static demand*)

STATIC INCREASE OF WATER DEMAND DUE TO POPULATION GROWTH

SITUATION 1:
An increase of the general welfare of the population with a rising GNP shared among the various sectors.
*With the development of more efficient water consumption devices (particularly water closets) the increase due to the rise in the standard of living may be less.

With either situation 1 or 2 , the problem of water supply for urban areas is composed of three factors of demand:
l: Meeting the demands of the backlog for water demand
2: Meeting the static demand of the population
3: Meeting the increased demand due to a rising standard of living
Perhaps one of the most reasonable alternatives to decrease the required future water supply is to develop more efficient methods of water use. For example, the current standard water closet uses up to 41% of the total domestic consumption. Many alternative methods of disposal are available and should be seriously considered when planning large scale urbanizations.

URBAN WATER DEMANDS AND COSTS

Population demand for new or extended services

105,800

\% of Total
Population
in 1977

Average annual cost as \%

12\%
27%
61\% of 1960 GNP

The cost of meters will materially increase the cost per person of the water network. Operating costs of meters with billing, meter reading, and maintenance are substantial. In the case of developing countries, inadequate or incompetent management allows the meters to become inoperative and they result in a wasted investment. Without the use of meters, water supply demands become prohibitive and are unable to be met.

Meters per se are not required, but what is needed is a flow limiting device that does not require reading or billing on an individual basis. By lowering water system construction costs relative to the metering system, the device would also have the effect of increasing the percentage of dwellings connected and of decreasing the need for public hydrants. Flow constricting faucets have not been successful up to this point for flows of even 1 liter per minute would result in a waste of over the design value and result in intermitant service.

Examples of metering vs non-metering:

1. Municipal water use in two adjacent small towns in the U.S. with similar socio-economic conditions:

liters per capita per day	
metered	un-metered

Average
Annual

2. Venezuela design criteria 1959

Under 20,000 population	200	400
$20,000-50,000$	250	500
over 50,000	300	600

Several devices are now being tested that offer flow reductions without compromising the consumer or making undue demands on the water supply system.
(R:19)

CONCLUSIONS: 1. Urban water supply conditions are unsatisfactory or grossly unsatisfactory in most of the developing countries.
2. Urban waterworks construction in the developing countries are too slow to close the existing gaps and match future needs.
3. Urban water supply conditions have reached a point where shortcomings are a potential danger to urban health and economic development.

RECOMMENDATIONS:l. Urban water supply must be recognized as a national responsibility.
2. A government water supply policy should be established; it should contain basic recommendations of legislation, funding and establishment of guiding principles.
3. Existing legislation should be revised and modern water laws established.
4. Organizational steps should be taken by governments to adapt government and administrative structure to legislation and policy.
5. Whenever the country's constitution and effective water laws allow, local authorities or private bodies should be given the responsibility of construction and operation of facilities for water supply and water protection under the supervision of the governmental authorities.
6. Any program designed to improve water supply and reduce water pollution should include appropriate measures at various levels for the provision of training courses and research.
7. Governments should adapt, to suit the conditions in their own countries, ultimate and intermediate urban supply goals, which should comply with desirable standards of health and with the country's need for economic progress.
8. Local authorities and governments should devote more time to the evaluation of urban water supply conditions by establishing a system of fact reporting and data collection that not only imposes the necessity of keeping records of the actual operation of waterworks but also marks the progress achieved in waterworks construction.

DEFINITIONS

Sewer: the pipe or pipes that carry liquid waste Sewage: the liquid waste carried by the pipe network

Sanitary sewage: the sewer network which only carries sewage from domestic sources; storm water is excluded from the system

The provision of an adequate supply of water and the provision of an adequate means of disposal of household wastes in a manner acceptable for proper health conditions are the first essentials in planning residential neighborhoods.

The sewer system is probably the more important of the two systems. The method of sewage disposal pre-determines the mode of water supply in many situations; therefore the sewage disposal system must be solved first. For example, a well system of water supplies would be more subject to contamination if septic tanks or cesspool systems were established.

After the sewer network has been established, it becomes very costly to alter the system; consequently, the initial planning must take into careful consideration all the possible demands imposed upon the network.

The primary purpose of the sewer network is to transport human wastes in a sanitary manner to prevent the spread of disease and to remove the waste from the individual dwellings for sanitary disposal.

TREATMENT
purification of wastewater to lessen effect of pollution

COMPONENT :
RADIAL SYSTEM

RESPONSIBILITY: developer finances and installs in all cases CONTROL: systems deeded to city in all cases

CHARACTERISTICS : for both com-
bined and
sanitary sys-
tem
used for flat

$$
\cdots
$$

sites
for sanitary storm sewers or combined systems
rarely used for combined systems

systems

Vienna
Manhatten, New York

EXAMPLE OF USE:	Berlin
ADVANTAGES:	easy to ex-
	pand

allows single	shortest route to dis-
treatment plant; posal;	
concentrates	
flow into a sin- allows direct dumping	
gle outfall	of heavy storm flows

gle outfall
requires mul- difficult to ex- pollution dangers of
tiple treatment pand
water disposal areas
requires mul- difficult to ex- pollution dangers of
tiple treatment pand
water disposal areas plants
requires multiple requires multiple
treatment plants

for combined systems

for irregular topographical areas

Boston
eliminates major pumping
good for flat areas
requires large main sewer
difficult to expand
for combined systems
usually sized for only small rain flows
requires water course to dump storm flows which system cannot handle

Cleveland, Ohio
allows single treatment plant
requires large sewer as main
difficult to expand
pollution danger

COMPONENT :	Treatment plant
RESPONSIBILITY:	developer finances and installs if plant needed
CONTROL:	deeded to city
CHARACTERISTICS:	treatment consists of removing solids and objectionable material from water carrier to prevent pollution of outfall areas. In some cases, temperature of the effluent must be aitered to match the outfall streams if streams are small in relative scale.
	design period from 20 to 25 years; 10 to 15 years if interest rates are high.
	PROCESS Primary treatment: (large solids) grit chambers settling tanks sludge drying beds
	Secondary treatment: (suspended matter) trickling filter activated sludge sand filtration
	Disinfection: chlorine usually used
	Lagoons are sometimes used with remarkable success; they have no odor and are simple to operate. (See following page).
SCALE OF	
DEVELOPMENT:	Limited by the degree of purity demanded for specific situations; it is directly proportional to cost. $10,000 \mathrm{gpd}$ is classified as the threshold of large systems.

```
LAGOONS: TREATMENT AND DISPOSAL SYSTEM
```

COMPONENT:
FUNCTION:

Lagoons (also called oxidation ponds)
the use of bacterial and algae action to digest wastes; in the cycle the bacteria converts the sewage into food for the algae which releases oxygen which the bacteria feeds on in return; the algae eat the CO_{2}, nitrates and other products of the bacteria process. Raw or secondary treated sewage may be the input into the lagoon.

RESPONSIBILITY: the developer is responsible for his own system, the city provides system if used for the whole area

CONTROL: . city policy controls system; health laws govern
CHARACTERISTICS:minimum depth of 1 meter to prevent weeds from growing; maximum depth of 1.5 meters since the sunlight necessary for the photosynthesis action of algae does not penetrate any deeper than this; the depth should be uniform throughout.
the bottom may be paved or unpaved, sandy or soil: it may need to be paved if the input flow of sewage is less than the seepage rate and evaporation. Avoid irregular shoreline; shape is not critical in any respect.
system is balanced in size so input flow equals seepage and evaporation loss, for smaller system secondary overflow field must be provided.
should not be located near water supplies; 400-800 meters from residential area for safety reasons
supports 17 to 60 pounds/acre of B.O.D. (solids)
climate critical in location; needs sunlight, windy weather aids mixing process; if ice covered may have temporary odor upon thawing in spring

LAGOONS: TREATMENT AND DISPOSAL SYSTEM -- CONT'D.

SCALE OF
DEVELOPMENT: supports 100 to 500 houses per acre of pond
ADVANTAGES: no treatment plant needed, low cost; no maintenance problems; more efficient digester of bacterial waste, no odor, less than conventional plants; accepts raw sewage; allows pipe network with future hook-up to city service without loss; land may be reused. Approx. $1 / 10$ to $1 / 50$ of the cost of septic tanks.

DISADVANTAGES: requires large areas of low cost land; not efficient on cloudy days; no long term experience (25-50 years) with system; odor when system overloaded

COMPONENT :
RESPONSIBILITY: developer

Dilution in water courses

Irrigation fields developer

CONTROL:
regional or local board

CHARACTERISTICS: may be emptied into water without treatment if diluted to 2.5 cps of water per 1,000 persons in swift streams and 10 cfs of water per 1,000 persons into sluggest streams. (6 cfs average)

EXAMPLE:
SCALE OF DEVELOPMENT:

ADVANTAGES:

DISADVANTAGES:

New York

Dependent on the size of the water course used for dumping

Easy access Low cost.

Danger of pollution in the water courses.

May be either subsurface or surface irrigation

Subsubsurface requires drain field.

Berlin

Dependent on soil characteristics; also on the water table and geological conditions.

A satisfactory alternative if no water courses are accessible for dumping.

May be used for crops if water is scarce.

Danger of the contamination of groundwater supplies.

More expensive for municipal if no cheap land available.

COMPONENT:	SEPTIC TANK	CESSPOOL	PRIVY
RESPONSIBILITY:	individual	individual	individual
CONTROL :	individual	individual	individual
CHARACTERISTICS	:requires drain field to take care of effluent system dependent on soil and geological conditions sized at 50/75 gpcd; 500 gallons minimum capacity; no storm flows allowed drain field max. lengt of 100^{\prime} on flat site; 6' spacing of lines; 4" tile for drain; 100 from water source percolation of waste acts as treatment plan tank stores solids min. slope of $3 / 4 "$ 100 feet of drains; if too steep; drains fail	does not requi drain field store effluent in large fluid filled tank where liquid slowly spees out highly depende on soil and geological h conditions t;	re consists of hole in ground short term use only $1.5 \mathrm{~m} . \min$. depth nt treat with lime and cover with 18" of soil after use 1 seat per 15 people on communal scale
SCALE OF USE:	individual only; lots over 2 acres	individual on cases	in both
ADVANTAGES :		low cost	low cost, or no cost
DISADVANTAGES:	may not be used with wells; more expensive first costs than public system cannot expand easily requires maintenance	may not be use pollution and gers; contamin supplies easil septic tank	d with wells disease danates water y; more than

A developer is generally faced with three alternatives for the collection and final disposal of sewage:

1. Connection to an existing system
2. Development of a communal system
3. Reliance on individual systems

CRITERIA FOR CHOICE OF ALTERNATIVES

1) Location of project: if the project is within an existant sewer system, it is most reasonable to rely on the city system; if it is infeasible to connect to an existing system because of distance, other possibilities should be weighted against cost of a pressure transmission sewer for connection. Dwelling within 30 m . generally must connect.
2) Size of lot: very large suburban lots may wish to use own septic tank systems to avoid service line cost; usually decided by location.
3) Local laws for utility systems: some systems require connection without choice.

	REQUIRED COMPONENTS		
TYPE OF SYSTEM			
	$\begin{aligned} & \text { EXISTING SEWER } \\ & \text { SYSTEM } \end{aligned}$	COMMUNAL SYSTEM	INDIVIDUAL SYSTEM
COLLECTION	connection of new system to existing city network	provision of pipe network and connection to private disposal	individual pipe service lines
TREATMENT	not required	complete plant of primary and secondary treatment lagoon may be used	not required
DISPOSAL	not required	dilution in water course, irrigation or lagoon must be provided	septic tank with drain field, or cesspool or privy must be provided
SCALE OF DEVELOPMENT	no limits if city pipe net able to handle additional capacity	usually more than 100 dwellings make communal systems economicly competitive	large lot conditions of low density; generally greater than $1500 \mathrm{~m}^{2}$; dependent on soil
ADVANTAGES	reliable system lower cost per unit; no treatment plant must be provided	no dependence on city system if inadequate	feasible alternative on small scale
DISADVANTAGES	may inherit bad system	high first costs; usually not well maintained; loss of investment if city expands	pollution dangers;loss of investment if city expr. amds

TREATMENT AND DISPOSAL COSTS

The cost of the treatment and disposal of sewage costs approximately 50 to 100 dollars per million gallons.

Manholes

000000

Laterals

Mains

COMPONENTS

COLLECTION LINES
supplies sewage to main lines

developer installs and

 financesdeeded to city
min. size of pipe is $8^{\prime \prime}$ (US)
pipe sized by min. cleaning velocity and physical cleaning potential

6" pipe sometimes accept able if no extensions are planned

MANHOLES
clean out a points; velocity pressure drop points; changes in directions

LIFT PUMPS

MATNS
forces sewage to combines flow combines flow
.6 to 1.0 meter in diameter
spacing of 90-120 meters if pipe under 24"; if over, may be spaced at 180 meters and up
required at all bends and changes in elevation
nay become "drop" manholes to protect against excessive velocity

LATERALS
higher elevation from collec- from laterals to avoid deep pipe tion lines network
developer installs and finances

deeded to city

may be optional

designed for

 400 gcdusually duplicate pumps
located in manholes
requires maintenance on
regular basis;
usually not
desirable to
install
designed for 250 gcd
the depth of this pipe is critical in the system layout, since all
laterals and serlaterals and service lines must be boverne main

SCALE OF
DEVELOPMENT:

Sewage quantities are generally between 70% to 90% of the compliment of the water system. The range of sewage varies from 60 gpcd to 200 gpcd in the United States. Water infiltration and illegal connections from storm drains increase the quantity; generally, 100% of the water compliment is used in design for the sewage component in order to provide some allowance for the infiltration and illegal hook-ups.

MINIMUM DESIGN
QUANTITY: 100 gpcd
STANDARD
QUANTITIES USED
IN DESIGN: (US) laterals and sub-mains: 400 gpcd
mains: 250 gpcd
mains have a lower design value since peak fluctations are dampened because of the larger input volume.

EFFECT OF
GARBAGE GRINDERS:
present systems are adequate to handle increased loads due to increased use of garbage disposals. Treatment works may be required to be increased to handle increased solids. Solids increase by 100\%; grits increase by 40%.

```
STRATEGIES FOR LAYOUT AND PLANNING
```

PIPES:

LAYOUT:
over 48", the cost of the pipe increases over the increase in capacity, use a multiple of smaller mains at a lower cost
the use of larger pipes with less slope allows reduction in the trench depth; the reduction in grading cost is generally more than the additional cost of the larger pipe
poured in place concrete pipes may result in 40% savings of the construction costs
the flow should be kept as dispersed as much as possible before concentrating into a pipe network
water should be retained on the individual lots to lower the amount of immediate runoff; thus allowing the use of smaller pipes
pipe networks may be designed with open joints or perforated pipes when ground water is not in danger of contamination and soil porosity allows it; a large amount of the storm flows may be appreciably reduced in this way

CRITERIA:

1. Adequate capacity of lines for demands imposed.
2. The network should use the minimum number of pipe sizes as possible
3. Only gravity flows should be planned

STANDARD
PRACTICE:
Main layout:

- sub mains should follow line for natural drainage
- laterals should be laid along lines of greatest slope
- interceptors should be placed parallel with slope
- one should use short mains and long laterals
- sectional drainage is often more economical than duplicate networks, particularly with setback dwellings as in housing projects

If layout is on steep slope, common drains are used for several houses before connection with lateral

SLOPE \rightarrow

DWELLINGS PER A GIVEN SEWER PIPE DIAMETER

PARAMETERS
QUALITY OF WATER USED PER DWELLING
100% of the compliment of the water quantity from the water supply is used in the determination of the number of dwellings per sewer pipe.

1. This allows for infiltration of ground water into the network
2. This also allows for fluctuation in demand

VELOCITIES USED IN THE CHART
Velocity $=2.5$ feet per second
This minimum velocity is required at the initial stage of the network development which determines the slope of the pipes; this velocity is also the minimum required to suspend sewage solids without settling out into the pipe network

Velocity=8.0 feet per second
The average velocities of flow in pipe networks; above this value (around 15 fps) the velocities become destructive to the walls of the pipes and the pipes must be coated with protective linings

FAMILY SIZE
The average American family size of approximately 3.0 people/family is assumed in the charts

For conditions of developing countries with family sizes of 6.0 people/family, divide the number of dwellings per pipe diameter by half

SECTIONAL FLOW

The initial stage is developed at full section of flow; the developed stage is also with full sectional flow but under pressure of the volume and velocity of the sewage

Flow at partial sectins develop higher velocities so there is no danger of clogging of the pipes at smaller flow values

QUALITY OF SERVICE

The three qualities of service as developed in the water flow charts are used for sewer also

High quality: $P=500$
Intermediate: $\mathrm{P}=82.5$
Low: $\mathrm{P}=12.5$

NIMBER TF DWELLINGS FOK GIVEN SEWEK PIPE SIZE

	VALUE OF＝ 2 ． P VALLES OF＝	12．5	82.5	500.0
1．INCH	DIAMETER	2.	9.	C．
2．INCH	dianeter	24.	4.	1.
3．INCH	CIAMETER	122．	18.	3.
4.1 NCH	CIAMETER	335.	58.	10.
5．INCH	DIAMETEK	94.	142 。	24.
6. INCH	DIAMETER	1550.	295.	49.
8.1 INCH	CIANETER	6162 ．	934.	154.
10．INCH	DIAMETER	15045.	2279 。	376 。
12．INCH	CIAMETER	21195.	4727.	78.
14．INCH	DIAMETER	57795.	8757 •	1445 ．
16．INCF	DIAMETER	¢¢59\％．	14939.	2465 ．
18．INCH	CIAMETER	157932.	23929.	3948.
20．INCH	DIAMETER	240713.	36472 ．	6018.
22．INCH	OIAMETER	352427.	53398.	8811.
24．INC．H	OIAMETER	499135.	75626．	12478.
26．INCH	DIAMETER	68714．93．	104166	17187.
28．INCH	OIAMETER	924714.	140108.	22118.
30．INCH	CIAMETER	1218596.	184635.	30465.
32．INCH	CIAMETER	1577510.	239017.	39438.
34. INCH	CIANETER	2010444 。	304613.	5 C 261.
36．INCH	DIAMETER	2526501.	382864.	63173.
48. INCH	DIAMETER	7986.39.	1210036.	199656
96．INCH	CiANETER	127779088.	19360464.	3194477 。

VELCCITY Value of $=8.0$ PVALUES DF＝ 12.5 52．5 50.0

1．INCH OIAMETER	15.	2.	Q
2．INCH DIAMETER	246.	37.	6.
3．INCH DIAMETER	1248.	189.	31.
4．INCH DIAMETER	3944 。	598.	99.
5．INCH OIANETER	9628.	1450 ．	241.
6．INCH DIAMETER	15966.	3025.	499.
8．INCH DIAMETER	＋210？	9561.	1578.
ICOINCH DIANETER	154356.	23342 。	3851 。
12．INCH DIAMETER	319451.	48402.	75886．
14．INCH CIAMETFR	591816.	89669.	14755．
16．INCH DIAMETER	1009620.	152973.	25241 。
18．INCH DIAMETER	1617213.	245032.	40432 ．
20．INCH DIANETER	2464865.	373464 。	61622.
22．INCH DIAME TER	3608809.	546789.	90220.
24．INCH CIAMETER	511118？．	774422.	12778C．
26．INCH DIAMETER	7039985 －	1066664.	176000.
28．INCH CIAMETER	9468959．	1434696.	236725.
30．INC．H CIANETER	12478525.	1890685.	311962.
32．INCH DIAMETER	16153835.	2447550	403846 ．
34．INCH DIAMETER	20566784.	3119211.	51467 C ．
36．INCH DIAMETER	255 75964．	3720435.	646892.
48．INCH TIAMETER	9177944？	12300670	204446．
GO．INCH DIAMETER	1308467712．	198252744	32711696.

ALLOWED LENGTH OF SEWER PIPE NETWORK

The length is a function of the slope and the depth limitations of the trenching equipment.

PARAMETERS

VELOCITY

The velocity of 2.5 feet per section is taken as the minimum value. At this velocity, solids will not settle out and clog the network.

FORMULA
With the given velocity, the minimum slope may be derived.

$$
\begin{aligned}
& S=(\text { vel } /(1.486 \mathrm{~N})(\mathrm{R} / 2) \cdot 66)^{2} \\
& S=\text { slope in feet per } 1000 \text { feet } \\
& N=\text { friction constant for pipe material } \\
& R=\text { radius in feet }
\end{aligned}
$$

INTERPRETATION OF THE CHART

MIN VELIJCITY OF $=2.5$ VETEF［ROP JF＝
0.5
1.0
1.5
2.0
2.5
3.0

1．INCF	CIAMETER	4501.	9002.	13502.	18003.	22504 •	27005
2．INCH	CIANETER	11341.	22683 ．	34024.	452 ¢	567 （7．	68.48.
3．INCH	DIANETER	19474.	38948 。	58422 －	77835.	97369.	116843.
4．INCH	CIAMETER	28578．	57157.	85735.	114313.	142891.	171470 ．
5．I NCH	DIA METER	38481 。	76962.	115444°	153925.	1924 C 6.	230888.
6．INCH	DIAMETER	49671.	98142.	147213.	195284.	245355.	294426.
8．INCt	OIAMETER	72013.	144026.	216038.	288051.	360064 。	432077 。
10．INCH	UIAAEIER	96567．	193934.	290901.	387867.	484834.	581801.
12．INCH	CIAMETER	123651.	247302 。	370553.	494604.	618255.	7419）6．
14.15 NCH	DIAMETEK	151360.	303731.	455597.	607463.	759329.	911195.
16．INCF	CIAMETER	1814 ¢ 1	$\underline{2} 62921$.	544382.	725842.	907303.	1088763.
$18 . \mathrm{INCH}$	DIANETER	212313.	424635.	636953.	849271.	106158.	1273906.
20．1NCH	DIANETEr	$24+340$ ．	488681.	733721.	977361.	1221701.	1466041.
22．INCF	CIANETER	277451．	554902.	832353.	1109864.	1337255.	1664706.
24.1 ACH	DIANETE？	414323 ．	829655.	1244482．	1659310	$2 C 74136$	24889 ¢
26．INCH	C．IAMETCR	461547.	923095.	1384642.	1846189.	2307736.	2769284.
28．INCH	CIDMETER	勺09482．	1018964.	1528445.	2037527.	2547411.	3056893. $=351440$.
30．INCH	DIAMETER	558574.	1117147.	1675717.	2234294.	2792867.	ミ35144C.
32．INCH	C IAMETEK	$6-8165$.	1217537.	1826305.	2435074.	3043842.	$3652611 \text { • }$
34．INCH	CI ANETEF	6 ¢0）${ }^{\text {c }}$	1320039.	1980058.	2640077.	$33 C C C$ 3561436.	3960116
36．INCH	DIAAETER	712 287．	1424574.	2136862.	2849149.	$\frac{3561436}{5226498}$	$\frac{4273724 .}{5271797}$
48.1 NCH	DIAMETER	1045303 ．	2090597.	31358 ¢8．	4181198.	5226498.	5271797 。
96．INCH	DI AMETEK	2633989.	5267979.	7901969 。	10535959．	13169950 。	15803939

DEFINITIONS

Runoff: The amount of rainfall that does not absorb into the soil or surface but remains free to follow the topography

The removal of water runoff in order to prevent flooding is the primary purpose of the storm water network.

Flooding results in high material damages; it washes away streets, sidewalks, and undermines footings of dwellings. In addition, it threatens the water supplies by the contamination of either the sources or through the infiltration of the water network, with the consequence of large scale epidemics.

It is very costly to plan for all eventualities of flooding. A compromise between the degree of flooding and the amount of money willing to spend on a pipe network to carry away runoff is necessary in most cases. High central districts generally have a low tolerance for flooding whereas residential areas may tolerate appreciably more. Residential areas generally allow the street and sidewalk network to carry a large portion of the runoff without harm to the area.

THE STORM DRAINAGE NETWORK

COLLECTION
Concentration of storm flows

DISPOSAL

recycling of storm flow into the ecological system

WALKWAYS

ADVANTAGES: allows water concentration for economical pipe sizing
heavy rains flood sidewalk

ROADWAYS
allows econom- inexpensive ical sizing for pipes
allows multiple use of existing system

25-50 year rains constant flood roadway maintenance required

COMPONENT :
RESPONSIBILITY:

CONTROL:
CHARACTERISTICS: gravity flow system
min. vel: 2.5 fps when flow at full section; max. flow of 8 fps. if pipe unlined, 15 fps if concrete lined. 12" min. recommended pipe size (U.S.)

2 centimeters per 100 meter slope a common recommendation
layout related to street drain system

SCALE OF
DEVELOPMENT: economy dictates scale
good for small rainfall control

DISADVANTAGES: difficult to change or alter as area becomes built-up and runoff increases
unable to design for large flows economically
developer connects to city

CHANNEL NETWORK
developer established
city maintains systems in each case
gravity flow system
2.5 fps min. flow
brick lined to prevent scouring
large areas; dependent on rainfall intensity and duration
inexpensive system for large flows
becomes a physical boundry
becomes trash collection site, health hazard

COMPONENTS :
SEWER SYSTEM

DILUTION

IRRIGATION

RESPONSIBILITY: connected by developer

CONTROL:	deeded to city
CHARACTERISTICS $:$	system called
"combined" when	
connected to	
sewer	

EXAMPLE OF USE: Boston

SCALE OF DEVELOPMENT:

ADVANTAGE: only one pipe network needed

DISADVANTAGES: impossible to adequately design; pipe sizing must resort to overflow which results in contamination of area and health dangers

regional board regulates use	
most common	used in flat
system in	areas
urban areas	used where water is at a premium

Berlin

limited by	limited by size and soil drainage flow of water course
ability	
inexpensive	may be used as water source in arid areas; agriculture value

pollutes only useful if
water system land is inexeasily during pensive heavy rains
danger of pollution of ground water

QUANTITY OF WATER IN PLANNING

SIZING OF SYSTEM

1. AMOUNT OF WATER
A. Intensity and duration of storm: the longer the storm, the more runoff occurs due to saturated ground conditions. The more development, the more runoff and less infiltration into the ground. Strong, short duration storms have a greater runoff than light, long duration storms because of the greater ground infiltration.
B. Size and runoff of tributaries: the larger the water tributary, the more water able to be handled. The faster the flow of the water tributary, the more water is able to be absorbed without flooding.
2. CRITERIA USED IN DESIGN OF SYSTEM

The criteria is based on what degree of flooding an urbanization will tolerate. The tolerance level is usually expressed in years of design period; or probability of amount and duration of rainfall in a period of years.

SUBURBAN CRITERIA: Since land values are relatively low and since there are no dangers to large segments of the population, the year design period is usually 1 to 2 years; a network that will accomodate the flows occurring within one to two years. Other means are employed to control runoff and excess water flows. Streets and sidewalks are allowed to flood the few days out of the year when the anticipated rainfalls occur.

CHARACTERISTICS: rainfalls fill pipe system at full design potential several times within year, relatively inexpensive pipe network, may be altered since not excessive investment involved.

CENTRAL AREA CRITERIA: Relatively high land values and relatively vital to a large segment of the population demands a high design period. Usually 25 to 50 year design periods are used.

CHARACTERISTICS: a relative expensive system, difficult to change because of investment and size and location, pipes mostly handle minor flows, only once in 25 to 50 years are the pipes filled to full potential.

FORMULA USED IN DESIGN:

The Rational Method:
the most commonly used formula for handing storm flows
$Q=\operatorname{CiA}$
$Q=$ rate of runoff in cubic feet per second C = coefficient of runoff dependent on the character of the land
$i=$ average intensity of rainfall in inches/hour
$A=$ size of the drainage area in acres
The basic assumption behind the rational method is that the runoff rate for a given intensity will increase and reach its maximum when the duration of the rainfall reaches the time of concentration of the area; the time when the runoff from the most remote point of the area in question reaches the point where the ' Q ' is being measured.

The intensity of rainfall used in design is based on the criteria of suburban or central areas. The amount of runoff is dependent on the nature of the area in question.

127
The staging of developments becomes critical when viewed from storm drainage design factors. Initial stages would have low runoff characteristics whereas final stages would have high values demanding a well developed drainage system.

PERCENT OF RUNOFF IN RELATION TO AREA
(R:21)
BUSINESS BLOCKS: high value district neighborhood district

RESIDENTIAL BLOCKS: single family detached multi-family attached multi-family suburban apartments

INDUSTRIAL BLOCKS: light heavy

PARKS AND CEMETERIES

PLAYGROUNDS

UNIMPROVED LAND

IMPLICATIONS:

It can be seen that built-up areas prevent rainfall penetration into the soil and consequently these areas will have more runoff water to cope with. Allowing green areas spaced between buildings provides some area, admittedly small in most cases, where rainfall may be absorbed.

Approximately 50% of the residential neighborhood rainfall will result in runoff. Whether or not to provide a pipe network to carry the anticipated rain amount depends directly with the anticipated rains of an area and the degree of flooding to tolerate. Whether the costs are worth the result must be faced by each individual community.

COMBINED SYSTEM SEPARATE SYSTEM

FUNCTION:	Domestic, industrial and storm waters drained in one system of pipes. The system historically developed when open drains were covered and converted into all-purpose systems. Boston, among many others, is one of these.	Domestic and industrial wastes are carried in one pipe system; storm waters are carried in another pipe network
ADVANTAGES :	Lower cost since only one pipe network	More economical to maintain while in operation
DISADVANTAGES:	High operating costs, high treatment costs	Demands two separate pipe network systems
	Pollution dangers very high	
	Impossible to design for heavy rains economically; only sized for dry weather flows	

```
THE ELECTRICAL NETWORK
```

DEFINITION
Electricity:
A fundamental quality of nature; the potential energy developed from a force field which when moving in a stream gives rise to electric current; it allows the transfer of energy over long distances and premits the subsequent transformation into a useable energy form

UNITS OF MEASURE
Volt: unit of electrical potential
Kilovolt: 1000 volts; measure used in high voltage transmission lines; also written as (k).

Although electricity is not necessary for the direct substaining of life, it has become a vital service to the function of urban areas. Without electricity, urban life would be greatly changed and not be able to support the wide range of activities that are now offered to the urban dweller. The more urbanized an area, the more it is dependent on electricity for functioning. The other residential services are directly or indirectly dependent on electricity. Without electricity, urban functions invariably cease.

1. The utility services are genrally dependent on electrical power. Wells, pumps, sewer lift pumps, treatment plants, and pressure boasting devices are made possible by inexpensive electrical power. Various services may be offered for greater distances and reach the tallest buildings only through the use of electrical power.
2. Electricity provides security through the medium of lights. Street illumination and dwelling illumination allow activities to span a longer time span and increase the functionality of an area.
3. Electricity provides convenience services for the individual homeowner which frees him for other activities.
4. Communication is vital to the functioning of the high density urban areas. Electricity allows the development and the use of telephone, telegraph, television, and radio services to the residential areas.
5. The standard of living of an area is intimately coupled with the amount of electricity furnished to the individual dwellings. Electricity allows the increase of dwelling standards.

REQUIREMENTS FOR INSTALLATION

1. Highly technical specialists are imperative
2. Highly sophisticated equipment is required for the service
3. Large scale regional planning is demanded
4. Misuse after installation is dangerous to life and property
DISTRIBUTION
DISTRIBUTION
provides
provides
electric service
electric service
to user
to user

TRANSMISSION
transports
energy to user
groups
DISTRIBUTION
STATION
divides power
among main user
groups
SUBSTATION
manipulates ${ }^{\prime}$
power into use-
ful energy
levels for con-
sumption

COMPONENT:	Turbine Generation	Diesel Generation
RESPONSIBILITY:	provided	mpany
CONTROL:	regional public board	company controls
CHARACTERISTICS:	:turbines may be energized by water power or steam generation systems; steam is produced by coal, gas, oil, or nuclear heat generators water motivated systems generally require a damed water supply	diesel systems are generally powered by electricity, gas or oil motors
SCALE OF DEVELOPMENT:	usually many cities are served by one plant	usually for small systems only; mainly a backup use in most cases
ADVANTAGES :	inexpensive production of power	portable system; not dependent on fixed power supply for motivation
DISADVANTAGES:	requires transmission lines and a water storage system; high first cost	expensive means of electric supply

Generation TRANSMISSION Dist. Station Substation Dist. Network

COMPONENTS: Tower and Cable Lines for transmission
FUNCTION: supports cables for long range transmission
RESPONSIBILITY: company installs and finances
CONTROL: . regional control
CHARACTERISTICS: towers are approximately 45 meters high, 9 to 18 meter bases; require 30 to 60 meter easements

Generation	Transmission	DIST. STATION	Substation	Dist. Network
COMPONENTS :	Distribution Station (transformer station)			
FUNCTION:	maintains power pressure and boosts transmission distances			
RESPONSIBILITY: company installs, finances and maintains				
CONTROL: company control				
CHAPACTERISTICS:from hdro power sources, lowers power from 230 kv to $115 / 69 \mathrm{kv}$				
	from ste to $34.5 /$	am sources, lo 13.2 kv	wers power	from 138/115 kv

Generation Transmission Dist. Station SUBSTATION Dist. Network

COMPONENTS:	Substations
FUNCTION:	furnishes power to dwellings and street lights
RESPONSIBILITY: company finances, installs and maintains	
CONTROL:	controlled by company
CHARACTERISTICS: usually located as close to users as possible	
	lowers power from $13.2 / 46 \mathrm{kv}$ to $2400 / 7200$ volts
	usually widely spaced at low densities;

COMPONENT:

FUNCTION:
carries power to user

Poles Or Channels
supports cable converts power provides pro- to useable tection to voltage lines

Transformers
and maintained by company public policy and safety requirements dictate control

CHARACTERISTICS:5.5 m. above street surface or buried underground in conduits

30 to 55 m . transformers spacing; may be on pads, 15 to 30 cm . buried, or susfrom curb pended from 9 to 11 m . high poles; channels transformers come in 9" may be inby $9 "$ sec- creased if tions; they additional are used when power is changes are demanded anticipated in underground services; channels are based on 5 to 10 year design period; manholes are needed for channels every 150 to $210 \mathrm{~m} . ;$ poles are cheaper; channels are used in urban areas where the cables are more subject to change

ELECTRICAL NETWORK LAYOUT

METHOD: \quad Total
CHARACTERISTICS:all lines in channels; used in congested areas

ADVANTAGES:
no interference with traffic; favorable visual aesthetics
no climatic problems of maintenance
low maintenance costs in general

DISADVANTAGES: high cost of installation

Partial
Underground
primary voltage primary and system of power secondary on poles, secon- voltages on dary voltage system in channels; used in residential areas
lower cost than lowest cost if all underground
makes use of existing light poles for primary voltage system
poles, low density areas

All on Poles

FUNCTION: l. provides safety to pedestrians and drivers by increasing night visual distance
2. provides sense of security to inhabitant of dwellings

RESPONSIBILITY: developer finances and installs
CONTROL: city maintains and controls
CHARACTERISTICS:on residential streets, 40-49 meters spacing with 6 to 7.5 m . height; located on alternate sides of the street
for business streets, spacing is 21 to 37 meters with 9 meter height
criteria of height to spacing is based on glare reduction and placement of light out of the vision range; a rough approximation is that spacing is 8 times the height; minimum height is 4.5 to 6.1 meters.
intersections require street lights

THE TELEPHONE NETWORK

COMPONENTS: INDIVIDUAL TELEPHONE
SHORT TRANSMISSION LINE
(each customer)
CENTRAL OFFICE, SWITCHBOARD
TRUNK LINES, LONG DISTANCE
TRANSMISSION
AREA SWITCHING CENTERS:
Toll centers
Primary centers
Sectional centers
Regional centers

PROCESS:
The system depends on the correct switching from unit to desired unit with the adequate transmission of sound. Switching occurs on the levels dependent on the distance of the call. Local calls utilize switching from the central office; long distance calls may go from primary to sectional to regional centers.

RESPONSIBILITY: all components are provided by the company
CONTROL: \quad semi-private company; limited public law control
CHARACTERISTICS: the system runs on direct current from its own power sources; backup systems of batteries provide for breakdowns; consequently, telephones usually are available during regular power failures for emergency use
carrier systems have been developed whereby the sound transmission is carried over power lines, thus allowong cheaper installation and less cables
the central office controls 35,000 customers and 2,000 trunk lines; design period is 15 to 20 years
cables are usually underground in urban areas in ducts; in low density areas overhead aerial cables are used since they cost less; long distance intercity trunk lines are usually buried without ducts since they are not subject to frequent change

FUNCTION: natural gas is used in homes for heating and cooking

RESPONSIBILITY: private or public utility companies install and provide all components

CONTROL: usually considered a public utility; it is under the control of a public board

CHARACTERISTICS:usually small, high pressure lines
pressure regulating devices are located as needed in the network, usually buried with the pipe
pipes are usually located in the sidewalk region
gas leaks may saturate area and cause violent castastrophes; old, poorly maintained pipes are subject to major problems
gas leakage may penetrate PVC water pipe and contaminate water supply

FUNCTIONS: steam lines are used for heating in highly congested areas

RESPONSIBILITY: usually a private company which sells services
CONTROL: usually regarded as public utility
CHARACTERISTICS;steam lines require underground tunnels for installation
high heat and pressure losses force use for only relatively short distances
steam source is from a central heating plant for service to high use area

```
THE REFUSE NETWORK
```

DEFINITIONS
Waste: useless, unwanted or discarded liquids, solids, or gases

Refuse: solid wastes; not liquid or gaseous
Garbage: a subgroup of refuse; organic, putrescible refuse; mainly results from handling and preparation of foodstuffs

Rubbish: a subgroup of refuse; non-putrescible refuse; may be combustible or non-combustible; bottles, cans, paper, etc. are some examples of this catagory

UNITS OF MEASURE

Acre-foot: a measure of volume; one acre of area, one foot deep

Pounds per capita: a measure of the amount of refuse produced per person; usually based on per day or per year

Consumer refuse will continue to be a major problem of urban areas. With a rising population, an increase of refuse production per capita and coupled with a rapidly inadequate means of handling refuse disposal, the problem demands new solutions and better utilizations of the current methods.

The amount of waste generated is generally too great to insure individual disposal in a desirable manner; consequently, urban areas usually provide the service of removal and final disposal.

The increased population with its increased refuse production results in greater dangers of ground pollution. Great care must be exercised in the placement of the disposal areas to insure the proper respect for economic as well as environmental costs.

REFUSE DISPOSAL NETWORK

COMPONENT :
RESPONSIBILITY: individuals of each dwelling prepare refuse
CONTROL:
public law determines process required
CHARACTERISTICS:all types of refuse are in one lot; garbage, rubbish, ashes, street refuse, and industrial wastes
becoming more favorable than separate systems in most urban areas

USE EXAMPLE:
ADVANTAGES:
most practical, simple for homeowner
most economical for pickup
the garbage is separated from the rubbish and ashes
this method is essential if hog feeding is a major form of disposal
bottles, cans must be washed to remove food particles

BOSTON (U.S.)
allows the use of selective disposal methods; salvage, hog feeding, etc.
good where individual garbage disposals are used and refuse already separated
more effort on part of home owner
requires two pickup times and two pickup vehicles; higher cost
requires two disposal methods

METHOD :	CURBSIDE	YARD
RESPONSIBILITY:	owner must move to curb or alley	pickup men must move to truck
CONTROL:	public law determines	public law or added payments by owner provide service
CHARACTERISTICS	:refuse contained in cans or other enclosure to prevent scattering	garbage men pick up refuse container from door step and transport to truck; sometimes container returned to yard as part of the service
EXAMPLE OF USE:	Boston (U.S.)	
ADVANTAGES :	lower cost to city	convenient to owner
		```allows neater street; easier and less street maintenance```
DISADVANTAGES :	less convenient to owner   litters streets with overturned refuse containers	higher cost to city if not borne by added payments of owner

DIRECT TRUCK PICKUP
TRANSFER PICKUP METHOD

RESPONSIBILITY: city or private contractor provides service CONTROL: city policy sets service requirements

CHARACTERISTICS:Pick-up vehicle must be odor free, water tight, clean and psychologically obstruse; loading height is the most critical factor for efficient use; size, height and width of vehicle determined by road parameter; vehicles usually also used for snow removal and other services.

In this method the trucks are

Open Top	Enclosed	Compactor   low cost;	emptied into a   same as   in most
open but	refusesses	larger transfer	

The trucks are emptied directly into disposal area.

Frequency of pickup is related to temperature and weather; the hotter the weather, the more frequent the pickup requirements; twice a week in warm climates to once a week in cold are common; once every two weeks in small cities; if garbage is separated from rubbish, it does not require as frequent pickups in hot climates

OPEN DUMPS
all refuse into pits or on land sites

CLOSED DUMPS
all refuse buried into margin al land

RESPONSIBILITY: city or private contract company provides service
CONTROL: city policies and health codes

CHARACTERISTICS: located in unwanted areas such as quarries, and marsh lands; on inexpensive land; articfical trenches may be dug if no depressions available
must be located in areas not subject to flooding and with proper drainage; geological conditions important to prevent contamination of the water table

> requires two foot dirt cover per day

LOCATION:

SCALE OF
DEVELOPMENT :
small communities medium to high denisty areas 412 people/ac.foot of dump 1,430 people/ac.foot of dump

ADVANTAGES: requires only one collection trip per area low cost, no machines, no supervision,simple
allows explosive methane gas to escape
reclaims marginal land; no odor, no health hazard
allows $50 \%$ reduction in vol.

DISADVANTAGES: uses large amounts of land may pollute water supply difficult to reuse
spreads odor holds water,
fly danger, eyesore, may pollute water supply
ruins future land use
fire hazard
high cost, requires special machines, emits explosive methane gas which must be vented; settles $10-25 \%$ within 6 months; 2 yrs before light load support; does not allow basements

## DISPOSAL

INCINERATION
combustion of all refuse

DISPOSAL IN LAKES,OCEAN
dumping of all waste into available water course
volume reduced . 5 to 208 . eliminates moisture and gases;
requires $1,250-1,800 \mathrm{~F}$ temper ature, multiple burners reduce pollution by better combustion individual incinerations illegal in most cities
taxes pay for system; $3,000-4,000$
dollars per ton initial cost;
\$4-6 per ton operating cost
in industrial areas; wind not
a factor
large, high density urban areas 2,080 people/ac.foot of space
convenient location, little need no land requied for dumps for land; not affected by weather, flexible operation
bottles and metals may be sold
heat may be utilitized if on large scalc (Chicago)
high cost, skilled labor, high maintenance costs; ashes must still be removed to dump
not justified if land fill
available
air pollution hazard
salvage may be carried on
in other methods also
barges are used to deposit refuse in water
no eyesore, odor, no health hazard
high extra hauling cost by barge
water becomes polluted
storage needed when lake freezes

METHOD :	HOG FEEDING	SALVAGE \& RECLAMATION	GARBAGE GRINDING	MECHANICAL COMPOSTING
FUNCTION:	maintenance of farm for profit by feeding garbage	use of materials to be sold	shredding of garbage and washing into sewe	biochemical degradation of organic material
RESPONSIBILITY:	private company	city or private company	city, company or individual	
CONTROL:	health codes	market values	city policies	
CHARACTERISTICS	:traditional method of disposal; treated with heat to kill bacterial trickinosis   $25 \%$ of garbage in US fed to hogs in 1961 (R:31)   restaurants and hotels contribute most to program	15\% reduction in volume useful for a small portion of refuse only	may be handled by city or by individual   older sections of city don"t have disposal units so individual systems must be augmented by city system	resultant fertilizer of very high quality   not successful in the US because of the high cost and no market   used in European countries extensively
ADVANTAGES :	```provides income from refuse minimum effort, inexpensive```	potential sale   of end products	convenient to owner   sanitary method of disposal	end product of fertilizer may be sold
DISADVANTAGES:	most of refuse not eatable; dependent on separated pickup	high labor cost of separation uncertain of product or market	only small portion may be grinded   must have two systems	$50 \%$ of refuse is non-compostible and must still be disposed of in other manner
	hazard of disease spread	high costs difunsanitary processficult to justify		no or little market in the US
	usually distant from sources of supply		might overload sewers; solids increase by 100\%; grit by 40\%; demands higher pressure and supply	



COST PER TON IN DOLLARS


## COMPOSITION OF REFUSE

CLASSIFICATION OF REFUSE:

Organic (mostly combustible)
-garbage

- paper
-wood
-plastics
-grass
-trimmings
Inorganic (mostly noncombustible)
-metals
-glass
-ashes
-ceramics
-stones
-dirt

PERCENT OF ALL
REFUSE BY
WEIGHT (U.S.)


There is a difference between refuse produced and refuse collected. Some refuse produced goes to garbage grinders, incineration or to hog farms; therefore, collected refuse varies from $50 \%$ to $75 \%$ of the total.

QUANTITY
DETERMINANTS: l. population increase
2. increase of refuse per capita

TRENDS OF
QUANTITY (U.S.):1. There is an increase of the volume of the refuse produced with a decrease of the weight of refuse produced. Current and future uses for new container materials encourage this increase in volume.
2. There is an increase of rubbish produced with a decrease of garbage and ashes. Again, current and future methods of packaging encourage this increase.

SEASONAL
VARIATION: Summer months result in an increase of garbage and yard refuse because of the availability of fruits, vegetables and other organic products.

Winter seasons result in an obvious increase of ashes and decrease of garbage refuse.

PER CAPITA
PRODUCTION:
In 1965, the average refuse per person was 4.5 pounds per capita per day; with a peak value of 8 pounds per capita per day.

The trend is upward at the rate of 0.07 pounds per capita per year.

On a yearly basis, per capita production was 1,650 pounds, with an increase of 25 pounds per capita per year.

PER CAPITA
PRODUCTION IN
RESIDENTIAL
AREAS:
In 1965 (U.S.) the range of production was $1.1 \mathrm{p} / \mathrm{c} / \mathrm{d}$ to $3.2 \mathrm{p} / \mathrm{c} / \mathrm{d}$, or $386 \mathrm{p} / \mathrm{c} / \mathrm{yr}$ to 1,152 p/c/yr.
(R:31)

## FUTURE REFUSE SYSTEMS

Refuse disposal has become an ever growing problem throughout the world. More and more consumer goods are being presented in single use disposal packages. As income and tastes change, the emphasis focuses on an ever greater variety of products beyond than the basic necessities. With paper products already comprising over $40 \%$ of the total refuse, the farther advancement of advertising and consumer convenience products will undoubtedly produce an ever larger percentage of refuse to useable product; a higher proportion of package to containers.

In highly developed countries, the situation is now at a crossroads. The point is reached where a formal attack must be presented against the multiplication of refuse. But at what point in the refuse cycle should the attack focus?

We have reached a philosophical crossroad where there are two opposing approaches available:
1.Emphasis of the collection and disposal components of the refuse cycle. The focus here would be on efficiencies of quick and sanitary means of removing the refuse from the user, and cheap and efficient elimination. Some approaches would be to improve and develop high compaction vehicles for instant disposal, chemical means of removal and individual "vanishers." The community would eventually accept and support the refuse engineer as a respected and honored profession; the refuse specialist would become an indispensable asset to community functions. Schools would develop, socities would form and a refuse disposal elite would arise in society.
2. Emphasis of the reduction in disposal materials. The focus would be on the elimination of the refuse products of the consumer. Articles such as bottles, cartons and bags would be redesigned or re-packaged to reduce the refuse production to a minimum level. Systems could be set up whereby all consumer disposals would, for example, be required to dissolve in water so that existing sewer systems might be used. Development of "non-packages" which would be part of the function of the article is another possibility. In all cases, the unrestricted flow of consumer refuse would decrease. Refuse collection and disposal services would become unnecessary, or at least down graded by several magnitudes.

It would be more reasonable to combine the two approaches to the problem. Recycling operations would be stressed as an integral part of community functions; where each product would become a component of a larger system. Products would be divided into short and long-term cycles. The, short-term cycle would include items where the stress would be on the elimination of waste products. The long-term cycle would be for items where the waste would be the product itself and no reduction of the waste when it is discarded is possible.

1. Short-term cycle: The second alternative of discouraging the production of disposal items could result in the instant removal, alteration or elimination of the consumer packages. Items in the short cycle would be articles where the use life is on a daily to a weekly basis. Foodstuff packaging, carrying disposals (bags, etc.) and protective wrapping would be in this cycle.
2. Long-term cycle. Large items such as automobiles, appliances, tools, etc. would be programed to be part of a larger energy cycle. The stress would be on the refuse of the articles for alternate functions with only small added operations.

In summation, the emphasis on short-term cycles would be to eliminate the resultant refuse by altering or preventing the production of daily consumer refuse. For long-term cycles of large consumer products, an eco-cycle would be established to handle the refuse products. Here emphasis would be on the establishment efficient collection and disposal (or alternate operation) system.

			COMPARISONS
SYSTEM:	WATER SUPPLY	SEWER SYSTEM	STORM DRAINAGE
FUNCTION:	the supply of potable water for health, cleanliness and cooking; required for substaining life	the disposal of domestic waste in a sanitary and unobjectionable manner	prevention of flooding for protection of health and property
LAYOUT:	a closed grid network; not dependent on the terrain	a tree or branching system; dependent on topography; a sloped network	a tree or branching system dependent on topography; a sloped network
PIPE LOAD:	water only	floating suspended solids; $0.1 \%$ solids in domestic system; 1/2 pounds/person/day	floating suspended material 40\% more putrescible matter than sewage
PIPE FLOW:	uniform steady pressure flow at the full section of the pipe; velocity of 2 fps minimum, 4 fps average	unsteady nonuniform gravity flow; may be a full section of pipe but usually at partial section; velocity of 2.5 fps to 15 fps	unsteady nonuniform gravity flow at full section at peaks, normally only partial; velocity of 3 fps minimum; 15 fps maximum
PIPE MATERIAL:	cast iron if over $12^{\prime \prime}$, spun iron most common; asbestos cement, concrete, cement lined steel (over 10"), plastic for service lines	house service line is cast iron; vitrified clay for small pipe; prefabricated concrete for large pipe; same as water if infiltration danger	same as sewer lines
PIPE SIZES:	```6" minimum with fire flows (US)```	8" (US)	12' (US)
LOCATION OF PIP	:in streets or right-of way; 3 meters away and above sewer by 15 cm .	preferred in alleys; or center of street	in streets; opposite water lines
DEPTH OF PIPE:	determined by frost and crushing danger; 90 cm . normal, 60 cm . required for crushing protection	90 cm . below basement level; 3.4 meters below foundations i commercial buildings	crushing and frost demands dictate depth
DESIGN CRITERIA	:economical flows dictate; acceptable friction losses with fire flows set sizes	hydraulic demands dictate; minimum velocity determines size and slope	hydraulic demands dictate minimum velocity sets pipe sizes and slope
DESIGN QUANTIT	ES: 50 to 150 gallons per person per day (US)	$70 \%$ to $90 \%$ of the domestic water consumption	quantity set by degree of tolerance to flooding



(R:9)

```
RELATIVE PROJECT COSTS
```



The cost is in terms of 1000 's of Bolivars (bs); the data is taken from ciudad Guayana, the proposed costs of the Dalla Costa area (1965), for 1000 dwellings; 1,500 lots.

## RIGHT-OF-WAY

Utilities are laid in public right-of-ways in order to allow access to networks when maintenance is required. Existing street right-of-ways are used when possible for the network layout.

1. they border most of the potential users
2. they provide access to all users with generally a minimum length
3. they are controlled by the municipality and allow immediate access

CRITERIA FOR LOCATION

1. Minimum distance to user (results in economical pipe network
2. Ease of relocation after burial (for maintenance and alteration)
3. Minimum disruption of right-of-way functions with installation and maintenance activities

CRITERIA FOR STAGING
if unpaved; as needed by users and provided by city funds
if paved: all utilities, distribution lines and service lines, which are to be used within five years are to be buried initially before paving of roadbed.
-minimum depth of .6 meter (24") for crushing protection
-when over 2 meters deep, stronger pipe must usually be used to support soil pressure
-all pipes and service should be lower than 3 meters or close to surface if subways are planned in future
-minimum trench width is . 6 meter (24 inches)
-if a common trench is used, sufficient space must be required for each line to facilitate maintenance

UTILity:
LOCATION
CRITERIA:
$\underset{\text { POTES }}{ }$
located
.6 . 6 ( $24^{1}$ )
for from curb
fron for protection of
automobiles;
af mete
 spacing of 30 to 55
meters. 40 meters
average

CHARACTERISTICS: usually wood, steel or
6 to 10 meters tall
wire clearance of 5.5
meters minimum above
roadway
located to preven
tree interference
power lines, buried
located in sidewalk
area opposite storn area opposite storn
drain side to prevent
water infiltration

Cables are pulled
into vitrified clay asbestos or concrevé
tiles; .6 meter (24") minimum depth manholes are required every 60 to 300 meters
to allow maintenance basic size is $22^{\prime \prime} \mathrm{x}$
$22^{2}$ with 16 slots,
net may we multiplied as
needed 5 to 10 year design
period of cables cables may be buried
directly without tile cover if no chang
are anticipated $2.5 \times 1.5$ meters to
$4.5 \times 11.5$ meters is
is service boxes pushed
nder pavement. 8 unit Under pavement ${ }^{\circ} 8$ ounits
per box, max. dist. is
0 0 meter
water distribution

usually. $\cdot 6-.9$ m.
deep for crushing
and frost protectio
and frost protection
if over 1.8 m. evxra
entrent
recommended put in
alley or under pavealley or under pave-
ment; but practiced nyway since no no othe
space available may be on surface if reezing. European practice uses this
principle frequently
which resutequen
 cheaper instaliation
and pasy maintenance.
Temperature of water Temperature of wate
may be unacceptable ay be unaccept
n some cases
sanitary sewer
centered in street,
prevents infiltration prevents infiltration
and illegal connections;
minimum access to dwellminimum access to dwelli-
ings of both sides; 3 m .
from water min ings of both sides;
from water main and
below
sewers have a longer
design period and henc design period and hence
dillow positioning inc in
center road since less anenter road since
change is likely
che
depth varies from.
to 3.7 meters ; depen to 3.7 meters; dep excavation machinery
dependent on footing dependent on footing
or basement levels sewers require larger
pipes hence need more
excavation space
enter location avoids
ree root problems whic
ree root problems whic
ause clogging
sewer has lst priority
in location
storm network Opposite street from
side of water network to prevent infiltra
tion
 should be buried
under street to vent tree root
infiltration
TELEGRAPH/TELEPHONE
gAS LINE
steam lines STREET LIGHTTNG, (combined with fire
alarms $\&$ police
telegraph/TElephone (combined
alarms
alarms
$\begin{array}{ll}\text { located } & \begin{array}{l}\text { generally in } \\ \text { under } \\ \text { sidewalks } \\ \text { enclosed } \\ \text { underground } \\ \text { gallery }\end{array} \\ & \text { gelo }\end{array}$


DUPLICATE NETWORKS

CRITERIA: $\quad$. used when excessive street widths allow savings in service lines if smaller mains are duplicated on both sides of the street
2. used when the street surface is prohibitively costly

WATER:
-used when streets are wider than 25 meters; used when streets are wider than 15 meters in row house conditions
-hydrant for fires placed on side of street with
 larger pipe, if applicable

SEWER:
-used if streets are wider than 25 m. ; in row house conditions may be economical to duplicate if 15 m . wide streets


GREEN CENTER STRIP CONDITION
-center strips allow placement of large community mains for both water and sewer lines; maintenance is effected with no disruption to traffic or surface; if system fails catastrophically
 there is less danger to surroundings

DUPLICATE CONDITIONS ON SLOPE SITES

> -duplication of sewer lines avoids deep trenching costs; not dependent on street width


Alleys are secondary auxiliary circulation networks traditionally planned in congested areas. Servants, rear deliveries and rear parking all contributed to the use of alleys. Utility lines are often preferred in alley locations. Fire hose requirements initially made alleys required. CRITERIA FOR USE:

1. may be advisable when lots are 12 m . or less in width for fire fighting access
2. used for group type of buildings
3. used with apartments or stores
4. used when loading or unloading procedures would prohibitively disrupt traffic flow on primary front circulation lanes

LOCATION OF UTILITIES IN ALLEYS
The alley width plus easements of 2.4 m . on each lot provide space for most of the utility functions. Sewer lines are recommended to be placed in alleys. Telephone and power poles may be placed in alleys to avoid clutter in front of lot.

WIDTH: $\quad 4.9$ meter min.; 6 m . better, plus 2.4 meter easements on facing both lots for power lines

ADVANTAGES: eliminates unsightly power poles in front of lot; provides utility space with easy maintenance and minimum disruption of traffic flow; provides delivery access; parking access saves costs of individual driveways if rear garages are available

DISADVANTAGES: utilities may be placed in easements in back of lot without expense of alley maintenance; alleys are generally not an economical use of land;
maintenance costs of alleys for lights, pavement, and cleaning make their use prohibitive; no longer required for safety since fire fighting may now take place from front of lot.

## AREAWAYS

USE OF AREAWAYS (Pipe Tunnels)
In high density areas; expecially commercial areas, the use of large underground passages for pipe networks and electrical systems is recommended. The underground passages usually allow the entry of a man for maintenance. ADVANTAGES: -easy maintenance of networks
-no costly disruption of the road surface; no repaving necessary and no tie up in traffic flow
-simple installation of lines for expansion

DISADVANTAGES: -high initial cost of passage
-rapid expansion may overload areaway and require additional trenching
-areaways require extra drainage lines

SAMPLE LAYOUT


## EASEMENTS

FUNCTION:
When right of ways are not available for utility line location, the use of easements is required to allow utility network installation and maintenance.

DEFINITION:
Easements are sections of privately owned land which are controlled by public offices. The land is leased in perpetuity or controlled by the utility companies by the purchase of stated obligations. Obligations of the easement usually requires no erection of a permanent structure or planting of large trees. The utility receives the right of access for maintenance and installation at their discretion. Utility companies have the power of condemination when required.

## CRITERIA:

1. assessibility of excavation machinery and installation machinery
2. safety to area from potential catastrophic failures

WIDTH

Electric	Transmission	Gas \&	  poles
	lines, electric	oil	water,
storm drains			

LOCATION

$$
\begin{aligned}
& 2.4-3.7 \mathrm{~m} . \quad 30-60 \mathrm{~m} . \\
& \text { rear lots as needed, rear } \\
& \text { if deeper of lots pre- } \\
& \text { than } 40 \mathrm{~m} \text {. ferred } \\
& 15 \mathrm{~cm} . \text { from } \\
& \text { curb. from } \\
& 9 \mathrm{~m} . \text { from } \\
& \text { hydrant }
\end{aligned}
$$

	Electric poles	Transmission   lines, electric	$\begin{aligned} & \text { Gas \& } \\ & \text { oil } \end{aligned}$	Sewer \& water, storm drains
CHARACTERISTICS:	must be protected from falling trees	may be fenced   usually a hazard and eyesore to area	the   systems   are   under   high   pressure   and   dangerou   to surrou   dings	accessibility is the main concern

```
RELATION OF DESIGN PERIOD AND COMPONENTS AT A 3% URBAN GROWTH RATE
```

ANNUAL URBAN GROWTH RATE OF 3\% (World average)			
WATER SYSTEM	POPULATION   base of 100	DESIGN   PERIOD   years	SEWER SYSTEM
SERVICE PIPE (under 12")	100	0	LATERALS AND SUBMAINS (pipe less than 15")
	115	5	
	135	10	
TREATMENT FACILITIES (high interest rates)	150	15	TREATMENT FACILITIES   (high interest rates)
$\begin{aligned} & \text { MAINS } \\ & \left(12^{\prime \prime}\right. \text { and over) } \end{aligned}$	180	20	
TREATMENT FACILITIES (low interest rates)	200	25	TREATMENT FACIIITIES (low interest rates)
	240	30	
	280	35	
	325	40	
	375	45	
	440	50	MAIN SEWERS, INTERCEPTERS (pipe over 15")

```
RELATION OF DESIGN PERIOD AND COMPONENTS AT 6% URBAN GROWTH RATE
```

	ANNUAL UR RATE (developin	N GROWT 6\% countri	
WATER SYSTEM	POPULATION   base of 100	DESIGN PERIOD years	SEWER SYSTEM
SERVICE PIPE (under 12")	100	0	LATERALS AND SUBMAINS (less than 15")
	135	5	
	180	10	
TREATMENT FACILITIES   (high interest rates)	240	15	TREATMENT FACILITIES (high interest rates)
$\begin{aligned} & \text { MAINS } \\ & \text { (12" and over) } \end{aligned}$	320	20	
TREATMENT FACILITIES   (low interest rates)	430	25	TREATMENT FACILITIES (low interest rates)
	575	30	
	770	35	
	1030	40	
	1376	45	
	1840	50	MAINS, INTERCEPTERS (over 15")

IMPLICATIONS:
A $3 \%$ urban growth rate as in the United States would demand the design of a treatment facility of twice its initial capacity. This facility would just meet the static demand due to growth of the population.

A $6 \%$ growth rate as found in many urban areas of developing countries would demand a treatment facility over designed by 3 to 5 times its capacity at its initial state. This is not taking into consideration the demand per person as to rising standards, or lifestyle.

Water mains would have to be over sized by a factor of approximately 2 when the growth rate is $3 \%$. The factor of increase would be 3 to 4 when the growth rate is $6 \%$.

The sewer system is more expensive than a water system in most cases. Because the sewer system is dependent in a large degree on topography if costs are to remain low, and because the sewer lines are several scales larger than water lines and consequently initially more expensive, the design period of the sewer mains are proportionally greater. In developing countries or in areas with a high growth rate, the design of sewer systems becomes extremely difficult. Obviously, designing for an increase of demand by a factor of four as found in areas of a growth rate of $3 \%$ is vastly different than designing for a growth rate factor of 18:

Along with the problem of design, developing countries often lack the funds to oversize systems to such a large degree; usually, the funds are not even available for the initial system, let alone when planning for an exceedingly large growth rate.

GENERAL PIPE RECUITREMENTS FOR WATER, SEWER AND STORM DRAIN LINES

1. CHEMICAL RESISTANCE

The pipe must withstand soluble and insoluble particle action against the walls of the pipe. The pipe must be inherently imprevious or may be coated to prevent corrosion.

## 2. MINIMUM FLOW INHIBITATION

The walls of the pipe must be as smooth as possible to provide minimum frictional resistance. The walls must be strong enough to resist wearing of surfaces from friction of particles suspended in the water. Smooth walls inhibit slime growth and minimize buildup of particle deposition. Pipes may be sheathed with plastic sleeves to reduce friction of walls.

## 3. INTERNAL STRESS RESISTANCE

The pipe must be able to withstand internal pressure stresses if used for water or pressure sewers. It must be able to withstand expansion and contraction due to small temperature changes. They must withstand vacuum stresses imposed from high pumping requirements which might result in collapse.

## 4. EXTERNAL STRESS RESISTANCE

The pipe must withstand the loads imposed on it from soil backfill or traffic overhead. It must be able to withstand hydrostatic pressure from surrounding soil. . 9 to 2.1 meters are the ranges of adequate load protection.

## 5. FREEZING PROTECTION

The water must normally not be allowed to freeze in the pipes. Either heating or by burial of the pipe to a sufficient depth to prevent frost penetration is required. . 9 meters is normal for frost protection if water flows constantly.

## 6. WORKABILITY

The pipes must be able to be easily jointed, cut and handled during construction of the pipe network.

## 7. LOW CosT

All of the above requirements must be met and still be within a reasonable cost and allow long life of the network.
Service pipes are the pipes transferring water from the
distribution system to the user (cast iron and asbestos cement
pipes are not available in small sizes under 2"; usually not
used for service connections.

```
DISTRIBUTION PIPES. WATER NETWORK
```

SPUN IRON:	stronger and lighter than cast iron; available in various strength catagories; usually coated internally and externally with bituminous enamel or cement coatings; sometimes pipes are plastic lined; fittings are usually cast elements; 2" to $24^{\prime \prime}$ diameters available in 12', 18' or 5 meter lengths; 100 to 250 psi ratings; 80-100 yr. expected life
CAST IRON:	not in common use for pipe today; mainly still used for pipe over 48' or for fittings for spun iron pipe; cast iron pipe was the traditional material for many decades.
ASBESTOS CEMENT:	composed of cement and asbestos fiber; highly resistent to corrosion effects of water; a brittle pipe with difficulty in making connections and tapping; the strength of the pipe increases with age; easily cut \& filed; no expansion joints needed; 13 ft . lengths
PRESTRESSED CONCRETE:	cheaper than steel if over $24^{\prime \prime}$ in diameter if used for high pressures; high corrosion resistence; difficult in connections and tapping; used mainly for larger pipe requirements, as for transmission lines and distribution mains over 16"; low maintenance costs; cracks can cause leakage; low transport costs.
STEEL PIPE:	lighter but less durable and more expensive than spun iron pipe; usually coated internally and externally to withstand corrosion; cannot resist high internal pressures; life expectancy of 50 to 75 years, available in $6^{\prime \prime}$ to $36^{\prime \prime}$, up to 40 foot lengths; usually used for large mains
PVC (plastic)	light in installation \& handling; high resistence to corrosion; low flow resistence; flexible, may collapse under vacuum; service connections are relatively difficult; may absorb gas leaks into water; available up to 12" in diameter

PLAIN CONCRETE: only used for low pressures and short distances; a relatively cheap pipe; difficult to repair; peak of 10 psi only; over 12" diameter most common

ALUMINUM PIPE: rarely used, a relatively new development
WOOD PIPE: used where cost of pipe is more advantageous; redwood can last indefinitely; banded with steel; the interior is easily attacked by organic acids and plant growths; best for constant full condition; available up to 48" dia.; high construction labor costs; high carrying capacity which does not decrease with age

```
SEWER PIPE MATERIAL (also used for storm water systems)
```

Asbestos Cement: lightweight; highly resistant to corrosion effects of water; easily worked; difficult to join; brittle; 10 to 13 foot lengths are common

Spun Iron: used for pressure sewers; used for service lines into buildings or near buildings; structural requirements dictate its use; coated internally and externally

Concrete: Unreinforced types are available from 4" to 24"; reinforced pipe is available from 12" to 108"; available in two strength classes; comes in 2 l/2 and 3 foot lengths; pipe subject to corrosion from acidic condition; pipe may decompose if water left to stand in pipe

Vitrified clay: available in two strength classes; resistent to acids; 2 to 3 feet minimum laying length sizes

Plastic: resistant to highly acidic waters; a relatively recent innovation in sewer line usage.

```
PIPE MATERIAL AND SIZES AVAILABLE
```

The following chart represents the standard pipe sizes and the corresponding materials that they are available in the United States: 1969.

WATER PIPE asbestos cement copper

PVC,flexible
PVC, rigid spun iron steel

SEWER PIPE asbestos cement class 2400 asbestos cement class 400 bit. fiber concrete
reinf. concrete vitrified clay vitrified clay

PIPE DIAMETER IN INCHES
 extra strong
(R: 28)

RELATION OF PIPE DIAMETER TO PIPE CAPACITY


```
CAPACITY PER INCH OF DIAMETER
```



RELATION OF PIPE DIAMETER TO PIPE CAPACITY
The flow varies as the square of the radius
if the diameter is doubled, the capacity is increased by a factor of 4

EXAMPLE: a 12 " pipe has 4 times the capacity of flow than a $6^{\prime \prime}$ pipe
if the diameter is tripled, the capacity is increased by a factor of 6

EXAMPLE: a 18" pipe has 6 times the capacity of flow than a $6^{\prime \prime}$ pipe

CAPACITY PER INCH OF DIAMETER
The flow varies as the multiple of the proportional increase
if the diameter is doubled, the capacity per inch is increased by a factor of two

EXAMPLE: a 12" pipe will give you twice as much water per inch of diameter than a 6" pipe
if the diameter is tripled, the capacity per inch of diameter increases by a factor of three

EXAMPLE: a $18^{\prime \prime}$ inch pipe will give you three times as much water per inch of diameter than a 6" pipe

## COST PER LINEAR FOOT OF PIPE

As will be seen from the following chart, the cost per linear foot of pipe rises sharply as the pipe diameter increases. After $36^{\prime \prime}$, the costs increase so rapidly that it is best to duplicate pipe lines and not replace the existing lines with a large diameter pipe as required when expanding.

It is obvious that the smaller the pipe used, the more economical system will result.

In choosing a pipe, one would choose the largest pipe available at a given cost. Or, one would choose the most economical pipe at a given price. For example, the most economical 6" pipe is the bituminous fiber. Or, the largest pipe available for $\$ 3 / f t$. is concrete, a 12" pipe.

Prices for pressure pipe (water) generally are more expensive. Costs increase dramatically with an increase in diameter.

PIPE DIAMETER IN INCHES

(R:28)

## PIPE COST PER UNIT OF CAPACITY

In comparison to the previous chart, it may be seen that the cost per unit of capacity of pipe is approximately the same for the various classes. The price does not increase per unit of capacity as seen in the cost per linear foot of pipe, but remains relatively stable.

Generally, the smaller the pipe, the more one pays for the amount of water available. In choosing a pipe to be used, one should pick a pipe with the lowest cost per unit capacity delivered. For example, if faced with the selection of a $18^{\prime \prime}$ pipe for sewer lines, the concrete pipe is the most economical; if strength requirements are not met by this pipe, the next choice would be the reinforced concrete pipe, followed by the vitrified clay.

For water networks where the pressure requirements must be met, the most economical is the spun iron pipe with coated interior and exterior. Perhaps the flexible PVC pipe will become more useful as production increases and allows lower prices.

Each system would have to be evaluated on the market in each particular locality for final determination of pipe materials. Either the availability in a particular locality or the physical requirements of corrosion resistence, etc., would dictate the final choice.

PIPE DIAMETER IN INCHES


1. HANDBOOK OF APPLIED HYDRAULICS, Calvin V. Davis, McGre-Hill, 1942.
2. COSTS OF URBAIT INFRASTRUCTURE, Stanford Research Institute, India Case Study, AID, Oct. 1968.
3. ARCHITECTS AND BUILDER'S HANDBOOK, Kidder-Parker, l8th edition, 1931.
4. PUBLIC WATER SUPPLIES, Turneaure,Russell, John Wiley, Inc., 1940 .
5. NATIONAL PLUMBING CODE, ASA A40.8-1955, The American Society of Mechanical Engineers, American Standards Association, 1955.
6. ENVIRONMENTAL SANITATION, Joseph Salvato, Jr., John Wiley and Sons, New York, 1958.
7. SEWERAGE PLANNING, Furman, Kiker, and Smith, University of Florida, 1956.
8. SANITARY DISTRICT STUDY, WASHINGTON COUNTY, MARYLAND, Master Plan Report Number Three, Fred Tuemmler \& Associates, 1961.
9. WATER SUPPLY AND WASTEWATER ENGINEERING, Fair, Geyer, and Okun, John Wiley \& Sons, 1966. (Volume l)
10. MINIMUM DESIGN STANDARDS FOR COMMUNITY SEWERAGE SYSTEMS, HUD Guide, FHA G 4518.1, May 1968.
11. WATER ENGINEERS HANDBOOK, London, 1967. (published annually)
12. HYDRAULICS, Schoder \& Dawson, 1927.
13. ELEMENTS OF WATER SUPPLY ENGINEERING, Waterman, 1934.
14. HYDRAULICS AND PNEUMATICS OF THE PLUMBING DRAINAGE SYSTEM, Dawson and Kalinske, Iowa Insitute of Hydraulic Research, Tech. Bulletin Number Two, National Association of Master Plumbers of the United States, Inc., Washington, D.C., 1939.
15. WATER SUPPLY ENGINEERING, Babbit, Doland, \& Cleasby, McGrawHill Book Company, 1962.
16. UTILITIES AND FACILITIES FOR NEW RESIDENTIAL DEVELOPMENT, A Survey of Muncipal Policy, J. Ross McKeever, Urban Land Institute T'echnical Bulletin Number 27, 1955.
17. A TEXTBOOK OF WATER SUPPLY, A.C.Twort, American Elsevier Publishing Co., New York, 1963.
18. RADIO. ENGINEERING HANDBOOK, Keith Henney, McGraw-Hill Co., 1959.
19. COMMUNICATION SYSTEMS ENGINEERING HANDBOOK, D.H.Hamsher, McGraw-Hill Co., 1967.
20. ELECTRICAL ENGINEERING HANDBOOK OF ELECTRIC POWER, Wiley Engineering Series, 1949 .
21. SANITARY SEWAGE DISPOSAL IN SUBDIVISIONS, Journal of the Sanitary Engineering Division, Proceedings of the American Society of Civil Engineers, 83:SA4, August 1957.
22. MUNICIPAL SEWAGE LAGOONS, Water and Sewage Works, 103:R\&D: R261-R265, June 1956.
23. SEWAGE TREATMENT IN RAW SEWAGE STABLIZATION PONDS, W.Towne, W.H.Davis, Journal of the Sanitary Engineering Division, Proceedings of the American Society of Civil Engineers, Vol:83, SA4, 1957.
24. THE DESIGN OF RESIDENTIAL AREAS, Thomas Adams, Harvard Press, 1934.
25. PLANNING THE NEIGHBORHOOD, United States Public Health Association, 1945, 1967.
26. INNOVATIONS VS TRADITIONS IN COMMUNITY DEVELOPMENT, Urban Land Insitute Technical Bulletion Number 47.
27. THE COMMUNITY BUILDER'S HANDBOOK, Urban Land Institute, 1954.
28. PLANNING DESIGN CRITERIA, Chiara \& Koppelman, Van Nostrand Reinhold Co., 1969.
29. CARTILLA DE LA VIVIENDA, Centro Investicion de la Vivienda, Bogota, 1955.
30. LAND PLANNING, Savings and Loan Association, 1956.
31. HOME BUILDERS MANUAL FOR LAND DEVELOPMENT, The Association of Home Builders, 1958.
32. SITE PLANNING IN PRACTICE, F.Longstreth Thompson, London, 1923.
33. MINIMUM STANDARDS OF URBANIZATION, Centro Interamericano de Vivienda y Planeamiento, Bogota, 1967.
34. PROPOSED MINIMUM STANDARDS, Agency for International Development, 1967.
35. URBAN DWELLING ENVIRONMENTS, H.Caminos, MIT Press, 1969.
36. MANUAL OF ENGINEERING PRACTICE, Volume II, William Oswald Skeat, Cambridge, England, 1969.
37. URBAN WATER SUPPLY CONDITIONS AND NEEDS IN 75 DEVELOPING COUNTRIES, Bernd H. Dieterich, World Health Organization, 1963.
38. ENGINEERING MANUAL, Robert Perry, 1967.
39. CIVIL ENGINEERING HANDBOOK, L.C. Urquhart, McGraw-Hill, 4th edition, 1959.
40. URBAN WATER SUPPLY, C.G. Alhart, Thesis, B.CP., 1950.
41. SANITARY STANDARDS FOR DISPOSAL OF SEWAGE AND DOMESTIC WASTES IN RURAL AREAS, T.B.Chambers, August, 1940.
42. NEW ENGINEERING CONCEPTS IN COMMUNITY DEVELOPMENT,Urban Land Insitute Technical Bulletin Number 59, 1960.
43. A TRAINING COURSE IN WATER DISTRIBUTION, American Water Works Association, (AWWA M8) 1961.
44. PIPING HANDBOOK, Crocker and King, McGraw-Hill, 5th edition, 1967.
45. STANDARD HANDBOOK FOR CIVIL ENGINEERS, Merritt, McGraw-Hill Co., 1968.
46. BUILDING CONSTRUCTION COST DATA, Godfrey, Mean Co., 1969.
47. GUIDE FOR SEWAGE WORKS DESIGN, North East Interstate Water Pollution Control Commission, 1962.
48. REFUSE DISPOSAL STUDY, Regional Study Number 42, Tri-County Regional Planning Company, Akron, Ohio, 1965.
49. REFUSE COLLECTION PRACTICE, Committee on Solid Wastes, American Public Works Association, Public Administration Service, 1966.
50. EASEMENT PLANNING FOR UTILITY SERVICES, Michigan Bell Telephone and Detroit Edision Company, August, 1954.
51. A SUGGESTED STREET LIGHTING PLAN BOOK FOR UTILITIES, National Electrical Manufacturers Association, 1942.
52. LAND SUBDIVISION, American Society of Civil Engineers, Manual of Practice Number 16; 1939.
53. LOCATION OF UNDERGROUND UTILITIES, American Society of Civil Engineers, Manual of Engineering Practice Number 14, 1937.

[^0]:    HIGH MEANS FRICTION L DSS ABOVE ACCEPTABLE LIMITS

[^1]:    HIGH MEANS FRTCTION LOSS ABOVE ACCEPTABLE LIMITS

[^2]:    higt means fricticn loss above accep table limits

[^3]:    HIGH MEANS FRICTICN LOSS AECVE ACCEPTABLE LIMITS

