Starlogo Camera Controls and Enhancements

b MAS
v P
Christopher M. Chen
P g JUN 2 1 2011
SB, CS M.I.T,, 2010
LIBRARIES

Submitted to the Department of Hectrical Engineering and Computer Science
In Partial Fulfillment of the Requirements for the Degree of
Masters of Engineering in Bectrical Engineering and Computer Science

At the Massachusetts Institute of Technolo
» ARCHIVES
May 2011
I dunme Zzoty T\
Copyright 2011 Christopher M. Cheng. All rights reserved.

The author hereby grantsto M.L.T. permission to reproduce and to distribute publicly paper and
electronic copies of this thesis document in whole and in part in any medium now known or
hereafter created.

Author ~ - Ll

Departmé‘(of Hectrical Engineering and Computer Science
— May 16, 2011

Certified by o - '
< Eric Klopfer
D|rector MITTeadwer Education Program
Thesis Qupervisor

Certified b SO , :
— ! Daniel Wendel

Research Associate, MIT Teacher Education Program

Thesis Co-Qupervisor

Accepted by N
@A Dr. Christopher J. Terman

Chairman, Masters of Engineering Thesis Committee

Sarlogo Camera Controls and Enhancements

by
Christopher M. Cheng

Submitted to the
Department of Hectrical Engineering and Computer Science

May 16, 2011

In Partial Fulfillment of the Requirements for the Degree of
Master of Engineering in Bectrical Engineering and Computer Science

ABSTRACT

The purpose of this research and development project wasto further develop Sarlogo, a block
based programming environment to allow studentsto create 3D games and simulations to help
them learn programming. | improved the Sarlogo “camera”, a representation of the view
within a 3Dworld. Sarlogo hasa 1% person perspective camera called “Agent Eye”, a 3"
person perspective camera called “Agent View”, and a customizable camera called “Aerial”.
Previously, the view could get obscured by the terrain and was disorienting at times making
games difficult to play. The cameras now automatically move around obscuring terrain, have a
larger field of vision, and move smoothly making games easier to control and fun to play. Users
can also manually control the cameras and have a full range of vision within Sarlogo worlds.
These recent camera developments will be used in the next release of Sarlogo and will greatly

improve gameplay.

Thesis Qupervisor: Eic Klopfer
Title: Director, MIT Teacher Education Program

Table of Contents:

Section 1: Introduction

Section 2: Recent Sarlogo Developments

Section 3: Background Research

Section 4: Previous Camera Issues

Section 5: Additional Requested Improvements

Section 6: Agent View Camera
Section 6.1: Previous Code for Agent View
Section 6.2: Recent Changes to Agent View

Section 6.2.1: Increasing the Feld of Vision

Section 6.2.2: Checking for Obscuring Terrain

Section 6.2.3: Camera Repositioning
Section 6.2.4: Camera Reorienting
Section 7: Agent Bye Camera
Section 7.1: Previous Code for Agent Eye
Section 7.2: New Code for Agent Bye
Section 8: Camera Smoothness Calculations
Section 8.1: Smoothening Used by Both Cameras
Section 8.1.1: Previous Method
Section 8.1.2: Problem with Verlet
Section 8.2: Choice of Constants
Section 8.3: Agent View Additional Smoothening
Section 9: Camera Blocks

Section 9.1: Previous Code

7-8
8-11
11-15
15-17
17
17-19
19
19-21
21-24
25-27
27-29
29

29
29-30
31

31
31-35
35-36
36-38
38-39
39

39-41

Section 9.2: New Camera Blocks
Section 9.2.1: Agent Bye Camera Controls
Section 9.2.2: Agent View Camera Controls
Section 9.2.3: Aerial Camera Controls
Section 10: Future Work
Section 11: Conclusion
Section 12: Acknowledgements

Work Gted

41
41-45
45-50

o1
51-563

53

53

Section 1: Introduction

Sarlogo is a block-based programming system used to lower the entrance barrier to
programming. The Scheller Teacher Education Program (STEP) is developing and using SarLogo
in high school classrooms to educate studentsin addition to help students become interested in
Computer Science.

Sarlogo accomplishes this goal by helping studentsto program 3D simulations and
games. To program a game or simulation using SarLogo, the user must:

1. Use puzzle-piece-like blocks to program the behaviors of the agents, the characters
or interacting objects used in the game
2. Customize the terrain, the 3D world where the characters interact

Fgure 1: An example screenshot of the Sarlogo Interface.

After development, the user can play a fully functional game that he/she created. The
projects can also be sent in a custom-designed file format so people can play games that others
created. Being able to develop afun playable game that is aesthetically pleasing while learning
programming is central to the aim of Qarlogo, since the aim is not only to educate the user, but
to help the user become enthusiastic about computer science.

Section 2: Recent Starlogo Developments

Before discussing more about this project’s developments, it’s important to discussthe
recent developments of Sarlogo. Sarlogo terrains originally existed in 2D as a grid of “patches”
where a patch is a unit square of the grid that an agent can stand on. In this environment, the
user could color the different patches and place agents anywhere on the terrain to customize
his/her game. Eventually, in order to greatly improve the aesthetic appeal of the games,
Sarlogo The Next Generation (TNG) was created. The terrains still exist asa grid of patches but
each patch now has a height. The terrains aren’t quite in 3D however, since patches can’t float
in mid-air; patches are always connected either with walls or slopes depending on the terrain.
Figure 2 shows an example of a Sarlogo terrain, where the terrain exists in patches and the
user can modify the patchesin different ways including creating a mound, vertically raising the
terrain, or coloring the different patches.

Figure 2: Screenshot showing a Sarlogo Terrain. The patches can be different colors. Thisterrain highlights some
of the different modifications a user can make to the terrain, each shown in a different patch color.

These new terrains give many more options for customizing Sarlogo games. The
development of new terrains also caused the need for many changesto the terrain editing tools
in addition to blocks so the agents can interact with these new terrains. Papers such asthose
written by Daniel Wendel and Mark Burroughs talk about the transition from 2D terrainsto 3D
terrains and the tools they built induding the 3D terrain editor and the mound creator, which
were created in order to easily customize these new terrains. For my previous project, |
continued development on terrain editor toolsto further increase the possibilities for the
terrain and make the games more fun to play. Specifically, | designed texturesfor the terrain so

a user could paint within patches and place arbitrary images down onto the terrain. More
details can be referenced in that paper.

The goal of this project is to continue developments of Sarlogo to adapt to the new
terrains to make the user’s experience of creating games and playing them more enjoyable. To
figure out additional changesto be made, | tried playing a set of about 50 Sarlogo games made
by students who used these new terrains. After playing the games, the feature that stood out
as needing the most improvement was the camera, since it dlashed heavily with the 3D terrains
and greatly hindered the gameplay of the Sarlogo games, which will be explained in section 4.
Before talking about the details of both the problems with the camera and the solution |
developed, it's important to talk about other examples of cameras used in gaming and what
constitutes a good camera.

Section 3: Background Research

Before immediately launching into the details of what my project intends to solve, it’s
important to do some background research to shed some insight on key details about what
constitutes a good camera in a 3D world.

Camera manipulation is necessary in any video game that involves moving around in a
3D environment. One game worth looking at is World of Warcraft, a massively multiplayer
online game where a player can control an avatar in a 3D world completing various quests. This
game does a very good job with a third-person camera perspective in a number of different
scenarios including walking in a wide open area, going into houses or small caves, and going up
hills.

After watching how the game works, it seemsthat the camera defaults to a fair distance
behind the character, raised slightly above the character, and slightly angled downwards.
Positioning of the camera far enough behind the character maintains a good field of vision for
the player so the player can see into the distance to know what is happening in the game.
Raising the camera allows the player’s vision of the distance to not be occluded by their own
character so the player can see ahead without having to turn. And angling the camera
downwards gives the player a good view of their own character to see what isdirectly in front
and in back of their character.

The World of Warcraft camera also does a good job maintaining a good amount of
vision in scenarios trickier than walking in a wide-open area. When approaching hills or valleys,
the camera’s height and angle will change in order to maintain a good view of what is ahead of
the character, even if the character is looking directly at the bottom of the hill or valley. If the

8

character moves into an enclosed location such as a tunnel or a house, the camera stays as far
back as it can while staying in front of any wall or ceiling that could be in the way, which
prevents the camera from getting to a position where a wall could occlude the player’s view of
the character. One last thing the camera does is smoothly move between positions so the
player can focus on the game itself without being distracted by the camera. The camera used in
World of Warcraft highlights many important features of athird-person perspective camera so
the player always has a clear view of their character and what else is happening in the game.
Some example screenshots of World of Warcraft are displayed in figure 3.

Hgure 3: Some example screenshots of World of Warcraft. Its third-person perspective givesa great field of vision
to the player in a wide range of different situations.

Another game worth looking at is Halo for the Xbox 360. Halo uses both third and first
person perspectives throughout the game. Itsthird person perspective has many of the nice
featuresthat World of Warcraft’s did, although Halo's first person perspective is worth looking
at since players use the first person perspective most of the time. The first person perspective
consists of the view as seen from the controlled character and the gun the player is currently
holding. Even though the gun movesto show that the character is walking, the camera moves
smoothly so the player has a smooth view of the world and where he/she is going. The camera
also stays level with the terrain and doesn’t tilt even when the character is on a slope in order
to not disorient the player. The camera used in Halo highlights important thingsto take into
consideration when designing a first-person perspective camera including smoothness, tilt, and
control. Some example screenshots of Halo are displayed in figure 4.

Figure 4: Some example screenshots of Halo. Itsfirst person perspective is smooth and controllable in a variety of
situations.

One last game worth examining is Pikmin, a GameCube game involving moving through
maze-like environments with creatures called Pikmin to help you accomplish different tasks.
Along with a third-person perspective, it also allows the player to switch to an aerial camera,
which gives the player atop-down view of the character. This view is especially helpful when
moving through mazes, since it gives the player a view of a larger surrounding area, even when
the character is unable to see certain parts of the maze. In the game, there are no ceilings or
floating objects that occlude the view of the character. \WWhen the aerial camera actively tracks
the character, the player always has a clear view of the character and a large radius of the
surrounding area. At certain points, the game even automatically switches to the aerial camera
when the third-person camera would clearly be occluded, which allows the player the
convenience of not having to constantly need to control the camera. One last feature of this
game’s camera is that it allows easy switching of cameras, since even though the aerial view is
useful at certain points, at other pointsit’s not as useful since the player can’t get a good view
of what is happening near the character. The camera used in Pikmin highlights more interesting
points about cameras induding how an aerial camera including can give a much larger field of
view for the player in addition to how switching between cameras is often necessary for the
gameplay of certain games. Some example screenshots of Fikmin are shown in figure 5.

From the examples, it’s clear that there are multiple cameras that are useful for 3D
gaming and simulations. All of the cameras focus on giving the player a smooth and large field
of vision so the player receives the information he/ she needs for the game to create good
gameplay. Inthe next section | will discuss the cameras used in Sarlogo before this project,
and the issues that created difficulty in playing Sarlogo games.

10

Figure 5: Some example screenshots of Pikmin. Its zoomed out aerial perspectives allow the player to get a good
view of the surrounding area even when the character is inside maze-like structures

Section 4: Previous Camera Issues

The main aim of my project isto improve the cameras used to view the Sarlogo 3D
terrains within the Starlogo games and simulations. Sarlogo provides the user with “Agent
View”, “Agent Eye”, and “Aerial” cameras allowing the user to view the characters or “agents”
from a close distance behind, view the first person perspective of an agent, and view the terrain
from a customizable angle respectively. These cameras can be accessed on the Terrain Editor
window or through a set of camera blocks that switch between cameras.

Although the cameras function properly, the Agent View and Agent Eye cameras have
issues that hinder the gameplay of the games. Starlogo’s “Agent View” camera follows an
agent at a fixed distance behind so the player can see the agent being controlled in addition to
the rest of the world. However, by placing the camera directly behind the agent, the player’s
view of the world is partially occluded by the agent itself. This meansthe player needsto keep
turning in order to see what is directly in front, which makes controlling an agent in a game very
inconvenient as shown in figure 6.

Another problem is that the camera doesn’t ever move from its relative position behind
the agent. If aterrain feature like amound or awall or another agent in the game is positioned
between the camera and the controlled agent, the player will no longer be able to view his/her
agent which can make the game very frustrating and even unfeasible to play. Snce terrain
editing isa central feature to how Sarlogo games can be customized, this is a significant
problem. An example of how the terrain can occlude the view of the controlled agent is shown
in the two images of figure 7.

1

Fgure 6: Bxample of Agent View. Snce the camerais directly behind the agent, the user cannot see what isdirectly in front of
the agent.

Figure 7: BExample images showing how terrain can occlude the Agehtr\ﬁew camera. The left image isthe aerial
camera showing that a hill isdirectly behind the agent. The right image isthe agent view camerain the same
scene, where the camerais placed behind the hill and the view is occluded.

One last problem with the Agent View camerais that sometimes the camera appearsto
stutter every few frames when using Sarlogo. Thisis not simply due to the computations
taking too long, but actually hasto do with the smoothness calculations, which will be
explained more in section 8. The lack of smoothness is not only disruptive to gameplay, but

12

makes any created game look unpolished. The problems of the Agent View camera need to be
fixed, since fixing the problems will allow the user to always see their agent and know what else
is happening in the game, making gameplay much easier to control and much more enjoyable.

Like the Agent View camera, the Agent Eye camera also has issues that hinder the
gameplay of Sarlogo games. The “Agent Eye” camera gives the player afirst person
perspective from the agent, so in a sense the camerais placed directly at the agent’s eyes. One
problem with the camera is that the field of view istoo small. Snce the placement of this
cameraisin front of the placement of the Agent View camera, the player’s field of view is
reduced and forces the player to turn more in order to see thingsin the peripheral. Thisis
shown in figure 8.

Figure 8: Screenshots showing the loss of field of view using the Agent Eye camera. The left shows the view with
Agent View, and the right uses Agent Eye.

Another problem with this camerais that allows for too much tilt. If the agent is
positioned on terrain that isn’t flat such as on a mound or a valley, the camera will be tilted to
reflect the slope that the agent is standing on. Depending on the agent’s direction when
standing on slope, the camera might be tilted horizontally or vertically as shown in figures 9 and
10 respectively.

While cameratilting is desired in some games for being realistic, too much tilt can cause
problems. Having too much horizontal tilt can be very disorienting making it difficult to
traverse the terrain and aim properly. Too much vertical tilt can lead to undesirable camera
angles, since the agent might get to a point where it is looking directly down at the ground or

13

directly up at the sky. These camera views give no information about the rest of the world and
detract from gameplay. The problems caused by tilt need to be addressed even if it means
removing the tilt completely.

Figure 9: Screenshots showing the tilted view when standing on a hill. The left showswhere the agent is standing
in the world, and the right uses Agent Eye from the same position.

Figure 10: Screenshots showing the view looking at the ground when standingin avalley. The left showsthe agent
standing in the valley, and the right uses Agent Eye from the same position. The agent looks straight at the other
side of the valley.

14

It should be noted that the Agent View camera will also tilt vertically depending on the
agent’s position. The Agent View camera does not suffer from the same problems as the Agent
Bye camera, since the field of view islarger. Even when the agent view camera is looking
downwards or upwards, the user still gets enough information about what is happening in the
game.

One last problem with the Agent Eye cameraisthat it suffers from the same stuttering
problemsthat the Agent View camera has. The lack of smooth motion is very disruptive to
gameplay and | will explore more of these calculationsin section 8.

The issues with the Agent Bye camera in addition to the Agent View camera need to be
addressed in order to greatly improve the gameplay of Sarlogo games. In addition to fixing the
current issues, there are additional features that | wanted to add for the cameras that were
either requested by the students, or thought of during the project, which | will discuss next.

Section 5: Additional Requested Improvements

In addition to fixing problems with the existing cameras, | also wanted to provide
additional enhancementsto the cameras to further improve Sarlogo gameplay. Snce Sarlogo
is currently being used by students in classrooms, the Teacher Education Program has received
feedback from the students including feature requests. Surprisingly, one of the most common
feature requests regarding the camerais to have a 2" person view camera. At first this seemed
counterintuitive since this view only allows the viewer to see his/ her agent, and not the
surrounding area. However, most of the students were encouraged to indude some storyline
along with their game creating the need to view the front side of their agent. Qurrently, thisis
accomplished by creating a separate agent for camera purposes and positioning this agent in
front of the desired agent. While thisisfunctional, it ssems unnecessary to have to create
another agent for the camera. Snce this feature is commonly used, it would be helpful to add
this feature, which will be discussed more in section 9.

In addition to the feature request, | also wanted to create an overhead view that could
track agents. The usefulness of this view is described in section 3, where an overhead view can
be especially useful in some games such as those that involve mazes. From the previously
existing code, the Aerial view comes the closest to accomplishingthis. The “Aerial” view isa
customizable view of the terrain where the user can use the mouse to rotate the camera
around the terrain, pan the camera back and forth, and zoom in and out. However, whileit is
customizable, it is not very feasible to use in some games when controlling an agent. The issue

15

with using the Aerial camera during a game isthat it does not track individual agents, so if the
agent moves off of the screen, the user must manually move this camerato get the agent in
view and then resume controlling the agent. Thisis a problem not only for the inconvenience
of having to manually move the camera with the mouse, but it’s also a problem in that the user
may miss something in the game while the controlled agent is off screen. Thisisshown in
figure 11.

Figure 11: Screenshot showing how the Aerial camera placed so the controlled agent (on the blue terrain) cannot
be seen.

In order to have the agent stay on screen at all times, the camera would have to be
zoomed out far enough such that the user could see the whole terrain. If there are lots of
terrain features like hills or walls, the only way to ensure that the user could see the agent is if
the camerais positioned overhead due to the terrain implementation mentioned in section 2.
The problem isthat during the game the player can’t get an accurate view of the agent and
what is happening in its near vicinity. Thisis shown in figure 12. It would be nice to have some
sort of overhead view that tracks the agent and stays close enough to the agent so the user can
see what is happening in the game.

One last feature that | want to add is to make the camera views customizable to give a
greater range of vision. It would be desirable to modify the camera views such as looking to the
left or right to give an increased field of vision while still following the agent. This would
enhance the 1% person and 3™ person views by giving the user more control over what they can
see and would enhance the gameplay of Sarlogo games. More of thiswill be talked about in

16

section 9. Inthe next section however, | will first talk about the modifications made to address
the issues with the cameras before talking about additional enhancements.

Figure 12: Screenshot showing how the Aerial camera usually needsto be positioned very far away to get a good
range of vision, but it’s so far away that it’s difficult to view the agent (on the blue terrain)

Section 6: Agent View Camera

The 3" person perspective Agent View camera underwent the most changes throughout
the entire project. Not only was the field of view increased, but the camera will rotate upwards
to give more of an overhead view if there is terrain that would occlude the view of the
character. The movements for this camera were smoothened which will be discussed in section
8 and manual control for the camera was created which will be discussed in section 9. | will
begin this section by discussing how the previous code used to work, and then proceed to the
recent changes.

Section 6.1: Previous Code for Agent View

The implementation for the movement of all of the cameras is within the method:

updateTurtleCameras(double deltaTime)

17

within TorusWorld.java. This method is called whenever we’re redrawing the terrain
and calculates the new position and orientation of the camera Sarlogo is currently using. The
input deltaTime, is how much time in seconds that have passed since the previoustime this
method has been called. This method will behave differently depending on which camera
Sarlogo is using. The camerathat is currently being used is stored as the variable

S Cameras.currentCamera
which is an int that when running Sarlogo, may take on the values:

S Cameras.OVER THE SHOULDER CAMERA - for Agent View
S Cameras. TURTLE EYE CAMERA —for Agent Bye
S Cameras. PERSPECTIVE_CAMERA - for Aerial

S Camerasis a static dass that contains a reference to an instance of Camera, the class
containing the mathematical data of the camera. It also contains which camera is being used,
as well as other methods for using the camera when drawing the Sarlogo terrain using OpenGL

Camerais a class that contains the information about the position and orientation of the
camera in terms of three vectors of three floats each. The three vectors contain the position of
the camera, the direction the camera is facing, and which direction is upwards. Notethat the
“upwards” direction for the agent is analogous to the normal vector of the terrain the agent is
standing on; it is not which direction is “upwards” globally. The camera also contains some
other methods including those for useful transformations such as translations, vertical rotations,
and horizontal rotations. Although Camera and S Cameras contain the data for the camera, the
method updateTurtleCameras is where the camera position and orientation are determined,
which iswhat | want to modify.

When Sarlogo is using the Agent View camera this method sets the camera’s position
and orientation in the following code segment within updateTurtleCameras:

pos.set (0, turtleViewPosition. boundingCyl.top * 0.9f, 0);
dir.set(0, 0, -1);
up.set(0, 1, 0);

turtleVi ewPosition. | ocal CoordSys. | ocal To@d obal (pos);
turt!eVi ewPosition. | ocal CoordSys. | ocal Tod obal Direction(dir);
turtl eVi ewPosition. | ocal CoordSys. | ocal Tod obal Di rection(up);

18

In the code segment, the camera’s direction and up vectors are set to be the direction
and up vectors of the agent respectively in coordinates for the Sarlogo terrain. The position is
set in asimilar way to about 90% of the height of the agent, which attemptsto be at about “eye
level”.

More specifically, this code segment uses turtleViewPosition to convert from the agent’s
local coordinate system to the global coordinate system of the Sarlogo world. In the agent’s
local coordinate system, the agent faces in the negative z direction with the upwards direction
pointing in the positive y direction. In the example above, the localToGobalDirection method
takes these directions and converts them to global coordinates. In the global coordinate
system currently the positive y direction is upwards and the positive x and zdirections are east
and south on the terrain respectively. The center of the center patch at ground level isthe
origin with each patch length being three unitslong. A similar calculation processis done for
the position.

The method updateTurtleCameras then translated the camera backwards relative to the
agent using the method:

camera.translate(float dx, float dy, float dz)

Thiswill translate the camera relative to its own orientation in the metric of world
coordinates. Snce the camera is already pointing in the direction of the agent, using this
method with dx =0, dy =0, dz=amount to translate, will translate the camera backwards as
expected.

Thiswas all of the pre-existing code that set the position and orientation of the agent
view camera. Thisinformation isthen passed to the CameraSmoother class which will be
discussed more in section 8. Note that none of these calculations take any of the terrain into
account, which can lead to terrain coming between the camera and the agent which disrupts

gameplay.

Section 6.2: Recent Changesto Agent View

In order to improve the Agent View camera, | wanted to improve the field of vision and
make the camera rotate vertically around obscuring terrain to make sure the user alwayshasa
cear view of his/ her agent as well as the surrounding terrain.

Section 6.2.1: Increasing the Field of Vision
19

To increase the field of vision, | translated the camera farther back and upwards from its
previous position relative to the agent. To do this, | kept the code from the previous section
which positions the camera at the agent’s “eye level”, and then | used both the translate
method described within section 6.1 and the translateGobal method which translatesthe
camera according to global Sarlogo terrain coordinates instead of the local coordinates of the
camera. After some experimentation, | found that translating the camera 2.9 units globally
upwards from the “eye level” letsthe user see far enough ahead of the agent. | also found that
translating the camera a distance of 30/sin(angle between camera’s direction and x-z plane)
behind the agent provided a good field of vision around the agent. Note that the translation
backwards is in the direction of the camera. The formula for the backwards translation will
keep the camera at a constant horizontal distance of 30 behind the agent as shown in figure 13.
Keeping the camera at a constant horizontal distance behind the agent will be important later
in discussing the motion of the camera in section 6.2.3.

Figure 13: Figure showing how the camera stays at a constant global horizontal distance behind the agent. The dotted camera
representsthe position of the camera if the agent were standing vertically. If the agent istilted, the cameratransdates
backwards relative to the agent a farther distance to keep the same global horizontal distance.

Figure 14 shows the new position compared to the old position: how the new position
isn’t obscured as much by the agent, and how the user is able to see more of the Starlogo
terrain. Initially | tried making these numbers proportional to the size of the agent, although |
found that larger agents didn’t need the cameratranslated farther back. With larger agentsiit
was still possible to see the nearby terrain while not being so far away that the user hastrouble
seeing the immediate surroundings of the agent. One might think this wouldn’t hold if an agent
was large enough although if an agent is much larger than the typical size of afew patches, the
agent would be a significant size of the whole Starlogo terrain and wouldn’t be very useful to
use from a 3" person perspective.

20

Fgure 14: Sreenshots showing side by side comparison of before and after placement of the camerarelative to the
agent. Note how the field of vision is much larger on the right one.

Section 6.2.2: Checking for Obscuring Terrain

The other main change | made to the Agent View camerawas to make it rotate above
obscuring terrain. The basic approach | took to accomplish this goal was to search along the
line from the camera position to a point on the agent and check a sample of points along the
terrain for terrain that would obscure the view of the agent. Thisisillustrated in figure 15 that
gives atop view of the terrain showing the straight line path from the camera to the agent. The
path isdotted to illustrate the evenly spaced points along the terrain that are checked to see if
the view of the agent is obscured.

However, this problem is not that simple since the agent has a width; there’s not simply
one point on the agent we want to see. Instead of checking that a line of vision isn’t blocked,
we want to check whether a tunnel of vision isn’t blocked where the tunnel has the width of
the agent and is pointing from the camerato the agent. Thisisillustrated in figure 16.
Checking a tunnel of pointsisimportant since it increases the chances of finding obscuring
terrain if there isany. Thisisalso illustrated in figure 16. The patchesthat are shaded in green
are patchesthat potentially could obscure the view of the agent and might not be found on the
points from the path directly from the camerato the agent. The new camera will check points
along the edges of the tunnel in addition to the direct path from the camerato the agent.
These points like before are indicated by the placement of the red dashes in figure 16.

21

Camera

Fgure 15: Figure showing atop view of the terrain and the path from the camerato the agent. The red dashed line represents
the path, and the red dashes themselves represent the evenly spaced points along the terrain that we can check on the path.

Agent

/

7 4

/
o/

Camera

Fgure 16: Figure showing top view of the terrain and the line of sight tunnel from the camerato the agent. The red dashes
represent the points along the terrain we want to check for terrain obscuring the view of the agent. Patches shaded in green
are patchesthat potentially could obscure the agent, but might not be found by the center red line, the direct path from the

camerato the agent.

22

One additional challenge in searching for terrain that would obscure the agent isthat
the calculations need to run in an efficient amount of time. If the calculations take too long,
there will be a large delay between the user input and the screen display since the screen
display needs to wait for the camera placement calculationsto finish. To simplify the
calculations of choosing which points on the terrain, | chose 25 evenly spaced points along the
path to the agent and 25 points along each edge of the tunnel, where the tunnel edges are
shown in figure 16. Checking these 75 points should find most of the obscuring terrain. There
may be cases where the 75 points miss some obscuring terrain especially if the agent size is
very large. However, for reasonably sized agents the majority of cases should be handled
properly while taking a short amount of time to perform the calculations.

Now that we’ve established which points on the terrain we want to check for obscuring
terrain, we must discuss how we check for obscuring terrain at a given point. The line going
from the camera position to the agent isdownward sloping and ends at a point on the agent
that we want to make sure is not obscured by the terrain. | picked this point to be
approximately at the waist level of the agent, more specifically at 40% of the agent’s height.
The tunnel edges are the same line as the center line, only the tunnel edges are translated
horizontally to end at the sides of the agent as shown in figure 16. At any point that we check
along one of these lines, if the terrain height is higher than the height of the line, we need to
raise the camera upwards to look around thisterrain. We can trace a line from the point on the
agent to the position of the camera and calculate the height that the camera needsto be raised
to in order to see the agent above thisterrain. Adiagramillustrating this along with the
calculations performed is shown in figure 17.

It should be noted however, that | made a slight modification to this method. The point
checked could be anywhere along the patch and raising it simply based on the height of the
terrain might not be enough as shown in figure 18. To compensate for this while keeping
calculations simple, | added a slight offset such that the camera needsto be raised to the height
of the terrain plus the offset. Snce achange in height becomes more pronounced when
checking points closer to the agent, this offset decreases as the points are closer and closer to
the agent, as shown in figure 18.

The algorithm proceeds through all 75 points and calculates at each point the necessary
height of the camerato have a view of the agent which is not blocked by terrain. While going
through all 75 points, the algorithm keeps track of the maximum height to move the camerato
before modifying the camera. After the algorithm finds the height that the camera needsto be
at, the camera’s new position and orientation will be calculated, which | will discuss next.

23

~#
PAGITEEA
- 1 D -
\,—\" 1,1
- -~
. \N |

— NH = new camera
height

TH = terrain height CH = camera height

\ J

‘ | , CV = camera vision line height
DT = distance to terrain

\ J
[

DC = distance to camera

Calculations performed for each point on the terrain:
If TH>CV
NH/DC=TH/ DT
NH=TH*DC/DT

Figure 17: Fgure showing how obscuring terrain is found relative to the agent and camera and how the algorithm calculatesthe
new height of the camera. The algorithm traces along the solid blue line from the camerato the agent. If the terrain height is
larger than the path, we want to move the camera upwardsto look around thisterrain. Thisisindicated by the slanted dotted

blue path from the agent to the transated camera that looks around the terrain.

-
2\
7 N

-

Fgure 18: Figure showing the additional adjustment | made when checking terrain height. The lowest cameraisthe original
position of the camera. The next lowest isthe translated camera without the terrain offset. Note that its view is still occluded
by the terrain even though we trandlated according to the height of the terrain. The dotted camera representsthe position
with the offset taken into consideration. Notice how changesin height become more pronounced when doser to the agent, so
the terrain offset shrinks as the algorithm approaches the agent.

24

Section: 6.2.3: Camera repositioning

For moving the camera, | originally tried vertically translating the camera and rotating
the camera downwardsto view the agent as shown in figure 17. Although this will allow the
user to see the agent, there’s no bound on how high the camera translates. In particular, if
there isalarge terrain obstacle right next to the agent, the camera would have to translate
extremely high to see around this. In this circumstance, even though technically the user’s view
of the agent is not obscured, the camerais positioned so far away from the agent that the user
can no longer see the agent or the terrain. To prevent this, | capped the height of the camera
so it can’t rise above a certain distance above the agent and to ensure the user hasa
satisfactory view of the terrain. After some experimentation | set this value at 60, which is
equivalent to 20 patch lengths above the height of the agent.

However, although capping the height ensures that the user can see the terrain, this
may cause the terrain to obscure the view if the needed height was higher than 60 above the
agent. To ensure the user can see the agent in this circumstance, we can place the camera at a
position 60 above the agent looking straight down at the agent. Snce floating terrain cannot
exist in Sarlogo as mentioned in Section 2, placing the camera directly above the agent ensures
that terrain cannot obscure the camera’s view.

Capping the maximum height of the camera position as well as positioning the camera
overhead ensures we can always see the agent. However, one last problem with this camera
repositioning algorithm is that the transition from vertical translation to the overhead position
isdigjoint. Asthe user ismoving around in his/her game, the camera might switch back and
forth between the two which can be very disorienting for the user. To keep camera motions
smooth, instead of vertical translation the camera should move in an elliptical path from a
horizontal viewing position to the overhead position as shown in figure 19. Figure 19 shows
where the camera should be positioned based on its height regardless of whether it was
modified by obscuring terrain. Note that this also includes the height of the camera dueto the
translations mentioned in section 6.2.1. Consistently following this path will create a smooth
motion of the camera, which enhances Sarlogo gameplay.

Note that an elliptical path isonly used for camera positions above the height of the
agent as shown in figure 19. After checking the terrain points, the camera might be positioned
below the agent’s height level such as in the case that the agent is standing on a hill looking
upwards. The path showed in figure 19 shows that the camera will use vertical translation only
for positions below the agent’s height level. The reason why we don’t use an elliptical path for
positions below the agent’s height is that an elliptical path would move the camera closer to

25

the agent. Moving closer to the agent would reduce the field of view, and might potentially
move it in front of obscuring terrain. This vertical motion below the agent’s height level keeps
the horizontal distance constant at 30, which was mentioned in section 6.2.1.

Figure 19: Figure showing elliptical motion of the camera when moving the camerato avoid obscuring terrain. Note that the
elliptical motion only applies when moving to a height above the point the camera looks at. For movement below this height,
vertical translation is used.

Thus, given the height of the camera, we can calculate the camera’s position along the
path in figure 19. For positions below the agent height, the camera simply translates upwards.
For positions above the maximum height of the elliptical path, we can position the camera at
the top of the ellipse. For positions on the elliptical path, we can define the elliptical path in
terms of two dimensions: its height in the y dimension, and the distance to the agent in a
direction in the x and zplane. The center of the elliptical path isthe point the camerais looking
at before translation; it’s the point that is 2.9 units globally upwards from the agent which was
described in section 6.2.1. Using the value for the new camera height that was calculated using
points on the terrain, we can use the formula for an ellipse to calculate the new distance to the
agent and then move the camerato this closer distance. The formula isdisplayed in figure 20.

horizontal Distance? " heighi? —1
(initial HorizontalDistance = 30)2 ~ (marAltitude = 60)2
[height?
horizontal Distance = 30 x V 1- 632
Fgure 20: Figure showing the formula used to calculate the new horizontal distance given the height of the camera along the

elliptical path.
26

In this section we have thus taken the necessary camera height found from the 75
terrain points and calculated the new position of the camera along a set path. The last step is
to orient the camera which | will discuss next.

Section 6.2.4 Camera Reorienting

After repositioning the camera, we need to make sure that the camerais oriented such
that the player can see the agent. There are two factsthat will guide this process. The first is
that the camera should always be looking at the same point as shown in figure 19. The second
fact to note isthat the camera repositioning process described in sections 6.2.2 and 6.2.3 will
only raise the camera’s height; thus, in order to reorient the camera, only a vertical rotation
about its current position isneeded. To perform this vertical rotation we can use the method:

Camera.rotateVerticallyAround(Vector3f point, float angle)

Like its name implies, this method will rotate vertically around the specified point by an
amount described by the specified angle in radians. We need to use this method instead of
simply setting the camera’s direction since we need to rotate the camera’s up vector as well or
else the perspective will not display correctly. To find the angle to rotate by, we can use the
formula shown in figure 21 for the angle between two vectors Aand B.

cos‘ll A-B = angleBetweenV ectors

Al = | B]]

Fgure 21: Formula to calculate the angle between two vectors

We can rotate the camera’s orientation downwards by this angle. This will cause the
camera’s direction to point towards the point shown in figure 19 and the up vector to stay
orthogonal to the direction vector. After reorientation, the camera should now be positioned
and reoriented around the terrain giving the player a good view of the agent. Some example
screenshots of the improved Agent Camera are shown in figure 22 and figure 23.

27

Figure 22: Screenshots showing the Agent View Camerain action. The left showsthe agent standing on a hill while the right
shows the agent looking down into a valley. Notice how in both situations the player has a good view of the agent and its near
vicinity.

Figure 23: Sreenshots showing how the camera will rotate above obscuring terrain. In this case, the agent isright next to a
wall. The left showsthe overhead screenshot produced by the Agent View camera. The right uses the Aerial camerato more
accurately depict the position of the left screenshot.

The combination of all of the calculations in section 6.2 allows the Agent View camerato
rotate over terrain that would obscure the viewer. The pseudocode that illustrates how all of
these calculations are performed is shown below:

-Find the position, direction, and up vectors of the agent
-Position the camera at the agent’s “eye level”
-Calculate the point the camera should look at called the “look at” point, which is globally

above the agent
28

-Translate the camera backwards in the opposite direction of the agent
-Generate the tunnel points (from the camera’s position to the agent)
-Check tunnel points for obscuring terrain and find the height the camera needsto be at
-Based on this height, move camerato necessary point along its vertical path to see agent:

-If camera ends up higher than the maximum altitude, position at top of ellipse

-If above agent’s height but below maximum altitude, position on ellipse

-If below agent’s height, adjust height without changing horizontal distance to agent
-Use a vertical rotation to point camera at camera’s “look at” point. This changes the direction
aswell asthe up vector.
-Camera smoothening described in section 8

Section 7: Agent Eye Camera

The 1 person perspective Agent Eye camera also underwent changes, but not as many
asthe Agent View camera. The main change made to the Agent Eye camera was the removal of
the vertical and horizontal tilt to make the camera less disorienting. Even though the Agent Eye
camera also had the problem of a small field of vision, we can’t reposition this camera since
moving it farther back would defeat the purpose of having the camera be from the 1% person
perspective. Instead, | increased itsfield of vision using Camera Blocks, which | will discuss later
in section 9.

Section 7.1: Previous Code for Agent Eye

The code for the previous Agent Bye camera was a subset of the code for the previous
Agent View camera. The previous Agent BEye camera was positioned at the agent’s “eye level”
with the camera’s up and direction vectors set as the agent’s up and direction using the
localToGobal and localToGobalDirection methods respectively the same way as described in
section 6.1. Instead of translating the camera back, the camera intuitively stays at the “eye
level” since a 1% person perspective is viewed from the agent’s point of view. And during
gameplay, this camera also used the camera smoother described in section 8.

Section 7.2: New Code for Agent Bye

The previous code performed as a satisfactory camera, although sometimes the tilt was
too disorienting to the gameplay. Having the tilt can create confusing perspectives when the

29

agent is looking straight down into a valley or straight up at the sky. Asmentioned earlier,
these perspectives can confuse the user about what he/she is looking at, and give no
information about what is happening in the game.

To stabilize the camera and make Sarlogo games easier to control, | removed the
horizontal and vertical tilt from the camera while leaving the camera position where it was
using the previous code. To remove the tilt, | smply set the component of the direction vector
to 0 and set the camera’s up vector to (0, 1, 0). Pointing the camera in the agent’s direction
while horizontal to the x-z plane removes the vertical tilt, and pointing the up vector inthey
direction removes the horizontal tilt.

One of the resulting screenshots from the new Agent Eye camera is shown in figure 24.
The tilt has been removed making the agent’s easier to control and easier to see, which is very
important for Sarlogo games. Even though removing the tilt reduces the view when moving up
a hill or down a valley since the user cannot see upwards or downwards, the camera blocks
compensate for this by allowing the user to look farther in all directions at his/her own will
which will be described more in section 9.

Figure 24: Screenshots showing the new Agent Eye camera. The left is a screenshot using the Agent Eye camera, and the right
is a screenshot using the Aerial camera to show where the agent isactually standing. Note that the Agent isactually standing
tilted on a hill, but the tilt has been removed in the Agent Eye camera, making it easier to see how the rest of the Sarlogo
world looks.

30

Section 8: Camera Smoothness Calculations

In addition to changing the behavior of the cameras, another part of this project was
improving the smoothening of the camera motion. There are two types of smoothening
implemented. The main smoothening occurs after calculating the camera position and
orientation for either the Agent Eye or Agent View camera to gradually move between different
camera positions. The other smoothening can be thought of as a “higher order smoothening”
used only by the Agent View camera to make sure the camera doesn’t move excessively when
looking around in the Sarlogo world. Both types of smoothening are necessary for good
gameplay since without it, motions can be disorienting and frustrating to deal with for the user.
However, smoothening effectively can be quite challenging, espedially since the time between
frames, which we’ll refer to as dt (dt = “delta time”), can vary quite a bit depending on the
Sarlogo project being run.

Section 8.1: Smoothening Used by Both Cameras
Section 8.1.1: Previous Method

The existing system for camera smoothening occurred at the end of
updateTurtleCameras() in TorusWorld.java with a one line call to
CameraSmoother.smoothCamera shown in figure 25.

canBSmoot her. smoot hCamer a(canera, del taTime);

Fgure 25: Where the camera smoothening occurs.

This method receives two arguments:

- “camera”: The instance of the camera we’re using. It has the next position, direction, and up
vectors that the camera should eventually get to. | will refer to these asthe target position,
target direction, and target up vectors respectively.

- “deltaTime”: This is the amount of time since the previous frame.

The main purpose of smoothCamera() is to find the next position and orientation of the
camera given the target position and orientation, the time since the last frame, and a couple of
the previous camera positions and orientations which the CameraSmoother dass keepsin
memory. The target position and orientation are the resulting camera position and orientation
from the methods for Agent View or Agent Eye described in sections 6 and 7 respectively. In
order to create smooth movements, the CameraSmoother simulates a spring force between the

31

camera’s current position and its target position. A similar type of motion is performed for the
camera’s orientation. This process allows the camerato take multiple framesto get to where it
should be by smoothly accelerating and decelerating to its target position and orientation.
Figure 25 illustrates an example of these calculations.

Figure 25: Figure showing how camera smoothing works. The blue arrow points from the camera of the current frame to the
target position and orientation based on player input. The green camera representsthe position that the camera smoother
may output on the first time step. Notice how it takes less movement to get to the green camera from the current position.
This allows the camera to make smoother motions. The dashed arrows are simply showing the vertical direction (that the first
cameraisin) and the other arrows simply show the direction of the camera.

In order to calculate the next position of the camera, the CameraSmoother class uses
“backwards” or “implicit” Verlet Integration. Sandard Verlet Integration is a processthat over
time calculates the trajectory of an object given the forces acting on it. The formula itself
approximates the next position of an object given the forces acting on it at that point intime, a
couple of previous positions, and the amount of time between positions. Visit this reference:
http://en.wikipedia.org/wiki/\erlet integration for a derivation of the formula. Implicit Verlet
Integration is a more stable form of regular Verlet Integration by using a slightly different
equation; it’s analogous to how the Implicit Euler method is a similar form of the regular Euler
method. The CameraSmoother uses Implicit Verlet Integration to calculate the trajectory of our
camera.

In the context of Sarlogo, for the camera position we simulate a spring between the
camera’s current position and its target position. This calculation is performed at each time
step so as the camera gets closer and closer to itstarget position the spring force isless and less.
It’s necessary to recalculate the spring force each time since the agent could be moved before
the camerareachesitstarget. In addition to a spring force, we also use a damping force to
reduce oscillations in the camera’s movement and make its movement smooth.

32

The code that uses a modified version of Implicit Verlet Integration used to calculate
camera position is shown in figure 26. The equation modifies Verlet slightly by using dtr, the
ratio of the current dt and the previous dt where the regular Verlet Integration treats the dts as
equal and thus treatsthisratio as 1. There was no documentation on the choice of the spring
and damping constants, but | presume these were chosen by experimentation to make Sarlogo
camera motion smooth and responsive.

public static double K

50;// 140;//20;//50;

/1 Spring Constant

public static double F = 12;// 1; //15; //Danpi ng Const ant
private class Vector Smoot her {

doubl e ux, uy, uz;

doubl e vx, vy, vz;

int step = 0;

public void reset() {

step = 0,
}

publ i c void snoot hVect or (Vect or3f target,

doubl e dt, double dtr) {

double tx = target.x, ty = target.y, tz = target. z;
st ep++;
if (step > 2) // if we have enough data
{
double k = K * dt * dt;
double f = F * dt;
tx = 1.0/ (1.0 + k)
(1 +dtr - f) *ux - (dtr - f) * vx + k * tx);
ty =10/ (1.0 + k)
(1 +dtr - f) *uy - (dtr - f) * vy + k * ty);
tz =10/ (1.0 + k)
*((1 +dtr - f) * uz - (dtr - f) * vz + k * tz);
}
/1 Storing data for next tinmestep
VX = UX;
vy = uy;
vz = uz;
ux = tx;
uy = ty;
uz = tz;

target.set((float) tx,

}
}

(float) ty, (float) tz);

Figure 26: Figure showing the main segment of code for using Implicit Verlet Integration to calculate the camera’s position.

Smoothing of the camera orientation is handled in a very similar fashion. The
orientation of the camera can be represented as a 3x3 rotation matrix to transform global

33

coordinates into the camera coordinate system. The methods computeRotationMatrix() and
fromRotationMatrix() in the Camera class calculate the 3x3 matrix from the direction and up
vectors and vice-versa respectively. A 3x3 rotation matrix can also be represented as a
quaternion (Waveren 2-3), which provides an easy way to calculate linear interpolation (lerp)
and spherical linear interpolation (slerp). Although the calculation using the quaternions isn’t
identical to the position calculations, it’s very similar to Implicit Verlet Integration except we
need to use lerp and slerp instead of simple addition. The snippets of code that performs these
calculationsis shown in figure 27.

private class Matri xSnoother {
private Quaternion x1
private Quaternion x2

= new Quaternion();
= new Quaternion();

int step = 0;

public void reset() {

step = 0;
}
public void snoothMatrix(Matrix3f target, double dt, double dir) ({
st ep++;
Quaternion xt = new Quaternion();
xt. fronRotationMatri x(target);
if (step > 2) // if we have enough data
{
double k = directionKScale * K * dt * dt;
double f = F * dt;
xt = Quaternion.slerp(
Quaternion./erp(x2, x1, 2 * (1 + dtr - f) [/ (1 + k)),
Quaternion.lerp(x2, xt, 2 * k/ (1 + k)),
0.5);
target.set(xt);
}
x2 = x1, // x2 is the 2nd previous rotation quaternion
x1 =xt; // x1 is the 1st previous rotati on quaternion
}

Fgure 27: Figure showing the main segment of code for using a method similar to Implicit Verlet Integration to calculate the
camera’s orientation. Note the calculations are nearly identical, except we use lerp and slerp for quaternions.

One last part of the existing code that handles the camera smoothening isthe reset()
method. This method immediately setsthe current camera position and orientation equal to
the target position and orientation, and clearsthe data for the previous positions and
orientations. It’s used to move the camera directly to its target position whenever the dt is too
big. When the dt istoo big, the Verlet method becomes unstable, meaning the positions and

34

orientations returned by our methods oscillate and diverge. This wasthe main problem | faced
which | will discuss next.

Section 8.1.2: Problem with Verlet

The main issue that | came across with the existing smoothening system isthat for large
values of dt, the calculations become unstable. This isillustrated more in figure 28 where the
camera can overshoot the target since we’re multiplying the spring force by too large of atime.
If the dt rises past the point where it starts overshooting, the camera oscillates when it’s trying
to get to itstarget; the camera first overshoots a little, then the spring force draws the camera
back towards the target and so on. Thistype of motion can be very disruptive to gameplay.
Although figure 28 only shows how this can happen with the position, this can also happen with
the direction aswell. These oscillations become even larger with larger dt. At a certain point,
the oscillations grow out of control and the camera starts moving without bound making games
completely unplayable. | will refer to this point asthe dt that causes the camerato become
unstable. Thisis shown more in figure 29.

Fgure 28: Figure showing oscillation behavior of the camera when dt islarge enough. The dt chosen here makesthe camera
overshoot the target by alittle, but the camera motion will eventually get to the target. The black cameras show the initial
position and the target position, and the green cameras show the calculated positions by the smoother.

30

y,
Yy
N

b

f e —— o ——— — _—

Figure 29: Figure showing exploding behavior of the camera when dt is chosen large enough. The camera goes from the initial
position to a position that isfarther away from the target. This keeps happening with each frame to make the camera’s
position osdllate out of control.

To account for the potential instability of Verlet Integration, CameraSmoother has a
reset() method described earlier. While this does allow our camera system to automatically
stabilize when the dt gets very high, this can make the camera motion look very glitchy. This
problem can be very difficult to deal with when there are a lot of calculations to compute.
Large amounts of calculation causes the dt to be high on certain frames, which causes the
camerato lurch forward every so often, which can be very disruptive to gameplay. Large values
of dt are also caused by the user focusing away from the window. Sarlogo allocates alot of
CPU when the user is focusing on the Spaceland window and/ or is running a Sarlogo project
but doesn’t allocate a lot if neither is true. However, the camera might still be moving a short
while after the user stops running a project and focuses away from the window. Thiscamera
movement would also have high values of dt. The glitchy motions of the reset() function was
the main problem of camera smoothing that | spent a lot of time trying to fix in order to
improve gameplay for the user.

Section 8.2: Choice of constants

In order to fix the glitchy motions of the reset(), | removed the code where reset() was
called if the dt wastoo high. This eliminated the jerky motions of the camera but brought back
the problem of unstable camera motions for high values of dt. To stabilize the camera motions,
| experimented with changing the constants for the spring and the damping force.

36

| found that | could simulate high values of dt by using Thread.sleep() during the camera
calculations since this would increase the amount of time to calculate each frame. | could thus
fully explore how manipulating the spring and damping constants would affect the camera
smoothening for various values of dt. Inboth of the position and orientation calculations, both
of the constants are multiplied by either dt or dt? before they are added into the equation.
After some experimentation, | found that raising the spring constant or decreasing the damping
force constant will help stabilize the camera motion. This held true for any value of dt that |
tried including values of dt as high as 0.3, which is well beyond what the dt should be when
using Sarlogo.

To get a general sense of why this occurs, it’s clear that using very high values of k will
simply set the camerato itstarget position and orientation. Using smaller values for the
damping constant won’t necessarily reduce camera motion, although it does prevent the
contributions from the damping force from getting too high. Both calculations for the position
and orientation include the term dt* (damping constant) so reducing this value as dt gets higher
will help stabilize the camera.

After experimenting with the constants and values of dt, | found that using the previous
values K= 50 and F = 15 yielded smooth motion for low values of dt. Around dt =0.15, these
values caused the camera calculations to become unstable. For higher values of dt, | found that
the values K= 130 and F=7 kept the camera motions stable for the values of dt that | tested
while still moving the camera slowly enough to allow the user to get a sense of the camera
motion. It should be noted that the camera motions when dt is high aren’t nearly as smooth as
those when dt is low but this happens with any choice of the constants since the same motions
are shown with fewer frames for high dt. The alternate choice of constants primarily allows the
camera motions to be stable without immediately positioning the camera at the target position
and orientation like the reset() method did.

To switch between the constants, | chose dt =0.1 as a cutoff to ensure that the camera
motions are stable. However, instead of using asimple cutoff, | keep track of the average dt for
the last 5 frames. An average dt that is greater than 0.13 would trigger using the constants for
higher dt, and an average dt that is lower than 0.07 would trigger using the constants for lower
dt. The reason for using average dt instead of dt for individual framesisthat dt can vary a bit
especially when Sarlogo games are computationally intensive. Switching between sets of
constants disrupts camera motion so we want to switch constants only when necessary. Using
the average dt reduces variation and requiring that the average to be slightly beyond the cutoff
will help ensure that the constants are switched only when the dt has substantially changed.
This new system of using constants allows the camera motions to be stable for reasonable
values of dt in addition to showing more motion than simply setting the camerato its new

37

position and orientation. I'll now briefly explain the additional smoothening | used for the
Agent View camera.

Section 8.3 Agent View Additional Smoothening

| want to briefly mention the additional form of smoothening that | added for the Agent
View camera. The smoothening that | added occurs after we calculate the translation of the
camera height and before we calculate the new camera position and orientation. The code for
the translation along with pseudocode for the surrounding calculations for Agent View is
displayed in figure 30.

/1 Pseudocode Before:
-Check tunnel for obscuring terrain, find needed translation upwards, store thisin variable
translationDistance

float next Translation = prevTranslation + scaleTranslation *
(transl ationDi stance - prevTranslation);

float nextY = nextTranslation + pos.y; //The y coordinate we'll end up at

/I Pseudocode After:
-Move camera to point along path at height nextY
-Main form of camera smoothening

Figure 30: Figure showing the code and pseudocode for how the extra Agent View smoothening is implemented.

The extra smoothening effectively makes the movement along the camera’s vertical
path described in section 6 take a few frames to take effect instead of happening all at once.
It’s helpful to specifically slow down movement due to obscuring terrain since when moving the
camera around, the amount of this movement can change much faster than other movements
of the camera. If the agent is positioned very close to awall, the camera needsto moveto a
very high height and as aresult may rotate overhead in order to see the agent. Asthe camera
rotates around, the camera will move upwards along its path when the camera is behind the
wall and as soon as it moves away from the wall, the camera will move back downwards along
its vertical path. This can be very disorienting if the camera keeps going back and forth behind
awall. To reduce thisdisorienting motion, the extra smoothening will slow down these
motions which preventsthe camera from translating too far if it only needsto translate
temporarily.

38

Together, the two types of smoothening help to keep the camera motions smooth
during Sarlogo gameplay for all reasonable values of how much time elapses between
rendered frames. The last section of the project involves giving the user greater control of the
camera during Sarlogo games and simulations which | will discuss next.

Section 9: Camera Blocks

The last part of this project was the Camera Blocks, puzze blocks that students can use
when programming their games to manually control the camera. This allowsthe user to move
the camerato the view that the user desires, including the requested second-person
perspective and the useful agent overhead perspective. The modifications that the blocks
make are in addition to the previous camera functionality; for instance if the blocks rotate the
Agent View camerato a new position, the same terrain checking will occur and the camera will
rotate over obscuring terrain from its current position. In this sense, the user doesn’t have
absolute complete control over the camera, but these blocks allow the user a much wider range
of control and allow the user to be much more immersed into Sarlogo games.

Section 9.1: Previous Code

Previousto this project, blocks that could manually control the position and orientation
of the camera didn’t exist at all. The only blocks relevant to the camera were blocks that chose
which camera is currently being used aswell as afew others. The blocks that tell the user
which camera is being used and set which camera is being used are shown in figure 31 asthe
oval blocks and rectangular blocks respectively. Note that the blocks relating to the Agent View
camera are labeled as “over shoulder?” and over shoulder to more accurately describe where
the camerais. The two blocks shown in figure 32 tell the user which agent the camerais
following and set which agent the camera should be following. These are only really used when
using the Agent Bye and Agent View cameras are being used. These will not have much effect
when using the Aerial camera.

Figure 31: Blocks used to tell the user which camera is being used, and set which camera is being used.

39

agenticameragllic

Figure 32: Blocks used to tell the user which agent the camerais following and set which agent the camera should be following.

The other blocks that existed previously that were relevant to camera controls are
shown in figure 33. The three blocks control the “overhead” view. The overhead view switches
the main view of the terrain and the map view shown in the lower left corner. The map view
camera has afixed position above the terrain and looks straight down at the terrain. This
perspective is unlike all of the other cameras since this cameraisimmutable. Note that even
though it does provide an overhead view as we wanted, the camera is still positioned very far
away from the terrain and doesn’t follow individual agents. This makes this perspective difficult
to use in a game since the user might have trouble seeing what is happening in the terrain
similar to the aerial camera as mentioned in section 5.

The blocks that tell the user whether it isin use and turn it on and off are shown in the
top row of figure 33 from left to right respectively. A screenshot showing overhead view is
shown in figure 34.

Fgure 33: Other previously existing blocks relevant to camera controls.

FPS: 58 VMPS: 0.0
Figure 34: Screenshot showing the overhead view that can be triggered by the camera blocks in figure 33. Note how the
magenta rectangle that is painted on the terrain is viewed straight on from the main perspective and from an angle in the map
view in the lower left corner.

40

These are all of the previously existing blocks that manipulated the camera perspective.
In the next section | will describe the function and implementation of the new camera blocks.

Section 9.2 New Camera Blocks

The new blocks | created allow for much greater control of the Agent View, Agent Eye,
and Aerial cameras. The blocks | created are shown in figure 35. These blocks allow the user to
shift the perspective in a variety of directions and have greater control of the camera. They
also allow for a much larger field of vision and allow the user to look around the terrain with
much greater flexibility. The behaviors of these blocks vary depending on which camerais
currently being used which will be explained shortly. It should also be noted that the effects of
the camera blocks are separate for each camera however so altering the perspective of one
camera will not affect a different camera. By allowing greater control of the camera, the user
will become more immersed in his or her Sarlogo world, which greatly improves the gameplay
of Sarlogo games and simulations.

Figure 35: Screenshot showing the new camera blocks to allow the user to have greater control over the game perspective.
Section 9.2.1 Agent Eye Camera Controls

The controls for the Agent Eye camera allow the user to look around the Sarlogo terrain
from an enhanced first person perspective. The four blocks on the left column of figure 35 are
“look left”, “look right”, “look up”, and “look down” which will rotate the camera the specified
number of degrees to allow the user to look in the respective direction. To implement these in
the code, | created the methods lookRight and lookup in TorusWorld.javathat are called
whenever the blocks are executed. The blocks “look left” and “look down” also use the
methods lookRight and lookUp, except they call the respective methods with a negative
rotation. The methods are shown in figure 36. Each time the blocks are executed, static
variables that keep track of the cumulative horizontal and vertical rotations are updated. Note
that there are separate variables for each of the camera movements for each of the three
cameras in order to keep the camera modifications separate. Thus when using the Agent Eye
camera using rotations will only affect the variables for Agent Eye camera rotations as shown in

41

the code in figure 36. Also, for the Agent Eye camera specifically, the rotation variables are
clipped at certain valuesto prevent the camera from getting into a bad state. For Agent Eye,
the vertical rotation is clipped to be between -75 and 75 degrees since the Sarlogo cameraiis
not currently configured to rotate upside down. Horizontal rotation is not clipped at all since
the camera isfree to look horizontally in any direction.

/I Degrees can be negative if we're looking to the left.
public static void | ookRi ght (fl oat degrees) {
if (SLCaneras. current Canera == SLCamer as. PERSPECTI VE_CAMERA) {
hori zont al Rot ati onAeri al += degrees;

}
if (SLCaneras. current Canera == SLCameras. OVER_THE_SHOULDER_CAMERA) {
hori zont al Rot ati onShoul der += degrees;

}

if (SLCaneras. current Canera == SLCameras. TURTLE_EYE_ CAMERA) {
hori zont al Rot ati onEye += degrees;

}

}

/I Degrees can be negative if we're | ooking down instead.
public static void | ookUp(float degrees) {
if (SLCaneras. current Canera == SLCaner as. PERSPECTI VE_CAMERA) {
vertical RotationAerial += degrees;

}
if (SLCameras. current Canera == SLCamer as. OVER_THE_SHOULDER_CAMERA) {
vertical Rot ati onShoul der += degrees,;

vertical Rot ati onShoul der Mat h. max(verti cal Rot ati onShoul der, -

85. 0f) :

verti cal Rot ati onShoul der Mat h. mi n(verti cal Rot at i onShoul der

20. 0f);

I

if (SLCaneras. current Canera == SLCaneras. TURTLE _EYE CAMERA) {
verti cal Rot ati onEye += degrees;

Mat h. max(vertical Rot ati onEye, -75.0f);
Mat h. mi n(verti cal Rot ati onEye, 75.0f);

vertical Rot ati onEye
vertical Rot ati onEye

Fgure 36: Figure showing the code for the lookRight and lookup methods.

After the rotation variables are updated, these rotations are used in
TorusWorld.updateTurtleCameras(), the method described in sections 6 and 7 that updatesthe
Agent View and Agent Eye cameras. The horizontal and vertical rotations are performed about
the current camera position and occur after the rest of the code for Agent Eye that was
described in section 7. The results of horizontal and vertical rotations are shown in figure 37
and 38. Figure 37 shows the unchanged view on the left, and then the view modified by “look
left” and “look right” in the center and right respectively. Figure 38 shows the unchanged view
on the left, and then the view modified by “look up” and “look down”.

42

Figure 37: Figure showing the effects of look left and look right. The left image is the unchanged image, the center image is
looking to the left, and the right image islooking to the right.

Figure 38: Figure showing the effects of look up and look down. The left image is the unchanged image, the center image is
looking up, and the right image is looking down.

Two of the other camera blocks are “look zoom in” and “look zoom out”. These two
blocks allow the user to zoom the camerain to view things that are farther away. Smilar to the
other rotation blocks, | created a zoomin method shown in figure 39 that is called when these
two blocks are executed in order to update the cumulative zoom variable. Also similar to the
other blocks, there are separate zoom variables for each of the cameras. When updating, the
zoom variable cannot go below zero since when using a 1% person perspective it’s impossible to
place the view behind the agent. The “look zoom out” block also uses the zoomin method
except with negative distance values. Zooming occurs after rotations in Agent Eye by
translating the camera forwards or backwards in the direction the cameraisfacing. An example
of zooming in is shown in figure 40 where the zoom is applied to the image on the right.

!/ Di stance can be negative if we're zoonmi ng out instead.
public static void zoom n(float distance) {
if (SLCaneras. current Camera == SLCaneras. PERSPECTI VE_CAMERA) {

43

zoomAnmount Aeri al += di st ance;

}
if (SLCameras. current Canera == SLCameras. OVER_THE_SHOULDER_CAMERA) {
zoomAnount Shoul der += di stance;

/1 This val ue should never go above caneraDi stance - 10 and should

never go bel ow -10
zoomAnount Shoul der

Mat h. m n(zoomAnount Shoul der, camerali st ance
- 10);

zoomAnmount Shoul der Mat h. max(zoomAnount Shoul der, -10);

}
if (SLCaneras. current Canera == SLCameras. TURTLE_EYE CAMERA) {
zoomAmount Eye += di st ance;

// Make sure that zoomAmount Eye isn't bel ow zero.
zoomAmount Eye = Mat h. max(zoomAmount Eye, 0. 0f);

Fgure 39: Figure showing the code used for the zoomln method in TorusWorld.java.

Fgure 40: Figure showing the effects of “look zoom in”. The unchanged perspective is shown on the left, and the zoomed in
shot ison the right.

Also note that in each of the screenshots, there isared cone in addition to a yellow
cone in the mini-map which is in the lower left corner of the window. The yellow cone existed
previous to this project and shows the field of vision of the controlled agent with respect to the
rest of the terrain. | implemented the red cone during this project to show the field of vision of
the camera. Thisis helpful since when using zoom and rotations to modify the Agent Eye
camera, there are no other indications to the position and orientation of the camerarelative to
the position and orientation of the agent.

The last camera block is the “look reset” block. Execution of this block removes the
modifications caused by rotations and zooming for the current camera. Inthe code this simply
means setting the variables that keep track of the cumulative rotations and zooming equal to 0.
This block works the same for each of the three cameras.

The camera blocks greatly improve the use of the Agent Eye camera by giving the user
more control over the direction and position of the camera. The user has a much greater field
of vision, which greatly increases the gameplay of Sarlogo games. The usefulness of the
camera blocks is also extended to the other cameras such as Agent View, which | will talk about
next.

Section 9.2.2 Agent View Camera Controls Description

The controls for the Agent View camera allow the user to look around the Sarlogo
terrain while keeping the agent in his/her perspective. Smilar to how the camera blocks
worked for the Agent Bye camera, usingthe camera blocks for the Agent View camera usesthe
same methods lookRight, lookUp, and zoomin described in section 9.2.1 and we perform the
additional rotations and zooming within the code for the Agent View camera described in
section 6. The functionality for the Agent View camera controlsis a little different due to the
nature of the 3" person perspective and the camera modifications happen in a different order
in the code. The code changes necessary for the rotations and zooming are shown in figure 41,
as well as pseudocode for the calculations that come before and after it which were described
in section 6. | will now explain the code changes for the Agent View camera controls.

/I Pseudocode before:
-Find the position, direction, and up vectors of the agent
-Calculate the point the camera should look at, which is globally above the agent

//Code changes

[/ This is the angle between the direction and the horizontal
doubl e angle = Math. asin(Math. mi n(Math. abs(dir.y), 0.999));

/1Use the angle to translate backwards, also taking the zoominto account
float transl ateBackwards = (canerali stance - zoomAnpunt Shoul der)/
(float)Mat h. cos(angl e);

canera.translate(0, 0, translateBackwards); //Translate the camera backwards
canmera.transl ated obal (0, -1.0f*vertical Rotati onShoul der, 0),

Vector3f newDir = Vector3f. subtract(posLookAt, canera. getPositionCopy());
newDi r. normal i ze();

45

//Find the angle of rotation between the two

float dotProd = Vector3f.dot(dir, newbir);

dotProd = dotProd / dir.length() / newbDir.length(); //Both should al ready be
normal i zed, but just to make sure.

doubl e ddot Prod = (doubl e)dot Prod;

ddot Prod = Math. m n(0. 999, ddotProd); //To ensure that dot product is |ess
than 1 (so cosine of it won't return NaN

float angleO'Rotation = (float)Math. acos((doubl e)ddot Prod);

if (vertical RotationShoul der <= 0) {
canera. rotateVertical | yAround(camera. get Posi ti onCopy(), -
1*angl e(f Rot ati on);

el se {
camera.rotateVertical | yAround(canera. get PositionCopy(),
angl e Rotation);

}

//Rotations due to |ook left and | ook right and zoomin.
camera. rot at eHori zont al | yAr ound(posLookAt ,
hori zont al Rot at i onShoul der* (fl oat) Math. P/ 180. 0f) ;

//Pseudocode after

-Generate the tunnel points (from the camera’s position to the agent)

-Check tunnel for obscuring terrain, find needed translation upwards

-Move camera to necessary point along path to see agent, using higher-order smoothening
described in section 8

-Regular camera smoothening described in section 8

Fgure 41: Pseudocode and code describing how the camera controls for Agent View are implemented with respect to the rest
of the code for Agent View.

As seen in the code, the zooming calculations happen first. The Agent View zoom
variable zoomAmountShoulder modifies the horizontal distance the camera will translate
backwards, which modifies the actual distance the camera translates backwards. Thisis
demonstrated in figure 42, where the camera in black represents the unchanged camera, the
blue camera has been zoomed in, and the green camera has been zoomed out. The zooming
variable for Agent View is constrained between -10 and cameraDistance - 10 as shown in figure
39. Thissimply constrains the zoom so the user doesn’t zoom in past the agent and doesn’t
zoom out far enough to the point where the camera becomes difficult to use.

By changing the amount the camera translates backwards, this effectively changesthe
starting point of the camera. The tunnel of pointsthat is checked for obscuring terrain will
become longer or shorter depending on the zoom which allows the camerato still rotate above
obscuring terrain whether or not its positioned closer or farther away. The other change
needed for Agent View camera zooming is scaling the camera path that was shown in figure 19.

46

In order to keep zooming consistent for all positions on the path, the path needsto be scaled
evenly to ensure that zooming always brings the camera closer or farther from the agent. This
scaling is demonstrated in figure 43. In order to change this, | only needed to change the minor
and major axes of the ellipse which were namely the variables initialHorizontalDistance and
maxAltitude in the equation shown in figure 20. | set initialHorizontalDistance equal to the new
horizontal distance caused by the zoom which is namely cameraDistance —
zoomAmountShoulder. | set maxAltitude equal to twice this amount to preserve its value of 60
when the horizontal distance is 30 in addition to allowing the ellipse to scale. Screenshots
showing zooming in and out are shown in figure 44 in the center and on the right respectively
with the unchanged image on the left.

Fgure 42: Efect of zooming the Agent View camerain and out. The black camera is the unchanged camera, which isat a
horizontal distance of 30. The blue camerais zoomed in and has a shorter horizontal distance, while the green camerais
farther and has alonger horizontal distance.

The calculations for the “look up” and “look down” blocks occur next in the code.
Vertical rotations for the Agent View camera allow the user to look up and look down from the
current perspective but work differently than vertical rotations for the Agent Eye camera.
Snce the vertical path of the camera shown in figure 19 is not a uniform shape but instead
composed of multiple parts, vertical control is much trickier to think about. It’s also trickier
since | want the camera to automatically rotate above obscuring terrain even if the vertical
rotation would position the camera otherwise.

To keep things simple, | used the input instead as modificationsto its vertical height,
which will move the camera along its vertical path. For instance, a “look down” command will
move the camera upwards along the path to allow the user to look downwards. The camerais
also rotated vertically so the camera will look at the “look at” point described in section 6. By
simply moving along the path we already created, this ensures smooth camera movement. In

47

addition, by placing it before the terrain checking, we also ensure that the camera will still
follow the previously defined rulesto rotate above obscuring terrain.

Figure 43: Figure showing how the path of the camera scales when the camera zooms in and out. The blue cameras show the
zoomed in path and the green cameras show the zoomed out path. Note that by scaling the path, the camera always moves
straight outwards which provides intuitive camera movement.

Figure 44: Screenshotsillustrating zooming the Agent View camera. The left image isthe unchanged view, the center image isa
zoomed in view, and the right image isa zoomed out view.

48

Admittedly this isn’t the perfect solution since the user could potentially get into
situations where executing “look up” wouldn’t look up even if the camera could. For instance,
if the vertical rotation variable would translate the camera above the top of the camerapath, a
“look up” command, which would decrease camera height, might leave the camera above the
top of the path. In this case the user would have to continue executing “look up” commands in
order to decrease the camera height and allow the user to look upwards. Despite the weakness
however, this camera action is consistent with the others since it is a cumulative action that
allows the user to look up or down from the current perspective. In addition, to reduce the
problem | constrained the vertical camera movement to be 85 at most upwards and 20 at most
downwards. This allowsthe camerato rotate all of the way to the overhead view most of the
time in addition to slightly below horizontal while not allowing this variable to get too large in
magnitude. Bxample screenshots of looking upwards and downwards are shown in figure 45,
where the left most image is the regular Agent View perspective and the right two images are
of the perspective looking upwards and downwards respectively. It should also be noted that
“look down” allows the user to use an overhead view that tracks the agent as mentioned earlier.
Instead of using a separate camera, we can seamlessly integrate this view in with the Agent
View camera. A screenshot of this overhead perspective is shown in figure 46.

Figure 45: Screenshotsillustrating the effects of looking up and down with the Agent View camera. The left image isthe
unchanged image, the center islooking up, and the right islooking down.

The “look left” and “look right” blocks rotate the camera in a horizontal circle around
the agent to allow the user to look to the agent’s left and right respectively. In the code, the
camera is rotated horizontally around the “look at” point to change the starting position of the
camera. The code then checks for obscuring terrain from the new position and rotates the
camera above the terrain as necessary. Example screenshots of looking to the left and right are
shown in figure 47 where the left most image isthe regular Agent View perspective and the
right two images are of the perspective looking left and right respectively. It should also be

49

noted that a horizontal rotation of 180 degrees allows the user to achieve the requested
second person perspective. In asimilar fashion to the overhead view that tracks the agent, this
view is integrated seamlessly into the Agent View camera which eliminates the need for an
additional camera and allows the user greater control of the perspective. A screenshot of
second person perspective is shown in figure 47.

Figure 45: Screenshot showing the overhead perspective using the “look down” functionality of the Agent View camera.

Figure 46: Screenshots showing horizontal rotations using Agent View. The left image is the unchanged image, the center uses
“look left” and the right uses “look right”

Figure 47: Screenshot showing the second person perspective that can be attained using horizontal rotations using the Agent
\iew camera.

50

9.2.3 Aerial Camera Controls

The Aerial Camera controls were added mainly to keep consistency in having the camera
blocks allow the user to look and zoom in different directions. Since the Aerial camera doesn’t
follow an agent, “look up”, “look left”, “look right”, and “look down” simply translate the view
upwards, to the left, to the right, and downwards respectively. Zooming works similarly as it
translates the camera forwards and backwards to zoom in on the terrain and zoom outwards
respectively. This can all be done with the translate function of the camera mentioned earlier.
It should also be noted that these camera movements are exactly identical to the movements
provided by the buttonsin the lower right corner of the terrain window. By creating this
functionality in the form of Sarlogo blocks, we not only keep the blocks consistent for all of the
cameras, but we also allow the user to incorporate the functionality of these buttonsinto the
program which allows for greater control of the view.

The one difficulty that | ran into was that unlike the Agent Eye and Agent View cameras,
the Aerial camera doesn’t get reset to the agent’s position and orientation so after a translation
ismade, the Aerial camera needs some way of remembering that it already made that
translation. To account for this, | implemented variablesthat kept track of the previous
translation. | would then only move the camera by whatever new translation was made. This
allowsthe translations as well as the reset block to function properly.

Section 10: Future Work

This project greatly improved the Sarlogo cameras by improving their motion,
smoothening, and control. That being said, there is still alot of potential for future work on the
cameras and for Sarlogo in general. For the Agent View camera, more work can be done with
the vertical camerarotations. The current implementation stays consistent with the other
blocks, but ideally there could be a system with uniform vertical motion in addition to
eliminating situations where executing the look blocks results in no apparent response. There
was not enough time during this project to find this solution, but perhaps with a slightly more
complex system for vertical rotations, these extra features could be satisfied. For the Aerial
Camera, the camera block functionality could be extended to use rotations instead of simple
translations. Depending on the implementation, this could allow the user aimost full control
over the position and orientation of the camera. More can be done with the camera
smoothening as well since although | found constants that appeared to work well, it would be
better if there could be more rigorous reasoning. During this project, | attempted to use

51

system analysis and examine how the constants affect the behavior of the camera motion,
although this quickly became difficult since the direction calculationsinvolved slerp and lerp
which are non-linear functions. Perhaps with more advanced analysis, more can be explored
regarding the smoothening.

Asfar asfuture work for &arlogo in general, one possible area to explore is a set of
more advanced drawing tools. VWWhen designing terrains, some patterns might be needed
repeatedly that would involve the user drawing multiple polygons on the terrain. For example,
in order to draw the road shown in figure 48, the user needs to draw 7 different polygons. If
the user wanted to draw multiple roads, this would require a lot of effort from the user.
Perhaps the development of aterrain design copy/ paste tool would help the user create more
elaborate Sarlogo worlds more efficiently. The same sort of idea could apply for terrain
features such aswalls created for amaze. Asshown in figure 49, creating a maze could be very
laborious for the user, since the current terrain tools only allow the user to create one wall at a
time. It would be more helpful if the user had atool to create multiple walls at the same time.
There still remains a lot of potential for further development of Sarlogo to give users an even
more exciting experience.

Figure 48: Sreenshot showing how aroad might be drawn on the terrain. Notice how drawing one such road
requires 7 different rectangles drawn by the user.

52

Figure 49: Screenshot showing how a user might go about constructinga maze. Notice how the user needsto
separately select each wall to raise or lower to construct the maze.

Section 11: Condlusion

During this project, | further developed the Sarlogo camerasto greatly improve
Sarlogo gameplay. The Agent View camera now will automatically rotate above obscuring
terrain so the user always has an idea of what is happening with their agent in the game. The
Agent Bye camera now has no horizontal tilt to give the user a first person perspective without ‘
disorienting the user. The smoothening of the camera motions has been improved for awider
range of time taken between frames to prevent jerkiness in camera motion during gameplay.
And the creation of camera blocks allows the user to take direct control of the cameras and
obtain the view of the user’s choice. Together, these improvements will hopefully further
improve the gameplay of Starlogo games and enhance the user’s experience by being
implemented in Sarlogo TNG1.6.

Section 12: Acknowledgements

| would like to extend special thanks to Professor Eric Klopfer and Daniel VWendel for
their assistance, guidance, and support throughout this project. | would also like to thank the
MIT Teacher Education Program as well asthe MIT BEECSdepartment for making thisthesis
project possible. Lastly, | am thankful for all of my family and friends for their support during
the completion of this project.

53

Work Gted:

Burroughs, Mark. “Terrain Editing in SpaceLand.” MITBEECSUndergraduate Advanced Project.
May 2007.

Van Waveren, JM.P., “From Quaternion to Matrix and Back.” 2005, Id Software, Inc. 8 May
2011. http://cache-www.intel.com/cd/ 00/ 00/29/ 37/293748_293748.pdf

“Verlet Integration.” Wikipedia, the free encyclopedia. 8 May 2011
http://en.wikipedia.org/ wiki/ Verlet_integration

Wendel, Daniel. “Designing and Editing 2.5-Dimentional Terrain in StarLogo TNG.” MIT Master
of Engineering Thesis. August 2006.

