
Energy Mobility Network:

System Design, Interfaces, and Future Interactions

by

Natalie Wen Yua Cheung
B.S. Electrical Engineering and Computer Science

Massachusetts Institute of Technology, 2009

Submitted to the Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science
at the

Massachusetts Institute of Technology

February 2011

©2011 Massachusetts Institute of Technology
All rights reserved.

The author hereby grants to M.I.T. permission to reproduce and
to distribute publicly paper and electronic copies of this thesis document in

whole and in part in any medium now known or hereafter created.

ARCHIVES

Signature of Author:

Certified by:

Department of Electrical Engineering and Comput cience
Feb a 1, 2011

Dr. Federico Casalegno
Director of the MIT Mobile Experience Lab

Thesis Supervisor

Accepted by:
t UDr. Christopher J. Terman

Chairman, Masters of Engineering Thesis Committee

ASSACHUSETS INSTITfTE
OF TECHNOLOGY

JUN 2 1 2011

LIBRARIES

Energy Mobility Network:
System Design, Interfaces, and Future Interactions

by
Natalie Wen Yua Cheung

Submitted to the
Department of Electrical Engineering and Computer Science

February 1, 2011

In Partial Fulfillment of the Requirements for the Degree of
Master of Engineering in Electrical Engineering and Computer Science

ABSTRACT

The Energy Mobility Network is a mobile, networked energy production, consumption and
sharing system that is designed to motivate users to be more aware of their energy consumption.
In particular, the system provides a just-in-time message to the user before using the device,
which allows the user to evaluate his/her needs and the cost of the device. Furthermore, the idea
of minimizing electrical costs are extended into the social realm; the system creates a social
network among users which allow social energy etiquettes to come into play. With these
etiquettes, the system aims to use social means as a way to minimize the use of electricity. In the
thesis, I discuss the goals and ideas developed that led to the creation of the network and the
technical infrastructure behind the system. I will be going in depth with the prototyping, the pros
and cons, as well as the multiple versions of the system that have been prototyped. Finally, I will
discuss the future possibilities the Energy Mobility Network will bring when introduced to the
general public.

Thesis Supervisor: Dr. Federico Casalegno
Title: Director, MIT Mobile Experience Lab

Acknowledgements

I would like to express my sincere gratitude to Dr. Federico Casalegno, who has given me
the opportunity to work at the Mobile Experience Lab. He allowed me to work in an
interdisciplinary design team, an opportunity which broadened my perspectives and gave me
better insight to architecture and design.

I would also like to express my deepest thanks to Orkan Telhan. It was Orkan who
suggested that I should take on this project, and the progress of this project would not have
happened without his advice and support. I sincerely appreciate the time he made to sit down and
discuss ideas and questions I had no matter how trivial they were. His constant guidance,
understanding, and mentorship have allowed me to be more confident with my work.

Many thanks to David Boardman, Gaia Scagnetti, Orkan Telhan, Ivo Wouters, and Huei-
Sheng (Carl) Yu for their work on the Energy Mobility Network. Without their ideas, support,
and work, I would not have a cohesive prototype or the idea of the Energy Mobility Network to
present!

My appreciation goes to our sponsor, Fondazione Bruno Kessler, for collaborating with
MEL to create the Green Home Alliance. Without this, the inception of the project would not
have happened.

Finally, I would like to express my gratitude to Myoung Lah, Willy Cheung and my
parents. Their constant encouragement and support have always been appreciated.

Table of Contents

1. Introduction 9
2. Background Research 12

2.1 Timeline of Products Detailing Electricity Consumptions 12
2.2 Related Work 13

3. Inception of Energy Mobility Network 17
4. Design of the Energy Mobility Network 18

4.1 Individual Components 19
4.1.1 User 19
4.1.2 Energy ID 19
4.1.3 Profile 20
4.1.4 Device 21
4.1.5 Outlet 21
4.1.6 Power Source 22

4.2 Functionalities of the Design 23
4.2.1 Turning On a Device 23
4.2.2 Viewing Information about Electricity Consumptions 23
4.2.3 Calculating the Cost of a Single User Using the Device 24
4.2.4 Multiple Users using the Same Device 24
4.2.5 Social Gestures Among Users 24
4.2.6 Zero Sum Balance 25

5. Smart Interface 26
5.1 Sketch of Smart Interface 26
5.2 Hardware and Software Design 28
5.3 Discussion of the Smart Interface 31

6. Energy Mobility Network Prototype 33
6.1 Energy ID Sketch and Prototype 33

6.1.1 Passive Energy ID Proposed 34
6.1.2 Passive Energy ID Implemented 35
6.1.3 Passive Energy ID and Device Hardware Component 39
6.1.4 Active Energy ID 40

6.2 Outlet 45
6.2.1 Outlet Hardware Components 45
6.2.2 Connecting the Individual Components 51
6.2.3 Creating the Outlet Schematic with the ATMega644P 55
6.2.4 Creating the Outlet Board with the ATMega644P 60
6.2.5 Outlet Assembly and Testing with the ATMega644P 61
6.2.5 Outlet Wiring with the Arduino Uno 62

6.3 Server 62
6.3.1 Database 63

6.4 Network Software 68
6.4.1 Server Software 69

6.4.2 Active Energy ID GUI Software 71
6.4.4 System Software Testing 82

6.5 Energy Etiquettes Sketch 83
7. Results 85

7.1 Demonstration of the Energy Mobility Network 85
7.2 Comparing the System with Other Available Outlets 87
7.3 Privacy of the Data 89
7.4 Discussion of the Design Process 90

8. Future Work 92
9. Conclusion 94
Appendixes 95

Appendix A - Server Code 95
Appendix B - Active Energy ID GUI Code 106
Appendix C - Outlet Code 115

Bibliography 128

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.

List of Figures

Timeline of Electricity Feedback and Means to Save Electricity
Kill A Watt Power Meter
User Display of the PowerTab Product
Plogg Appliance
Wattson Product
The Energy Mobility Network Block Diagram
Step-by-Step Process of using a Device
Demonstration of Smart Interface Prototype
GUI for the Smart Interface
Block Diagram of the Energy Mobility Network
Passive Energy ID Sketch
First Energy ID Prototype
Second Energy ID Prototype
Passive Energy ID under UV Light
Energy ID under UV Light
Different Types of RFID Tags
User Interface of an Active Energy ID
Energy ID Interface with Pop-up Window

Updated Energy ID Interfaces
Block Diagram of the Outlet
Headers for the Kent Display, Linksprite, and XBee Components
Microcontroller and Multiplexer Schematic
User Interface Button Schematic
RFID Schematic
MAX16922 Schematic
Outlet Board Layout
Screenshot of Device Table in the Database
Screenshot of the Outlet Table
Screen shot of the Session Table in the Database
Profile Widget
Network Widget
New Device Widget
New Device Info Widget
Summary Widget
Serial Connection Widget
State 2 of the Kent Display
State 3 of the Kent Display
State 4 of the Kent Display when Device is in Use
State 4 of the Kent Display when Device is not in Use
Image of Constants Loaded into Kent Display RAM
Images of Variables Loaded into Kent Display RAM
Final Prototype of the Energy Mobility Network Outlet

Figure 43. The Different States which the Kent Display Presents 86
Figure 44. The Server: XBee Attached to the Computer 87

List of Tables

Table 1. How Each Smart Interface Component is Connected and Powered 28
Table 2. Maximum Current of Each Chip 53
Table 3. Device Table Parameters and Definitions 64
Table 4. Parameters and Definitions of the User Table in the Database 65
Table 5. Parameters and Definitions to the Outlet Table in the Database 66
Table 6. Parameters and Definitions of the Session Table in the Database 68
Table 7. Functions to Access the Database 70

1. Introduction

In today's society, a common practice is to turn on an appliance and leave it running, with

little to no thought about energy consumption. Current energy management methods, which are

discussed in Section 2, aim to improve this problem as well as the user's quality of life.

However, these practices are too restrictive and end up penalizing users. Users receive a

summary of their electricity consumption along with a hefty bill, a bill that does not notify them

of what they can do to minimize costs nor provides real-time information about how much

electricity each device uses. Consequently, users who are "forced" to save energy often end up

sacrificing their convenience for energy conservation -- such behavior is not the goal. Instead,

users should be provided with more information about how much electricity is consumed and

allowed to act upon this given information. By doing so, we are allowing users to have more

freedom as well as giving them the option to save energy when deemed possible by the user.

With this in mind, the Energy Mobility Network system was created.

The Energy Mobility Network project was incepted as a smaller project of the Green

Home Alliance, an interactive house in Trento, Italy. The system aims to allow users to track

their energy production and consumption usages as well as to turn on and off devices remotely.

In addition to providing just-in-time prompt to users [7] [8], the network also aspires to provide

social interactions among users which indirectly produces a new venue of social etiquettes in our

society.

The purpose of creating a new system is two-fold. We realized that the general

population's only connection with the amount of electricity consumed was through the monthly

gas statement sent to their homes. Receiving information every thirty days is not up to par with

today's technology. We wanted to create a system where users would be given data about the

electricity usages instantaneously. Even more, we wanted users to be more aware of their

electricity consumption with the goal that over time, their energy footprint would attenuate.

Based on the current products in the market, there is an untapped field - there are no

products which give users instantaneous feedback about how much energy a product will use

before the user uses the device. Moreover, current off-the-shelf products do not encourage social

interactions among users. Instead, these products focus more on the individual and how to

minimize electricity consumptions as an individual. The Energy Mobility Network strives to

address this on an individual and community level by using social interaction as a motivation to

improve the electrical footprint. The system solves these problems and produces an easy to use

product that will be able to enlighten users about their electricity consumption and production.

This is similar to "the house as a personal trainer" paradigm.

My role in the Energy Mobility Network was to develop specific features and to create a

working prototype for the project. This entailed creating software for the user interface as well as

the technical hardware prototype of the outlet. The motivation for these prototypes are to

demonstrate how the user can control devices remotely and utilize this infrastructure to improve

their energy consumption behavior. Furthermore, this system provides grounds for a social

network that creates social etiquettes among users.

This thesis report will go through background material on what other outlet systems are

available and how this project came to fruition. I will then provide a technical overview of the

project as well as a thorough description of how I went about fabricating the hardware and

software design. I will describe the tests that I made with the hardware to produce a final

prototype. The results of the prototype will be explained as well as future recommendations to

improve the network.

2. Background Research

The background research was a joint collaboration among David Boardman, Gaia Scagnetti, and

myself.

2.1 Timeline of Products Detailing Electricity Consumptions

Throughout the past years, there have been alternative ways to view electricity

consumptions as noted in Figure 1.

i,, 3

4

Figure 1. Timeline of Electricity Feedback and Means to Save Electricity'

This figure depicts five different ways which users receive data pertaining to their consumptions.

The most common way is through the monthly paper electric bill as seen as the first icon. The

bill gives monthly feedback on electrical costs in a home. It does not label what specific devices

were used or who used those appliances.

The second icon in the figure is a television. Here, the television symbolizes collective

awareness. The general public realizes that much of the electricity costs could be minimized as a

whole by turning off devices when not in use. For instance, if televisions were not left on and

promptly turned off, electricity costs could be decreased. This can be further extended to devices

1 Figure created by the MEL Energy Mobility Network Design Team

12

that remain plugged into outlets. While the appliances are off, these vampire devices still

consume electricity. Studies have shown that the typical American home has twenty electrical

vampire devices that waste electricity and increases the yearly electric bill by $200 [2].

More recently, gadgets have been created that will produce instant feedback about

electricity costs after the device has been used. These appliances, seen as the third icon in Figure

1, aim to create awareness about electrical consumptions.

Alongside the hardware appliances, there are software systems which monitor energy

expenditures at home. As seen as the fourth icon, these systems work hand in hand with the

hardware energy-saving gadgets, to give the user a greater sense of what electricity

consumptions have occurred.

Finally, there is the Smart Interface, which is detailed in Section 5. This prototype is the

first attempt in creating a system to aid the user with minimizing electrical consumptions. This

timeline shows a brief history of what has been done in the past to curb electricity costs.

2.2 Related Work

Many commercial products display electrical consumption data. Each differ in the

manner which the information is presented and the number of devices monitored by each

product. For instance, Kill A Watt Power Meter, in Figure 2, only monitors one device.

Figure 2. Kill A Watt Power Meter [13]

The LCD display shows metered readings in the form of volts, current, watts, frequency, power

factor and VA [14].

A less technical display can be seen in Figure 3, the PowerTab In-Home Display from

Energy Aware.

In-Home Display

oCPO vet

Figure 3. User Display of the PowerTab Product [4]

The wireless product updates the user with upcoming pricing changes through passive means -

different colored light-emitting diodes. This product shows the total consumption in the

household, instead of focusing on one specific appliance. It specifies the rate in terms of

monetary value or in a more technical sense, kilowatts per hour [4].

Another wireless product, Plogg in Figure 4, creates a wireless energy management

system for the user.

Figure 4. Plogg Appliance [5]

This product can act as both a stand-alone gadget to detect energy consumptions of a single

device as well as an "integrated energy reporting network" [5]. The network can produce

wireless information to the user via the Plogg Manager software to present technical graphs

pertaining to electrical consumptions.

The Wattson products illuminate the cost, watts, carbon costs, energy use data at the top

of the product. The bottom of the Wattson, as seen in Figure 5, glows passive lights which reflect

the relative energy usage in the home.

Figure 5. Wattson Product [15]

By downloading the Wattson software, the user is able to log his/her energy consumption for the

home. Furthermore, this connects the user to the online Wattson community where the company

calculates how many Wattsons have been linked in the community and as a whole, how much

energy and money has been consumed.

There are other products available, which display electrical consumptions in graphical

form, such as the Google PowerMeter, a software that analyzes your electricity consumptions

and customizes the interface to fit the user's needs [10]. Even with these multiple products

available, there were a few underlying problems with the appliances researched which spurred

the Mobile Experience Lab, in particular: David Boardman, Gaia Scagnetti, Orkan Telhan, Carl

Yu, and myself, to create the Energy Mobility Network.

3. Inception of Energy Mobility Network

The system we aimed to create should achieve three main goals. First, before the user

turns on a device, the system will present just-in-time information about the current costs of

using the device. It will also present a suggested time where the cost of using the device will be

cheaper. By doing so, the user can make an informed decision about how much electricity will be

expended and if it is the best time to use the device based on his/her needs and costs. Using just-

in-time messaging gives the user full control of the devices, but does not force the user to reduce

energy consumptions.

The second goal is to shift from a device centric way of thinking to more of a human and

system centric method. Instead of focusing on how much electricity each device consumes, we

want to focus on the amount of electricity each user consumes. We plan to achieve this by having

a gadget that will notify the user of which devices are currently on, the total electricity

consumption and production costs, and more.

Our final goal is to change people's perceptions about electricity. Electricity should be a

social responsibility instead of an individual responsibility. With these three goals in mind, the

system outline and the technical specifications for the project were designed.

4. Design of the Energy Mobility Network

The Energy Mobility Network design is shown in Figure 6. Each user interacts with the

system through a gadget we have coined as the Energy ID. The Energy ID is used to determine a

profile for the user. The outlet, which powers the device, is connected to the main power supply.

Before explaining how the whole system works, each block is described in detail.

Figure 6. The Energy Mobility Network Block Diagram

4.1 Individual Components

4.1.1 User

The Energy Mobility Network is tailored towards all types of users. All the information is

communicated to the user in a "language" that the user can understand. Users who are more tech

savvy will see data described in terms of kilowatts. Fiscally invested users will see the amount of

electricity consumed in dollars. The units in which we display the quantity will depend on the

user -- from a simple progress bar to monetary value to kilowatts. This idea of tailoring the

information to the user's interests in an easy to understand method is also abstracted out to the

way the interface of the Energy ID and the outlet are presented.

4.1.2 Energy ID

The Energy ID is an integral part of the system. The Energy ID displays the user's

information, electricity expenditures, and a list of devices that are currently in use by the user.

Additionally, the Energy ID provides the freedom to remotely control devices already plugged

into the outlets. It displays all necessary information in one place.

There are two forms of Energy ID: active or passive. Active Energy IDs are geared

towards users who want as much information as possible about their energy expenditures,

devices, and social network given to them. The active users would have Energy IDs embodied in

an electrical device such as an application on a mobile phone. Passive users, users who only want

to know how much electricity they have consumed and produced, would have a less tech savvy

Energy ID. The Energy ID could be found in a key fob, credit card, watch, and more. The passive

Energy ID will show a status bar of how much electricity they have consumed or produced, but

not detailed information such as which devices are on or who is in their network -- this

information will instead be found on the outlet.

The Energy ID will be embodied in different objects to be more customizable and more

socially accepted. For instance, the tech savvy user may prefer the Energy ID information on a

mobile device whereas a family planner may prefer the information on a watch. A teenager might

find his/her Energy ID device on a key fob. All the Energy ID embodiments can be further

customized such that the tech savvy user may use an interface which offers tools to regulate

devices or graphs the fluctuations in consumptions and costs. A family planner Energy ID might

contain information about current costs and consumptions for the devices in use and just-in-time

messages whereas a teenager's Energy ID may contain information about his/her social network

and his/her electrical consumptions at that moment.

Every Energy ID will contain an unique identification tag that is linked to the user's

name. This tag aids the system with identifying what devices the user has activated.

4.1.3 Profile

Based on the context of the situation, each user carries out different identities. In today's

society, identities are fluid; the user has an endless list of identities: MIT student, MIT Mobile

Experience Lab research assistant, friend of a friend, guest at a friend's home, Whole Food's

client, MBTA commuter, etc. Each fluid identity can be linked to a profile. For instance, if the

user is at school, the profile would be "student". If the user is at a friend's home, the profile

would be "guest". The profile identifies the fluid identity of the user and is a factor in

determining the cost of using a device.

4.1.4 Device

Devices can be consumers or producers. A device is a consumer if it needs electricity to

be powered. Such devices could be a cell phone charger, television, or fan. A device is a producer

if electricity can be created. Said another way, it does not need electricity from the energy grid to

be powered. Such devices might include a treadmill or a hand-operated flashlight.

Each device will contain a RFID tag that will be sent to the system when the device is

plugged into an outlet.

4.1.5 Outlet

Devices need to be plugged into the outlet to be used. The outlet is responsible for

providing or withholding electricity to the devices that are plugged in. Furthermore, the outlet

receives and transfers information to the database detailing which devices are on, the Energy IDs

that are connected to the outlet, and more.

For passive users, the outlet will contain a screen that will presents detailed data to the

user. Such information may include the ability to turn on or off devices connected to other

outlets, viewing the predicted cost patterns for the next two hours, or checking who is in the

user's social circle.

Each outlet contains an RFID sensor as well as a means to wirelessly communicate to the

server and other outlets.

4.1.6 Power Source

There will be two ways that a device can be powered. The conventional way is to use the

electrical grid provided by the local supplier. The other possibility is to source the electricity

from the power that the Connected Home has produced. In this thesis, we will focus on the

conventional electrical grid.

4.2 Functionalities of the Design

There are a few functionalities that are provided with the system which are detailed below.

4.2.1 Turning On a Device

When the user wants to turn on a device for use, he/she will tap his/her Energy ID into

the outlet and plug in the device. The outlet will recognize the user, his/her profile based on the

context, and what device was plugged in. The outlet will present a just-in-time projection for

using the device for an hour based on the current load rate. It will also present a future time that

will have a cheaper cost, if possible. With this information, the user has the choice of turning the

device on now or later. If he/she chooses to use the device at the current moment, the outlet will

allow electricity to flow into the device and will tell the server that the device is in use. However,

if he/she chooses to use it at another time, the outlet will not allow any electricity to flow through

to the device.

Remotely turning on a device works in a similar way. The user will select the device that

he/she wants to use and the outlet closest to the user will send this information to the server. The

server will then send a command to turn on the device connected to the other outlet.

4.2.2 Viewing Information about Electricity Consumptions

When the user connects to the network, either by tapping his/her Energy ID to the outlet

or turning on the wireless connection to an outlet, the outlet will grab the latest information about

his/her total electricity consumption and production for the day. It will also find what devices are

currently in use, who is in the user's network at the moment, and his/her current profile. All this

information will be displayed either on the Energy ID or on the outlet's screen, depending on if it

is a active or passive user.

4.2.3 Calculating the Cost of a Single User Using the Device

Calculating the cost of the device being used will be different from the method done in

today's society. The system will calculate the cost based on a few factors: the amount of time

used, the amount of electricity being consumed, as well as the user's profile. Energy charges are

dependent upon the context in which someone uses a device. For example, as a student, the user

might be charged only 50% of the energy cost (the school would cover the other 50%), where as

at home, the user is the owner of the house and is assessed 100% of the energy costs.

4.2.4 Multiple Users using the Same Device

If multiple users want to use one device, the cost of the device will be shared among the

users. All the users must tap into the network and be connected to the outlet which powers the

device. One person will tap in the device and when selecting to use the device, the outlet will ask

if the cost should be divided among the users. If the cost is shared among the users, each user's

Energy ID will now show that the device is being used but at the divided cost. If the cost is not

shared, the system will calculate the cost as a single user using the device.

4.2.5 Social Gestures Among Users

Social acceptance and rejection is a method of motivation which is integral in today's

generation due to the digital world that we live in. People are now more motivated to act a

particular way to gain social approval among their friends and family and is a means of survival

to some [9]. Consequently, another feature that the Energy ID provides is the ability to

participate in social energy gestures. Because the costs of electricity are now on an individual

basis, users can treat friends and family to "free" electricity as a social gesture. For instance, a

group of friends who watch TV together weekly, may take turns in sharing the cost of electricity.

This concept is similar to the way a person buys a round of beer for his/her friends. By doing so,

a new realm of etiquettes have been created. Such gestures can enhance relationships among

users. These social gestures can gradually establish implicit norms, similar to the way dress

codes are accepted, which will regulate individuals' behavior.

4.2.6 Zero Sum Balance

Each user will start off with a zero sum balance. If the user uses a device that consumes

electricity, the total amount of electricity will be deducted from the user's balance. However, if

the user engages with a production device, the amount will be added to the user's balance. An

environmentally friendly user would want to keep a zero or positive balance.

Based on the system design, a very basic first prototype was created to demonstrate the

idea of just-in-time projection to users. The next section details the technical specifications and

work done to create the first prototype.

5. Smart Interface

The first prototype for the project, then called Smart Interface, was headed by Orkan

Telhan. The goal of the Smart Interface was to remind the user that his/her actions could directly

impact the environment. This was done by creating a new "outlet" which would provide just-in-

time prompts to the user as seen in Figure 7.

Figure 7. Step-by-Step Process of using a Device 2

5.1 Sketch of Smart Interface

Instead of just plugging in a device and turning it on for use, the user would have to

follow a few steps in order to turn on and to use the device:

1. The user plugs in the device (in this instance, an iron) into the Smart Interface.

2. The Smart Interface recognizes that an iron has been plugged in: "You are plugging in the

Iron"

2 Figure created by the MEL Energy Mobility Network Design Team

26

3. The Smart Interface displays the current price of electricity for the appliance: "current price

of electricity for this appliance: $3.2"

4. The Smart Interface then calculates the price of using the iron now and at a cheaper time: "30

minutes ironing will cost 6 Euros if you iron now. Electricity is expected to be cheaper in two

hours. 30 minutes of ironing will cost 4.55 Euros if you do it in the next 2 hrs."

5. After displaying the just-in-time prompt, the Smart Interface asks what you have decided. If

the user chooses to use it now, the power to the iron is turned on. However, as is the case in

the sketch, the user opts to use it at a later time: "Do you want to proceed now or wait?"

6. The Smart Interface takes note that the user will use it at the later time: "I will remind the

time"

7. At the cheaper time, a light turns on to remind the user: "Now is cheaper. Please Plug in

Device."

By following these steps to use the device, the user is given more options. Based on his/

her needs, he/she can use the device right away and pay the current fee or wait until the peak

load has diminished and use the device at a cheaper rate. This is particularly useful for situations

where the use of the device is not time sensitive. For instance, if a user needs to wash the dishes

before the next meal, the user can just wait to turn on the washing machine at a later time instead

of at the peak load. This "cheaper" time could be when the user is asleep at 2 AM and the

washing machine can be set to turn on at that time. If the user has a time-sensitive urgency to use

a device, the user still has the option to use the device at the more expensive time. Giving the

user the option as well as just-in-time prompts about his/her energy expenditures is an idea

which helps the user understand that his/her behavior can help him save money and be energy

conscious. The Smart Interface would be built into the Connected Home Project and replace the

electrical outlets that are found on the wall, similar to Figure 7 shown above.

5.2 Hardware and Software Design

The Smart Interface was built with off the shelf components that are found on Sparkfun.

It is comprised of four main components: the Linksprite Powerline Smart Outlet Control, the

Linksprite Powerline Smart Outlet, the Active Matrix OLED with Touchscreen attached to the

RAI board and a RFID Reader ID-20 sensor. It should be noted that the touchscreen is part of

another project, RAI, in the Mobile Experience Lab. The entire RAI board was used within the

Smart Interface, but solely for the purpose of using the OLED Touchscreen functionality. As seen

in Table 1, the components were powered and connected to the computer through different

means:

Smart Outlet Controller Unregulated AC power USB

Smart Outlet Unregulated AC power Power line

Touchscreen Battery Bluetooth

RFID sensor USB USB

Table 1. How Each Smart Interface Component is Connected and Powered

The integration and hardware design of the Smart Interface is very simplistic. Each

component was isolated and tested on the computer so that the functionality of the component

could be easily analyzed. Python code was then created to integrate the Smart Outlet and

Controller with the RFID sensor. Previous code written from the RAI project was used to create

the display of the touchscreen. By isolating the touchscreen code from the rest of the Smart

Interface code, it allowed for a quick prototype to be built and displayed for demonstration as

seen in Figure 8.

Figure 8. Demonstration of Smart Interface Prototype

The Smart Interface Prototype is very similar to the sketch of the concept seen in Figure

6. After the user plugs in the device, the user taps a RFID tag onto the Smart Interface, which

recognizes the device. It asks the user to touch the screen if the device should be turned on at that

instant. If the user touches the screen, the device is then powered and the screen shows the

activated current price for two hours. However, if the user does not touch the screen within a

certain amount of time, the Smart Interface recognizes that the user opted to power the device at

3 Figure created by the MEL Energy Mobility Network Design Team

29

a later time. In addition to the working prototype, a GUI, as seen in Figure 9, was created to

show the technical details of the project.

Sa onnectio

04M0

vow s~e a.:on

Figure 9. GUI for the Smart Interface 4

The GUI is used throughout the whole demonstration of the Smart Interface. It is

comprised of four widgets: Energy Model, Usage, Device Information, and Serial Connection.

The Energy Model displays the cost of using each outlet within a 24 hour span. The various

colors depict different pricing rates for each outlet. The usage box displays how often each outlet

has been used throughout the day. It allows the user to see the frequency with which the outlet

4 Figure created by the MEL Energy Mobility Network Design Team

30

has been used. The Device Information presents the specific ID tag of the new device that has

been recognized. It also includes when the device was last used and how much it would cost to

use the device per hour. Finally, the Serial Connection section is used to activate the Smart

Interface. By clicking "Start Serial", the Smart Interface is activated to sense any devices that are

plugged in. By pressing "Reset Outlets", all the outlets are turned off at once. The Energy Model

and Usage functionalities are just presented as a demo and were not calculated in the project.

However, the main takeaway is to demonstrate what the user would see and how his/her

behaviors would be altered based on this information.

5.3 Discussion of the Smart Interface

The Smart Interface achieved the goal of presenting just-in-time messaging to the user.

However, the hardware design relied on multiple connections to the computer. Because of this, it

was necessary to have a computer which had multiple USB ports available. Consequently, if

three outlets were to work concurrently, six USB ports would be needed. When re-engineering

the prototype to a large scale deployment in the Connected Home, it would be necessary to alter

the USB port connections to a serial data bus communication system. The only wireless

connection to the Smart Interface was the Bluetooth module for the touchscreen. However, based

on the Linksprite datasheet, the components purchased could also use XBee to communicate to

the Smart Interface. This was noted for future prototypes.

The hardware design also required many different power sources. The touchscreen

needed a battery, the Linksprite components needed unregulated AC voltage, and the RFID

required power from the USB, which was connected to the computer. Furthermore, because the

Smart Interface was continuously on, the battery for the touchscreen often ran out of power. This

would be a problem if used in the Connected Home. For the next prototype, it would be more

appropriate if each Smart Interface were powered through one source. Because the Linksprite

components requires unregulated AC power, it would be useful to retrieve all the power from the

Linksprite location instead of three separate sources.

Based on the hardware components used, the Smart Interface needs to be constantly on,

but users only use the system for a small part of the day; only to turn things on and off.

Consequently, a lot of power is wasted in the system. It would be useful for future purposes, if a

"Sleep Mode" was created so that minimal power would be used in the system.

Based on the assessment as well as the goals that were created, there was room for

improvement for the next prototype designed. With this starting point and the system design and

goals outlined in the previous section, the next prototype for the Connected Home was

constructed.

6. Energy Mobility Network Prototype

The replacement of the Smart Interface is the Energy Mobility Network. The Energy

Mobility Network integrated the hardware components and just-in-time concept of the Smart

Interface with the new goals of the Energy Mobility Network. The new goals demanded a change

in the hardware components as well as a drastic change in the software functionalities. The

Energy Mobility Network Block Diagram is seen in Figure 10.

User eviceDatabase

Energy ID Outlet Server

Figure 10. Block Diagram of the Energy Mobility Network

The User goes to the Energy ID for data, the Outlet controls the electricity to the Device,

and the Server connects to the Database for information as explained in Section 4. These three

modules are connected wirelessly as noted by the arrows. This section will detail the hardware

and software ideas for each block as well as the work done to improve the system.

6.1 Energy ID Sketch and Prototype

Based on the requirements for the Energy ID, it was important to create a few Energy ID

examples that could be used to represent different personalities of users. Here, the sketch of the

Energy ID and the different prototypes of the Energy ID are discussed. This part of the project

was led by David Boardman and Carl Yu.

6.1.1 Passive Energy ID Proposed

For active and technologically savvy users, the Energy ID would be implemented in a

mobile device as part of an application or as a custom built device. For more passive users, the

Energy ID embodiments were more creative. There were two types of embodiments that were

focused on: the key fob and bracelet Energy IDs. The goal was to create an embodiment that

could be used as a fashion accessory as well as a means to display the energy consumptions of

the user. Consequently, the Energy ID sketches were developed as seen in Figure 11.

Figure 11. Passive Energy ID Sketch5

In Figure 11, there are four different examples of Energy ID embodiments. Each embodiment

can be used as a fashion statement -- as a key chain holder, bracelet, ID card, etc. These pieces

could be seen in everyday life as normal statements of fashion to the general public. Yet, when

the user is in proximity to the outlet, the user can use the Energy ID to tap into the network. The

outlet will then display colors onto the Energy ID to signify electricity consumptions as seen in

the second row of Figure 11. For instance, the amount of green present in the Energy ID would

5 Figure created by the MEL Energy Mobility Network Design Team

34

determine how much electricity has been produced that day and the amount of red present would

determine how much electricity has been consumed.

6.1.2 Passive Energy ID Implemented

Based on the proposed passive Energy ID sketches, two passive Energy ID prototypes

were created as seen in Figure 12 and Figure 13.

Figure 12. First Energy ID Prototype6

6 Figure created by the MEL Energy Mobility Network Design Team

35

Figure 13. Second Energy ID Prototype7

In both Figure 12 and 13, the prototype is in the form of a key fob for users. In daylight, it looks

like a decorative keychain. When the key fob is identified by the Energy Mobility Network, the

outlet recognizes the user's RFID tag and uses ultraviolet light to display the user's information.

The ultraviolet light would be integrated into the outlet so that users can take their passive

Energy ID to the outlet to view their current energy data. The amount of information is tailored

to the specific passive user. For instance, in Figure 12, the Energy ID prototype is displayed as a

cluster on the left, and fanned out as three "petals" on the right side of the figure. The Energy ID

can display information on each of the three petals. Each petal has a rectangle of white space as

well as two rows; each row having five white dots. In one example, a user could use the white

rectangle as his/her profile, the first row as his/her energy consumptions and the bottom row as

his/her energy productions for the day, where each dot represents twenty percent of the energy

7 Figure created by the MEL Energy Mobility Network Design Team

he/she wanted to consume and produce for the day. An example of what this may look like with

the ultraviolet light is seen in Figure 14.

Figure 14. Passive Energy ID under UV Light8

In this specific instance, the Energy ID shows that the user has the profile "W", which stands for

"Work". He/She has currently consumed 60% of his/her daily electricity (first row of dots) and

has not produced any electricity for the day (bottom row of dots). Other users may tailor their

Energy ID devices to present information that they feel is important for them. For instance, the

UV light could produce a pattern on the rectangular whitespace which shows how much money

they've spent on electricity at that moment, the first row of dots symbolizing how many people

are in their network, and the bottom row of dots depicting the number of devices that are in use.

8 Figure created by the MEL Energy Mobility Network Design Team

37

This specific Energy ID would be useful towards users who want general information about the

electricity consumptions, but do not want any detailed scientific data.

A user who wants even less information could have a passive Energy ID as seen in Figure

13. The Energy ID is geared towards users who want a broader perspective on how much

electricity has been spent. When the Energy ID is under ultraviolet light, the key fob will light up

to show how much electricity the user has consumed for the day as seen in the example in Figure

15.

Figure 15. Energy ID under UV Light 9

Here, the user has consumed fifty percent of his/her given daily electricity consumption. The

amount of color produced on the Energy ID will increase as the user continues to use electricity.

The user does not know which devices he/she has on or what his/her current profile is. The

system retains this information, but displays the information that the user wants to know. In this

case, the user only wants very general information about his/her electricity consumptions. This is

9 Figure created by the MEL Energy Mobility Network Design Team

38

still beneficial because this type of user may only need minimal prodding to alter his/her

behavior to save electricity.

6.1.3 Passive Energy ID and Device Hardware Component

Each passive Energy ID will contain a radio-frequency identification (RFID) tag which

will identify the user to the system. Each RFID tag is unique and links the user to his/her

personal Energy ID. In this case, using a radio frequency transmission is sufficient. Because the

user needs to put his/her Energy ID under the UV light from the outlet to see his/her energy data,

close proximity sensors can identify the user to the system. Using a passive RFID tag to

distinguish users is advantageous for passive users because there is no power consumption on the

user's Energy ID, as opposed to the active users in the system.

The size of the RFID tags is also beneficial for our system. The tags can come in all sizes

and forms; it can range from a 16mm diameter button to a 1.93mm diameter cylinder to a credit-

card sized RFID tag as seen in Figure 16. In Figure 14, the black button set into the Energy ID is

the RFID tag.

Figure 16. Different Types of RFID Tags' 0

10 These images were found on Sparkfun's website.

The RFID tags selected were all found on Sparkfun at a relatively inexpensive cost. Each RFID

tag contains a 32-bit unique identification number and is sensed by the RFID reader from ID

Innovations. The tags run at a 125kHz carrier frequency which aligns with the frequency of the

RFID reader.

The devices in the Energy Mobility Network also uses these RFID tags. These tags would

ideally be placed by the power cord of the device so that when the user plugs the device into the

outlet, the system can automatically sense what device has been plugged in. During the testing

phase of the project, the credit card sized RFID tags were used and tapped into the system after

the device was plugged in.

When a RFID tag is first linked to a user or device, it must first be recognized to the

system as a new RFID tag. The tag must be manually entered into the database along with the

user's name or the specific device. This is an easy one-time setup that each user and device must

follow in order for the system to correctly identify the object in the future.

6.1.4 Active Energy ID

As explained before, active Energy IDs are geared towards users who want as much

information as possible about their electricity expenditures. The physical state for this version of

the prototype is assumed to be in the form of a small mobile appliance such as a smart phone.

The physical state of the active Energy ID was not explored as much the functionality of it.

Figure 16 shows what the user might see on his/her Energy ID interface at any given time.

re" ft=xwf

Figure 17. User Interface of an Active Energy ID

The user interface seen in Figure 17 presents the user with four different categories: Social, New

Device, Summary, and Action Buttons. Each category will be described here, the technical

details of it can be found in Section 6.4.2.

Social

This category includes the "Profile" and "Network" sections of the interface. Once the

Energy ID is activated, the user receives his/her updated profile. Here, David is at home so he/

she receives a "Host" profile. Currently, there are three people logged into his/her network of

friends as seen in the "Network" section. These users will be charged accordingly if David

chooses to share the cost of using a device with them.

New Device

When a device is plugged into the outlet, the system automatically reads the device's

RFID tag. The device information is pulled from the database and presented onto the Energy ID

interface. The system analyzes the peak load and presents a just-in-time prompt for the device to

the user.

Summary

This section displays information about the user's past actions. It lists the devices that are

still on as well as what profile the user was in when the device was activated and the cost of the

device per minute. Here, remote access of the device is available. The user simply clicks on the

device that he/she wishes to turn off and the Energy ID sends a command to the particular outlet

to turn off the device. The device disappears from the Summary section and the energy

production and consumption costs are updated.

This section also displays the energy consumed and produced for the week. When the

user first activates his/her Energy ID, the latest data about his/her energy expenditures are

shown. These numbers are updated when the user turns on the Energy ID, the user stops using a

device, or if the "Refresh Energy Data" button is pressed.

Action Buttons

The user enables all major actions here. When the user clicks "Start Serial", he/she turns

on his/her Energy ID and sends a signal out to the system to update his/her Profile and Summary

widget.

Clicking the "Use Device" button tells the system that the user wants to turn on the

device listed in the "New Device" section. If there are people in his/her network, another

window will pop up and ask if he/she wants to share the cost of the device with his/her network

as seen in Figure 18.

Figure 18. Energy ID Interface with Pop-up Window

The data is then sent to the system so it can turn on the device and start charging the user(s)

accordingly. Furthermore, once the device has been turned on, the device will be appended to the

list of "Devices that are still on" in the Summary section of the Energy ID as seen in Figure 19.

Figure 19. Updated Energy ID Interfaces

Here, the television is being turned on by David and his/her network (Sandra is only shown here,

but the other people in his/her network will also receive a similar update on their Energy ID).

This update will happen to all the users that are sharing the charge of the device and will also

give them the ability to remotely turn off the device if necessary. It should be noted that because

David has the profile of a "Host" he/she is charged .6 Watts per minute where as Sandra, the

"Guest", is only charged .3 Watts per minute.

The "Reset Outlets" button allows the user to turn off all the devices listed in the Summary

section. As explained before, this action will in turn update the energy consumption and

production list.

6.2 Outlet

Based on the user, active or passive, there are two ways that the user communicates with

the outlet. An active user will only use the outlet for remote access to devices, but a passive user

will have more interactions with the outlet. The passive user will not only use the outlet to

control devices, but also to look at the energy consumption summary. The outlet will be designed

to meet the requirements of both the active and passive users.

6.2.1 Outlet Hardware Components

The outlet hardware components are similar to the Smart Interface components. Each off

the shelf component was tested in isolation first and then integrated together using an Arduino.

Linksprite Powerline Controller and Outlet

The Linksprite Powerline Controller and Outlet allow electricity to flow through the

device. The off the shelf component is useful for the remote access functionality of the system.

The Linksprite components use the power line for three functions: to source power to the

component itself, power the device connected to it, and communicate with the other Linksprite

module. Both the Linksprite Controller and Outlet take in unregulated AC voltage as their input

voltage.

The Linksprite Controller has a daughter card to give the designer the ability to use the

Linksprite with different interfaces such as RS232, RS485, USB, XBee, etc. The communication

with Linksprite was done with UART-USB for testing and XBee for the final prototype.

The Linksprite Outlet acts as an electrical relay for the device plugged in. The Linksprite

Outlet receives commands directly from the Controller. Each Linksprite Outlet has a unique ID

that is nonprogrammable and allows the Controller to identify which Outlet should be switched

on or off. Consequently, if the designer wants to control electricity through two devices, there

needs to be two Linksprite Outlets connected to the Linksprite Controller.

The Linksprite Powerline Controller and Outlet were bought as a package on Sparkfun.

The Controller came with a UART daughter card which allowed for USB access to the package.

In order to enter the command mode of the Controller, the designer must type in +++. The

response OK will be received and the Controller will be set in command mode. In order to turn on

a device, the designer must type in ATON <ou t l e t I D>. Similarly, to turn off a device, the

command prompt is ATOF <ou t let I D>. If the outlet ID is excluded from the command,

the controller will turn on or off all the outlets that are connected to it. If the command is

received properly, the Controller sends an acknowledgement back to the Outlet.

When purchased, the Linksprite Outlet ID may not be written on the module.

Consequently, a Python script was made to find the specific Outlet ID of the component. The

script sent an ATON command followed by a number. If the outlet did not turn on, the script

would increment the number and try sending the ATON command again. It would continue to

iterate until the device turned on. When tested, the Linksprite Outlet was connected to a fan so

once the Outlet ID was found, the fan would turn on. The Linksprite was tested at these settings:

9600bps, timeout set to 1, and rts and cts set to 0. The code can be found in Appendix A and is

labelled as OutletTester.py.

RFID Sensor

The RFID sensor will identify the passive users and the devices in the system. The

specific sensor chosen is the ID-20 by ID Innovations. The RFID reader was selected because it

had a carrier frequency of 125kHz, the same frequency as the ID tags purchased on Sparkfun. It

has an internal antenna that allows for a 16cm read range, a distance that is appropriate for the

outlet. An external antenna and external tuning capacitor were not used.

The RFID USB reader, a breakout board found on Sparkfun, allows the designer to read

the ID-20 by sending the data serially via USB. The data can be read with Hyperterminal at

9600bps, 8 data bits, no parity bit, and one stop bit. This was particularly useful for testing the

ID-20 in isolation before integrating it into the outlet design.

XBee

XBee, also known as XBee, is used to serially send data to and from the Energy ID, the

outlet, and the database. The specific XBee PRO chip used is the Series 1 802.15.4 Chip

Antenna. It is a digital radio that is low power, small in terms of footprint on the board, and

allows the designer to create a robust multipoint network among the XBee modules -- the key

point in selecting this particular connection. Another selling point for the Series 1 chip is that

there is a Python library available for Series 1 XBees. Each active Energy ID will have a XBee

module that will communicate with the XBee inside the outlet as well as the XBee connected to

the server. The outlet and Energy ID XBees are End Device/Router XBees that mainly talk to the

XBee Coordinator which is the only means of communication to the server.

The XBee Development Board provided by Digi creates direct access from the PC to the

serial pins of the XBee chip through USB. The easiest way to program the XBee was to use the

development board and to download the X-CTU program. The Port settings selected were 9600

Baud rate, no flow control, 8 data bits, no parity bit, and one stop bit. After querying the XBee

chip to make sure the PC connects to the XBee, the chip is programmed to have a modem of

XB24 and a function set of "802.15.4". The PAN ID is set to a unique number, in this instance

"3222" and the Destination Address Low is set to "5678", to communicate to the XBee PRO

chip set to that address. In order for others to talk to the Coordinate XBee, their Destination

Address Low, the 16-bit Source Address Low is set to "5000." Finally, the API must be enabled

(AP = 1). This is necessary for the Python library that was used.

In order to test if two XBees are communicating with one another, the other XBee chip

should be queried and programmed to have a modem of XB24 with the function set of

"802.15.4". The PAN ID must be set to the same PAN ID as the Coordinator, in this case "3222"

and the Destination Address Low is set to the Coordinator's 16-bit Source Address Low. The API

should not be enabled in the End Device XBee. The easiest way to make sure that the XBee End

Device chip will connect to the Coordinator is to make the XBee Coordinator settings, save the

profile settings, and load the profile to the XBee End Device chip and only change the

Destination Address Low parameter, MY 16-bit Source Address Low, and API parameter.

To verify that two XBees are communicating, two X-CTU programs must be opened. By

using the Terminal tab on each X-CTU program, the designer can assemble a packet from one

XBee and see if the other XBee receives it on the second X-CTU Terminal window.

The AT Function Set was chosen for the XBee router so that the data can be sent serially

from the XBee into the Outlet Serial Port. The XBee Coordinator receives it in a packet

structured in a frame, the API setting, where the Coordinator can sift through the information to

access the database. The configuration of a coordinator and router/end device is useful because

the server is the coordinator, each outlet acts as a router, and each active Energy ID is an end

device. This topology serves the best purpose for the Energy Mobility Network.

Kent Display ChLCD

The Kent Display will be useful for passive users who plan to use the outlet to access

their electricity expenditure summary as well as to remotely turn on/off devices. This particular

display was chosen because of its ability to retain its image on the display even when there is no

power to the board. Consequently, power is saved when the screen is on sleep mode.

The 240x160x2.9 cholesteric liquid crystal (ChLCD) display uses Serial Peripheral

Interface to communicate with the outlet. In order to produce an image on the screen, it is

necessary to purchase the breakout board from Sparkfun -- the breakout board connects to the 16

pin FPC connector and gives the designer a simpler header to work with. By connecting the

header pins to an Arduino and using the example code provided by Sparkfun, a striped image is

produced on the screen. It should be noted that the Sparkfun example code should be altered

from:

SPCR = (1<<SPE) I (1<<MSTR) I (1<<SPRO) (1<<CPHA);

to

SPCR = (1<<SPE) I (1<<MSTR) I (1<<SPRO) (1<<SPR1) I (1<<CPHA);

Without changing the SPI control register as seen above, the SPI speed is not set correctly. The

speed should be set to 250kHz.

It should be noted that the Kent Display is not a dynamic changing screen. Instead, in

order to change the screen, each row of the ChLCD screen must be updated. The Kent Display

has 32KB of image memory, which is roughly six images. Each image is loaded as a

hexadecimal array into the image memory. The Arduino must use a command to read the RAM

to update the screen. The update process for a full screen update is slow (about 1.5 seconds), but

the display allows partial updates which can work in the designer's favor.

To render text or a custom made display, the image must be saved as a monochrome

bitmap file with one bit per pixel. The software, LCD Assistant, helps translate the image into a

hex array. It is useful to note that the byte orientation setting in the software should be vertical,

the size width should be 240 and the size height is set to 160 in order to create the right hex array

for the screen. After pasting the hex array into the PROGMEM in the code, the Kent Display

should accurately receive the image [15].

Arduino Uno

The Arduino was used to build the Outlet for the Results section of the report. The ideal

situation was to use the microcontroller as the main component of the Outlet. However, the

Arduino Uno was used as the replacement for the microcontroller.

The Arduino Uno is composed of an ATMega328 and has headers which connect to the

pins of the microcontroller. It contains a USB port as well as a power source. The USB port is

used to send the firmware to the ATMega328 for testing purposes. The final product uses neither

as the power is sourced from the Linksprite Components and the firmware is precoded into the

ATMega328. Consequently, in this report, it is possible to say that the ATMega644P can be

replaced with the Arduino Uno and vice versa.

Microcontroller

The ATMega644P allows the outlet to be an isolated unit from the PC. The

microcontroller will be the master component of the outlet and will coordinate commands among

the outlet components, Energy ID, and device. This particular chip was selected because it has

two serial USART and one SPI Serial Interface -- useful for communicating with XBee,

Linksprite, ID-20, and the Kent Display. Furthermore, the amount of flash available was

maximized to allow the designer to have extra space for future code.

The chip was programmed using the AVRISP mkII programmer. Instead of writing the

code in AVR Studio, the hex file from the Arduino code was directly flash programmed into the

microcontroller. To access the Arduino hex file from the Arduino code, it is necessary to press

the "Shift" button while clicking the "Compile" action in Arduino. This gives you the direct path

where you can find the hex file.

6.2.2 Connecting the Individual Components

After selecting the individual components necessary to create the specifications for the

outlet, the individual components were then integrated together as seen in Figure 20. Here, the

Outlet is described with the ATMega644P as well as the Arduino Uno.

5V
MAX16922

3.3V

Figure 20. Block Diagram of the Outlet

The ATMega644P is the fundamental component of the outlet as seen in Figure 20. It

receives information from the RFID sensor, processes the RFID tag, and sends the data to the

Kent Display and XBee for wireless communication to the server. If a passive user wants to turns

on a device, the user presses a button, which the microcontroller processes before sending a

command out to the Linksprite Controller. The Linksprite Controller directly communicates with

the Linksprite Outlet, which turns on the device.

Looking at the ATMega644 datasheet, there are only two USART (Universal

Synchronous Asynchronous Receiver Transmitter) connections available. The RFID reader,

Linksprite Controller, and XBee each require USART connections to the microcontroller. To fix

this, a multiplexer for the Linksprite Controller and XBee to one of the UART connections on the

ATMega644 is needed. The other USART connection will be directly connected to the RFID

reader. The multiplexer chosen is the On-Semi 74VHC4052 Multiplexer. The ability to multiplex

four separate serial lines was useful for the XBee and Linksprite transmissions as well as for any

future transmissions that may be incorporated in the design.

To minimize the number of power sources, the outlet design takes in the unregulated

120VAC via the Linksprite module. On the Linksprite board, the AC220S12DC-6W chip takes

the unregulated AC voltage and outputs 12VDC with an output current of 500mA. By soldering a

Molex Jumper Wire to the output of the AC220S12DC-6W chip, it is possible to take the 12VDC

and use it to supply power to the other components in the outlet. In order to do so, it is necessary

to use a step down DC to DC converter. After some research, the MAX16922 was selected

because it could output 5V and 3.3V, voltages necessary to power the other parts in the outlet

design and for the small footprint.

As said before, the AC220S 12DC-6W chip on the Linksprite board outputs a current of

500mA. Because the board will be sourcing all its power from this chip, the maximum amount of

current in the system must be less than 500mA. Based on the datasheets of each module, the

estimated amount of current would be 235.4mA as seen in Table 2.

Atmega644P 6 mA

Kent Display 19.4 mA

ID-20 65 mA

XBee 45 mA

LinkSprite 100 mA

Table 2. Maximum Current of Each Chip

Of course, there are a few assumptions made for the calculations. The estimated amount

assumes all of the components are at peak current, which is not the case for the outlet. The

microcontroller will communicate with all these components throughout the usage of the outlet,

but never all at the same time. Furthermore, some minor components have not been calculated

into the total because an estimate about the total current was needed. Consequently, the current

measurement will not be 235.4mA, but an amount of that spectrum.

In order to receive input from the passive user, buttons are needed. The Omron push

buttons directly communicate with the microcontroller and correlate to what the Kent Display

presents to the user. Also seen in Figure 20 are inputs and outputs to the outlet. These

connections show what information is sent into the outlet (Device ID, Energy ID, Server) and

what information is sent out of the outlet (Server, Device Plug). With the block diagram created,

the schematic was then created in Eagle, which is found in Section 6.2.3.

In the Results section, the ATMega644P is replaced with an Arduino Uno. Connecting

the individual components to the Arduino Uno is quite similar to connecting to the ATMega644P.

There are a few minor differences. First, in the Arduino Uno, there is only one USART

connection. Consequently, instead of using a multiplexer as seen in the ATMega644P case,

software was used to fix this problem. The software details can be found in Section 6.4.3.

The Arduino Uno takes in power from three possible sources: USB, a 9V wall wart, or

the Vin pin on the Arduino. Given the fact that the Linksprite component is able to source 12V to

the Outlet and the Arduino accepts voltages up to 20V, it was logical to use the Linksprite

component to power the Arduino. This also allowed minimal changes to occur when shifting

from the Arduino Uno to the ATMega644P. Consequently, the MAX 16922 chip was not used in

the Arduino-mode of the Outlet.

6.2.3 Creating the Outlet Schematic with the ATMega644P

When creating the schematic for the outlet, I opted to use headers whenever possible.

Headers are useful because it gives the designer the ability to replace chips when needed and to

test the chip in isolation then place it back onto the outlet board. The only consequence of

headers is that it uses more vertical space on the board than just placing the chip directly onto the

board. Headers were used for the LinkSprite Controller, Kent Display, and XBee as seen in

Figure 21.

JP1 LinkS rite
8 SET LSX1 1
7 DBUSY LS X2 2
6 DBUS LS-X3 3
5 so 5V LSX4 4
4 OSI ' GND 5
3 D CS LX 6
2 GND LSRX 7

JP2
KENT LCD

GND

XBEE

Figure 21. Headers for the Kent Display, Linksprite, and XBee Components

After some testing with the Linksprite Controller and XBee, it came to my attention that

directly placing the XBee on the daughter card of the Linksprite Controller was not possible due

to a possible short with the VCC pin on the Linksprite board. Consequently, the XBee chip

became a separate component on the outlet board. The connections to the microcontroller,

ATMega644P are shown in Figure 22.

3.3V

RRFT

U$6

AVR SPI PRG 6PTH

GND

ATMEGA644A
GND

Figure 22. Microcontroller and Multiplexer Schematic

JP3

As seen in the microcontroller schematic, decoupling capacitors are used for the power supply

and ground. Connections such as setting AREF to ground and putting the RESET pin to active

low were based on the ATMega644P datasheet. The AVRSPIPRG_6PTH was created in order

to easily reprogram the ATMega644P chip while testing and debugging. Pins 40 to 43 are

connected to the buttons, where JP4 symbolizes the headers for the buttons. The buttons and

Kent Display are headers because they will be sitting on top of the outlet board, as an additional

board to the outlet.

As explained in the previous section, the multiplexer is connected to pins 9 and 10 of the

ATMega644P. VEE of the multiplexer, U$8, is connected to ground because the lowest voltage

received on the multiplexer control pins is ground. The unused multiplexer output pins are

connected to a header for future use in the outlet.

JP4 of Figure 22 correlates to the button outputs, SIOUT and S2_OUT, of Figure 23 as

seen below. These two outputs can be placed onto any pin of JP4 -- the software code will signify

which pin becomes connected to the button output.

> /R2

10k S1 10k S2
m7- m7

SlOUT 3 1 S2_ 01
4 2 4 2

GND GND

Figure 23. User Interface Button Schematic

A board was not created for the buttons. Instead, a leftover protoboard was cut and used

to solder on the buttons and resistors due to the cost of fabricating a board. The 3.3V wire was

connected to the JP4 supply voltage and the ground was soldered onto the ground plane. For

future purposes, JP4 would have an additional pin for the ground wire coming from the

protoboard.

Pin 11 of the ATMega644P is tied to the transmit pin of the ID-20 as seen in Figure 22

and Figure 24.

GNUT ED-U C
D -9- - IX R F I

FUTURE

GND GND

Figure 24. RFID Schematic

Instead of using the RFID breakout board which connects to the PC, the outlet is designed so that

it directly connects to the microcontroller. Because the buzzer from the breakout board was not

added to the outlet to identify that a RFID tag had been sensed, an LED was used instead.

External antennas were not used as seen in Figure 24.

Finally, the MAX16922 schematic was created as seen in Figure 25 below:

EN

0m

GND GND

MAX16922 C83.3V
D18JP9 D1 41 0 N

C7 Ei - ~ 13-F 2 P1 OT2 1

24V04u 7 .047u 4.7u 5V EN ENLGN2F---GND PW PV2 I - 13 5V3 N
JPC1 AND1 PV3 C11S

OU 2 5 10

OUT4 C2

GD2 _RESET 20 i.7 5 E

GND1

GND

Figure 25. MAX16922 Schematic

The design of the chip is based on the MAX16922 evaluation kit datasheet found on the Maxim

website. By using this particular design, the pins OUTS1 and OUTS2 can produce 5V and 3.3V

respectively. Because OUT3 and OUT4 were not used, they are connected through a capacitor to

ground as requested by the datasheet. Shunts were used in order to check each subsection of the

module for testing purposes. In the end, JP6 and JP7 will have shunts on each to produce the

right output.

6.2.4 Creating the Outlet Board with the ATMega644P

With the schematics created, the board layout was designed as seen in Figure 26.

19-
7u

Figure 26. Outlet Board Layout

Components were placed logistically, but also to minimize space. The bottom left section of the

board was designed as the power management area, where the MAX16922 chip would output the

5V and 3.3V. The DC-DC converter component placement was done similar to the Evaluation

Kit MAX16922 layout from Maxim. The XBee component and RFID sensor were placed on the

outside of the outlet board so that data transmission would be easily accessible. Furthermore, the

AVRSPI connections were placed on the outside, so that the AVR kit could easily plug into the

outlet board for quick reprogramming of the ATMega644P chip. Figure 26 does not show the

Kent Display and buttons board. Because the users will interface with that directly, the Kent

Display and buttons will sit on top of the outlet in a box similar to Figure 8. Finally, the

Linksprite Controller and Outlet were placed such that the AC load was on the outside of the

outlet.

Because some components were not found on the Eagle library, they were created

manually and placed in the Eagle library. The component pads and size were found on the

datasheet and then integrated onto the board. The Sparkfun Library was downloaded and used for

many of the components on the board.

6.2.5 Outlet Assembly and Testing with the ATMega644P

When assembling the board, the power section (bottom left of Figure 25) was first built

and tested. A 12V input from a regulated DC Power Supply and the test points, the square vias,

were probed to check if it outputted 5V and 3.3V. The multiplexer control pins needed to be

soldered to the multiplexer chip because the board did not connect the pins together. After

assembling all the chips and passive components, evaluation of the board was completed.

To test the RFID module of the board, a ID-20 was placed onto the board to see if the

LED would light up when a ID was tapped by the sensor. The ATMega644P was evaluated by

checking if the ATMega644P key was correctly written and read from. It was useful to write and

read the ATMega644P chip at a rate of 125kHz.

The hex file sent to the AVR programmer was code written and compiled in the Arduino

program. The majority of the code was evaluated in Arduino because the programming was done

while the board was being manufactured. Consequently, an Arduino Uno was used to test out

isolated components and integrated components together. The Arduino Uno was chosen due to

the size of the ATMega328 chip -- the Arduino Duemilanove uses an ATMega168 chip, which

could not fit the entire outlet code. The outlet code will be discussed in Section 6.4.3.

6.2.5 Outlet Wiring with the Arduino Uno

In order to wire the Arduino Uno to the other components, a breadboard was used. As

with the ATMega644P, the digital pins were sufficient enough. The XBee Explorer or the XBee

Regulated Boards were not used as the XBee Breakout board was sufficient to connect the RX

and TX pins to the Arduino. The transmission lines of the XBee and Linksprite were connected

together and communicated to the RX/TX lines of the Arduino. The Linksprite TX line was left

open because it disrupted the connection between the XBee Router and XBee Controller. Finally,

the RFID TX line was connected to the serial port created through software. All of the pin

connections can be found in Appendix C.

6.3 Server

The server is responsible for logging all the information about the users, devices, and

their interactions. It receives the data wirelessly through the XBee. In particular, a XBee XBIB-

U_DEV, the development board for XBee, is directly connected to the server with a XBee chip

set as a Coordinator. The server saves all the data on a database. The server code will be

discussed in Section 6.4.1.

6.3.1 Database

Before discussing the database, a few terms must be cleared:

Session An instance where a user plugs in a device in order to conduct a transaction; at
this point, the device is not turned on. Each session is first marked by the user
ID, device ID, current rate of electricity. After a transaction is created, the start
time of the transaction is noted.

Transaction An instance where the device is turned on per the user's request. The transaction
ends when the device is turned off.

Rate The price of electricity at the time that a transaction is conducted. It is based on
the peak load and availability of energy.

The database tracks all the devices available, the current state each user is in, and the sessions

and transactions that are or have occurred between users and devices. Once a transaction has

been completed, when a user is done using a device, the system analyzes the information about

the user, device, and total time the device was being used to send the user the final cost of the

transaction. To insert and receive information from the database, SQLite for Python was

used.

The database contains four different tables - Device, User, Outlet and Session:

Device Table

The Device Table contains information about every device logged into the system and if

the device is in use. A screenshot of the Device Table is seen in Figure 27; the explanation of the

parameters is shown in Table 3.

M s 91t W" s7rI& En 4I

5

0

f 30

342.54

1234%7 .45354

1234967 1206354
1234967 5c4534

CCA30F7
1A739

1234%7 A8

201G0302 17 14 59

2QOO 1 - 7 145

2-1030 17 145

2IP10a3 1i 14

201 01f 1911 14
20104311 1911 14

2-101 1 I5 1148

20J104131 15 1935

FS12S12 27 Sa

Figure 27. Screenshot of Device Table in the Database

Parameters
name
location
bank
connect
RFID
time

Definition
name of the device
location of the device
amount of watts used
who the device is connected to
RFID tag of the device
time of last use

Table 3. Device Table Parameters and Definitions

An example of a Device Table record can be seen in row 1 of Figure 27. The record shows that

the device is a "fan" with a RFID tag of "2f4df54". The fan is located in a "room" and costs "50"

Watts per hour. The time listed is the first time the fan was introduced to the system.

l~i

~7r.
10w

Ur~now
U.*f~w,

SO At r 0,11.vb 041

I b" ! Q

-%wR*tW I O**RSCMI -1

There can be more than one instance of a device. Each device when initialized for the

first time will create a permanent record in the database, as seen in rows 1-6 of Figure 27. If a

user turns on a device to create a transaction, a record of the transaction is created as seen in row

7-9 of Figure 27. These rows show current transactions in progress; devices that are still on.

Once the transaction is completed and the devices are turned off, the record is deleted from the

Device Table. Consequently, the Device Table records what devices have been recognized in the

system and current transactions between a user and a device.

User Table

The User Table is similar to the Device Table. It identifies all the users in the system as

well as users that have a device in use. The User Table parameters are seen in Table 4.

Parameter Definition
name name of the user
location user is in or out of the house
bank how much electricity user has used
connect who the user is connected to
RFID RFID tag of the user
time time of last use

Table 4. Parameters and Definitions of the User Table in the Database

The only difference from the Device Table in the User Table is the definition of the bank

parameter. Here, bank is defined as how much electricity has produced and consumed. Thus, the

parameter can be a negative number if the user has consumed a lot of electricity or a positive

number if the user has produced a lot of electricity. As previously described, the user ideally aims

for a zero-sum balance in the bank.

Outlet Table

This table helps the system determine the cost after a transaction is completed. As seen in

Figure 27, the Outlet Table lists every user and all the possible profiles that the user will ever be

linked to. Table 5 explains the parameters to Figure 28.

Tab* ~ ~ I W 7 ,

to-

IF
i7C9

4 I - .W M

ypu

Figure 28. Screenshot of the Outlet Table

Parameters Definitions
userrfid RFID tag of the user
name name of the place/context
profile context in which the user is in
rate factor of electricity cost based on profile

Table 5. Parameters and Definitions to the Outlet Table in the Database

In Figure 28, there are two users that have a different number of profiles. The profile and rate are

dependent on the user and are set when the user enters the context for the first time. The records

HOW00"W1

I nwo

in the table do not change when a transaction is called. Instead, the system is programmed to use

the Outlet Table to calculate the cost of every transaction completed.

Session Table

This table lists all the sessions and transactions done by every user to any device. When a

session is recorded, it lists the RFID tag of the device, the current rate of electricity, and the

RFID tag of the user. When a transaction starts, the start time is recorded as seen in rows 9-11

and 14 of Figure 29.

~ew~ m ~
~ E~IOL

1~ 1 I ~- I -

0
I 1$

I 1'~

4 J

t41

0 2

2Z0%7 i

2;347 ,t4jOV U1

341720t3aW i5 % 39

23% D&O3 1 199

A7 4O t Jt

W23C%7 Sc30 1" 0 47

fM3011 193 14
19 14

2001V14

2001 16~ 27

2em 162^11

a1 t17I? - -

Figure 29. Screen shot of the Session Table in the Database

1 h45f4

CCA30f?

CCA,2gF7

C~It7309

Ammilm MENWA I

Go's

After the user is done with the device, the database is updated with the end time of the

transaction as well as how much energy the user has produced or spent. The parameters of the

Session Table are found in Table 6.

Parameters Definitions
device what the device is connected to
rate current price of electricity
spent total amount spent on electricity
produced total amount in the transaction produced
user the user connected in this session
end-time time finished with the transaction
start-time time started for the transaction

Table 6. Parameters and Definitions of the Session Table in the Database

The Session Table logs all transactions done for all the users. Thus, it is useful for analyzing user

patterns to predict future transactions as well as producing information about weekly energy

productions and consumptions by the user.

6.4 Network Software

The Energy Mobility Network was coded in Python and C code. The Energy ID GUI

prototype and the calculations for the Database were all created in Python and the firmware for

the Outlet was done in Arduino then flash programmed into the microcontroller. It is best to

explain the Server software first, before discussing the Active Energy ID GUI and the Outlet

firmware.

6.4.1 Server Software

The software involved on the server side includes retrieving and sending information to

the database, calculating the cost of using the device, and receiving information serially from the

XBee chip.

Inserting and Receiving Information from the Database

All actions for the database require the DB-API 2.0 interface for SQLite databases.

Inserting a new outlet definition to the Outlet Table can be done as shown:

def insertNewOutlet(self, user_rfid, name, profile, rate): 1
'''Inserts a new outlet that is paired with a user ''' 2
conn = sqlite.connect(self.dbName) 3
cursor = conn.cursor() 4
ts = TimeStamp.TimeStamp() 5
cursor.execute('INSERT INTO outlet VALUES (?, ?, ?, ?)', 6

(user_rfid, name, profile, rate)) 7
conn.commit() 8

To connect to the database, a Connection object that symbolizes the database must be made as

seen in line 3. In order to perform SQL commands for the database, the designer must call the

executeo method of the cursor object created (lines 4, 6, 7). Inserting a new account for the

device and user are done in the same fashion.

To receive information from the database, the same process is done as well, but the SQL

command changes from INSERT INTO to SELECT * FROM. By using these particular

commands, it is easy to access a plethora of information from the database. The functions created

can be seen in Table 7.

insertNewOutlet Inserts a new outlet that is paired with a user and his/her context

insertNewAcct Inserts a new record (device or user) if a new RFID card id is detected

getData Gets data from the requested table

Gets the amount of energy the user has produced.at the time

getConnect Locates what is connected to the device/user

idExists Checks if the rfid of user/device is in the database

insertUpdate Adds a new record to the device and user table stating the connection

deleteUpdate After a session ends, the connections between the device and user are
deleted

startSession Starts a new session that links a device to a user at a certain kilowatt
rate

calculateDiffTime Calculates the time lapsed between the start and end of a transaction
and returns the cost of the transaction

estimateEndSession Estimates how much the transaction will be

sessionRate Calculates the rate of the transaction

endSession Ends the session between the user and device

convert Converts the name to the equivalent RFID tag

convertid Converts the RFID tag to the equivalent name

listDB Lists all the users and devices stored in the database

Table 7. Functions to Access the Database

The cost of a transaction is calculated by multiplying the rate of the user's profile, the current

electricity rate, and the time that the device was on. The code for the cost of the transaction as

well as retrieving and transmitting information to the database can be found in Appendix A under

database.py.

Receiving Information from the XBee Controller

Information is received from the XBee Controller by connecting serially to the specified

USB port:

getEnergy

self.conn = serial.Serial(port = self.port, baudrate = 9600, timeout = 1)

Once a connection is made, the program waits until there is something to read in the Serial input.

It uses regular expressions to parse the RFID tag information or the command that is sent. After

computing the information, the program writes to the Serial port the data that needs to be sent

back to the XBee End Device or Router. The code can be found in Appendix A under

SerialReader.py.

6.4.2 Active Energy ID GUI Software

The Energy ID GUI used the Smart Interface structure to create the next GUI prototype

for the user. PyQt4 was used to create the GUI structure and widgets; the code can be found in

Appendix B and is labelled as Gui.py.

Initialization of GUI:

The initialization of the GUI includes the database that it is connected to, the username of

the Energy ID, and any guests linked to the user's network. The serial reader connected to the

Energy ID is initialized. Also, the six widgets of the GUI are added into the interface to create

the basic structure of the Energy ID.

Profile Widget:

Diur (H3oti

Figure 30. Profile Widget

The Profile Widget as seen in Figure 30 above is created by taking the Energy ID user

and grabbing his/her picture from the imgs folder. The widget is created in a grid-like format;

that is, the user's picture is set at the coordinates (0,0), the user's name is set at (0, 1), the user's

profile is set at (0,2). The user's profile is obtained by searching for the closest outlet the user is

by and obtaining the profile attached to the outlet as found in the Outlet Table in the database.

Network Widget:

Figure 31. Network Widget

The Network Widget is initiated by grabbing three empty pictures and hiding it on the

widget. When a guest taps into the system, the program determines if the serial information just

sent is user information or device information by searching the device database to see if any

record of the serial information pops up. If nothing shows, the program assumes that it is user

information, in particular a guest's RFID. Consequently, the guest's image is grabbed from the

i mg s folder, replaces the empty image in the widget, and is set to be shown in the GUI.

New Device Widget:

Figure 32. New Device Widget

This widget is a QGroupBox Widget. It has a label of "<no device>" when initialized, but

when the program determines that the serial RFID information sent pertains to devices, the

database is searched to find the device that matches the serial information. The name of the

device replaces the "no device" label.

New Device Info Widget:

N........ri.

iWWW es20 10.03-,11 15 19: 35

Figure 33. New Device Info Widget

Similar to the New Device Widget, the New Device Info Widget uses a QGroupBox

Widget and labels the box with device ID Tags ("id", "usage", "lastUse"). These remain blank

until the server serially receives a RFID device tag. The device information is grabbed from the

database and replaces the empty labels in the widget.

Summary Widget:

Sk y

enerww -2 casedastNo-c hm - 2ZOWm

14216 WMi

Figure 34. Summary Widget

This widget uses the QGroupBox, QLabel, and QPushButtons. The QGroupBox creates

the main layout of the Summary widget. QLabel shows the energy production and consumption

data, which is grabbed from the database when the GUI is initialized and when the "Refresh

Energy Data" button is pushed. The QPushButtons are used for the devices that are still on (in

this case, the iron and the netbook) and the "Refresh Energy Data" as seen in Figure 34. When

the GUI is initialized, the connections from the user to any device are found and created into

buttons along with the profile that the user carries as well as the rate of electricity charged.

If the user wants to turn off a device, the user must click on the button detailing the

device. This activates several things. First, the clicked button gets hidden from the GUI and

sends a end transaction command to the database. The program then calculates the final cost of

the transaction and updates the "Energy Consumed" or "Energy Produced" section of the widget.

A command from the XBee Controller to the Router is sent to turn off the device that is

connected to the Linksprite modules. It is important to note that when the GUI is initialized, two

QPushButtons are hidden in the GUI so that the user can turn on up to two devices when using

his/her Energy ID at that time.

Serial Connection Widget:

Serteu Connectn -- - - - - ----

Figure 35. Serial Connection Widget

This widget uses QPushButtons to turn on and use the Energy ID. "Start Serial" allows

serial information to be read into the program. If the user has already tapped in a device, the

"Use Device" button will activate a QMessageBox which asks about sharing the costs with the

guests in the network. When sharing the costs with the guests, the program starts transactions

with the other guests and will add a QPushButton of the device to the guests' Energy ID GUIs in

addition to the user's own Energy ID GUI. The "Reset Outlets" button serves two purposes.

When proposing the design to sponsors, the button was a demo button that was linked to a Flash

page which explained the system to the sponsors. However, the "Reset Outlets" button is used to

turn off all the devices linked to the user in the general mode of the system. This is done by

hiding all QPushButtons of the devices that are connected to the user and ending all the user's

transactions in the database. Also, the energy data is updated in the Summary box. The code for

the two options of the "Reset Outlets" button as well as all of the other widgets can be found in

Appendix B under Gui.py.

6.4.3 Outlet Board Software

The outlet board described is designed for passive users. During setup and initialization,

the pins are connected to variables that signify control pins in the chips, variables are created for

reading the RFID sensor, the serial connection is created, and the start of the finite state machine

is introduced. There are eight stages in the finite state machine -- the transition from stage to

stage is created through an outside action: when a RFID tag is tapped into the outlet or when a

button is pressed by the user. In addition to the finite state machine, code is written to interact

with the SPI interface, load and display the images to the Kent Display RAM, read the RFID tag

from the ID-20, and communicate to the XBee and Linksprite. All of the code can be found in

Appendix C.

Finite State Machine

In the "Start" state, the Serial Peripheral Control Register for the Kent Display are set and

the Kent Display is cleared. The images are loaded into the RAM of the ChLCD and the "Energy

Mobility Network" is displayed on the screen. On the bottom of the screen, the user selects if he/

she wants to use a remote device or if he/she wants to turn on a device that is attached to the

outlet. The transition to the next state, state 0, is automatic.

In State 0, the system waits to receive an input from the user. If the user chooses to use

the Remote Device feature, a screen is displayed asking if the device should be turned on or

turned off. The system transitions to State 6, the state for remote devices. If the user chooses to

use the device which is attached to the Outlet, the system requests his/her Energy ID. The system

transitions to State 1.

In State 1, the outlet waits to receive to read RFID data, the Energy ID tag or Device tag ,

from the ID-20. Once the tag is present, the XBee Router sends the data to the XBee Controller

to identify who the user or what the device is and the system transitions to State 2.

When the Router receives the identity from the Controller in State 2, the name of the user

or device is then displayed on the screen. The system moves to State 3 only after both the user

and device are detected. See Figure 36 for an example of what the screen displays.

DAVI D

Please tap in your
DEVICE

Figure 36. State 2 of the Kent Display

State 3 is where the user sees the just-in-time message. Once a session has been

connected in the database, the XBee controller sends information back to the outlet detailing the

current and predicted costs of using the device. As seen in Figure 37, the user is given the choice

to use the device now or later, depending on his/her preferences.

DAVID IRON
Cost Now: Cost Later:
$6 $4

3 PM 7PM

Use Now? Use Later?

Figure 37. State 3 of the Kent Display

The Finite State Machine moves to State 4, irregardless if the user presses the "Use Now?"

button below the text or if "Use Later?" is opted.

In State 4, there are two options. If the "Use Now?" button is pressed, the database is

notified that the device and the user have entered a transaction stage. The text changes to show

that the device is "now in use" as seen in Figure 38.

DAVID IRON

is now in use.

Home Cancel

Figure 38. State 4 of the Kent Display when Device is in Use

Furthermore, the microcontroller activates the Linksprite controller to turn on the device. The

current state becomes State 5. If the "User Later?" button is chosen, the database is notified that

the session should be deleted and the connections between the user and device cancelled. The

text changes to show that the device is not in use as seen in Figure 39.

DAVID IRON
will turn on at a later time

Home Cancel

Figure 39. State 4 of the Kent Display when Device is not in Use

The microcontroller does not send any command to the Linksprite and the current state moves to

State 5.

State 5 is in exit action when either the "Home" or "Cancel" button are pressed. If the

"Home" button is selected, the Start State is returned and the Finite State Machine starts over

again. However, if the "Cancel" button is selected, the current state changes depending on if the

system is being used as a remote device or not. The XBee Router communicates to the database

that the transaction has been ended and charges are calculated. In addition, the microcontroller

commands the Linksprite to turn off the device.

State 6 is purely designed for remote device interaction. Here, it waits for the user's input

to decide if the remote device should be turned on or if the remote device should be turned off.

Interacting with SPI Interface

In order to communicate with the Kent Display, the ChLCD slave select pin must be

pulled low before sending the command and pulled high after the command is sent. Commands

are in hex and follow the hex commands found on the Kent Display datasheet. The functions to

communicate with the Kent Display were found on Sparkfun's example code. A custom function

was created to add the high byte to the low byte of a memory address to create a two byte

address.

Writing and Reading Kent Display Images

In order to load data into the Kent Display RAM, the flash memory must be called

instead of SRAM. Thus, PROGMEM is used. The hex values of the images, which are found

through LCD Assistant, are cut and pasted into the PROGMEM array. Then, the array is loaded

one hex value at a time to the display's memory in a similar fashion as the Kent Display

datasheet. It is important to note that because of the limited space in the RAM, each image that is

loaded onto the RAM does not signify the image that the user sees. Instead, each RAM image

contains multiple images that the user may see as seen in Figure 40 and Figure 41.

is now off.
Horne urn Off
Tum On rn Off

Cost Now Cost Later:
Use Now? Use Later?

is now in use.
wdi turn on at a later tite

Homee Cancel

Figure 40. Image of Constants Loaded into Kent Display RAM

Remote Device: FAN
Please tap in your

ENERGY ID
DEVICE

Figure 41. Images of Variables Loaded into Kent Display RAM

This is done to minimize the time taken to update a screen as well as to save as much space as

possible in the RAM. In the Kent Display datasheet, there is a specific command that allows the

designer to update part of the screen by cutting and pasting a range of rows from the RAM. This

is particularly useful for uploading text that is constant such as the ones seen in Figure 40. In

Figure 41, it is necessary not only to grab a range of rows, but also a range of columns of the

image, to select the right variable name for the screen. This custom function is done by reading

the data and pasting each hex into a part of the RAM allocated for receiving this specific

function. After the selected text is written into the RAM, the program reads the RAM for a

partial update to the screen. It is necessary to use this function because the partial update

command found in the Kent Display reads full rows of data instead of specific sections of each

row of data.

Reading the ID-20 Data

When sending the specified RFID tag to the XBee Router, the software serial library was

used. Because the software serial library has minimal capabilities, each byte was read and saved

into a variable before being sent to the XBee Controller. To confirm that the data is a RFID tag,

the header of the data was checked before saving it into a variable.

Communicating with the XBee Coordinator and Linksprite

The XBee Router/End Device and Linksprite transmission lines are tied to the same pins

on the ATMega644P through a multiplexer. Consequently, every time the outlet must talk with

the XBee or Linksprite, the multiplexer control pins need to be changed to the particular module.

After the digital writes to the control pins, the microcontroller can send and receive information

serially from each component. It is best to keep the multiplexer control pins tied to the XBee so

that the XBee is ready to receive any command sent from the server at any time. In the Arduino

mode, the multiplexer was not needed and the XBee and Linksprite were hardwired together.

The XBee Router/End Device data received will be parsed using regular expressions to

determine what kind of data is being received. The data will contain code words which will

symbolize what data is sent so that the microcontroller will know what to do with the

information. Such data may include the RFID tag of the user or device which is then sent to the

Kent Display, the just-in-time message for the screen, or a remote command to turn on a device

tied to the particular outlet.

6.4.4 System Software Testing

Testing the software requires creating test cases and checking if the returned answer

matched the functionality of the definition. In particular, this is the case for testing out the server

software. Each definition is checked by looking at the response printed on the serial port. For

instance, to test the startSession definition, parameters were entered as such:

db.startSession("12g5354", '22', "1234567")

The database is then evaluated to see if the Session Table now included the new record.

The GUI is tested in a similar fashion. An ID-20 sensor with a Sparkfum USB Breakout

Board is connected serially and a RFID tag is tapped to the sensor to see if the correct device

name would pop up on the GUI. When the "Use Device" button is clicked, the database checks

to see if the new record is entered in as a transaction and if other guests, if any, are charged and

at what rate. Finally, when the devices are turned off from the GUI, the device itself is checked to

see if it is in the off state.

The outlet board is tested through user trials as well. The ATMega644P pins are measured

to see if the digital writes to the pins are accurate. Each component is checked with a voltmeter

to test the pin input or output. Most of the tests are not through software, but through a manual

check of the components -- making sure that the Kent Display screen prints out the correct

image, the XBee Router sends the right data to the Coordinator, the Linksprite Controller turns

on/off the device, etc. All in all, the majority of the tests are done as user tests. I would act as the

user, going through all the possible scenarios and making sure that none of the software broke as

well as ensuring that the information produced is accurate.

6.5 Energy Etiquettes Sketch

Given the design and prototype discussed in Sections 6.1-6.4, the Energy Mobility

Network has the ability to extend its functionalities to include the social realm. Because the

system can be configured to calculate co-shared costs, such as when two people are watching

TV together, social interactions have been created with the system. In this example, one person

can treat the other to the cost of the activity, watching television -- similar to the case of a person

buying a movie ticket for the companion on a date. This gesture, coined as an energy gesture, can

be further extended to a person treating a group of people to an activity; a mother inviting her

child's friends and family on a play date and paying for the electrical expense of the play date. In

return, other mothers will be prone to extend a similar invitation as a gesture of thanks. This

social interaction shows a new form of etiquette that will be created with the system. People can

offer a gesture of gratitude by sharing their electricity with others.

The social energy etiquettes can be expanded with our system. Because the system has

the ability to log what and when devices have been turned on, users could post their favorite or

most used electricity producers or consumers to their friends. Friends could do multiple things

with this information: they could gift a transaction for the user as a thank-you, learn about new

devices, ask the user if they could try the device, suggest similar devices to the user that will

lower the electricity cost or improve the electricity production, and more. Additionally, users can

ask friends for help to reach their zero-sum balance for the month. By doing so, the users have

created a bond among them, incentivizing each other to maintain the zero-sum balance as well as

helping a friend reach their goal. In a similar fashion, if a user needs to charge a device or wash

the dishes, another user may realize that the electrical rate has gone significantly down and

remind the user to use the device at that time or even turn on the device for them. Small energy

etiquettes like this strengthen the social friendships among users as well as creating a new social

realm in their lives.

7. Results

After the design and technical specifications of the Energy Mobility Network, the

prototype was created and analyzed to see if it effectively achieved the goals set in the beginning.

Furthermore, the system is compared to other "smart" outlets available to see where it stands

among the competitors.

7.1 Demonstration of the Energy Mobility Network

The design and fabrication of the Energy Mobility Network ended up in a prototype as

seen in the following figures.

Figure 42. Final Prototype of the Energy Mobility Network Outlet

In Figure 42, the main circuit board is shown constructed, with the off-the-shelf components

attached to it. To the right, is the Kent Display. Above the main PCB board is an example of the

passive Energy ID which presents user's energy consumptions and productions. On the bottom,

the Linksprite Outlet is connected to the device (not shown). With the outlet prototype, the user

is able to communicate wirelessly with the server to turn on and off devices and gather data

about his/her electricity productions and consumptions.

As a passive user, the Kent Display will be used to communicate with the server. As

explained in Section 6.4.3, the user will see multiple images on the screen when using the outlet

board; the images will display just-in-time prompt and will allow the user to turn on and off the

attached device. A sample image can be seen in Figure 43.

Figure 43. Sample Image from Kent Display

The transition time between images when tapping an RFID is minimal because the code updates

partial screens instead of the full screen, allowing an efficient and quick way to turn on the

outlet. The just-in-time message is essential with helping the user make an informed decision

about his/her energy consumptions.

On the server side, the XBee Controller is attached to the computer via a USB XBee

board as seen in Figure 44.

Figure 44. The Server: XBee Attached to the Computer

Because everything is wireless, the range with which active Energy ID gadgets communicate

with the XBee Router on the Outlet or XBee Coordinator on the Server is above the Smart

Interface; the system allows the user to have remote access to the outlet without having to go to

the outlet to communicate to the network.

Finally, the active Energy ID GUI, has the capability of accessing the database to add and

delete records of the transactions and sessions with or without guests sharing the device. The

GUI shows the ability to create energy etiquettes because of the social network widget and the

message box which appears when the user wants to use the device. Consequently, the Energy ID

GUI will be essential in testing the social energy etiquettes with the users.

7.2 Comparing the System with Other Available Outlets

When analyzing the Energy Mobility Network to commercial smart outlets, the Energy

Mobility Network excels with precise logging of transactions as well as informing the user of

current and future costs. Furthermore, the proposed system has the ability to create a new social

realm - a concept that is novel to the field.

Our system can record and analyze which devices are used the most based on the

transaction history found in the database. In most commercial products, the user has to mentally

take note of which devices are using the most electricity. In particular, Kill a Watt, counts the

consumption of a device so that the user can personally analyze the device to see if the device is

expending too much electricity. Our system provides a list of devices with consumption costs,

which the system or user can analyze to see if any devices are expending too much electricity.

In most, if not all, of the commercial products, users receive data by going to the

commercial product itself and viewing the information there. However, with the system that we

have proposed, active users just look at their personal Energy ID. Consequently, this allows the

users to have more flexibility and control with when they can view their consumption costs.

One product which does log data about energy consumptions is Wattson. It also uses

passive lighting to depict how much electricity has been consumed in the day -- a feature which

is not found in most appliances. However, Wattson does not give the user just-in-time prompts

which could further reduce electrical costs for the user, a feature that the Energy Mobility

Network promotes. Furthermore, Wattson gathers the amount of electricity consumed in the

home, not for each device as done in our system. Although there is a community available to

Wattson users which allow users to view the collective energy used, there is no social link among

users. Users do not communicate among themselves; thus the social motivation of minimizing

electrical consumptions is lost.

Commercial products related to our project provide the user with information about the

user's appliances and the electricity consumption costs. These products have the capability of

telling real-time information about electricity. For instance, Energy Aware's PowerTab In-Home

Display produces the current accumulated electricity use. It also updates the user with upcoming

pricing changes by producing different colored LEDs which signify a price change. However,

unlike our system, it does not specify exact times where the price of electricity will be cheaper.

Consequently, just-in-time prompt will give the user precise information about prices so the user

knows the exact amount that he/she will save and spend. Using lights to signify price changes

allows the user to have an estimate with what is saved, but depending on his/her needs, this may

be too little information. Thus, the commercial products found are not as effective as the system

created.

7.3 Privacy of the Data

Privacy of data is maintained in three manners: centralizing the stored information,

adding a layer of abstraction to the user's location, and obscuring the Energy ID. Centralizing the

data maintains privacy in the system. Each outlet does not contain any past information about the

user or the device. Instead, the outlet is used to pass information through to the Energy ID when

accessed. The server, which contains the database, stores and saves all the information.

In order to minimize breaching the user's privacy, the location of the user is defined but

cannot be pin pointed. For instance, a school building can have many floors, which each have

many rooms and many outlets installed. The user's profile can be defined as a student if he/she is

studying in the building, a researcher if he/she is working for the school, or even a guest if he/she

is accompanying a friend who works at the school. The profile does not specify the user's exact

location, but gives the system enough information to charge a justifiable rate to the user.

Consequently, the user's location is abstracted to fit his/her privacy.

The passive Energy IDs are camouflaged as everyday wear. As explained earlier, they

resemble key fobs, phone dangles, watches, etc. Only the user knows what his/her Energy ID is

-- minimizing possible identity thefts as well as allowing the user to personalize his/her Energy

ID. For future work, the RFID tag and sensor should be carefully evaluated as it is easy for the

user to be unaware of RFID sensors lifting his/her RFID tag when walking by. Such actions

could lead to identity theft. It would be possible to add a layer of security by identifying the user

through another set of means. This should be carefully researched as the user should seamlessly

interact with the system.

7.4 Discussion of the Design Process

My focus for the Energy Mobility Network was primarily on the technical details. I had

to learn new software languages to program the Arduino and access the database, familiarize

myself with the circuit board design program as well as laying out a board, as well as apply the

knowledge garnered from classes to produce a prototype. In addition, I also immersed myself in

the design process of the system, which proved to be beneficial to creating the technical

specifications of the project.

Much of the design process was a collaborative effort in the interdisciplinary group.

Research was done on methods to motivate users, ideas to communicate to the system, as well as

the user interface -- all researched in detail before presenting the information amongst ourselves.

Subsequently, main features were selected to represent the system: social interactions among

users, just-in-time messages to inform the user, an accurate list of devices in use and the

electrical consumptions and productions, and more. Such features were also determined by the

technical ease and feasibility when prototyped. If an idea was could not be easily implemented

technically, we worked around the technical aspects or reframed the idea to fit technical aspects.

Much of the social design was interwoven with the engineering process. Input from the

team was taken to how the GUI would look to the user, what was the best way to stimulate the

user and effectively get the data across. For instance, the phrases of the GUI widgets were

phrased to have a positive connotation and the placement of the social gesture was deliberately

placed as a message box to implicitly remind the user of social gestures.

Teammates often collaborated to come up with a design for blocks of the system. For

example, as discussed in the passive Energy ID sketch, David Boardman came up the concept of

the Energy ID, which Carl Yu implemented as a prototype. Research was also done on RFID

form factors that could be integrated into the prototype. The collaborative effort achieved within

our group allowed the Energy Mobility Network design to be systematically detailed.

8. Future Work

The work done to create the Energy Mobility Network is substantial, but there is always

room for improvement. The design and goals of the system are solidified, as well as the general

structure of the outlet board. However, the future work should be done to improve the Energy ID

gadgets, device producers, further improving the outlet design, testing of the system, as well as

adding more innovative features to the system.

Physical active Energy IDs should be made to include the GUI and functionalities

designed in this version. These active Energy ID embodiments may be made into an application

on a smart phone or a custom designed embodiment that users can carry around. As for passive

Energy ID gadgets, the UV system in the outlet needs to be incorporated into the future version

of the board to present the user's energy consumptions on the screen as well as on the passive

Energy ID.

In addition to the ultraviolet lighting in the outlet, the next version of the outlet could

include an SD slot to allow more images to be stored for the Kent Display. By doing so, the

transition time between images will be faster and more text can be placed onto the outlet board

and not transferred from the server. Additionally, it would be useful for the server software to

include analysis of the user's transactions. This will allow users to garner information about what

devices have been used the most, suggest times that users may use devices at a cheaper rate, and

predict when certain devices will be used. This software can only be used with a lot of users tests

completed, which was not done during the production phase. Consequently, it would be useful to

place the prototypes inside the Connected Home to test the users' reactions as well as

communications with the system for a month.

When placing the prototypes inside a building, it will be important to ensure the safety of

the user. Currently, the Linksprite Outlet can only accept 2000 Watts, which does not cover all of

the electrical devices in the market. Thus, when using devices with the system, caution must be

taken with the maximum power rating of the device.

The subsequent steps to the prototype discussed is to add the SD slot to allow more

images to be displayed on the Kent ChLCD screen. After integrating the additional space to the

outlet, it would be be best to gather user tests from the prototypes. By setting the prototypes in a

room and allowing electrical devices under 2000 Watts to be plugged into the outlets, the system

will be able to gather real data from the users. This while provide the system with information to

analyze and predict users' patterns as well as help debug any software or hardware problems

which users may face. More importantly, doing these tests will allow us to evaluate how well the

social energy etiquettes as well as potential etiquettes that were not hypothesized in the thesis.

The user will be able to give personal feedback on the system; allowing the designer to take note

of potential pitfalls that may have been overlooked.

While proceeding with the tests, the designer can create the physical active Energy ID for

the users as well as the UV system for the outlet. These should be used in the second phase of

testing; after analyzing how users communicate with the system and improving the system based

on the users' comments.

9. Conclusion

The Energy Mobility Network presents users with a new way to view their energy

expenditures. Instead of waiting for a monthly electric bill to arrive, users are given just-in-time

message about their potential transactions with devices. Such data allows users to make an

informed decision with how much they are willing to spend on using the device versus the

necessity of the device at the time. Users communicate with the system through their personal

Energy ID gadget - a product tailored to the user, which allows them to view their weekly

electrical consumption and production costs. Designing a centralized system was useful because

it allowed data to pass through a main hub as well as enforced data integrity. Unlike any other

products today, the system has created a new realm of social etiquettes. Users can now treat other

users to electricity - thus creating a new kind of social network. The system allows users to have

a more in depth knowledge about their electricity consumptions as well as opens a new concept

of energy gestures and etiquettes to the users.

Appendix A - Server Code

Database.py
import time
import datetime
from datetime import datetime, date, time, timedelta
from pysqlite2 import dbapi2 as sqlite
import TimeStamp
import re

sql comments:
ALTER TABLE users ADD COLUMN usage int NULL

class DataBase:

'''Creates the interface for the sqlite3 database'''

def init (self, dbName)

self.dbName = dbName
self.cursor = None
self.openDB(dbName)

def createDB(self):
'''Database is already created'''
pass

def openDB(self, dbName):
try:

self.conn = sqlite.connect(dbName)
self.cursor = self.conn.cursor()

except:
print 'Cannot create DB connection for: ', dbName

def listDB(self):
'''Lists all the users and devices stored in the database'''
if self.cursor != None:

self.cursor.execute('select * from user')
print 'All Users'
for sq in self.cursor:

print row
print 'All Devices'
self.cursor.execute('select * from device')
for row in self.cursor:

print row

def insertNewOutlet(self, user rfid, name, profile, rate):
'''Inserts a new outlet that is paired with a user and the context the user is

in '''

conn = sqlite.connect(self.dbName)
cursor = conn.cursor()
ts = TimeStamp.TimeStamp()
cursor.execute('INSERT INTO outlet VALUES (?, ?, ?, ?)',

(user rfid, name, profile, rate))
conn.commit()

def insertNewAcct(self, acct type, name, location, bank, connect, rfid):
'''Inserts a new account (device or user, based on acct type) if a new RFID

card id is detected
As the class is used in a multi-thread environment
each time we created a new connection with the database

conn = sqlite.connect(self.dbName)
cursor = conn.cursor()
ts = TimeStamp.TimeStamp()
if acct_type == 'device':

cursor.execute('INSERT INTO device VALUES (?, ?, ?, ?, ?, ?)',
(name, location, bank, connect, rfid, ts.getTime())

elif accttype == 'user':
cursor.execute('INSERT INTO user VALUES (?, ?, ?, ?, ?, ?)',

(name, location, bank, connect, rfid, ts.getTime()))
else:

print 'Type of account is not found'
conn.commit()

def getData(self, acct type, data, outlet data):
''' Gets data from the specific acct type table'''
conn = sqlite.connect(self.dbName)
cursor = conn.cursor()
if acct type == 'device':

cursor.execute('SELECT * FROM device WHERE connect IS ?', (None,))
for row in cursor:

length = len(row)
for unit in range(length):

if rowtunit] == data:
return row

elif accttype == 'user':
cursor.execute('SELECT * FROM user WHERE connect IS ?', (None,))
for row in cursor:

length = len(row)
for unit in range(length):

if row[unit] == data:
return row

elif accttype == 'outlet':
cursor.execute ('SELECT * FROM outlet WHERE name IS ?', (outlet-data,))
for row in cursor:

length = len(row)
for unit in range(length):

if row[unit] == data:
return row

conn.close()

def getEnergy(self, user id, action):
''' gets how much energy the user has produced at that moment'''
conn = sqlite.connect(self.dbName)
cursor = conn.cursor()
produced = 0
spent = 0
cursor.execute('SELECT * FROM session WHERE user IS ?', (user id,))
for row in cursor:

produced = produced + row[3]
spent = spent + row[2]

if action == "produced":
return produced

if action == "spent":
return spent

else:
print "produced or spent is not the value of action"

def getConnect(self, acct type, data):
''' Gets what is connected to the device/person'''
conn = sqlite.connect(self.dbName)
cursor = conn.cursor()
lst connect = [I
if acct type == 'device':

cursor.execute('SELECT * FROM device WHERE connect IS NOT ?', (None,))
for row in cursor:

length = len(row)
for unit in range(length):

if row[unit] == data:
connected = self.getData("user", row[3], None)
lstconnect.append(connected[O])

elif acct_type == 'user':
cursor.execute('SELECT * FROM user WHERE connect IS NOT ?', (None,))
for row in cursor:

length = len(row)
for unit in range(length):

if row[unit] == data:
connected = self.getData("device", row[3], None)
lstconnect.append(connected[O])

conn.close()

return lst connect

def idExists(self, rfid):

checks if rfid is in the database. if it is, outputs a 1, prints 'True'

conn = sqlite.connect(self.dbName)
cursor = conn.cursor()
count = 0
cursor.execute('SELECT * FROM device WHERE rfid IS ?', (rfid,))
for row in cursor:

if len(row) != 0:
#print row

#print 'TRUE'
return 1

#print 'FALSE'
return 0

conn.close()

def insertUpdate(self, device, user):
''' adds a row to the device and user table stating what it is connected to'''
conn = sqlite.connect(self.dbName)
cursor = conn.cursor()

ts = TimeStamp.TimeStamp()

print device

print self.getData("device", device, None)

[device name,device location,device bank,
device connect,device rfid,device time] = self.getData("device", device,

None)
[user name,user location,user bank,
user connect,user rfid,user time] = self.getData("user", user, None)

conn.close()

self.insertNewAcct("device", device-name, device location, device-bank,
user rfid, device rfid)

self.insertNewAcct("user", user-name, user-location, user-bank, device rfid,
user rfid)

maybe add a error thing if device / user are not in database?

maybe add a checking to.see if device and user already connected?

print "Added Connection"

def deleteUpdate(self, device id, user id):
''' after a session is ended, the connections between
device and user in the "device" and "user" table are deleted'''
conn = sqlite.connect(self.dbName)
cursor = conn.cursor()
cursor.execute('DELETE FROM device WHERE (connect = ? AND rfid = ?)',

(user id, device id))
cursor.execute('DELETE FROM user WHERE (connect = ? AND rfid = ?)',

(device id, user id))
conn.commit()
print "Deleted Connection"

def startSession(self, device id, rate, user id):
''' starts a new session that links a device to a user at a'certain kw rate'''
conn = sqlite.connect(self.dbName)
cursor = conn.cursor()
ts = TimeStamp.TimeStamp()
cursor.execute('INSERT INTO session VALUES (?, ?, ?, ?, ?, ?, ?)',

(deviceid, rate, 0, 0, userid, '', ts.getTime())
conn.commit()
change user and device table s.t. the user is connected to device
print device id
print user id
print "session will start"
self.insertUpdate(device id, user id)
print "Session started"

def calculateDiffTime(self, start time, end time, rate):
print "Start time"
print start time
print "end time"
print end-time

split start time = re.match(r"(\d+)\-(\d+)-(\d+) (\d+)\: (\d+) (\d+)"
start-time)

split end time = re.match(r"(\d+)\-(\d+)-(\d+).(\d+)\:(\d+):(\d+)", end-time)
[yearl, monthl, dayl, hourl, minutel, secondl] = splitstarttime.groups()
[year2, month2, day2, hour2, minute2, second2l = splitendtime.groups()

print "split start time"
print splitstart time.groups()
print "split end time"
print splitendtime.groups()

dl = date(int(yearl), int(monthl), int(dayl))
tl = time(int(hourl), int(minutel), int(secondl))

d2 = date(int(year2), int(month2), int(day2))
t2 = time(int(hour2), int(minute2), int(second2))

totaltime = datetime.combine(d2,t2)-datetime.combine(dl,tl)
print "totaltime"
print totaltime

print (year2 == yearl)
print (dayl day2)
print (month2 == monthl)

split time = re.match(r"(\d+):(\d+)",str(totaltime))
if (split-time == None): ## more than 1 day

splittime = re.match(r"(\d+).day.* (\d+):(\d+)",str(totaltime))
print "SPLIT GROUP2"
[days, hours, minutes] = split_time.groups()

else:
[hours, minutes] = split_time.groups()
days = 0

time minutes = int(days)*1440+int(hours)*60+int(minutes)

cost = float(time minutes)*rate

return cost

def estimateEndSession(self, device id, user id):
''' guesses how much a session will cost'''
conn = sqlite.connect(self.dbName)
cursor = conn.cursor()

ts = TimeStamp.TimeStamp()
time = ts.getTime()

outlet location row = self.getData("device", deviceid, None)
profile-row = self.getData("outlet", userid, outlet location row[l])

cursor.execute('SELECT * FROM session WHERE (end-time == ? AND device = ? and
user = ?)',

('', device id, user id))
for row in cursor:

start time = row[6]
rate = float(row[l])*float(profilerow[3])
cost = self.calculateDiffTime(start time, time, rate)

conn.commit()

return cost

def sessionRate (self, device id, user id):
'''Calculates the rate of the transaction'''
conn = sqlite.connect(self.dbName)
cursor = conn.cursor()

ts = TimeStamp.TimeStamp()
time = ts.getTime()

outlet location row = self.getData("device", deviceid, None)
profile-row = self.getData("outlet", userid, outlet location row[l])

cursor.execute('SELECT * FROM session WHERE (end-time == ? AND device = ? and
user = ?) ',

('', device id, user id))
for row in cursor:

start time = row[6]
rate = float(row[l])*float(profile row[3])

conn.commit

return rate

cost will be positive for spent, negative for produced
print "estimate session complete"

def endSession(self, device id, user id):

ends a session that links a device to a user '
conn = sqlite.connect(self.dbName)
cursor = conn.cursor()

ts = TimeStamp.TimeStamp()
time = ts.getTime()

outlet location row = self.getData("device", device id, None)
profilerow = self.getData("outlet", userid, outlet location row[1])

cursor.execute('SELECT * FROM session WHERE (end time == ? AND device ? and
user =?),

('', device id, user id))
for row in cursor:

start time = row[6]
rate = float(row[l])*float(profile row[3])
cost = self.calculateDiffTime(start time, time, rate)

if (rate > 0):
cursor.execute('UPDATE session SET spent = ? WHERE (end-time ? AND

device = ? AND user = ?)',
(cost, '',device-id, user id))

if (rate < 0):
cursor.execute('UPDATE session SET produced = ? WHERE (end time == ?

AND device = ? AND user = ?) ',

(cost, '',device id, user id))
cursor.execute('UPDATE session SET end-time = ? WHERE (end-time == ? AND

device = ? AND user = ?)',
(time, '',device id, user id))

update bank acct for user
user row = self.getData("user", user id, None)
cost before = int(user row[2])
total cost = cost + cost-before
#print "total " + str(total cost)

cursor.execute('UPDATE user SET bank = ? WHERE (connect IS ? AND rfid
= ?)'

(total-cost, None, user id))

conn.commit()
change user and device table s.t. the user is NOT connected to device
self.deleteUpdate(device id, user id)

print "Session completed"

def convert(self,name):
''''convert name to rfid'''
answer = self.getData("device", name, None)
if answer == None:

answer = self.getData("user",name, None)
return answer[4]

def convertid(self,name):
''''convert rfid to name'''
answer = self.getData("device", name, None)
print answer
if answer == None:

answer = self.getData("user",name, None)
return answer[0]

if name == " main ":
db = DataBase('ppb.db')

db.insertNewOutlet("1234567", "home outlet", "host", '1')
db.insertNewOutlet("1234567", "lab outlet", "student", '.8')

db.insertNewOutlet("1234567", "guest outlet", "guest", '.3')
db.insertNewOutlet("1234567", "bathroom outlet", "host", '1')

#print db.getData("outlet", "1234567", "guest outlet")

#db.insertUpdate("gameboy", "David")
#db.endSession("2f4df5213", "1234567")
#db.deleteUpdate("gameboy", "1234567")
#db.endSession("12g5354", "2sd3431")
#db.getData("device", "12g5354")

db.startSession("342as54", '3', "1234567")
db.startSession("4h45354", '-11', "1234567")
db.startSession("12g5354", '22', "1234567")
db.startSession("5sdf534", '-3', "1234567")

#db.endSession("342as54", "1234567")
#db.calculateDiffTime('2010-01-04 14:42:17', '2011-03-04 14:45:17', 6)
#db.getConnect("user", "David")
#db.convert('David')

#print db.convertid("CCA2BDF7")

SerialReader.py
import re
import time
import random
from xbee import XBee
import serial

from PyQt4 import QtCore

from pysqlite2 import dbapi2 as sqlite

class Timer(QtCore.QThread):

def init (self, parent=None):

QtCore.QThread. init (self)

print 'Timer Created'
self.prevTime time.time()
self.newTime = None

self.ready = True

def run(self):
self.newTime = time.time()
diff = self.newTime - self.prevTime

print 'diff', diff
if diff > 5:

self.ready = True

self.prevTime = self.newTime
else:

self.ready = False

class SerialReader(QtCore.QThread):

def init (self, parent=None, gui=None)

QtCore.QThread. init (self)

print 'Serial Reader Created'

self.gui = gui
self.defaultCredit=60

self.xbee = None

self.newUser = None
self.newDevice = None

self.newID = None

self.timer = Timer()

try:
rfid = serial.Serial(port = 46,

baudrate = 9600,
timeout = 1)

self.xbee = XBee(rfid)
except:

print "\tno rfid connection"

def run(self):
while True:

try:
print '<-rfid'

grabs data from XBee Controller
response = self.xbee.wait read frame()
print response
Finds Name of User/Device in Database, sends data to Xbee Router
if (response ["id"] == "rx") :

response-split= re.split('Code: ', response["rf data"])
if (len(response split) == 1): # not RFID match

print "Not a RFID Code. Check if it is a LS Cmd for the
outlet"

linkspritedata = re.split('AT', response["rf data"])
if (len(linksprite data) == 1):

check if it is a Remote Code:
remote split = re.split('REMOTE: ', response["rf data"])
if (len(remotesplit) == 1):

print "disregard"
print remote-split

else:
print "Remote Control On"
if (response["source addr"] == 'Vx'):

print "outlet info from ID 101 outlet"
print remote_split
if (remote_split[l] == 'ON'):

time.sleep(2)
self.xbee.send('tx',

frame id='A',
dest addr='\x56\x79',
data = '<RATON 0\n>')

elif (remote split[l] == 'OFF'):
time.sleep(2)
self.xbee.send('tx',

frame id='A',
dest addr='\x56\x79',
data = '<RATOF 0\n>')

elif (response["source addr") == 'Vy'):
print "outlet info from ID 0 outlet"
if (remote_split[l] == 'ON'):

time.sleep(2)
self.xbee.send('tx',

frame id='A',
dest addr='\x56\x78',
data = '<RATON 101\n>')

elif (remote split[1] == 'OFF'):
time. sleep (2)
self.xbee.send('tx',

frame id='A',
dest addr='\x56\x78',
data = '<RATOF 101\n>')

else:

None))

self. newUser)

self.newUser)

print "direct LS command"
print linksprite data[1]

if (! (self.newUser == None) && !(self.newDevice ==

sessiondata = re.split (" ", linkspritedata[l])
print session data
if (session data[0] == "ON"):

self.gui.db.startSession(self.newDevice, .8,

else:
self.gui.db.endSession(self.newDevice,

self.newDevice = None
self.newUser = None

else: ##is a RFID code
xbeedata = re.split('\r\n', responsesplit[l])
xbee data = xbee data[0]
##print xbee data
device = self.gui.db.getData("device", xbee data,
if device == None:

user data
user = self.gui.db.getData("user", xbee data,
length = 5 - len(user[O])
spaces = ""
for i in range(O, length, 1):

spaces = spaces + " "
answer = '<U:' + str(user[0]) + spaces + '>'

None)

None)

for the GUI update
self.newUser = user[0]

else:
length = 5 - len(device[O])
spaces = ""
for i in range(O, length, 1):

spaces = spaces + " "
answer = '<D:' + str(device[0]) + spaces + '>'

for the GUI update
self.newDevice = device[O]

if (response["source addr"] == 'Vx'):
time.sleep(2)
self.xbee.send('tx',

frame id='A',
dest addr='\x56\x78',
data = answer)

if (response["source addr"] == 'Vy'):
time.sleep(2)

self.xbee.send('tx',
frame id='A',
dest addr='\x56\x79',
data = answer)

if (response["id"] == "tx status"):
print "sent tx data"

Updates GUI
except:

print "No valid reading"
raise

OutletTester.py
import serial
from random import randint

print "Establishing Communication:"

ser = serial.Serial(port = 32,
baudrate = 9600,
timeout = 1, rtscts = 0)

print "Which port is used: ", ser.portstr

input =''
input 2=''
x = 1

while 1:
command = raw input("> ")

number = command.split() [1]
command = (command + '\n')
ser.write(command)
print 'writing: ', command
input = ser.readline()
print 'reading input_: ', input
input 2 = ser.readline()
print 'reading input_2: ', input_2

if "On" in input :
create a text file

print 'read:', input_2
input 2=''

text file = open("%s.txt" % (number) ,V"w")
text file.write("%s\n" % number

text file.close()
print 'number found and saved'

x in range(5000, 10000):
number = x
command = ('ATOF ' + str(number))
ser.write(command + '\n')
print 'writing: ', command # if "on" in se

create a text file
text file = open("%s.txt" % (number) , "w")
text file.write("%s\n" % number
text file.close()

print 'number-found and saved'

r.readline():

while 0
for

105

Appendix B - Active Energy ID GUI Code
Gui.py

#ALTER TABLE users ADD COLUMN label varchar(10)

from PyQt4 import QtCore, QtGui
import re
import sys
import DataBase
import SerialReader
import TimeStamp
import socket

HOST = '127.0.0.1'
PORT = 10200
BUFSIZ = 1024

ADDR = (HOST, PORT)

class MyThread(QtCore.QThread):
def run(self):

n = 0
step = 1
while True:

n += step

print n

class Gui(QtGui.QWidget):

def init_ (self, parent=None, dBase=None, username=None, guest=None):

QtGui.QGroupBox._init__(self, parent)

self.defaultCredit = 60
self.deviceIdTags = ['id', 'usage', 'lastUse']
self.deviceIdElements = {'id': [],

'usage': [],
'lastUse': []}

self.device rfid = []
self.outlets = {1':[],

'2':[],
'3':[]}

self.input = None
self.db = dBase
self.timeStamp = TimeStamp.TimeStamp()

self.user = db.getData("user",username, None)
print "David User"

print self.user

self.setWindowTitle('Energy ID Interface')
self.setWindowOpacity(1)
self.setFont(QtGui.QFont("CorporateS-Regular", 10.5)

self.buildGUIElements()

self.serialReaderThread = SerialReader.SerialReader(gui=self)

mainLayout = QtGui.QVBoxLayout()

mainLayout.addWidget(self.energyManagementBox)
mainLayout.addWidget(self.GuestBox)
mainLayout.addWidget(self.horizontalGroupBoxl)
mainLayout.addWidget(self.deviceInfoGroupBox)
mainLayout.addWidget(self.distributionInfoGroupBox)
mainLayout.addWidget(self.horizontalGroupBox2)

self.setLayout(mainLayout)

mainLayout.setEnabled(True)

11/30/2010 i dont remember what the commented out thing does
if (guest == None):
s = socket.socket(socket.AFINET, socket.SOCKSTREAM)
s.bind((HOST, PORT))
s.listen(l)
self.conn, addr = s.accept()

self.demo = "0"

def useOutletButtonAction(self):

reply = QtGui.QMessageBox.question(self, 'Social Gesture',
"Do you want to share the cost with

guests?",
QtGui.QMessageBox.Yes,

QtGui.QMessageBox.No)
if reply == QtGui.QMessageBox.Yes:

'''add button to guest and change rate!'''
print self.demo
print "SELF DEMO"
if self.demo == "1":

data = "100"
self.conn.send(data + '\0')

if (self.emptyButton.isVisible():
device-name = str(self.nameLine2.displayText()

else:
device name = str(self.nameLine.displayText()

if self.guestpic3.isVisible():
matched name = re.match("imgs\/m([a-zA-Z]+)", str(self.guestimage3))
guestname = matchedname.groups() [0]
db.startSession(devicename, '1', db.convert(guestname))

guest3 = Gui(dBase = self.db, username = str(guest name), guest =

"Yes"
guest3.GuestBox.hide()
guest3.deviceInfoGroupBox.hide()
guest3.horizontalGroupBox2.hide ()
guest3.horizontalGroupBoxl.hide ()
guest3.show()

if self.guestpic2.isVisible():
matched name = re.match("imgs\/m([a-zA-Z]+)", str(self.guestimage2))
guest name = matched name.groups() [0]
db.startSession(device name, '1', db.convert(guest name))

guest2 = Gui(dBase = self.db, username = str(guest name), guest =

"Yes"
guest2.GuestBox.hide()
guest2.deviceInfoGroupBox.hide()

107

guest2.horizontalGroupBox2.hide()
guest2.horizontalGroupBoxl.hide()
guest2.show()

if self.guestpic.isVisible():
matchedname = re.match("imgs\/m([a-zA-Z]+)", str(self.guestimagel))
guestname = matchedname.groups() [0]
db.startSession(devicename, '1', db.convert(guestname))

guestl = Gui(dBase = self.db, username = str(guestname), guest =
"Yes"

guestl.GuestBox.hide ()
guestl.deviceInfoGroupBox.hide()
guestl.horizontalGroupBox2.hide()
guestl.horizontalGroupBox1.hide ()
guestl.show()

else:
print "There are no guests to share this with!"

else:

print self.demo
print "SELF DEMO"

if self.demo == "1":
data = "100"
self.conn.send(data + '\0')

if (self.emptyButton.isVisible):
self.db.startSession(str(self.nameLine2.displayText()), '2', str

(self.db.convert(self.user[0])))
id = self.nameLine2.displayText()
device text = []
devicetext.append(str(self.db.convertid(id)))
device text.append(str((db.getData("outlet", self.user[4],

(db.getData("device", db.convert
(self.db.convertid(id_)), None))[1]))[2]))

devicetext.append(str(db.sessionRate(db.convert(id), self.user[4])))
self.nameLine2.setText(device text[0] + " - " + device text[l]+ " -

" + device text[2]+" W/m")
self.emptyButton2.setText(self.nameLine2.displayText()
self.emptyButton2.show()

self.smartconnect(self.emptyButton2, self.amtEnergy,
self.device off action, self.db.convert(id)) #fixlater

else:
self.db.startSession(str(self.nameLine.displayText()), '2', str

(self.db.convert(self.user[0])))
id_ = self.nameLine.displayText()
device text = []
devicetext.append(str(self.db.convertid(id)))
devicetext.append(str((db.getData("outlet", self.user[4],

(db.getData ("device", db.convert
(self.db.convertid(id_)), None))[1]))[2]))

device text.append(str(db.sessionRate(db.convert(id_), self.user[41)))
self.nameLine.setText(device text[0] + " - " + device text[1]+ " -

" + device text[2]+" W/m")
self.emptyButton.setText(self.nameLine.displayText()
self.emptyButton.show()

self.smartconnect(self.emptyButton, self.amtEnergy,
self.device off action, self.db.convert(id)) #fixlater

def demoAction(self):

print self.demo
print "SELF DEMO"

if self.demo == "1":
self.demo = "0"
data = "reset"
self.conn.send(data + '\0')

else:
self.demo = "1"
data = "reset"

print "done changing demo action"
print self.demo

def startSerialReadButtonAction(self):
self.serialReaderThread.run()
if self.demo == "1":

data = "start serial"
self.conn.send(data + '\0')

def device off action(self,device, amtEnergy, device text):
print "Device text"
print device text
print len(devicetext)
rfid = self.db.convert(device text)
print "Rfid =
print rfid
print len(rfid)
self.db.endSession(rfid, self.user[4])
#print str(device.text()) + " now off"
device.close()
energy = db.getData("user", self.user[0], None)
amtEnergy.showMessage(str(energy[2]) + " Watts")
self.refreshdata()

print self.demo
print "SELF DEMO"

if self.demo == "1":
data = "z"
self.conn.send(data + '\0')

def smart connect(self, device-on, amtEnergy, device off action, device-text): ##
got from online

proxy-slot = lambda checked: device-off action(device-on, amtEnergy,
device-text)

deviceon.clicked.connect(proxyslot)

def refreshdata(self):
connected = db.getConnect("user", self.user[0])

energy = db.getEnergy(self.user[4], "spent")
energy2 = db.getEnergy(self.user[4], "produced")
for device in connected:

cost = self.db.estimateEndSession(self.db.convert(device), self.user[4])
print device
print cost
if cost > 0:

energy = energy + cost
elif cost < 0:

energy2 = energy2 + cost
else:

print "cost is zero right now"

109

self.amtEnergy.showMessage(str(int(energy)) + " Watts ")
self.amtEnergy2.showMessage(str(int(energy2*-l)) + " Watts ")

def createDistributionInfo(self):

self.distributionInfoGroupBox = QtGui.QGroupBox("Summary")
layout = QtGui.QGridLayout()
userLabel2 = QtGui.QLabel(self)
userLabel2.setText("Devices that are still on: ")
userLabel2.setAlignment(QtCore.Qt.AlignLeft)

#self.energyBankBox = QtGui.QGroupBox("Energy Bank")
ENERGY spent
userLabel = QtGui.QLabel(self)
userLabel.setText("Energy Consumed this Week:")
userLabel.setAlignment(QtCore.Qt.AlignLeft)
energy = db.getEnergy(self.user[4], "spent")
self.amtEnergy = QtGui.QStatusBar()
self.amtEnergy.showMessage(str(int(energy)) + " Watts ")
self.amtEnergy.setFont(QtGui.QFont("CorporateS-Regular", 11))

ENERGY PRODUCED
energy_produced = QtGui.QLabel(self)
energyproduced.setText("Energy Produced this Week:")
energyproduced.setAlignment(QtCore.Qt.AlignLeft)
energy2 = db.getEnergy(self.user[4], "produced")
print energy2
print "ENREGY TWO!"
print int(energy2*-1)

self.amtEnergy2 = QtGui.QStatusBar()
self.amtEnergy2.showMessage(str (int(energy2*-l)) + " Wattsss ")
self.amtEnergy2.setFont(QtGui.QFont("CorporateS-Regular", 11))

connected = db.getConnect("user",self.user[O])

layout.addWidget(userLabel2, 0, 0)

for i in range(len(connected)):
device-on = QtGui.QPushButton(self)

device text = []
devicetext.append(str(connected[i]))

devicetext.append(str((db.getData("outlet", self.user[4],
(db.getData("device", db.convert

(connected[i]), None))[1]))[2]))
devicetext.append(str(db.sessionRate (db.convert(connected[i]), self.user

[4])))

device on.setText(device text[0] + " - " + device text[l1]+ " - " +
device text[2]+" W/m")

self.smart-connect(device-on, self.amtEnergy, self.device off action, str
(connected[i]))

layout.addWidget(device on, i+1, 0)

refresh = QtGui.QPushButton(self)
refresh.setText("Refresh Energy Data")
refresh.clicked.connect(self.refreshdata)

layout.addWidget(userLabel, len(connected) + 2, 0)
layout.addWidget(self.amtEnergy, len(connected) + 3, 0)

layout.addWidget(energy_produced, len(connected) + 4, 0)
layout.addWidget(self.amtEnergy2, len(connected) + 5, 0)

layout.addWidget(refresh, len(connected) + 6, 0)

self.refreshdata()

self.nameLine = QtGui.QLineEdit()
self.emptyButton = QtGui.QPushButton()
self.emptyButton.setText(self.nameLine.displayText())
self.emptyButton.hide()

self.nameLine2 = QtGui.QLineEdit()
self.emptyButton2 = QtGui.QPushButton()
self.emptyButton2.setText(self.nameLine2.displayTexto)
self.emptyButton2.hide()

layout.addWidget(self.emptyButton, len(connected) + 1, 0)
layout.addWidget(self.emptyButton2, len(connected) + 2, 0)

self.distributionInfoGroupBox.setLayout(layout)
self.distributionInfoGroupBox.hide()

def createEnergyManagementBox(self):
self.energyManagementBox = QtGui.QGroupBox("Profile")
layout = QtGui.QGridLayout()

self.profilepicLabel = QtGui.QLabel(self)
self.userimage = "imgs/"+str(self.user[0]) +".jpg"
self.profilepicLabel.setPixmap(QtGui.QPixmap(self.userimage))

self.profilepicLabel.setAlignment(QtCore.Qt.AlignLeft)
self.userLabel QtGui.QLabel(self)
self.userinfo = self.user[0]

if (self.userinfo == "David"):

self.userLabel.setText(self.userinfo + " [" + "Host]")
else:

self.userLabel.setText(self.userinfo)

self.userLabel.setFont(QtGui.QFont("CorporateS-Regular", 15.5))
self.userLabel.setAlignment(QtCore.Qt.AlignCenter)

layout.addWidget(self.profilepicLabel, 0, 1)
layout.addWidget(self.userLabel, 0, 2)

self.energyManagementBox.setLayout(layout)
self.energyManagementBox.hide()

def createHorizontalGroupBoxl(self):
III

Device Labels
III

self.horizontalGroupBoxl = QtGui.QGroupBox("New Device")
layout = QtGui.QHBoxLayout()

self.deviceName = QtGui.QLabel("<no device>", self)
self.deviceName.setAlignment(QtCore.Qt.AlignCenter)

layout.addWidget(self.deviceName)

self.horizontalGroupBoxl.setLayout(layout)

self.horizontalGroupBoxl.hide()

def createHorizontalGroupBox2 (self):

Control buttons

self.horizontalGroupBox2 = QtGui.QGroupBox("Serial Connection")
layout = QtGui.QHBoxLayout()

self.startSerialButton = QtGui.QPushButton("Start Serial", self)
self.startSerialButton.clicked.connect(self.startSerialReadButtonAction)

useOutlet = QtGui.QPushButton("Use Device", self)
useOutlet.clicked.connect(self.useOutletButtonAction)

demoButton = QtGui.QPushButton("Demo Flash", self)
demoButton.clicked.connect(self.demoAction)

layout.addWidget(self.startSerialButton)
layout.addWidget(useOutlet)
layout.addWidget(demoButton)
self.horizontalGroupBox2.setLayout(layout)

def createGuestBox(self):
''' if there are guest ids present'''
self.GuestBox = QtGui.QGroupBox("Network")
layout = QtGui.QGridLayout()

self.guestpic = QtGui.QLabel(self)
self.guestimage = "imgs/m"+str(self.user[O]) +".jpg"
self.guestpic.setPixmap(QtGui.QPixmap(self.guestimage))
self.guestpic.setAlignment(QtCore.Qt.AlignLeft)
self.guestpic.hide()

self.guestpic2 = QtGui.QLabel(self)
self.guestimage2 = "imgs/m"+str(self.user[O]) +".jpg"
self.guestpic2.setPixmap(QtGui.QPixmap(self.guestimage))
self.guestpic2.setAlignment(QtCore.Qt.AlignLeft)
self.guestpic2.hide()

self.guestpic3 = QtGui.QLabel(self)
self.guestimage3 = "imgs/m"+str(self.user[O]) +".jpg"
self.guestpic3.setPixmap(QtGui.QPixmap(self.guestimage))
self.guestpic3.setAlignment(QtCore.Qt.AlignLeft)
self.guestpic3.hide ()

layout.addWidget(self.guestpic, 1, 1)
layout.addWidget(self.guestpic2, 1, 2)
layout.addWidget(self.guestpic3, 1, 3)

self.GuestBox.setLayout(layout)

self.GuestBox.hide ()

def buildGUIElements(self):

self.createEnergyManagementBox()
self.createDistributionInfo()
self.createDeviceInformationBox()
self.createHorizontalGroupBoxl()

self.createHorizontalGroupBox3()
self.createHorizontalGroupBox2 ()
self.createGuestBox()

def createDeviceInformationBox(self):

Registered Device info from Database

self.deviceInfoGroupBox = QtGui.QGroupBox("New Device Info")
layout = QtGui.QGridLayout()

for i in range(len(self.deviceIdTags)

label = QtGui.QLabel(self.deviceIdTags[i]
lineEdit = QtGui.QLineEdit()

self.deviceIdElements[self.deviceIdTags[i]] [label, lineEdit]

layout.addWidget(label, i + 1, 0)
layout.addWidget(lineEdit, i + 1, 1)

self.deviceInfoGroupBox.setLayout(layout)

def updateDeviceFields(self, id_):

print self.demo
print "SELF DEMO"

if self.demo == "1":
data = "c"
self.conn.send(data + '\0')

id = id [:-2]
print id

if db.getData("device", id_, None) == None:
if self.guestpic.isHidden():

self.guestimagel = "imgs/m"+str(db.convertid(id_)) +".jpg"
self.guestpic.setPixmap(QtGui.QPixmap(self.guestimagel))
self.guestpic.show()

elif self.guestpic2.isHidden():
self.guestimage2 = "imgs/m"+str(db.convertid(id_)) +".jpg"
self.guestpic2.setPixmap(QtGui.QPixmap(self.guestimage2))
self.guestpic2.show()

elif self.guestpic3.isHidden():
self.guestimage3 = "imgs/m"+str(db..convertid(id_)) +".jpg"
self.guestpic3.setPixmap(QtGui.QPixmap(self.guestimage3))
self.guestpic3.show()

else:

'''Update device id'''
lineEdit = self.deviceIdElements['id'][1]
lineEdit.setText(id)

self.deviceName.setText(self.db.convertid(id))

if self.emptyButton.isVisible():
self.nameLine2.setText(id_)

else:
self.nameLine.setText(id_)

'''Update device energy usage'''
deviceUsageData = self.db.getData('device', str(id_), None)
deviceUsageLineEdit = self.deviceIdElements['usage'][1]
deviceUsageLineEdit.setText(str(deviceUsageData[2]))

113

'''Update device energy usage'''
deviceLastUseData = self.db.getData('device', str(id_), None)
deviceLastUseDataLineEdit = self.deviceIdElements['lastUse'][1]
deviceLastUseDataLineEdit.setText(str(deviceLastUseData[5])

def getDeviceNameFromDB(self,id): ### USED IN SERIAL READER
id = id [:-2]

name = self.db.getData("device", id_, None)
print "THIS IS NAME"
print name
return name

def updateDeviceId(self, id_):
id = id [:-2]

self.deviceName.setText(self.getDeviceNameFromDB(id_)

if not self.db.idExists(id):
self.db.insertNewUser(self.timeStamp.getTime (, id_, self.defaultCredit)
print 'new RFID:', id_, self.timeStamp.getTime(, self.defaultCredit

else:
print id , 'already exists!'
self.updateDeviceFields(id)

if name == " main ":

db = DataBase.DataBase('ppb.db')
app = QtGui.QApplication(sys.argv)

g = Gui(dBase = db, username = "David", guest = None
g.show()

sys.exit(app.exec ())

Appendix C - Outlet Code
// for the ATMEGA644
#include <avr/pgmspace.h>
#include <inttypes.h>
#include <SoftwareSerial.h>

// WIRING PINS ///

//Kent Display
#define DATAOUT 11 //MOSI (SI line on Sparkfun breakout board)
#define DATAIN 12 //MISO (SO line on Sparkfun breakout board)

#define SPICLOCK 13 //sck (SCK line on Sparkfun breakout board)

#define SLAVESELECT 10 //ss (CS line on Sparkfun breakout board)
//Buttons
#define SWITCH1 7
#define SWITCH2 6
//SoftSerial
#define rxPin 9
#define txPin 8
// extra pins: 4,5,6

// VARIABLES //

//RFID
byte hexCard[15);
boolean done = false;
byte i = 0;

//Buttons
int switchlVal;
int switch2Val;
//Kent
char clr = 0;

//XBee
boolean header = false;
char readXbee[10];
int j=0;
//System
boolean start = true;
int state = 1;
boolean remote device on = false;
boolean remote device off = false;

boolean user = false;
boolean device = false;
boolean user done = false;
boolean device-done = false;
boolean remote = false;
boolean on device = false;
boolean off-device = false;

//Software Serial
SoftwareSerial mySerial = SoftwareSerial (rxPin,txPin)

// User/Cost/Device -> Name found in RAM
char cost3 High = OxlE;
char cost3 Low = OxFO;
char cost2_High = Ox21;
char cost2 Low = OxOC;
char costl High = Ox22;
char costlLow = 0x56;

char HEATER High = Ox00;
char HEATER Low = 0x02;

115

char WASHERHigh = Ox02;
char WASHER Low = 0x94;
char IRONHigh = Ox04;
char IRON Low = OxEC;
char FAN High = 0x07;
char FANLow = 0x62;

char MARK High = 0x09;
char MARK Low = OxBA;
char CARL High = OxOE;
char CARL Low = OxA6;
char DAVID High = Ox1l;
char DAVID Low = OxlC;
char SARAH High = OxOC;
char SARAHLow = Ox30;

char cost Low;
char cost High;
char name Low;
char nameHigh;
char device Low;
char deviceHigh;

void setup()

{

// INIT I/O PINS///

//KENT
pinMode (DATAOUT, OUTPUT);
pinMode(DATAIN, INPUT);
digitalWrite(DATAIN,LOW);
pinMode(SPICLOCK,OUTPUT);
pinMode (SLAVESELECT,OUTPUT);
digitalWrite(SLAVESELECT,HIGH);
//Buttons
pinMode(SWITCH1, INPUT);
pinMode(SWITCH2, INPUT);
//Software Serial
pinMode(rxPin, INPUT);
pinMode(txPin, OUTPUT);

// set the data rate for the ports
mySerial.begin(9600);
Serial.begin(9600);

void loop()

// Start: Initialize the Kent Display, clear the screen and load the data into the
Kent RAM

if (start) {
SPCR = (1 << SPE) | (1 << MSTR) 1 (1 << SPRO) | (1 << SPR1) | (1 << CPHA); //

Initialize SPI communication with the display
clr=SPSR;
clr=SPDR;
delay(25); // Discovered that some delay is needed after setting SCPCR
CLRDISPBRT(); // This calls the function that clears the entire screen,

leaving it all white.
delay(800); // This delay allows the screen to be drawn.

LoadData(; // This loads the array below to the display's RAM
delay(800);
DISP FULLSCRN(0x38,0x40);

delay(2000);
DISP PARTSCRN(Ox26, Ox34, Ox00, OxOE) ; /7 Use Remote Device
delay(1000);

remote device on = false;
remote device off = false;
user = false;
device = false;

user done = false;
device done = false;
remote = false;

on device = false;

off-device = false;

start = false;
state = 0;

if (state == 0) {

switchlVal = digitalRead(SWITCHl);
switch2Val = digitalRead (SWITCH2);
if (switch2Val == LOW) { // Remote Device

CLR DISPBRT();
delay(1000);
// remote device activated
DISP PARTSCRN(OxlB, OxC6, Ox55, Ox70) ; // Remote Device: FAN

delay(1000);
DISP PARTSCRN(Ox32, Ox28, OxOl, Ox0E); // Turn on / Turn off:

delay(1000);
state = 6;

else if (switchlVal == LOW) { // Use Device
CLR DISP BRT();
delay(1000);
DISP PARTSCRN(Ox15, OxAE, Ox35, Ox6B) ; // ENERGY ID
delay(1000);
state = 1;

}
else { /7 for remote control purposes

delay(500);
state 2;

7/ State 1 = Grab the User's ID from RFID Sensor, send via XBee to Server

if (state == 1)
if (mySerial.read(==2){ // check that it is the RFID Tag Header

RFIDO;
state = 2;

if (state == 2)
if (Serial.available() > 0) {
XBee Data();
char command = readXbee[O];
if (command == 'U')

//Serial.print("User ID Identified as: ");
Serial.println(readXbee);
Serial.flush();
user = true;

117

if (command == 'D')

{
Serial.print("Device ID Identified as: ");
Serial.println(readXbee);
Serial.flush();
device = true;

}

if (command == 'R')

Serial.println("Remote Device Used: ");
delay(5000);
for (i=l; i <j; i++){
Serial.write(readXbee[i]);

}
delay (5000)
Serial.flush();
remote true;

if (user)
char command = readXbee[2];
if (command == 'S') { //Sarah
name Low = SARAH Low;
nameHigh = SARAHHigh;

}
else if (command == 'C') { //CARL

name Low = CARL Low;
nameHigh = CARLHigh;

}
else if (command == 'M') { // MARK

name Low = MARK Low;
nameHigh = MARKHigh;

}
else if (command == 'D') { //DAVID

name Low = DAVID Low;
nameHigh = DAVIDHigh;

DISPPARTSCRN(nameHigh, nameLow, Ox78, Ox83); // display selected user
delay(1000);
if (!device done) {
DISPPARTSCRN(Ox13, OxlA,0x30,Ox4B); // DEVICE
delay(1000);

}
user = false;

user-done = true;

if (device)
char command = readXbee[2);

if (command == 'H') { //HEATER
device Low = HEATERLow;
deviceHigh = HEATERHigh;

}
else if (command == 'W') { //WASHER

device Low = WASHER Low;
deviceHigh = WASHERHigh;

}
else if (command == 'I') { //IRON

device Low = IRONLow;
deviceHigh = IRONHigh;

}
else if (command == 'F') { //FAN

device Low = FAN Low;
deviceHigh = FANHigh;

}
DISPPARTSCRN(deviceHigh, device Low+0x07, Ox6B, Ox76); // display selected

device
delay(1000); //

device = false;

device done = true;

}

if (user done && device-done)
state = 3;

user done = false;

device done = false;
delay(100);

}
else {

state = 1;

}
if (remote)

delay(1000);
state = 0;

remote = false;

else{
delay(500);
state = 0;

if (state == 3)

// CHOICE SCREEN

//display partial screen cleared; leave the device and user name intact

CLRDISPBRT(;
delay(1000);
DISPPARTSCRN(nameHigh, nameLow, Ox78, Ox83); // selected user

delay (1000);
DISPPARTSCRN(deviceHigh, deviceLow+0x07, Ox6B, Ox76); //selected device

delay(1000);

DISPPARTSCRN(Ox2F, OxEE, Ox55, Ox69); // Cost Now / Cost later

delay (1000)

int randNumber = random(l, 4);

if (randNumber == 1)
cost Low = costl Low;
costHigh = costlHigh;

}
else if (randNumber == 2)

cost Low = cost2 Low;
costHigh = cost2_High;

}
else if (randNumber == 3){

119

cost Low = cost3_Low;
costHigh = cost3_High;

DISPPARTSCRN(costHigh,costLow,0x46,0x50); // fake costs
delay(1000);

DISP PARTSCRN(Ox2E, 0x2C,0x01,0x0E); // use now use later buttons
delay (1000)
state = 4;

if (state == 4) {
switchlVal = digitalRead(SWITCHl);
switch2Val = digitalRead(SWITCH2);

if (switchlVal == LOW) {

// NOW IN USE

CLR DISP BRT();
delay(1000);

DISPPARTSCRN(nameHigh, nameLow, Ox78, Ox83); // selected user
delay(1000);
DISP PARTSCRN(device High, deviceLow+0x07, Ox6B, Ox76); //selected device
delay(1000);

DISPPARTSCRN(Ox2B, OxB6, Ox55, Ox69) ; // is now in use
delay(1000);

DISPPARTSCRN(Ox33, OxEA, OxOl, OxOE); // Home / Turn off:
delay (1000);

Serial.write("ATON 0\n");
delay(1000);

state = 5;

if (switch2Val == LOW) {

// USE AT A LATER TIME

CLR DISP BRT(;
delay(1000);

DISPPARTSCRN(name_High, nameLow, Ox78, Ox83); // selected user
delay(1000);
DISPPARTSCRN(deviceHigh, deviceLow+0x07, Ox6B, Ox76); //selected device
delay(1000);

120

DISP PARTSCRN(Ox29, Ox7C, Ox55, Ox69); // will turn on at a later time
delay(1000);

DISP PARTSCRN(Ox27, Ox9C, OxOl, Ox0E); // Home/Cancel
delay(1000);

Serial.println ("Done!");
state = 5;

if (state == 5)

switchlVal = digitalRead(SWITCHl);
switch2Val = digitalRead(SWITCH2);
if (switchlVal == LOW) { // HOME button

start = true;
}

if (switch2Val == LOW) { // CANCEL Button
if (remote device-on)

//turn off remote device
Serial.print("REMOTE: OFF");

delay(1000);
remote-device on = false;
start = true;

else if (remote device off)

// turn on remote device
Serial.print("REMOTE: ON");

delay (1000);
remote-device off = false;

start = true;

else{

Serial.write ("ATOF 0\n");
delay(1000);
state = 3;

if (state == 6)

switchlVal = digitalRead(SWITCHl);
switch2Val = digitalRead(SWITCH2);
if (switchlVal == LOW) { // Turn ON remote device

Serial.print("REMOTE: ON");

delay(2000);
DISP PARTSCRN(Ox2B, OxB6, Ox41, Ox55) ; // is now in use

delay(1000);
DISP PARTSCRN(Ox27, Ox9C, OxOO, OxOD); // Home/Cancel
delay(1000);
remote device on = true;

state = 5;

if (switch2Val == LOW) { // Turn OFF remote device
Serial.print("REMOTE: OFF");

delay(2000);
DISP PARTSCRN(Ox35, Ox8E, Ox41, 0x55); // is now off.

delay(1000);
DISPPARTSCRN(Ox27, Ox9C, Ox00, Ox0D); // Home/Cancel
delay(1000);
state = 5;
remote device off = true;

}
// Grabbing Data from XBee Controller
void XBee Data(void){

j = 0;
if (Serial.read() == 60) { //60
header = true;
Serial.println("Header Found"); // for

}
while (Serial.available() >0) {

if (header && (Serial.peek() == 62))
,, >1V

some reason, need to serial.println here..

{// reached the end of the data; 62 dec ==

Serial.read();
//Serial.println("readXbee Completed");

}
else if (header) {

readXbee[j] = byte(Serial.read());
j++;

header = false;

void RFID(void) {
for (i = 0; i < 14; i++)
{
hexCard[i] = mySerial.read(;
done = true;

if (done) {
Serial.print("Code: ");
for (i = 1; i < 11; i++)

Serial.print(hexCard[i], BYTE); // sends it to XBee Controller
}
Serial.println("");
done = false;

//--
// Below are functions for the SPI interface
//--

// Adding hex addresses
int add(char highAddress, char lowAddress, char value) {

uint16_t address = highAddress * Ox1OO;
// Serial.print("Adding Function High Address: ");
// Serial.println(address,HEX);
uint8_t lowAddr = lowAddress; // does adding FFFF work for all cases? only tested

for OxFO case
address = highAddress * OxlOO + lowAddr

// Serial.print("Adding Function Low Address: ");
// Serial.println(lowAddr,HEX);

address = address + value;
// Serial.print("Adding Function Value Address: ");
// Serial.println(address,HEX);
return address;

}

//Clear Display Bright clears entire screen to be bright including the border, fixed

length command
void CLR DISP BRT()

select();
spi transfer(OxlO); //Clear Display Bright Command

deselect();

}

//Display Fullscreen triggers a full screen update from a specified image buffer in

the onboard image RAM, fixed length command

void DISP FULLSCRN(volatile char HighAddress, volatile char LowAddress) {

select();
spi-transfer(Oxl8); //Display Fullscreen command

spi transfer(HighAddress); //High byte of the target memory address

spi transfer(LowAddress); //Low byte of the target memory address

deselect();

}

// Display partial screen, use rows 00-9F

void DISP PARTSCRN(volatile char HighAddressO, volatile char LowAddressO, volatile

char LowAddressl,volatile char LowAddress2)

{
select();
spitransfer(Ox19); //DISP PARTSCRN command

spi transfer(HighAddressO); //High byte of the first address from RAM

spi transfer(LowAddressO); //Low byte of the first address from RAM

spi transfer(OxOO); //High byte of the first address

spi transfer(LowAddressl); //Low byte of the first address

spi transfer(OxOO); //High byte of the last address

spi transfer(LowAddress2); //Low byte of the last address

deselect();

}

char READ(int HighAddress, int LowAddress) {

select();
spi transfer(Ox04); //Read Command

spi transfer(HighAddress); //High byte of the target memory address

spi transfer(LowAddress); //Low byte of the target memory address

spitransfer(OxOO); //Dummy byte

spi transfer(OxOO); //Dummy byte

return(spi transfer(OxOO)); //Final dummy byte, Screen will transfer data (on SO

line) during reciept of this byte

}

//Optional if more data needs to be read

char READmore()
return(spitransfer(OxOO)); //Additional dummy byte, Screen will transfer data (on

SO line) during reciept of this byte

}

//Deselect screen so that it knows there is no more data to be read

void READend()

123

deselect();
}

// Write to RAM per ROW
//Writes data to screen RAM starting at the target memory address, variable length
command
//Note: the WRITEend() function must be called after sending the variable amount of
Data Bytes
void WRITE(int HighAddress, int LowAddress, int Data)

select();
spi transfer(OxOO); //Write Command
spitransfer(HighAddress); //High byte of the target memory address
spitransfer(LowAddress); //Low byte of the target memory address
spi transfer(Data); //The first value to be written, more may follow

}

//Optional if more data needs to be sent
void WRITEmore(int Data) {
spitransfer(Data); //Send additional byte to screen

}

//Deselect screen so that it knows there is no more data to be sent
void WRITEend()

deselect();
I

void FILL(volatile char HighAddressl, volatile char LowAddressl, volatile char
HighAddress2, volatile char LowAddress2, volatile char data)
{

select();
spitransfer(Ox0l);
spitransfer(HighAddressl);
spitransfer(LowAddressl);
spitransfer(HighAddress2);
spitransfer(LowAddress2);
spi transfer(data); //Fill
deselect();

//Fill command
//High byte of the first address
//Low byte of the first address
//High byte of the last address
//Low byte of the last address

Value

void select()
digitalWrite (SLAVESELECT,LOW);

}

void deselect()
digitalWrite(SLAVESELECT,HIGH);

}

void SLEEP()
select();
spitransfer(Ox20); //Sleep command
deselect();

}

char spitransfer(volatile char data)
{
SPDR = data; // Start the transmission
while (!(SPSR & (l<<SPIF))){ //Wait for the

return SPDR; // return the received byte

//------

end of the transmission

// Below are functions for grabbing the text
//--

//Grab Letter
// take specific start address, write to RAM, repeat for 14 rows
void GRABLETTER(volatile char highAddressWRITE,volatile char lowAddressWRITE, int
amt, volatile char grabHeight, volatile char highAddressREAD, volatile char
lowAddressREAD, volatile char letterColumn) { // remember addresses need to be in HEX
uint16 t startAddressWRITE;
uint16 t startAddressREAD;
uint16_t startAddressREADO = add(highAddressREAD,lowAddressREAD,letterColumn);
uint16 t rowAdder = OxOOlE;
uintl6_t startAddressWRITEO = add(highAddressWRITE , lowAddressWRITE, OxO);

Serial.print ("Initial startAddressREAD: ");
Serial.println(startAddressREADO, HEX);
Serial.print("Initial startAddressWRITE: ");

Serial.println(startAddressWRITEO, HEX);

for (int i = OxOO; i < grabHeight; i++)

startAddressREAD = startAddressREADO + rowAdder*i;
startAddressWRITE = startAddressWRITEO + rowAdder*i;
Serial.print("startAddressREAD: ");
Serial.println(startAddressREAD, HEX);
Serial.print("startAddressWRITE: ");
Serial.println (startAddressWRITE, HEX);
uint8 t newLowAddress = startAddressREAD;
char ReceivedData[amt]

ReceivedData[0] = READ(startAddressREAD/OxlOO, newLowAddress);
uint8 t newWriteAddress = startAddressWRITE;
for (int j = 1; j < amt; j++){
ReceivedData[j] = READmoreo;

Serial.println("Received DATA:");
Serial.println(ReceivedData[j], HEX);

READend();

delay(25);

WRITE(startAddressWRITE/OxlOO, newWriteAddress, ReceivedData[0]);
for (int j = 1; j < amt; j++){
WRITEmore(ReceivedData[j]);

}
WRITEend(;
delay(25);

void LoadData()

int std delay = 25;
static prog uint8_t SampleImage[] PROGMEM =

//The code to print data to the display goes here.
// DISP PARTSCRN(0x13, Ox1A, Ox35, Ox50); // DEVICE
7/ DISP PARTSCRN(Ox15, OxAE, 0x35, Ox50) ; // ENERGY ID
7/ DISP PARTSCRN(Ox18, OxBA, Ox35, Ox50); // PLEASE TAP IN YOUR ENERGY ID
/7 DISP PARTSCRN(OxlB, OxC6, Ox35, Ox5O); // REMOTE DEVICE: FAN

DISP PARTSCRN(OxlE, OxFO, Ox04, Ox10) ; // cost3
DISP PARTSCRN(Ox21, OxOC, Ox04, OxlO); // cost2
DISP PARTSCRN(Ox21, OxDE, Ox04, Ox10); // costl

DISP PARTSCRN(Ox00,
DISP PARTSCRN(Ox02,
DISP PARTSCRN(Ox04,
DISP PARTSCRN(Ox07,

OxlE,
Ox94,
OxEC,
Ox62,

Ox35,
Ox35,
Ox35,
Ox35,

DISP PARTSCRN(Ox09, OxBA, Ox35,
DISP PARTSCRN(Ox0C, Ox30, Ox35,
DISP PARTSCRN(OxOE, OxA6, Ox35,
DISP PARTSCRN(0x11, OxlC, Ox35,
DISP PARTSCRN(Ox25, OxDA, Ox05,
DISP PARTSCRN(Ox27, Ox9C, Ox05,
DISP PARTSCRN(Ox29, Ox7C, Ox15,
DISP PARTSCRN(Ox2B, OxB6, Ox35,
DISP PARTSCRN(0x2E, Ox2C, Ox05,
DISP PARTSCRN(Ox2F, OxEE, 0x15,
DISP PARTSCRN(Ox32, Ox28, Ox05,
DISP PARTSCRN(0x33, OxEA, 0x15,
DISP PARTSCRN(Ox35, Ox8E, Ox35,

VALUES WERE DELETED FROM APPENDIX

Ox40)
Ox3F)
Ox3F)
Ox3F)

Ox40)
Ox40)
Ox3F)
Ox3F)
Ox15)
Ox15)
0x29)
Ox49)
Ox15)
0x29)
0x13)
Ox23)
Ox49)

// HEATER
// WASHER

;/ IRON
; // FAN

// MARK:
// SARAH:
// CARL:
// DAVID:

// Use Remote Device
// Home/Cancel
// will turn on at a later time
// is now in use

;/ Use now / use later?

// Cost Now / Cost later
// Turn on / Turn off:
;/ Home / Turn off:
// is now off.

// Test to read from Array
Serial.print("Size of Array: ");
Serial.println(sizeof(SampleImage));

//PUTLETTER(25,30, 350, (GRABLETTER(25, 30, 450, SampleImage)), NewImage);

// The following code writes the array above one at a time to the display's memory.
select();
spi transfer(Ox00); // Transmit command
spitransfer(Ox00); // High byte of the target memory
spi transfer(Ox00); // Low byte of the target memory
for(int j = Ox00; j < Ox4B00; j++) //

spi_transfer(pgm readbyte (&SampleImage[j]));

}
deselect();

//
//
//
//
//
//
//
//
//
//
//
//
//
//HEX

127

Bibliography

[1] Arduino, "Arduino Uno". [Online]. Available: http://www.arduino.cc/en/Main/
ArduinoBoardUno. [Accessed: Jan. 29, 2011].

[2] Cornell University. ""Vampire" Appliances -- They Suck Electricity Even When Switched
Off -- Cost Consumers $3 Billion A Year, Says Cornell Energy Expert." ScienceDaily 27
September 2002. [Online]. Available: http://www.sciencedaily.com-/releases/
2002/09/020926065912.htm. [Accessed: Jan. 11, 2011].

[3] Digi International Inc., "XBee/XBee-PRO RF Modules," 2009. [Online]. Available:
www.sparkfun.com/datasheets/Wireless/Zigbee/XBee-Datasheet.pdf. [Accessed: Jan. 29, 2011].

[4] Energy Aware Technology Inc., "The PowerTab In-Home Display,". [Online]. Available:
http://www.energy-aware.com/wp-content/uploads/20 11/01 /Product-Info-Sheet-PowerTab.pdf.
[Accessed: Jan. 29, 2011].

[5] Energy Optimizers Limited, "Plogg". [Online]. Available: http://
www.plogginternational.com/ploggproducts.html. [Accessed: Jan. 29, 2011].

[6] Fairchild SemiConductor, "Triple 2-Channel Analog Multiplexer," 74VHC4053 datasheet,
May 2007. [Online]. Available: www.fairchildsemi.com/ds/74/74VHC405 1.pdf. [Accessed: Jan.
29, 2011].

[7] Feldman, Assaf, "ReachMedia: On-the-move interaction with everyday objects," Ambient
Intelligence Group, MIT Media Laboratory. [Online]. Available: http://web.media.mit.edu/
-assaf/ReachMedia/ISWC-final.pdf. [Accessed: Jan. 29, 2011].

[8] B.J. Fogg, Persuasive Technologies - Introduction. Communications of the ACM, 42 (5) pp.
26-29, 1999.

[9] B. J. Fogg, "A Behavior Model for Persuasive Design," Persuasive 2009, April 2009.
[Online]. Available: http://www.bjfogg.com/fbm-files/page4_1.pdf. [Accessed: Jan. 11, 2011].

[10] Google Inc., "Google powermeter," Google.org. [Online]. Available: http://
www.google.com/powermeter/about/about.html. [Accessed: Jan. 29, 2011].

[11] ID Innovations, "ID Series Datasheet," RFID datasheet, March 2005. [Online]. Available:
www.sparkfun.com/datasheets/Sensors/ID-12-Datasheet.pdf. [Accessed: Jan. 29, 2011].

[12] LinkSprite, Smart Outlet User Manual, LinkSprite Technologies Inc., Jan 2009. [Online].
Available: www.linksprite.com/pub/SmartOutletenglish.pdf. [Accessed: Jan. 29, 2011].

128

[13] Maxim Integrated Products, "2.2MHz, Dual, Step-Down DC-DC Converters, Dual LDOs,
and RESET," LDO datasheet, Nov. 2010. [Online]. Available: http://www.datasheets.maxim-
ic.com/en/ds/MAX16922.pdf. [Accessed: Jan. 29, 2011].

[14] P3 International, "P4400 Kill A Watt Operation Manual,". [Online]. Available: http://
www.p3international.com/manuals/p4400_manual.pdf. [Accessed: Jan. 29, 2011].

[15] "Rusty Nail Workshop Projects," August, 2010. [Online]. Available: http://
www.rustynailworkshop.com/Projects/Entries/2010/8/9_ArduinoPoweredKentDisplay.html.
[Accessed: Jan. 29, 2011].

[16] DIY Kyoto, "Wattson," [Online]. Available: http://www.diykyoto.com/uk. [Accessed: Jan.
29, 2011].

129

