A User Study of an Educational Video System
by

Caitlin R. Johnson

S.B., Computer Science and Engineering. M.I.T., 2009

Submitted to the Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science ARCHIVES

at the Massachusetts Institute of Technology MASSACHUSETTS INSTITUTE
OF TECHNOLOGY
May 20,2011
[Jone 20i1] JUN 21 201
Copyright 2011 Caitlin R. Johnson. All rights reserved.

LIBRARIES

The author hereby grants to M.I.T. permission to reproduce and
to distribute publicly paper and electronic copies of this thesis document in whole
and in part in any medium now known or hereafter created.

4

a—

Author

Department of Electrical Engineering gnd Computer Science
May 20, 2011

Dr. Chiist¥pher J. Terman
Thesis Supervisor

Certified by

Accepted by

Ay :
Dr. Christopher J. Terman

Chairman, Masters of Engineering Thesis Committee

A User Study of an Educational Video System
by

Caitlin R. Johnson

S.B., Computer Science and Engineering. M.I.T., 2011

Submitted to the Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for the Degree of
Master of Engineering in Electrical Engineering and Computer Science
at the Massachusetts Institute of Technology
May 20,2011

ABSTRACT

This thesis describes the creation of an educational video system and the results
of introducing it in a large MIT class. Experience shows that there is a high demand for
recorded, course-specific, educational content. While there are several solutions for
recording and sharing general instructional interactions, there are not as many are not
many easy ways for instructors to record and share individual interactions. The system

is meant to supplement existing course material with recordings of these interactions.

Thesis Supervisor: Christopher J. Terman

Title: Senior Lecturer, Department of Electrical Engineering and Computer Science

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 3

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

Acknowledgements

I would like to thank Chris Terman for being an excellent academic advisor and
for helping me get through both degrees at MIT. I also would like to thank him for
providing just as much guidance and support as my thesis supervisor. Despite various
setbacks, Chris has always had the patience and wisdom to help me stay on track, and

for that I am extremely grateful.

For giving me an opportunity to teach, for keeping me around despite my various
imperfections for all nine semesters, and for sharing his seemingly infinite wisdom
about teaching, wine cork topology, finite state machines, and everything else, I would
like to thank Steve Ward. Steve allowed me to use his course, 6.004, as a testing

environment for my thesis project, and I am very thankful for that opportunity as well.

For her infallible assistance with navigating requirements, and for providing all

kinds of advice on what was frequently short notice, I would like to thank Anne Hunter.

For being the first ones to inspire me to teach at MIT, for being fantastic summer
office mates, and for helping me out with my research project when I got stuck, I would

like to extend my sincere appreciation to Hubert Pham and Justin Mazzola Paluska.

Last, but certainly not least, I would like to thank all of the TAs and LAs who
humored me and tried recording videos to add to the course content and help me with
my thesis. I would also like to thank all of the students who tried out the system. In
particular, I sincerely appreciate the efforts of the early adopters who provided me with
useful feedback, and demonstrated admirable good humor while I worked out bugs

before introducing the system to the entire class.

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 5

Table of Contents

CHAPTER 1: INTRODUCTION.............. certestestersecessanssnnes ceesssessensesesssssansenss 10
CHAPTER 2: PREVIOUS WORK ...tcttctietinriercercssescesssesssossesssessessscssssssscnsansss 11
2.1 OCW ittt ettt s e s reeeeeseaste st e e et etaeaesssesassaesastasssssntaeessssssnseneessansnssessessansrssntasssssrnnnen 11
2.2 6.004 LECTURE RECORDINGS . .ciicctteervreernreeesireessseeressssessesssessensessssssnssssessessanseseessnsnnsees 12
2.3 KHAN ACADEMY coiiiiiieiiieeeierieieeesis s siuestaesssesecssestbeas s sssseses seessssssmssssessassessssstetssssansssssssns 13
CHAPTER 3:RECORDING TECHNOLOGIES ...cccccecttieiercnieciscecercorcese TR 11
3.1 INPUT HARDWARE .ooieieeiieieeeettsiice et eteeses e seseaseeseeseesssessssesessessstesssessnsssssssesssnsessasssnens 15
310 SINATEBOAT ...t et stesesvesetessesecseeseneese et et sennnessanreesaensaesssesasessassssnnes 16
3.1.2 ITHEUOUS g oo ie ettt itseste s e te st s st s sas s s s s e e e e e e r e e ras b baas s eseneneaeesnsasbabene 17
3.1.3 Apple iPads and Similar TaAbDIets.............ooovviveniiiiiniiiiiniiieiieiiesice s 18
3.1.4 WACOM CINEIQ 2IUXuevviciiiniiiniinitiiiiineteieienteesassssrissssees s s s sssnssssssas e s sas sesssssssnns 18

3.2 TABLET INPUT SOFTWARE ciiiiiiiviecnerernrersrineeeeneeeseteesseettesseessssnesssssssssnstsseessosssessessessnes 19
3.2.1 ONEINOLE c...ieeiieieieeeeieereeeieieetre e eereereesssestessessesnessesssssstaseesstenssssessssseessenenrersstrsssene 19
3.2.2 COT@I PAINEET ...occveeeveeteeeeeeectececveeetaeiseesteseessessesssessseesseessssssnstessasssssassssesssnsessaennsesnes 20
3.2.3 SKetChBOOK EXDPTESSuveueeeeireriersieesesresiastestssessesstessesseesste st es st enesasessesssesstesssensessees 20

3.3 RECORDING AND EDITING iiiiiiiiiiiiiierireerieseinnreeaeserteeereseretererassassesasaenenssssnnnmensusssesesenss 21
3.31 QUICKTIITIE X ...veeieeeeieeeertee et st trev e stessaee s srestessseeseneessemste e s sneessenseessnsunessesaessseassnes 21
3.3.2 SCTEENFIOWcuveeereeeeieeeeiieireiiceieetessteeesseesssaessesaseesesseesasasaeesansessesseesssnsneessnnresonneeennn 22
3.3.3 COIMEASIA c..ucvueeeeeecreiireseiieerserecstrirtessieteseeseesess e srrtesesanstessessossssaaessssssssssesssesssssasessssssanne 22

3.4 FINAL DESIGN iiiiiiiiiiiirieereiinrrerrnitnrarssneeeeesaenmeneesessssesesssssssssssesssossossssssssssssssssssasnessessenes 23
CHAPTER 4:CONTENT DELIVERY ..ccccccecetiecescnscananss cetettesacestcesscnrcsnsccnssnree 24
4.1 MODULAR FEATURES .iiittitiiiiiiriiinneerieornnrressenasnseraesstnsisseesssssssssissssssssssssssessnsssasssssssssens 24
4.1.1 HTML MOUIE DIU c...uuuveeieeceeieniintieeeireeesieriesesenessesssesseessssessssesssesssnsesessessasssnsess sasssessse 25
4.1.2 View HISTOTY GTAPRS .c..cueereririretiriteeeicrrnreeesaesseseestesseessnseesssessseessstesesssesisssssnsssssssans 25

4.1.3 COMMENE PANEL..........oooeeeveceioritieeieesteesieeesresstesssessanteesesnteesessesssenneessessessesseessnessenne 26
4.1.4 FAQUOTTEE BULLOM . oueeceieieeeeeeeieeertieeeseeesstesssestasssanesssssssessessasnssteessesanseseseessessssnessesssensees 27
4.1.5 Sorted Content Browsing TaDble.............oucueeevienirnieieeeesnieeineieeeiseereeeenteeseeseeseseesseesnes 27

4.2 WEBSITE VIEWS iiiiciieicireiieetei e cstesiac st sssbesasssane seas s s sabassasanssessnssesssssnsssanesossnsnses 28
4.2.1 StUAENTE PETSPECLIVEcoeeeeeeririecereiesiresieereseesteseeneessaessneessesssnsssnsesssssssasasasesssesnsas 29
4.2.2 SEQSf VICWS .eooeeeereriireieereeeteee st et eete e seet s saas e sabs e s sbs s s s ab s s v sabn s s sesbenssanassnanns 34
4.2.3 DJANGO AQMUIN ..ottt sttt sttt et eas et e s s sreean st ans 39

4.3 WEBSITE FRAMEW ORK ciiiiiiiiiiiieiniiiintiinseiiieseessesitrtistsssneessssssessssossssssssssssssssasssnessssnes 44
W0 35 B D o T 1o B O 44
4.3.2 Cascading Style Sheets (CSS) and Base Templatescccccoeevuervcrcurivuerneerinsrenenns 51
005 35 T [130 N7 o o1 S OO 53
4.3:4 APACRE ...ttt h e ettt e e e e eane s 58
CHAPTER 5: RESULTS OF USER STUDYc.cc.c0. ceesecesnnecintsternsstnnratacnrsannssses 59
5.1 TESTING ENVIRONMENT .icuitieuticesreeseerererssessereseeseessesssesssssssseessssssersosansesasssssssssssssssaessnns 59
5.2 INSTRUCTOR FEEDBACK wooiciieiiiiiiteeetiestesetrsessssssesssnsesssesssosssnessnsnsessnsenesssseesssessenssenss 60
5.2.1 TRHE VOIUNEEETS «....oeeveeeeeeeeeeeeeetteerteteeteseeeeresseessesssasssasssseesanessseesenesaensnesantaansesnnssnsans 61
5.2.2 Recording ENUITONIMENLScocceereecreorienriiniiniinressressntosiicssnssnssssenssssssssssssssssssssees 62

5.3 STUDENT FEEDBACK .ucetiiiitiieieiiiiiiectieressreesenreessnnesassessessssesssessesssnsaesssssssnassessessesssssoses 65
5.3.1 PerSONaAl INTETUICIIS.ccuveeeeeieeneereerreeeeereeseesesssesseeseessassesisesssatsssstessssesssaesiassssassnne 65
5.3:2 SUTVRYS. .uuerrreieetreeieee ittt teereeeeesiasteeseeseessasssssatssaessrte s sbassesssassesaesesensaeesssansessanesansaesnns 66
5.3.3 View HiSEOTY GrAPRS....cocieivriitieeeeecteetese sttt sttt sess s sas b s snnesra s 67

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 6

5.3:4 ViIAEO COMIMENESeueeeeeveeeereeeieeeeeseeesse s ssesss et ss s ssessessts s seeassaneseeeneeesssresesseneans 74

CHAPTER 6:FUTURE WORK.....c.ccccevueeee. corecnnaas creseetestttettettntcntnrsrsercnscesances 75
6.1 RATING SYSTEM cueeuieieeieiciieerieresrenrenresessisseseessessessessseseesessestessessseseassssessassssssssssssssssensesens 75
6.2 CHAPTER SEGMENTATION .otetieuiiitiiiiteeneeeeesteeeessteeseeeseessssesssessesssessessssssessesssesssessossens 76
6.3 ANSWERING QUESTIONS REMOTELY .ooucuiuieevieiieeniieteereteseseseeseeeeseeseeeseeseeseeeeesesenes 77

CHAPTER 7: SUMMARY ...ccoieutecncecenes Cererseresttetttcttetsieasasestesensartacensensersnsonns 78

CHAPTER 8:WORKS CITED....ccccceevetverernnnnenens ceesssestessestensstrtensanssessonssnssnane 79

APPENDIX A: DJANGO FILES ...cictiiuieiaiiiiinieceracecececencoscesensesones versessasensnns ..80
AL MODELS ottt s te st s st e vt s stn s sse e st e st e e s s ae st e e e e ss e et e eansaereeeabesrteenesennreereenteans 8o

AL MOEIS.DY .ottt se e et earere bbb st saee st et e beresenaben 8o
A2 VIEW Sttt sttt serteeste e s raeeseent e s be e e et tressabes s sebessabae s seasbessatssebeeesmnessenneesseneennns 87
A2.1 VIBWIS. DY veoeeereeeeeseenirsiisesessiesissassseasssssssessssessesssseesssessssssssssssesssessessssessssossssssesossssnsess 87
A.2.2 SHUAENE _VIBIIS.PY ...eovvrerenirerieeirereeeeirestreresseentesseesaesstessssstesssesessssestesseesssessessesasoreeneens 97
A.2.3 SEASf_UIBWS. DY .coveeririeieeiritiiesinitreieereesreeteeree e ese st e ss et e asesssssesteseseensesssasseessessensenses 104
A.3 PROJECT CONFIGURATION ..oiiciiecteirieritiniiesteeiseeesreeseesseessseosseessnssssessnessesssnssssssssesnsens 111
AL3.T UTIS.PY ittt sttt sn e et sae sttt s et e eab e st e sesbesssntetestansseonsonen 111
A 3.2 SEHHITIGS.PY cevrvirierierineeinitesieeeesiee e ste st stssse st as e essraseessesbesbessse sressesssensesbsessssnsesstsnsans 115
A.3.3 AdMINPY coiiviiiisieeeerrtetetst et e ettt st et ss b shoseesesserestossssenteneasatesan 118
A.3:4 MANAGE.PY .cuvoveereeieeieiterieeeitesirtsstes st e sstesesessaesssassssessessssessssssseesaessasesnsssnsesnsesssenn 119
A4 MISCELLANEOUS coteeeirieireetietesteseestesestessessessesseesesssssensenseasessestestensessessemsssessessessssssssess 120
Agd BNUMS.PY ittt ettt este e eetsttssae s e s vesrnsstesatestesssesssessesssessontesbeenssensesssssennes 120
Ag.2 LOAUET DY .oooviiiieninreiiiertesteieette et ste s s eseebss e ste st st essontesesstasssnsenbossasenes 124
Ag.8 FIEOTS.PY.eoeeeeeeeeeceeeeeette ettt ettt s et et s s s e as e et e eree st eestesssessseessssessesases 130
Aded FOTTNS.PY ..ottt sttt st e setsstesaae s teebs e raeesaeessssenseeses s sessnrassessnnesn 131

APPENDIX B: HTML TEMPLATEScccccciiiiiiiiietecercrencacessncanses ceressensenserenne 132

Bl BASE TEMPLATES .ioicertecieteeseeeieesteentiansrasssesassessesseeesssesssessssssssensesssssossessssssseessssossesues 132
B.1.l BASERIML ..ottt ettt s bt s e e e s an s reeannaentenrenns 132
B.1.2 Two_COIUMMREML ...ttt sstt e st s sttt e ee e eee e e eeenensesseeessesenseeas 132
B.1.3 TR1ee_DIOCK UMcononviiienieeieeeneeeteeteeeeee ettt st e e st evte st e saeeseeaseesaens 132

B.2 STUDENT LANDING PAGE ccoiiiiiiiieecctieee ettt ettt eee e ae e esneaes s neaaeneseeesenensanes 133
B.2.1 BTOWSERIML.......ccoooiiiieiiieniitesitcee e e ettt et st te st et e ase et e e s nesaanes 133
B.2.2 StUAent _Browse.REML..........c..ooueevueeeeeieeieiieeeieeereeeceeesesseseeeeeeeesanessssessssesaassssenns 134
B.2.3 MDTrowser.REML.........coccccocuiviimimreineiiieneerenseeeeseresesscvres s sssestesate st assessessesesesseesenes 135

B.3 SINGLE-VIDEO PLAYERceceteuiiteuieieuieretiereeeteseeeeseesesesessesseseseeseseeseanenensssessesesssssessseesessens 137
B.3.1 SROW_TNEAIARIML...aeeeveeeeeeeieereeeeceeete et te e et e eae s e e s setessesaresesessannens 137
B.3.2 Similar_vUideo_DaAr.REML........ooeeeiieeeeeiieeieeteeeeeeeeeeeeeeeeeeeeeseeesreesseseeeesssrssesssesssssssssnes 138
B.3.3 FQUOTTEE_DUITOTMIAEITL ...ttt st see e e et e e e e e er e 139
B.3.4 Timing_fields.REml...........c.ccccocoiiiviniiininiineiieesestesie ettt ee e st se s e senes 140
B.3.5 Comment_VIel.REML..............cccuviveveereeeiieeieiteeeiaiessiteseseeeeeeeesaeeeeeeeeessesessassesssseses 141
B.3.6 Display_interval _views.REML.............ccccccovievivnverenienrinecteereceseesesesseesvesssse v saene 143

B.4 AUTHENTICATION AND PASSWORD CHANGES ..oovvueeemeeeeeeeeeeeeeeeeeeeeeeeeeeeesasssessnns 145
B4l LOGINREML ..ottt sts e stteere et cvee e s ess s e sstesassate s e st esaesenesseenaeas 145
B.4.2 Password_change_form.RtmL.............cccccoovvirmmnneiecieeeeicecreeeeeene s esseseeesnens 146
B.4.3 Password_change_done.Rtml.................ooouieoeeecieeceeieececieccee et 147

B.5 VIDEO UPLOAD AND CHAPTER ASSIGNMENT ..ccoiivieieieiteneeeisemeneeeseseseeeeeseeseeeannes 148
B.5.1 Upload_video.REMLccouueecieeniieiieeeeeitieeteetee ettt ettt s v s sreasae s e e sre e 148
B.5.2 Topic_asSignment. Atccvverieriininieieeseeneieecsseste ettt s s s sses e ese s nesreennanes 149

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 7

APPENDIX C: JAVASCRIPTcoctieiictinnnrictccireccecarsrsecescesessesesassesscscssnses 151

C.l QUICKTIME FILES courrtteuteuiiireieeiiniee it insss e ssuantestatansesssssssssossaeseessnnsnsesnsssesssonesnsannns 151
C.1.1 Common_qUickHme_1MetROASJScovverrverrereeceeereseensiesnesiesseessseessesesssesssesssesssanne 151

C.1.2 Interval_movie_Reader.RUTLooveoieeeceeiieeeeceerccreeessreeeesssveeesisesssssseesessvnnes 154

C.2 JQUERY/ATAX ...utiiieuiieeettiesuteeeieeesestaresousesenstessasanseasssesseasonsssessssnensssesesssssessensesesssseesaesssnanssn 157
C.2.1 COMMENL_SUDIMISSIOTLJS cuveeureierveerersieriinsiinsisesseessecstessiresasessssessssessssesssesssssessarasssssene 157
C.2.2 FAUOTTIE _DULIOM JS..cvueeueeieeireieeceenteieeenieest ettt et esse st et estes e es st ee e eesesenes st aesasnsenns 159
C.2.3 INervAl_MEtROAS JS c.cooveereeceerieeieseeiceinteetee et ettt et s s essesssessnassnaanaesne 160
APPENDIX D: CSS PROFILES ...cciiitiittiiiiiiecircessscsesscasccsssesssessscsccsscsssccosses 165
D.1 MAIN STYLE SHEET DEFINITIONS .cccicteeetercrrnrrerrescrunnnrreneeeerseeeerseessssesssessossssassssnssenee 165
D.1.1 USETSIEE.CSS ceoeeevieeieiiienetreeescetrirereesiereeeessesssntaessseiinstassaeseasaesssessasssssssssnnnsnssssnsesnnssesesns 165
D.1.2 DEFAUIL.CSS wueeeeeeeeeeeeecetriseretreteeseesreesteessessee st e s s vt sesse s sbesssesesnteansesssaenssasnsnsesrnes 170
APPENDIX E: APACHE CONFIGURATION....cccctctttetetcctnertortoscscescsccncenncene 179
E.i APACHE VIRTUAL HOST: TUTORTIALS .ccciieciieeieeeeeiecitteeeeneeeeetreesasaeesesnneeeessesessnnenesnnns 179
E.2 DJIANGO_WSGIL.CONFIG ciecuiiieicieeieeeeeeenteeeteesiaesetaessntesssasssssesstesesssssasasssessassesnsenesessnne 181

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 8

List of Figures:

Figure 1: (Left) Staff views of video comments. (Right) Student view of comments
Figure 2: Browsing table to sort media according to key attributes

Figure 3: User login prompt

Figure 4: Password change form

Figure 5: Password change confirmation

Figure 6: Sample student landing page

Figure 7: Single-video viewing page

Figure 8: Staff form for uploading a new video

Figure 9: Topic assignment and movie preview

Figure 10: An example of a view history graph

Figure 11: User administration

Figure 12: Object browsing and filtering

Figure 13: Modifying object properties and adjusting foreign-key relationships
Figure 14: Relationships between data models

Figure 15: Template files involved in rendering a single-movie viewing page
Figure 16: View History graph showing increase for problem solution

Figure 17: Using view history graphs to determine most popular concepts for review
Figure 18: View history graph showing sharp drop off due to a mislabeling

Figure 19: A More typical view history graph for an hour-long video lecture

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

26
28
29
30
30
31
33
35
36
38
40
42
43
46
50
69
70
72

73

Chapter 1: Introduction

The primary goal of this project was to provide a way to record interactions
between students and teachers that would otherwise be forgotten. This creates a sense of
being “present” in a course that students might not otherwise have with traditional text-
based methods that are available to instructors for answering questions because the
videos can provide more meaningful explanations. It also allows students to see the
kinds of explanations that occur between instructors and other students, which can help

students to feel more comfortable with asking their own questions, in turn.

While other work had focused on capturing the experience of being in a
classroom, I chose to focus on capturing one-on-one office-hours type interactions
between students and teachers. In my experience helping students in one particular
course for nine semesters, I have found that many students have similar questions every
semester. Teachers invest a significant amount of time and energy in developing their
abilities within a given subject, and it seemed a shame that this expertise in teaching
often gets lost after a teacher leaves at the end of one or more semesters. Some of the
most valuable teaching moments occur somewhat spontaneously when students ask for
help or clarification, and only those students have the opportunity to remember these
interactions afterwards. Preserving these interactions could significantly add to the
educational experience of all students in the classroom, and it also might help new

teachers learn effective ways to communicate information to students.

In order to record these student-teacher interactions, I selected a set of recording
technologies and created a web-based content distribution system. I recorded material,
and invited other instructors to contribute additional material. I granted students to this
system for a semester in one particular course that I was involved in teaching. This
thesis discusses the design choices behind the recording setup, the content delivery

system architecture, and the results or this user study in an MIT classroom.

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 10

Chapter 2: Previous Work

There has been a good deal of previous work in publishing educational content,
and many education programs offer resources in the form of lecture videos or online
forums. Much of this work has focused on improving distance education — either in
closed enrollment settings or publicly available self-paced material. In this section, I
provide more information about examples of current strategies. First, I discuss MIT’s
publicly available course archives, which frequently include lecture videos. Second, I
cover a more localized lecture video recording project where media was made
immediately available to students in the class. Third, I describe a different approach
offered by the Khan Academy, where the publicly available videos are general tutorials

rather than formal lectures.

2.1 OCW

MIT’s Open CourseWare initiative, commonly referred to as “OCW,” allows
people from around the world to access assignments and lecture material from many
MIT classes. Every class with an OCW record at MIT is developed individually, and
there is a resulting disparity in the level of educational content provided for every
course. Class records on OCW are relevant to a particular semester. This means that for
a single semester, one course might have all lectures recorded in a web-enabled video
format, and these lectures would be posted as part of the class record. Homework
assignments, exams, and lecture notes from that same semester are often posted, but

the exact pattern is not always consistent.

OCW is a significant undertaking that benefits many people around the world. It

also requires significant funding. The OCW site [1] mentions that each course requires

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 11

between $10,000 and $15,000 dollars per semester to turn that term into an OCW
archive, and including video content can double this approximation. This funding helps
to make OCW a well-organized resource. It also supports translation for course

materials, and many class records are available in multiple languages.

There are several primary differences between OCW and the system described in
this thesis. Notably, OCW provides a central repository for course resources and does
not assume a separate course website. Each OCW record is meant as an archive of a
course website, and contains generic lecture and homework records. The records do not
contain records of personal interactions between students and instructors. The OCW
records are not media based, but rather centered on providing a simple set of links to
archived material. In addition, each OCW archive is statically linked to a course as it was
taught in a particular semester. The system that I developed and describe in this thesis
provides support for organizing media for a specific course across multiple semesters. In
this way, a student becomes more situated in a subject as it has been taught for several

semesters, because records of instructor explanations are all accessible in a single place.

2.2 6.004 Lecture Recordings

“6.004” was the course were I conducted the user study (see Section 5.1), and it
was particularly interesting to consider lecture videos made for the same course as
another resource in this area. For more than one previous semester, the lecturer used a
separate camera and screen recording software to capture two movies — one of the
lecturer and chalkboards, and the other of the PowerPoint slides and pointer movement
for calling attention to parts of the slides. This setup also involved a separate wireless
microphone. These videos required some post processing to join together, and they were
usually synchronized by manually finding the right start and end times for the identical

audio track that they both shared. Because the lectures were mostly PowerPoint based,

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 12

this more imprecise approach seemed to work well because the PowerPoint slides didn’t
change as rapidly as a display might if it was showing an instructor writing on a tablet.
This approach also differed from the one presented in this thesis in that for more slow-
moving PowerPoint slides, the lecturer found the additional video track of a human

being moving around and gesturing to be more helpful.

In the tutorial videos developed in the course of this thesis, the more dynamic
content was presented in the single drawing surface, and merging multiple video
recordings was not as necessary for this reason, and in fact, more movement in another
section of the video file would have probably been distracting. These videos were similar
to those produced for this thesis in that they were made immediately available to
students taking the class that semester, although they were not necessarily intended as
supplements to a publicly available resource like MIT’s OCW. I did reuse these videos
within the class tutorial system and found them to be popular and helpful to students in

a different and complimentary way.

2.3 Khan Academy

The Khan Academy is not-for-profit educational organization that is responsible,
primarily, for the creation of several thousand educational tutorial videos on a publicly
accessible website. Subsequently, the Khan Academy had come forth with interactive
exercises, measures to track student progress through such exercises, and more
advanced student-monitoring tools. Salman Khan is the creator of the Khan Academy,

and he is the primary author of these tutorials.

The video explanations on the Kahn Academy website are similar in style to those

created for this project. The explanations are focused on the kinds of drawings an

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 13

instructor might make at a chalkboard or on a piece of paper while interacting with an
individual student.

This is very similar to the approach used in the tutorial video system that I
created for this project, but the most striking difference is that I tried to create a more
localized solution. The tool that I developed could be used in any classroom, but it is
meant as more of a record of in-person explanations, whereas Mr. Kahn has suggested
that his lecture videos be used in the place of traditional lectures. Both systems are not
mutually exclusive in any way, and they would almost certainly complement one
another very well. The Kahn Academy videos are licensed under a Creative Commons
License that would allow educational re-use in a system like the one that I have created,
but even more seamless integration with the rest of the Kahn Academy tools may be
possible in the future.

I developed the idea for the tutorial video system before discovering the Kahn
Academy. This means that at least two people thought this was a good approach to
publishing online educational media, and it also means that I had a different approach.
Not only did I have a different vision for the types of recordings that would be made, but
I also ended up with a different set of recording technologies that helped to achieve this
vision. Mr. Kahn uses Camtasia recording software, free tablet input software, and a
smaller Wacom Bamboo tablet [2] . For this project, I chose an LCD tablet because I it
provides a more intuitive way to record interactions with students. The hardware

considerations for projects like this one are discussed in Section 3.1.

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 14

Chapter 3: Recording Technologies

In order to create a system to provide students with helpful recordings of
educational interactions, I had to determine a good way to create these videos. In order
to preserve the information from these interactions, I explored a number of different
hardware and software technologies. The set of tools that I chose for this project might
well be surpassed technologically in the near future, but the reasoning behind selecting
various tools and the feedback from students in the user study both illustrate principles

that could be helpful to anyone looking to design a similar system.

Many of the student-teacher interactions involve looking together at a piece of
paper or a chalkboard while the teacher draws and explains. In order to record this kind
of interaction, I chose to focus on the audio of the student-teacher communication and
the drawing surface where the visual part of the explanation takes place. In order to
provide this functionality, I needed recording software, video editing/processing
software, and a computer-connected drawing surface that provided an interface as
intuitive to use in an explanation as a chalkboard or piece of paper. I explored
possibilities for each kind of tool before deciding on the eventual set that worked best,
and the following sections discuss the merits of some of the notable technologies

considered for the project.

3.1 Input Hardware

Finding an intuitive drawing surface was one of the key concerns in setting up a
recording system. Versatility and portability were also important factors. I looked at a
unified recording/interaction surface, two USB tablet input devices, and mobile tablet

devices. While mobile tablet devices might be more portable and convenient in the

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 15

future, it seems that the hardware and applications available to easily set up a recording

system might not have been developed at the time of this project.

3.1.1 Smart Board

The SMART Board is an interactive whiteboard solution with bundled software.
This was attractive as a potential solution because it provided a highly visible surface for
student interaction. The SMART Boards provide support for user touch interaction to
scroll through content larger than the board can display, and accepts writing input
through special digital pens. Content is displayed on the board and pen input is
captured from the board using SMART Technologies proprietary software. Projectors
and cameras are used in various configurations across the different models to provide

the interactive element.

It was somewhat difficult to obtain an exact figure for the cost of a SMART Board
in any such system because the company only gives prices in individual discussions
about total “solutions.” Media releases from SMART Technologies provide some general
figures for suggested retail value. The SMART Board 880 [3] offers support for
simultaneous users through the “SMART Notebook 10.7 collaborative learning software”
that is published by SMART Technologies. The suggested retail value for the board alone
is $1,999 and for the entire system, including the projector, it is listed as $3899. Some of
the newer products, such as the SMART Board 885ix interactive whiteboard system [4]
provide advanced features for meetings, including integration with SMART
conferencing software. The product announcement lists the suggested retail for this

second solution as $6499, with conferencing software starting at an additional $5999.

The SMART Board did not seem like an ideal solution because of the bundled
software limitations and the high price. The demo version software for the SMART

Board seemed very well suited for displaying and interacting with images and prepared

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 16

presentations, but it was incredibly unintuitive for displaying simple pen-input. The
software offered many other features to integrate with student mobile devices like tablet
PCs but the full-featured version of the software was unnecessarily expensive for the

scope of this project.

3.1.2Intuous 4

Wacom’s Intuous 4 line of tablets provides a high level of pressure sensitivity and
tilt sensitivity. These tablets are solid-color, horizontal, user-input devices that use a
dedicated, wireless pen. The tablets attach to a PC through a single USB connection, and
are compatible with Windows, Mac, and Linux. Like all Wacom tablets, the product
comes with a few software licenses, but these are not by any means the only compatible
tablet input software products. The Intuous 4 tablets start at around $200 for the

smallest model.

I used one of these to produce a few videos before switching to the Wacom Cintiq.
The experience of writing on a horizontal surface while viewing the result on the vertical
screen in front of me seemed highly counterintuitive, and while I was able to adjust to a
certain degree, I wanted to come up with a solution that was easier to learn to use for
recording. The time investment needed to train other potential video authors to write on
this tablet fluidly seemed impractical, and I also did not think it would be intuitive and
natural enough to be a good replacement for a “piece of paper” when offering

explanations to students.

Additionally, the Intuous 4 seemed to require more memory to process tablet
input because of the higher degree of granularity afforded by the device. For instructors
interested in producing tutorial videos in private, without engaging students directly,

there are other, more basic, less expensive tablets available. The Wacom Bamboo tablet,

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 17

is one of these simpler devices, and it is the type of tablet reportedly used by Mr. Kahn

in producing videos for the Kahn Academy, mentioned in Section 2.3.

3.1.3 Apple iPads and Similar Tablets

Apple iPads are highly portable, lightweight tablet devices produced by Apple.
Though the current leading product in their category, there are many similar
alternatives. Highly mobile solutions for recording student and teacher interactions are
very desirable, and I did look into using devices like this for doing so. Simply put, at the
time that this system was assembled, there were no readily available ways to record
screen activity on these devices, and even if there were, the hardware might not have
been able to keep up with recording and processing tablet input at the same time. Future
iterations of this type of device will almost certainly offer the kind of functionality that

would be useful for recording student-teacher interactions.

3.1.4 Wacom Cintiq 21ux

The Wacom Cintiq 21ux provided the best interface for simulating the natural
feeilng of drawing on a piece of paper while explaining a concept to a student. The Cintiq
21ux is a 21-inch LCD tablet. Essentially, it functions as a 21-inch monitor with the
ability to accept tablet input with the same high-performance levels of the Intuous 4
mentioned in section 3.1.2. The Cintiq is a much larger device than the other non-LCD
Wacom tablets or mobile devices like iPads, but the bulk was actually helpful in
providing a large enough surface for drawing-based explanations, and the tablet-
enabled LCD technology provide to be incredibly intuitive to learn to use. It is also
important to mention that, while students were drawn to the large “fancy-looking”

tablet/LCD, once an instructor started using it in an explanation, the process of using a

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 18

pen to draw in something paper-like was so natural for students that they were not
distracted by the technology and were able to proceed with the interaction more

naturally.

3.2 Tablet Input Software

For the tablet devices that I reviewed in the course of this project, tablet input
registers as a mouse movements. There are countless software products that can
function as a canvas for user input. For this project, I wanted a software product with a
user interface that was not too cluttered because this might be too distracting during
recording and leave instructors spend more time interacting with the UI to select
brushes or colors than necessary to help students. It was also important to find a
product that produced clean, legible brush strokes so that instructors’ writing would be
visible during the recording process. In addition to displaying brush strokes, I wanted to
be able to quickly add images to a background layer so that it would be easy to draw on
existing course material in the form of images and PDFs, because this is a common

method that instructors use to help to explain things to students.

3.2.10neNote

Microsoft OneNote is a product offered as part of the Office Suite. The product
was not offered for Mac or Linux platforms at the time of this project. OneNote offers
interesting features like note synchronization across devices, but this was not
particularly important for the immediate goals of this project. OneNote seems better
suited for individual note taking where the finished result is meant to be static. The user
controls are not large enough to be easy to find during recording. The lack of cross-

platform support also makes it a less desirable choice. OneNote does, however, offer

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 19

excellent support for multimedia interaction between images and writing, but given the

previous limitations, this was not the ideal choice.

3.2.2Corel Painter

Corel Painter was one of the bundled software options available with the
purchase of the Wacom Intuous 4 and the Wacom Cintiq. The user interface is
sufficiently intuitive, and there is very fine-grained control over brush size, granularity,
etc. Unfortunately, the same features that make this a great tool for artistic input also
make prone to using too much memory, which causes a lag in registering pen input on
the screen when the recording program is also running. Because extensive graphics
features were not as important as smooth writing during recording, this was not the

ideal solution.

3.2.3Sketchbook Express

SketchBook Express is a free product produced by Autodesk. There is a more full-
featured, paid version, SketchBook Pro, but the free version was suitable for tablet input
during recording. The user interface is sufficiently intuitive and free of clutter. The
program does not use too much memory, and thus capturing tablet input while
recording does not lead to significant lag in displaying pen movement. Adding images is
as simple as pasting them into the file, and the functionality for putting different images
in different layers is highly intuitive and easily accessible. The artistic depth is not as
extensive as it is in Corel Painter, but this is not as necessary for capturing simple
instructive interactions. There are also free versions of this product available on mobile

devices running Apple’s i0S and Google’s Android operating systems. This makes

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 20

SketchBook Express a promising candidate for use with more mobile solutions when

these become more feasible.

3.3 Recording and Editing

The final part of the recording setup was to select software for recording screen
activity and audio of student-teacher interactions and then editing that content before
publishing it to the course media site. Several software solutions offered simple screen
recording, but not all of them offered intuitive and effective editing functionality or a
low price point. A few notable solutions that I explored in the course of this project are

discussed briefly in the following subsections.

3.3.1 QuickTime X

QuickTime X comes free with Apple Snow Leopard. One major disadvantage is
that this is the only operating system that is compatible with it. QuickTime X. This
software has several appealing features for exporting videos easily to various formats
and web locations like YouTube, but it seems better suited for recording webcam input.
There is a desktop recording feature in QuickTime X, but it is not possible to limit the
recording to a particular window or monitor. The editing features are also very limited
compared to other options. Given these limitations, QuickTime X might not even be the
best free option for the given recording application where screen capture is the most

important feature.

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 21

3.3.2ScreenFlow

Telestream’s ScreenFlow is a home screen casting product that allows users to
record, resize the recording area retroactively, cut video and audio tracks, splice in new
ones, add text elements, and export the finished product to QuickTime or Flash files on
disk [5] . There is also support for publishing videos directly to YouTube. ScreenFlow
was about $100 at the time of purchase, and provided very intuitive ways to record and
edit the videos for the various instructors who participated in the study. ScreenFlow is
primarily a Mac application, but it can be run on other operating systems. ScreenFlow
has some nice features to reduce the memory footprint while running, which is helpful
when the tablet input software is also using system resources. While there are
comparable solutions, I chose ScreenFlow because it provided the desired functionality

without costing more money than necessary to achieve that.

3.3.3Camtasia

TechSmith’s Camtasia is a full featured recording and editing application that is
more specifically focused on screen recording and creating polished screen casts. Like
ScrenFlow, Camtasia’s interface makes it very easy to resize the recording area after the
fact, add captions, and export videos to various formats. At the time of purchase,
Camtasia was more expensive than ScreenFlow, but as of May 2011, education discounts
[6] are available that reduce the price from $149 to $99. Camtasia also offers advanced
support for automatically zooming in on areas of interest for smaller screens like those
on mobile devices. Camtasia is the tool of choice for many educational media publishers,
including Salman Khan of the Khan Academy mentioned in Section 2.3. Overall,
TechSmith seems to offer more software products for conferencing, and interacting with
images [7] that integrate with Camtasia, and this might make it a better choice for

applications that would need to make use of that. I chose ScreenFlow because they both

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 22

offered similar functionality for my purposes, and ScreenFlow was less expensive at the

time.

3.4 Final Design

A successful educational content delivery system depends on the ability to create
useful content quickly. Producing educational videos depends a tablet device on the
hardware side, and software for displaying tablet input, screen recording software, and
video editing. Tablet input and screen recording are both computationally intensive, and
it is important to choose a set of components that balances the load placed on the
system during recording with the quality of the visual feedback from the tablet during

recording.

The physical tablet and tablet input software also need to be easy to use. The
hardware and software components used in the recording process were chosen to
balance the computational load with the quality of output and ease of production. I
chose the Wacom Cintiq 21ux as my input device because it was highly intuitive, and it
worked with a wide variety of software for displaying input and recording it. For tablet
input software, I chose SketchBook Express because it was lightweight, sufficiently
intuitive, and provided good support for including media such as images or PDFs for
background. Finally, for recording software, I chose ScreenFlow because it made the
editing process sufficiently intuitive, provided necessary functionality and was less
expensive than comparable products. Armed with this set of technologies, I set about
building the content delivery system to share recordings with students. The architecture

of this content delivery system is described in the next section.

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 23

Chapter 4: Content Delivery

After settling on a recording setup, I needed a way to share these videos with
students. ScreenFlow had a nice feature for exporting videos to YouTube, and I did
share a few videos publicly that way, but I mainly used it as a way to demonstrate
recording approaches to others while building the website. For some purposes, a simple
public forum like YouTube is probably sufficient, but for deployment in a specific class,
it made sense to build a website to organize the videos in a more meaningful way. I
created a site that required a username and password to login and view content because
I wanted to track user activity and because I anticipated that students might object to

having videos that included their voice being shared publicly.

I began with very little web programming experience, and decided to use a web
framework to help with managing the underlying database. This provided a good
starting point for building a basic video viewing site, and from there, I incorporated
other web programming tools for formatting specific site views, manipulating the
embedded movie objects, sending information to the server to record user viewing
habits, and generating graphs to show staff members students’ aggregated viewing
patterns for each video. Finally, when it came time to grant access to all 150 students in
6.004, I set up a more robust server configuration for serving the large media files to

many users simultaneously.

4.1 Modular Features

In this section, I describe some of the key components of the site’s user interface.
This is meant as a high level overview to motivate further discussion of more

complicated user views and underlying functionality. A more in-depth description of

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 24

entire user views from various pages can be found in Section 4.2. Section 4.3 covers the

system architecture.

The code behind each of the modular components described in this section can
also be reused to further extend existing features. The main user interaction features for
the site listed are the embedded movie object, view history graphs for staff members, a
list of comments with a submission box to add a new one, a button to select or remove a

video as a favorite, and a sorted table for browsing content.

4.1.1 HTML Movie Div

There are several JavaScript files and CSS profile definitions that define an
embedded movie player. This player displays a QuickTime movie object and provides a
navigational bar with start/stop buttons and a scrubber that one can move to change
positions in the video. The value of this scrubber in the movie timeline is referred to in
the code, and in this thesis, as the “playhead.” The code involved in including the player
object on a page in the system also includes functionality for tracking users’ viewing

behavior when interacting with the video controls.

4.1.2View History Graphs

View history graphs allow staff members to see the number of users viewing the
video continuously at evenly spaced intervals of the video length. The graphs are 2D
plots with time on the horizontal axis ad the independent variable, and number of users
watching continuously at that time plotted on the vertical, dependent axis. View history
graphs are currently only visible to staff members, but they could be made visible to

students by eliminating a simple conditional statement that checks if the user is a staff

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 25

member within the show media function in views.py. These graphs are generated

using the Google Graphs [8] service. This process is described more in Section 4.2.2.3.

4.1.3 Comment Panel

The comment panel appears under the embedded movie object in the single video
view, which is discussed in further detail in Section 4.2.1.3. Students can choose whether
to make their comments visible to all students in the class, or to make them visible only
to staff and the author. An example of this contrast in the staff and student views of
comments for a particular video is shown in Figure 1. The list of comments
automatically refreshes when users add new comments without forcing a refresh on the

entire page, which would cause any video being played to restart.

Tet us what you thomght of
§ the video! Was it 100 loeg” g
Wai one part particularty ; : =
haipbd? Leave your Tall wt whal vin PO of
camments heie. e wadecd Was & e lang?
5 i Wan one part partaulerdy
1 heia il Ledve v
& comaventL Rare

Figure 1: (Left) Staff views of video comments. (Right) Student view of comments

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 26

4.1.4 Favorite Button

The favorite button also appears on the single video-viewing page. This allows
students and staff easy access to toggling a video as a favorite without cluttering the
video viewing area. There is a difference between student and staff favorites in the
database and this is reflected in the media-browsing table that is discussed in Section
4.1.5. When a video has not yet been added as a particular user’s favorite, then the
button text will read “Add Favorite,” and when it has been added previously, the button
will read “Remove Favorite.” The term “favorite” is used frequently throughout this

thesis, and it refers to the database object created when a user interacts with this button.

4.1.5 Sorted Content Browsing Table

The sorted content browser appears on the main student-landing page, and it
provides a quick way for students to find the set of videos most relevant to their needs.

The full student landing page view is discussed in Section 4.2.1.2.

The browsing table allows students to filter videos by author, semester created,
type of interaction in the video, and topic covered by the video. Students can also filter
videos by the “quiz number,” which means that they can choose to view the set of videos
that staff members have chosen as study material for a particular exam. This feature was
quickly added after it became apparent that students were very interested in browsing

the videos to find study material for exams.

There are icons on the right of the row entry for each video that allow a student to
preview the given video above on the same page, or to view the video in the separate,
main video viewing page. Students can also choose to populate the entire list with only

their favorite videos or the entire set of videos available to the class.

Topic Quiz # Type Author | Semester
(-~ Al Topics -~ B | (Quizz @ |{ - il Video Types -- Wl || caittin 38 |{ ~-All Terms-- i)

Quizz |OidQuiz leaitiin] Is11 s
iy IsyneronizationAndMetestabiity |Quiz 2 oldquiz caitling 11 o 0 = »
Pipelining Quiz 2 (OIdQuiz caitlini 811 o o ® »
|Sequentiait ogic Quzz |Odouiz caitinj [s11 lo lo ® »
EsMs Quizz od0uz caitlin 511 |o o ® »
00 r oM quzz lodauiz caitiing 511 Io 1 ® »
§|5ggmnnamggjc iz 2 TutProb \caitiing 511 lo o @ »
Quiz 2 TutProb Caitlin S11 4 2 *® »
Quiz 2 CldQuiz lcaitling 09 o 1 ® »
|Quiz 2 QidQuiz icaitling 810 0 0 @* -
Quiz 2 OldQuiz icaitl S10 0 0 ® »
Quiz 2 OldQuiz caitliny |s10 o lo 3 »

Figure 2: Browsing table to sort media according to key attributes

4.2 Website Views

There are two different sets of possible site interactions for staff members and
students. Members of either group can manage their own passwords, view content, add
comments, and list favorites. Staff members can also upload new video files, assign
topics for chapters to create new TopicAssignment content, and view informative graphs
showing user viewing habits for each video. In addition, site administrators have
separate access to the Django admin interface for viewing all objects in the database

directly.

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 28

4.2.1Student Perspective

After logging in, the first thing a student sees is the main student-landing page
described in Section 4.2.1.2. From there, students can also preview videos in the same
page, or view them in a larger player on a new page that includes a comment box and

favorite button.

4.2.1.1 Login / Change Password

The login page uses the site’s CSS profiles described in Section 4.3.2, but the
main view function that handles the form processing for authentication is done with
included functions from the django.contrib.auth package. These view functions
provide necessary variables to view functions that the programmer is expected to
provide. The simple HTML templates login.html, password_change form.html,
and password_change done.html, listed in Appendix Section B.4 were the
templates that I wrote for this. The Django auth package takes care of all of the
authorization and validation, and site administrators can still change any passwords
with the convenient Django admin interface described in Section 4.2.3. The simple
login page is shown here in Figure 3 the change password form is shown in Figure 4,

and the confirmation page for a changed page is shown in Figure 5.

Mt Browsar My Profis £.004 Momedem. HemChecka® Ques e Swaevs BRI 10 poirns o8 Meatwe o he

Figure 3: User login prompt

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 29

Figure 4: Password change form

Figure 5: Password change confirmation

In these figures, one can see that each page has the basic masthead template and
includes easily accessible links for students to login, logout, and change their passwords.
This appears at the top of every page in the site, and thus, the login pages discussed here

are accessible from anywhere in the site.

4.2.1.2 Student Landing

The main student-landing page provides a place for students to view all content
on the site and keep track of their favorites. Figure 6 shows an example of a student-

landing page. For a hypothetical student, Ben Bitdiddle.

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 30

(
O %] | @] @l

Figure 6: Sample student landing page

At the top of the page is the usual masthead with course website and login links,
the top left of the page shows the movie preview area, the bottom of the page shows the
table that allows users to sort videos by their particular attributes, and the smaller box
at the right contains a link that will change the list of videos in the sorted table to be

either a student’s favorites or all of the videos in the system.

In this example, the student, Ben, might be preparing for “Quiz 4.” He might have
come to the site to look for study materials. The most recently posted videos are in-lab
explanations of old quiz problems that the instructor recorded when other students

came to office hours and asked for help in working through these particular problems.

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 31

Ben can also see if other students have added any of the new explanations as favorites,
and he can click the grey eye icon in the “Preview” column for each video to see it
displayed in the smaller preview player above. This is useful because Ben might not
know if this is a problem that he has already seen or if it’s one that he would like to see
explained. Previewing the video can give Ben a sense of the problem and help him save
time in finding the most helpful content. Once Ben has viewed more videos and made
more progress in studying, he can add videos as favorites, and then, the next time that
he logs in and sees this landing page, he could click the “Show your Favorites” link to

access them quickly.

While studying, Ben might discover that one topic is especially confusing, and
this of particular interest, or perhaps he might find that one of the instructors has an
especially helpful style of teaching. He can use the drop down lists at the top of the
browsing table to update it so that it only displays the relevant videos for the specific

topic or instructor.

Using the navigational links at the top of the page, users can return to the main
landing page at any time. Clicking “Media Browser” will take the user to this landing
page with all videos displayed in the table, and clicking “My Profile” will take the user to
this page with only his or her favorites in the list. Clicking on the blue arrow icon,
located in the “Detail View” column for each video, will take a user to the single-movie

viewing page discussed in the next section.

4.2.1.3 Movie View

The single movie view page allows students to see a larger view of a particular
video chapter. They can also see all comments that others have made publicly visible,
and submit their own comments. An example of a single-movie viewing page with
commentary, the comment submission form, and favorite button is shown below in

Figure 7:

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 32

WS (e

Tell us what you thought of
the video! Was it too long?

s one part particularly
helpful? Leave your comments
here... V.

A student like Ben Bitdiddle, who was introduced in the previous section, could
make a comment public for the entire class, or he could select the option for sharing the
comment only with “Staff Members and [username]” if he wanted to provide feedback to
the staff or ask a question that he did not feel comfortable sharing with everyone else. As

discussed in Section 4.3.3.3, the favorite button, included in the sidebar, and the

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 33

comment submission form both use Ajax to send data to the server so that the user’s
playback experience is not disrupted while the student provides feedback. This
uninterrupted video playback is also important for the collection of user viewing interval
information — which is conducted on this page and in the movie preview pane in the

student landing view discussed in Section 4.2.1.2.

4.2.2 Staff Views

Several of the views in the site are available only to authenticated staff members.
There are also parts of the student-viewable pages discussed in the previous section that
are only visible to staff members. Staff members can upload videos, assign chapter
intervals to create TopicAssignment objects, and access the separate Admin interface
discussed in Section 4.2.3.2. From the main landing page, there are links for staff
members to upload new content and assign new chapters to existing video files within
the system. When viewing the single-video player, staff members can see all comments
regardless of permission level, and they can also see view history graphs below the video
player. These perspectives that enable this integrated feedback are discussed in the

following sections.

4.2.2.1 Upload Video

This perspective allows a staff member to upload a video file, and specify basic
parameters. This completes the creation of a PublicVideo object within the database, as
discussed in Section 4.3.1.1, but it does not complete the creation of a TopicAssignment
object; that is handled by the topic assignment page that the instructor sees after
uploading a video to this form. If an instructor would like to add a new chapter to an

existing video, he or she can select one form the drop down menu at the bottom.

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 34

This page is specified by the upload video view function in staff views.py
as shown Appendix Section A.2.3 and the HTML template upload video.html,
shown in Appendix Section B.5.1. An example of the video upload form is shown below

in Figure 8.

 caitlin] 3]
[LabHints 4]
[Spring 2011 ¢

Timothy Leary's Calent

Save and Proceed to Tpic Assignment

caitlinj/0ldQuiz/510/510_Q3_P2_Partl.mov + IR Proceed to topic assignment ->

Figure 8: Staff form for uploading a new video

4.2.2.2 Topic Assignment

The topic assignment page allows instructors to preview videos after uploading
then, and then designate intervals within the video as chapters assigned to a particular
topic. Instructors can move the playhead to the desired start of the chapter, and then

click “Set to Now” under start time to set the HTML form value. The chapter end time is

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 35

set the same way with the button under the “End Time” label. Instructors need to also
assign a topic to the chapter, a subtitle that gives more information than the whole
movie title, and also designate the quiz for which this video could be study material. The
“quiz number” designation is more of a specific feature that I found particularly useful
for the specific course in which this system was evaluated. Figure 9 shows an example of

creating a topic assignment.

S g | S g e S e, T
e L

B4 ol 4 aghes e o | -Wen W e
B e e 4o SR e e ey ek e g
- v n an

L T < Lop posmibie

L O L e
T s

o s

PTG S R T O B
[Repeet—
e il il k. B s sl

R e e e
SN —

v T

-.p‘?w-’-_- IR P

T e A gl T <ol T ol W B e g

Basics of Information ¥ Constracting a Huffaan Encoc
77D R i Save and continue with this video,

Figure 9: Topic assignment and movie preview

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 36

After setting the chapter start and end times, and the other relevant information,
the author can choose to continue assigning chapters to this video file by clicking the
“Continue with this Video” button, or he or she can choose to return to a list of all videos
in the system to be able to create new chapters from them. The “Continue with this
Video” button is the only one that submits the information to the server to create a new
TopicAssignment object, though. To get back to the main media browser, an author can
click the relevant links in the masthead that appears at the top of this page, as it does

every page in the site.

Once an author saves the chapter, the information is sent through a standard
HTML form post to the server, where the HTTP request is sent to the view function,
staff_views.preview_and set_topic in order to process the request and create
a new database object for the new chapter. This view function is the same one that
renders the page by providing relevant variables to the movie preview.html

template.

4.2.2.3 View History Graphs

View history graphs are available to staff members as part of the individual video
player page. The graphs show how many students were in a state of continuously
watching that particular video for each part of it. The view history graphs are displayed
with careful formatting so that the axis scales alongside the QuickTime controller that
provides a similar timeline of the video. In this way, instructors can move the playhead
to easily view parts of the video corresponding to trends in student viewing for that part
of the video. To create these graphs, I first divide the total video length into uniform
intervals, and then run a query to determine how many ViewInterval objects cover each

time interval. The graphs are updated in real time with Ajax calls.

The graphs are generated with the help of the Google Charts tool. This tool allows

one to construct a URL with a specific format in order to render an image of a

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 37

corresponding chart. The function get img url within staff views.py goes
through the many steps of constructing this URL. While the long URL string may seem
complicated, the ability to construct a URL to retrieve custom images is vastly preferable
to writing the software locally to create the charts, especially while in the process of
developing a new system and determining the kinds of charts that one might want. One
example of the entire staff video player view with a view history graph, dashboard,
comment panel, and favorite button is shown in Figure 10. More discussion of how these

graphs were used and interpreted in the user study can be found in Section 5.3.3.

wsH (LP)

wsH(BP)
a PMNE (s?, sf)

B8 Tell us what you thought of B e
Wl the video! Was & too long? oS
B8l Was one part particularly A
heiptul® Leave your comments
h

Figure 10: An example of a view history graph

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 38

4.2.3 Django Admin

The admin application is a standard Django library that can be enabled with a
single line in the settings.py file from the main application. This settings file also
specifies the project database, so the admin application can be associated with a single
database file. This allows it to provide a useful interface for managing objects within the
database — including users. Fore more information on the Django web application

framework, see Section 4.3.1.

I used the Django admin interface to create users, manage section lists, and
change passwords. I also used it to set up test data in the database, and change video
information after the usual staff-upload process (described in Section 4.2.2) had already

been completed.

4.2.3.1 User Management

The Django admin and auth packages provide useful functionality for managing
users, setting permissions, and assigning users to groups. I found it very helpful for
changing passwords, customizing levels of permissions for staff and students, and

setting up groups for each recitation section.

The admin interface is less appealing in some other ways. Because it uses the
built in auth package for user management, it is more complicated to try to extend the
admin packages to add user management functionality. For instance, there was not a
good way to simply add 150 students at a time. In order to give the students access to
the site, I had to click the small “add new” button, go to a new page, change the group
and permissions manually at the bottom of the page, and then repeat the process for
each student. The admin interface also does not provide a great way to send email to all
members of a group, as it seems that groups were more intended as a way to manage

varying levels of permissions. I was able to write a script to send email to an entire list,

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 39

but was a much less desirable solution than having standard email lists in any desktop

mail application.

Despite these shortcomings, the admin interface provided a good start for user
management, although it lacked ready interfaces for adding users in large batches and
sending email to groups. An example of the Django user administration page is shown in

Figure 11.

Lo Wiy A e 1 e et VA £ SN Ay

!
i
|
¢
i
i

ORI 1 e § ¥ b s T S A e P R i R R

¢
i
}
v
k
3 -
58
134
L=

BRELEIEEEE “ 4

i LA e g
fas maais | {aa hatoge pures
s Lk B W
e | gy | Cou ndnts g

Figure 11: User administration

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 40

4.2.3.2 Object Browsing — Sorting and Filtering

For models that I defined in my own application, it was fairly straightforward to
customize the admin interface. The admin package requires a file within the main
project directory called admin.py. This is where a programmer can specify custom
filtering and sorting capabilities for object lists. For instance, when viewing Favorite
objects from the admin interface, I discovered that it would be very useful to know
which ones were more recent. In order to add this as a sorted column in the table
displaying all Favorite objects, I modified admin.py to include a FavoriteAdmin class
in which I specified which attributes of the Favorite objects should be listed in the table,
and which ones should be a way to sort the objects in the table. The simple code for the
FavoriteAdmin class below shows the basic format for all other classes specifying
custom browsing in the admin interface, and Figure 12 shows the resulting object list

view made possible through these customizations.

class FavoriteAdmin (admin.ModelAdmin):
list display = ('profile', 'ta', 'time’)

list filter = ('profile', 'ta', 'time')

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 41

Select favorite to change

Feotin

Laitiing

pennyiam

wimauhi

kennylam

sy |
LRt
Laitiing

Kasiiniy

For things like Favorite, Comment, or ViewInterval objects, this kind of custom
sorting and attribute display made it easier to get a general idea of user interaction with
the site. The information is still provided in the form as a list of database entries,
though, and this is certainly less informative than other forms of feedback like the view
history graphs mentioned in Section 4.2.2.3, The sorted list from the admin interface
can, however, give instructors a rough view of current trends when there are not better
reporting mechanisms, and can also give instructors and developers a better idea of the

kinds of reporting that could be included to improve student-to-staff feedback in the

system.

s

is

nd

cannng Ohgieiy /5 1430519

" s ture ST ALOE e By i 307

“catiny Tuniroh 751 1/ TP L aine™ by cailing S 1

¢ ok

Flam) SRS

i G

Hadin,

a1 1%]

WAl 3 1

-y

Q1P

1 aivaam 4

mas by cantiang O

B ThelugraiAbnn gee

StachadkedPy

Saedtaii] s leabis il i

rEery by

¢ 2

L

idd Pl MasSien v

v (FS

i a3

egaerti gl oga

I

[

Oy iy

slaraer mow” By

H

4

s O A8 1 omeaiepepebone i by Castary R0 1

iy (00 StackaArdfroosd

fiag (9150 PGy

Popet g

o A

T

1 umse

Vb 17.3 4 g
Aty 43
Agstl 4, 2011 1258 am
Marrs)6 i P m
Wais JE 1 Lk
My M L. T80 pr
hsed P} ¥
Mo 06, JOIL 4 3
M i

M 10 JUE1L 221
Mareh § 201% Il em
Mtk & ML WO SBpm

s donil &, 0L

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

4.2.3.3 Modifying and Correcting Object Data

After viewing sets of objects in the database, as described in the previous section,
site administrators can click one of those for a detail view. This provides a way to not
only view an object’s attributes, but to also modify them. This is particularly useful for
doing things like changing the quiz number associated with a particular video without
removing the existing data associated with the video, like user comments, etc. This is a
good way to quickly keep information up to date in the midst of changing course
curricula between semesters, and it is also a good way to correct errors after the fact. An

example of an object-editing page for a TopicAssignment object is shown in Figure 13.

Django administration

Change topic assignment

Videa “‘cathimy/Concept /511 /beanch_liteval mov™ by cairling 511) :®
Start time: oo

Stop time 31306390

Num staff 1]

favorites

Num student 0

favorites

Qusiz Quizd ¢

Coenputing a Branch Lnera

Topec Machane Language

Figure 13: Modifying object properties and adjusting foreign-key relationships

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 43

4.3 Website Framework

The functionality behind the website views described in Section 4.3 is provided
with a python-based web application framework, an underlying database, and some
client-side scripting to facilitate collecting feedback from users. The rest of this section

describes the architecture of these system components.

4.3.1 Django

Django is an open-source web application framework written in Python. Django
projects follow the “model-view-controller” (MVC) pattern. The “model” file allows a
programmer to set up database tables automatically by specifying classes. The type of
database can be specified in a separate settings file. Django has built-in support for
PostgreSQL, MYSQL, and SQLite, among others. I used SQLite for developing this
application, but rarely had to manipulate the database tables directly, as the Django
framework provided much more intuitive ways to manage the information in the

database.

A standard Django application includes a few key files that set up the basic
model-view-controller architecture and help a user manage the application settings.
The first of these is a file called models.py, in which one specifies the objects to be
stored in database tables in python classes. The second is a file called views.py, and
this is the primary place for specifying the behavior of the “controller” part of the MVC
architecture. This file is the typical place to define functions to provide custom data to
html templates, and to process incoming HTML requests to create or change the model
data, if necessary. The fourth essential file is settings.py, in which an application
creator specifies basic application settings, including relevant file paths, and the type of
database to be used. The fifth file is urls.py, which provides a list of all URLs within

the application, and the relevant function to render the html page for each one. Finally,

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 44

the standard “view” component of the MVC pattern is realized by a set of html templates

that are rendered with custom content by the aforementioned functions in views. py.

All files are included in the specific data models, view-rendering functions, and
html templates together describe the basic functionality of the tutorial video system, and
these three components are described in further detail in the following sections of this

chapter. The code for the Django application is included in Appendix A.

4.3.1.1 Models (Model)

The main models in the database are depicted in Figure 14. Each User can create
a PublicVideo object as an author, comment on a video they view, view a segment of a
video, or add it as a favorite. When an instructor creates a PublicVideo and uploads it to
the site, he or she is then taken to a page to choose start an end times to create at least
one TopicAssignment. In creating a TopicAssignment, one must also choose the topic
from an enumerated list and assign a title for this new video chapter. The object is called
“TopicAssignment” because it is, at a basic level, the assignment of a topic to a pair of
times. In terms of use, it is essentially a chapter object, and throughout this thesis, I
frequently use the term “chapter” to in place of “TopicAssignment.” After a
TopicAssignment is created, this is the object that is used in the media player
components of the pages, instead of the underlying PublicVideo, because each page is

set up to be able to play a single chapter of a video.

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 45

Viewlinterval TopicAssignment
id AutoField [AutoField id AutoField
video ForeignKey ForeignKey ta ForeignKey
start_time FloatField time DateTimeFiekl
stop_time FloatField profile ForeignKey
num_staff_favorites IntegerField
DateT imeF iekd num_student_favorites IntegerField
quiz IntegerField
tithe CharField
topic CharField

video

PublicVideo
< MediaSubmssion>

profile

UserProfile

user ForeignKey
athena_id CharField
student_id integerFiekd

The User object is borrowed from django. contrib.auth.models. This event
triggers a function called make_profile, located near the end of models.py, which
instantiates a corresponding UserProfile object for each unique User. When a User
marks a video as a favorite, the request sent to the server will trigger a function to create

a new Favorite object and associate it with the User’s UserProfile.

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 46

A User can also be associated with a TopicAssignment through a Comment
object. A Comment object also contains a permissions field, which comes from one of
the COMMENT_PERMISSION_ CHOICES in enums.py. Currently, there are only two
levels in use, and those are “staff” and “all students.” The staff level allows only course
staff members and the comment’s author to view it in the list of comments below the
TopicAssignment in the standalone player page. The other level of permissions allows
any student with login access to the videos to see the comment. This could be easily
extended to accommodate students who may wish to leave a comment visible to those

taking the course in the same semester, or students in their recitation section, etc.

A User does not have to mark a video as a favorite or leave a comment in order to
leave a record of interaction with it. When a student plays a video for a continuous
stretch of time, the start and end times of this are recorded as a ViewInterval. Saving
these ViewlInterval objects allows staff members to see the viewing behaviors of
individual students through the Django admin interface and to see the number of
students who were “tuned in” and watching each part of a video through a view history

graph, as shown in Section 4.2.2.3.

4.3.1.2 Views (Controller)

Each URL included as part of the site in urls.py points to a view function in
views.py, student views.py, or student views.py. Some of the URLs are in
the form of regular expressions, allowing variables to be passed from the arguments in
the URL. The full specification for this can be found in A.3.1. For the purposes of this

explanation, an example is shown here:
Inurls.py:

(r'~view_history/(?P<ta_id>\d+)/$"',
staff views.display interval_views)

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 47

In staff views.py, the function takes ta_id as an argument:

def display_interval views(request, ta id):

The functions in views.py, student views.py and staff views.py take
in these variables and use them to extract relevant information from the database and
then assign the values from the database to new names in a dictionary. This dictionary
provides a context with which the to populate a html template by calling the Django

shortcut method, render_to_response:

context = {
"ta_start" : ta.start_time,
"ta_id" : ta_id,
"user": user,
"ta stop" : ta.stop_ time,
"selected_ta" : ta,
"img_url" : img url

}

template = "display interval views.html"
return render_ to_response(template, context)

Once the template has been rendered, and the html source provided to the user’s
browser, the user might initiate a POST request by interacting with the page to, for
example, add a video as a favorite. These requests are sent to the function specified by
urls.py for that URL. In some cases, this is the same function that rendered the
template to begin with, but in the example of adding a favorite, it is not. The “Add
Favorite” button could appear in many places, and the function favorite post in
views.py will handle the request to add or remove a favorite for a user and the

relevant TopicAssignment object.

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 48

4.3.1.3 Templates (View)

The template system in Django allows for a programmer to use some HTML files
to specify the layout of others. This makes it easy to use formatting tools like CSS
profiles, as described in Section 4.3.2, but it can also make the behavior of the template-
rendering a little bit confusing because of the number of files that are involved with
rendering a single HTML view. Figure 15 provides a visual depiction of the template
components involved in rendering the single chapter-viewing page that is described in

further detail in Section 4.2.1.3.

Paweb/show_media /(P <ta_id>\d+)/§'

has block

r3qo awmow) paquiztb

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 49

Figure 15: Template files involved in rendering a single-movie viewing page

In this example, the URL configuration file, urls.py contains a dictionary entry
for the regular expression string r'~web/show media/(?P<ta_id>\d+)/$' that
points to the function views.show_media, and passes the parameter ta id as an
additional variable beyond the standard HTTP request object that is passed to every
view rendering function. This function will produce a set of variable mappings with
which to render the template (shown in the trapezoidal section below the rectangle
containing the function name in the figure). This dictionary is passed to the
show_media.html template, which extends a base template called
two_column.html. The components of two column.html are blocks for the page’s
title, header, main column, and sidebar. The header includes the file
interval movie header.html, which contains a lot of the JavaScript code for
setting up the embedded movie object, which is then instantiated by the movie div

html field within the main_column part of the two column.html template.

The main_column also contains timing fields.html, which populates
several hidden html fields used to monitor the play head position in the movie object to
determine when to package up a Viewlnterval object and send it to the server with an
Ajax call. Immediately below the movie div, this page displays a list of student
comments, filtered by permissions, and text area and Ajax-enabled button for adding a

new comment to the list. This is all set up within comment_ view.html.

In the sidebar, the “Add as a Favorite” button is similarly set up with Ajax to be
able to send information to the server and also to change the text if a user has added the
video as a favorite already. This is set up within favorite button.html. Right above
that, there is a set of links that will take a user to lists of videos that were from the same
semester, author, type, or topic. This is set up when the function passes the variables to

the codein similar video bar.html.

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 50

This diagram is by no means complete. The standard navigational panel that
appears on every page of the site, and contains links to the main page, course homepage,
and lab help queue, is set up in the header. The comment view.html,
favorite button.html, and interval movie header.html files all contain
JavaScript code that sends data to other post handling functions in views . py, and then
changes the content of the loaded web page without refreshing the entire page when the
code, running on the client’s machine, receives confirmation from the server that this

request has been processed successfully. This is discussed in further detail in Section

4.3.3.3.

4.3.2 Cascading Style Sheets (CSS) and Base Templates

The basic layouts for all pages within the site are managed with Cascading Style
Sheets, in usersite.css. Using CSS allows the programmer to define style attributes
in a single location for types of HTML <div> items and classes that can be reused
throughout the pages of the site. Unique items only exist once within a page and are
identified by their name attribute within the HTML code. Classes provide general
descriptions for more general types of objects, like links, paragraphs, etc., and are
identified within the HTML code with the class attribute.

4.3.2.1 Base

The base template sets up the page header and the color scheme for all pages in
the site. Every html template inherits from base.html, which is how the
usersite.css style sheets are loaded in to every page. The base.html file includes a
header block for JavaScript functions, the masthead.html file, and a main
content_container class. The masthead lays out several mast link items in a

navigational bar, including a link to the main landing page, the external course website,

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 51

a login link, and a link to a page for changing the password. The formatting for the
masthead division and the mast_1ink class are both specified in usersite.css. The

content_container is the wrapper for all other variable content on each page.

4.3.2.2 Two Block

Figure 15 in Section 4.3.1.3 shows an example of the rendering process for an
instance of the two-block template. Section 4.2.1.3 describes the main use of this
template within the system — the individual video player with comment views, and a
favorite button. The template is set up by the file two column.html. These sections

are divided into two main blocks, the sidebar, and the main column.

The usersite.css file contains setup information for the browse sidebar
and sidebar content classes that define the outer region for the smaller right block,
and the formatting for the internal content. This small block is meant to provide a set of

navigational links for quick access to related content.

The main_column formatting, as defined in usersite.css fixes the position
and width of this field so that it does not overlap the sidebar and so that both remain
easily visible. In the two_column.html template’s use in its extension in
show_media.html, the movie div and comment box classes appear within the

main_column. The formatting for these two classes is also laid out in usersite.css.

4.3.2.3 Three Block

The other main user perspective within the site is the main landing page,
described in Section 4.2.1.2. The main CSS file, usersite.css, provides definitions for
classes and unique fields in the content_container for three block.html. This
template reuses the main_column and browse sidebar wrappers to display a box at

the top left and a smaller sidebar at the right. This template also includes a

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 52

bottom_block box that is wider and fills the width of the page below the other two
blocks.

In the main landing page where this layout is employed, the main_column
contains a preview of a selected video, the browse sidebar contains login
information for the student, and provides a link to toggle the query set for the table in
the bottom_block as being the student’s “Favorite” videos, or simply all the videos.
This bottom block includes a table listing the video-chapters’ title, semester, author,
type, topic, number of staff favorites, number of student favorites, and the quiz number
that covers the material. The videos can then be sorted or filtered with these attributes.
Once a student finds a video to watch, then he or she can either click a link to visit the
single-video player with full comment detail, or click a link to preview that video in the

smaller box above the table on the same page in the main_column block.

4.3.3 JavaScript

JavaScript files included in the page headers serve to gather data from the
embedded QuickTime, set up the movie object, and send information about page events
to the server. In order to send information to the server without requiring the page to
refresh, I use the jQuery plugin to send AJAX (Asynchronous JavaScript with XML)

requests to the server.

4.3.3.1 QuickTime

The general JavaScript library for QuickTime, AC_QuickTime. js is available
for free download from Apple. The file common_quicktime methods.js contains
some additions to this library that proved useful for setting up the embedded QuickTime
object. The most notable of these is set display_area to fit movie(), which

formats the display area of the movie for playing in a movie div on either of the main

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 53

content viewing pages. Utilities like playhead_position() and time scale() are
convenience functions to reduce the amount of typing to get values for current attributes
of the movie object, which are then used in interval methods.js, and the

JavaScript methods within interval movie_ header.html.

The file, interval methods.js includes many functions for managing a
timer, which is a variable stored as a hidden HTML form field in
timing fields.html. By recording the playhead position when a user starts to play a
movie, and then maintaining a timer, it is possible to determine when the playhead has
moved, and the user is no longer continuously watching the video. When a user stops or
moves the play head position, this triggers an event that will call check_and send(),
which determines if the playhead was moved far enough to conclude that the user has
finished watching that video segment. The method will then send an AJAX call to the
server using jQuery so that a new ViewlInterval object can be created in the database to
keep track of users’ viewing habits. The event listeners that associate the methods within
interval methods.js and corresponding QuickTime events can be found in

interval_movie_ header.html.

4.3.3.2 jQuery

jQuery is a free, widely-used, open source JavaScript library with several features
for facilitating client-side HTML scripting. In this project, I used it primarily for putting
together client-to-server Ajax calls and overriding the default form submission behavior
for the comment and favorite forms. When an HTML form is submitted, this will
redirect the user to a reloaded page or a different page. I wanted to be able to allow
students to add a comment or create a video as a favorite without needing to refresh the
page, because refreshing the page would reset all of the local timing variables for that
video page, which would reset the position of the play head and disrupt the tracking of

users’ viewing intervals.

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 54

In order to override the default form submission behavior, I included snippets of
jQuery code to handle the submission through a function that would send an Ajax
request, and block the page-reloading default submission behavior. As an example, I

included the following code at the bottom of the HTML comment submission form file:

<script type="text/javascript" src="/site_media/comment submission.js">
$ ('#comment_form').submit(
function() {
submit comment();
return false; });
</script>

This code will run when the HTML comment form is submitted. This calls
submit_comment () from comment submission.js (shown below), which extracts
variables from the form fields and then includes them in an Ajax request that it then
sends to the server. When that function finishes, the embedded jQuery script returns

“false” in order to block the normal HTML form submission.

function submit comment/()
{ var username = $('input[name=username]').val();
var ta_id = $('input[name=ta_id]').val();
var text = §$('textarea[name=text]').val();
var permissions = §$('select[name=permissions]').val();
console.log("in submit comment");
$.ajax({ type: 'POST',
url: "/comment_update/",
data: { username : username, text : text,
permissions : permissions, ta_id : ta_id, },
success: function(response){
var new_comment = "<tr><td colsapn=\"2\">"
+ response.text + "
 --"
+ response.username + " at "
+ response.time +"</td></tr>";
$('.comment_display').append(new_comment); },
dataType: "json", });
return false; }

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 55

This function uses the element identifiers from the HTML form to extract
variables like ‘username’ and then creates a dictionary object containing the relevant
information about the comment. This information is sent to the server, and upon
receiving a response confirming the comment’s creation from the server, the method
will create a new HTML formatted comment and append it to the existing
comment display table. This provides the illusion of reloading the entire comment
query set for a given video, by appending identical HTML code to the end of the existing
table, but it doesn’t require changing anything except the comment table, so the viewing
interval and favorite variables are not affected. This is also especially important because
the favorite button is also an HTML form, so a single submission would cause both to be
submitted, and this would create a host of other problems with disambiguation as well.
With jQuery, it is easy to override the default submission behavior to package up the
form submission behavior into an Ajax call to the relevant submission handler on the
client side. The server side behavior for handling Ajax requests is discussed in further

detail in the next section.

4.3.3.3Ajax

Django provides some very helpful, built-in functionality for dealing with Ajax
requests on the server side. The jQuery functions send Ajax request data in the form of a
serializable dictionary. I chose to use JavaScript Object Notation (JSON) because
Django provides nice serializers to convert objects into this format, but the choice is
otherwise arbitrary. The requests are sent to a particular URL, which, in turn, sends
them to the associated view function as specified in urls.py. This view function sees
an incoming HTML request, and then checks to make sure that it is an Ajax request by
using the built-in is_ajax Boolean that Django provides for HTTP requests. The view
function can then treat the incoming request as a normal HTTP request object and

extract the relevant information from the request.POST dictionary, and then use

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 56

these values to create a new database object before providing an Ajax response to the
client-side script to update the user’s view for the relevant content. The following
example shows this server-side Ajax view function that handles the Ajax request for the

comment submission. It continues the example that was started in the previous section:

def comment update(request):
dict = {"username": '', "text": '', "permissions": '', "ta id": ''}

if request.is_ajax():

print "request in comment update is ajax"

if request.method =='POST':
username = request.POST['username']
text = request.POST['text']
permissions = request.POST['permissions']
ta_id = request.POST['ta_id']
user = User.objects.get (username=username)
ta = TopicAssignment.objects.get(pk=ta_id)
comment = Comment ()

comment.clip = ta
comment.user = user
comment.text = text

comment.permissions = permissions
comment.save()

print "permissions are %s" %(permissions)

dict["username"] = str(username)
dict["ta_id"] = str(ta_id)
dict["text"] = str(text)

dict["time"]
return HttpResponse(simplejson.dumps(dict),

str(comment.time)
mimetype="application/javascript")
There are also server-side Ajax request-handling functions to create new Favorite
objects and ViewlInterval objects in the database. When a user adds a video as a favorite,

the server-side function will send back information that changes the button text from

“Add Favorite” to “Remove Favorite” without reloading anything else on the page.

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 57

4.3.4 Apache

Apache is a web server software package used to provide pages and content in
response to client requests. While Django provides a basic development server, this is in
no way sufficient for serving large media files like the tutorial videos produced for this

system. Each Apache server is set up as a separate virtual host.

4.3.4.1 Basic Configuration

In order to set up the existing Django project with the Apache server, I installed
the mod_wsgi Python adapter for Apache. In order to point the Apache setup to this, I
set up two path variables. The WSGIScriptAlias in the Apache setup points to the
location of the django.wsgi configuration file. The django.wsgi file points, in turn,
to the root folder for the Django project, the correct path for the current python version,
and the correct Django settings module for the project. The WSGIPythonPath within
the Apache setup points to the root directory of all installed python modules within the

application.

4.3.4.2 Log Files for Debugging

Throughout development, I used print based debugging. For server side python
scripting, these messages went to a terminal. With Apache in place, these messages did
not go directly to the terminal. Instead, I overrode the “print” method to save all print
comments to an Apache error log. This needed to be changed for all files that were
sending print output to the terminal previously, but the result was that more

information could be saved at once.

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 58

Chapter 5: Results of User Study

In order to test the effectiveness of the tutorial video system, I introduced it as an
extra resource for the Spring 2011 semester of the MIT course “6.004: Computation
Structures,” better known simply as “6.004.” I asked other instructors to try the
recording system and provide feedback, and I also collected feedback from students in
many forms including indirect tracking of viewing habits, comments on the website,
informal paper surveys, and personal conversations. In this chapter I describe the

results of the user study in terms of this feedback.

5.1 Testing Environment

6.004 was a good choice for testing the system for several reasons. Most
importantly, it is the course that I was teaching for the Spring 2011 semester, and had
been teaching for the three semesters prior. I envision this video system a supplement to
an existing curriculum, and introducing it in a class that I was teaching allowed me to
get feedback from students on the tutorial system during office hours, and made it

easier for me to produce content relevant to the current semester.

6.004 was also a good choice because it is a fairly large class, with 150 to 200
students in a typical semester, and a sizable teaching staff of 6 to 8 undergraduate “Lab
Assistants” (LAs) and 4 to 5 graduate teaching assistants every semester. Given that
response rates are typically below 50% for institutionalized and accepted course
feedback practices, having a large number of students seemed to be a good way to try to
get useful feedback. The sizeable number of course staff members also provided me with
a great source of volunteers to try out the recording process and give me feedback about

the system from a content-generation perspective.

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 59

Another characteristic of the course that made it a prime candidate for a system
like this was the significant lab component, and the dedicated lab space. For Spring
2011, there were 8 lab assignments and 4 quizzes. 6.004 has a well-staffed dedicated lab
space, where students will come in for required check-off meetings, to get help on
assignments, or to ask for help on tutorial problems to study for quizzes. When trying to
record one-on-one interactions with students, it is important to have some of those
interactions to record, and the 6.004 lab provided a space where those kinds of

~ interactions are plentiful.

In addition to 8 weekly office hours in the lab, I taught two smaller recitation
sections that met twice weekly. This meant I had a group of about 40 students with
whom I had more regular interaction. These students were the first to try the tutorial
system, and they were very helpful in providing informal, in-person feedback before or
after teaching. In addition, over half of these students filled out an optional survey with
questions about the video system. While monitoring and feedback mechanisms are built
into the tutorial video system, informal communications and paper surveys provide
different, equally useful information. In Section 5.3, I provide more detailed results of
this feedback.

5.2 Instructor Feedback

When designing a system for recording explanations, it is important to ensure
that it is easy for someone to begin using the recording hardware and software for the
first time. It is also important to design a system that is likely to be used. Authors must
feel comfortable with the whole process and the benefits to participating in creating new
media must outweigh the time investment. In order to test the effectiveness of the

recording setup, I collected feedback from five other volunteers.

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 60

Overall, not as many authors contributed material as I had hoped, and but the
participants did provide some valuable insight regarding the factors that influenced
their level of contribution. The authors reported that the recording technology and video
upload process were sufficiently intuitive, but that there were larger concerns that
hindered their interest in creating tutorial videos. Surprisingly, these barriers were
mostly related to the general awkwardness of “explaining” something to a machine

instead of a human, and the self-consciousness of being recorded.

Overwhelmingly, the recording volunteers reported feeling nervous by knowing
that they were being recorded, but said that if “everyone was doing it” that they would
probably not be as nervous. The instructors seemed to be a lot less comfortable with
making mistakes when they were being recorded. Most said that this wouldn’t go away
entirely, but that they would be much more relaxed about the idea if there were a larger
set of contributing instructors from past and present semesters. Surprisingly, the

instructors needed face-to-face feedback just as much as students did, if not more.

5.2.1 The Volunteers

I and five other volunteers were able to provide usability assessments after
learning to use the recording hardware and software. Not all of the recording volunteers
published content through the website for the class, but all of the instructors had

experience with teaching students in a lab and/or classroom setting.

Two of the instructors were undergraduate staff members for the course, and two
were graduate teaching assistants in 6.004 during the semester. Another volunteer has
been a graduate TA for 6.004 for several semesters, and yet another had been a TA for
two other major undergraduate courses at MIT and was interested in producing content

for another course.

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 61

5.2.2 Recording Environments

The author’s narration provides the primary audio component of the tutorial
videos. For all of the recordings produced in the course of the project, this was
accomplished with a generic, built-in iMac microphone, though more sophisticated
hardware certainly exists. The Cintiq is not especially portable, and so there were two
main locations for recording. The first was a private office, and then later, the recording

setup was moved to the computer lab area for 6.004

5.2.2.1 Recording in Private

Initially, it seemed like a better solution to keep the hardware setup in a location
that was free of background noise for the majority of the day. This initial space was a
shared office. Despite initial concerns for background noise, it became clear that this
was not the primary barrier to producing recordings. Even if the equipment is in a
relatively private and isolated location, there are several factors that make it more

challenging to produce recordings.

Two volunteers were not active staff members for 6.004. Both tried creating
recordings in private. One had experience with teaching the course in the past and was
interested in trying to contribute material, and the other was currently engaged in
teaching another class and was interested in producing material to share with that
course. Both of these participants showed great enthusiasm, and expressed lack of
current motivation or active use of the recording system within their own course as
personal barriers to participation. One notable fact is that both of these people have had
multiple semesters of experience with teaching classroom sections, and they wanted to
share this knowledge by recording it. One problem that they noted was that the lack of
human feedback was unnatural and made them feel less satisfied with the potential use

of future videos when preparing recordings in advance.

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 62

Indeed, it seems easier to create videos with a student present to provide a
prompt, and this is an important factor in deploying a system like the one described in
this thesis. Many good instructors rely on student feedback like facial expressions and
body language in order to offer effective explanations. This seems to be just as important

as the feedback that students receive while working through concepts with instructors.

There were some advantages to recording in private. The most noticeable
difference was in audio clarity. In the lab, many other students were talking, and when
this happened close enough to the recording setup, it was sometimes possible to hear
others’ loudly enough to make out words. A better microphone or more careful
positioning of the recording setup might mitigate this, but certain noises are
unavoidable. Many instructors also felt more comfortable with practicing in private

because of the decreased pressure and minimal distractions.

5.2.2.2 Recording with Students in the Course Lab

The primary motivation of moving the recording setup to the lab was to capture
more realistic interactions with students and teachers. A fortunate consequence of this
was that it made it much easier for teachers to create recordings of their ad hoc
explanations. This did, however, require teachers to be comfortable with recording their
unrehearsed explanations. Even though several of the instructors expressed
apprehension with being recorded when they felt unprepared, those who tried recording
prepared tutorials in private expressed that they felt the absence of students detracted

from the eventual quality of the recordings.

I observed that when students understand something is a recording of an
impromptu in-lab explanation, they are much more appreciative of supplementary
material than they are concerned about the somewhat rough audio quality or occasional
backtracking when instructors realize they need to correct mistakes. After creating many

videos in private and in the lab with students, it seems that despite the potential for

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 63

lower quality or mistakes given lack of preparation, that recording explanations in lab
and spending minimal time editing recordings is the best way to provide a healthy
amount of material. Regardless of the level of preparation, individual students will
always have their own reasons for preferring one explanation to another. It is important
to ensure that there are enough recordings from enough different instructors that

students can find those that are most helpful to them.

The natural “question and answer” style interaction between students and
teachers is also a very important way that students learn. Throughout my teaching
experience, there have been many times that other students asked to listen in on an
explanation that I had begun offering to a single student. They were not concerned with
my level of preparation; they simply had the same question and were eager for a new
perspective on the topic to help them understand. This is why the less-prepared, in-lab
interactions are valuable as educational media, and this is why I believe that it is a good

idea to include a means to record these interactions easily in lab or classroom settings.

There are a few disadvantages that were more surprising. As discussed before,
teachers felt as if they were put “on the spot” in lab, but I also discovered that some
students were incredibly concerned about having the answer to their question recorded.
Student privacy is an important issue that should not be overlooked, and if students are
concerned about their voices appearing in the audio track of the recording, it might
inhibit their normal pattern of interaction with the teacher. Most students were only
concerned with making sure that their dialogue with the instructor didn’t end up
somewhere public like YouTube, and were satisfied with the practice of sharing content
with other students in the class. In fact, once students grew accustomed to the device
being in lab, some were more eager to ask me to record solutions instead of answering
questions manually because they were interested in reviewing the explanation later and

also sharing it with their classmate who were confused about the same topics.

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 64

5.3 Student Feedback

I collected student feedback through the comment and favorite mechanisms on
the site, through user viewing behavior from view history graphs, and through personal
surveys. All of these methods provided different information, and the results are

discussed in the following sections.

5.3.1 Personal Interviews

Informal interviews were helpful for gathering information about tutorial video
use. Many of the students who used the tutorial video system regularly seemed to be in
touch with one another. Several students informed me that they discussed the best
videos to watch over instant messaging with one another instead of adding videos as
“favorites” in the system. When interviewed, these students seemed very excited about
the potential for the system and contributions is could make to future academic
“generations,” but they said that the favorite system didn’t seem as attractive. Two
students cited the popular five star rating system used by many online retailers and

media providers as a more attractive model because it was more familiar.

One student suggested that the “favorite” feature would be more appealing if the
course had a Facebook application where students could “like” videos. Yet another
student said that the anonymity of adding a favorite seemed to render it unimportant,
but also mentioned concerns about privacy, and said that many students might feel
intimidated to share this information with their peers for fear of seeming “dumb.”
Indeed, a small minority of students insisted that their voices be edited out of help
videos because they were concerned about others hearing them ask what they worried

might be “stupid questions.”

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 65

Given somewhat scarce amount of favorite actions and commenting for the
videos, tracking users’ viewing behavior was key in measuring the effectiveness of
individual videos. Overall, the graphs provide a simple, visual record of the number of
students continuously watching for each part of the video. This can give instructors
valuable feedback in determining which sections of an explanation or lecture turned out
to be most interesting to students. The information from these graphs can also give

some more surprising forms of feedback as discussed in the following sections.

5.3.2 Surveys

There were two kinds of surveys that provided student feedback for the tutorial
video system. I composed optional paper surveys for a subset of the class, and also was
able to read course reviews published by a third party group. The informal surveys
provided more specific responses because they explicitly asked about the videos, but the
more open-ended responses students submitted to the third party system provide

interesting information as well.

Just over a month after introducing the tutorial video system, I distributed
informal surveys to the approximately 50 students in my two recitation sections. These
surveys included questions about their general experiences in the class, and they also
listed questions about the video system. About two thirds of these responses indicated
that the students had started using the system. Among the responses indicating some
experience with the system, most students had watched at least three of about 15 videos
that were available at the time, and about half of them had watched over 10 of the
videos. Most students had very positive commentary about the supplementary material,
and several responses included empathic requests to make more videos. A few responses
indicated that students would like to see videos available in multiple formats instead of
just QuickTime. I did not develop that additional functionality at the time because of

concerns with getting the JavaScript view history tracking working with other embedded

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 66

movie players. In fact, there was a bug in the view history tracking at the time of this
survey. I noticed that the number of students viewing videos and the average number of
views per students was much higher than what I would have expected given the view

history objects in the database.

A student run organization within the Department of Electrical Engineering and
Computer Science at MIT, Eta Kappa Nu (HKN), collects anonymous student feedback
and provides this information to instructors at the end of the semester. The text of
student commentary is available to only to staff members immediately after the term,
and HKN makes general summaries of these reviews available to the MIT student
community several months later. The course evaluation did not ask specific questions
about the new video content, but several students did leave comments about the video
system in these overall evaluations. Five out of 65 responses to this course survey
mentioned the videos, and all were highly positive. Students said that they found the
videos very useful for quiz preparation, and that they preferred the videos to static
handouts for explaining concepts. The view history records also show that students are
much more interested in the videos right before a quiz, and at that time, they are

particularly the ones that demonstrate solutions to old quiz problems.

5.3.3 View History Graphs

View history graphs provided a highly useful way to measure student interest and
participation. Part of the success of these graphs is due to the fact that the tracking
occurred automatically, and students did not have to think about comments to generate
and share directly. Another reason these graphs were so helpful is that they allow
instructors to see how a particular video was viewed in order to get more specific
feedback. Of course, the graphs do not explicitly provide information about why a video

was more popular or less particular at a particular point, but observing student viewing

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 67

trends is enough to draw some very helpful conclusions as discussed in the following

sections.

5.3.3.1 Determining Critical Sections

Many of the view history graphs that I observed showed a sharp increase or
decrease in the number of users at some point in the video timeline. Trends like this can

provide more insight about the kind of information that students were looking for.

In videos of worked problems, more students seemed to pause and watch the
parts of the video where the instructor was simply writing down the answers and then
explaining them. Most of the videos began with an instructor reading the problem,
interpreting it, and setting it up. The instructor would then work through the example
before summarizing key points and answering student questions. An example of the
increase in number of viewers during the actual problem-solving time can be seen in
Figure 16. The previous part of the video had been more focused on explaining the way
to approach problems of this nature and discussing the diagram, which appears in the
movie to the right. Then the instructor started to focus on the solution to this specific

problem, and more people started watching continuously.

Interestingly, lecture videos often showed less dramatic changes in number of
continuous viewers throughout the course of the video, but there were still several key
instances of observable trends. This seemed to happen several times when students
were viewing information in lecture videos that covered central concepts that were
particularly useful for solving typical quiz problems. Figure 17 shows an example of this
in a lecture about processor pipelining. The students seemed to start watching the video
when they saw the slides about instruction delays and a “waterfall” diagram for
depicting pipelined instruction flows. They stopped watching when the instructor began
talking about the details of implementing logic behind control signals for the overall

behavior.

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 68

Poiem 0 s Pgeiiad Boe Vaud b

- ol e+ ot Aas # buw cad boms e s ved Beva
vk o B B e e e (ke B ng e

PR oy st Gas pars b B s ol @ Ry ool B e, il
v s

PR & Wi Ssng v B . B o . 1 B bt -‘{:'-\
P b s J

e

= A ﬁ_-*hﬂ-tﬁnw > o

o = ey whe) g en e o 11 attie benchema vk
o, By Ry A & Mg et e e, w‘*
s i w
b Bt B A b o e
m—-tu-.-.ﬂ-n—i .
ke o LT] -
T b o M s O e CHEE . & W

the video! Was it toc long?
Was one part particularly
helpful? Leave your comments

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

Load Delay

Bypaseing can's. fx the 1D(rl, O, rd)
with ADD ADD(rl, 4, rS5)
ion't avallablel We have to add XOR(rd, rd4, ré)
some pipeing irteriock hardware to

stall ADD's emecation

i *1 (L34 3] -4 (3] 2]
IF D ADD XOR om

RF D ADD app XOK
ALU LD NOF ADD XOR
we k LD NOF ADD XOR

If the compiler knows about a machine's load de'ay, it ca= often
rearrange code sequences 1o eliminate such hazards Mavy compilers
provide machine: specific isstruction acheduting

.t

216 432 848 864 1080 1206 1512 1728 1944 2160

Figure 17: Using view history graphs to determine most popular concepts for review

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 70

5.3.3.2 Drop off from Poorly Labeled Videos

Sometimes, the view history graphs were able to convey somewhat surprising
kinds of student feedback. By observing very unusual trends in particular videos, it
made it more obvious when something was amiss with the video. In one case, a video
was mislabeled and said to be the continuation of a previous example, when both videos
were simply duplicates of the same full worked problem. When students went to view
the rest of this example, they noticed that it was the same thing they had just watched.
As a result, there was a very sharp drop off within the first few seconds of the movie
when students left the page to find new material. After this mislabeling was corrected, I
observed the viewing trends starting to even out. Figure 18 is an image of the graph that
made this mislabeling obvious in this example, and provides an illustration of how view
history graphs can be used to make sure that titles and descriptions are sufficiently

informative.

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 71

Tosblem 1. (11 peris, Salivam Weverss Dngheaeig

e W1 o0 e g et B 4 3 L Tvigie el B
Lot of 41" o g @ Tomebr e) Rt susrmithy

B L T

b

B S S S T T
wand B8 - B e e

I L.
R g T el @ e e e WA)

P01 et g s by g i ot £ e PYY iy e
[P
iy € wemrey Sageeei

R e R e N TR e L
Aot $UOP My B Bl B By 305) W

sl merka® WS e L

0

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

72

5.3.3.3 Comparing Video Types and Student Response

Students seemed to watch entire lectures (with the chapter size set to the length
of the video) with less skipping around than they did in watching worked examples. In
addition, students seemed to view lectures videos to get a general sense of the material
before viewing videos of worked examples. There were, however, fewer viewers overall
for the lecture videos, and this could mean that users who did not want to invest a large
amount of time in looking for information would go to the shorter worked-example
videos first, and then skip around while looking at those videos. An example of a fairly

typical lecture-viewing graph is shown in Figure 19.

Virtual Machines

Figure 19: A More typical view history graph for an hour-long video lecture

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 73

5.3.4 Video Comments

Overall, several students provided helpful commentary, but the number of
comments was not as high as it could have been. This is, perhaps, the result of students
believing that the purpose of commentary was to provide feedback to video authors and
nothing more. When polled with optional in-class surveys, as discussed in Section 5.3.2
students had more things to say but these comments were generally positive. The
commentary on the website was mostly constructive criticism about how to improve site
features or video quality. This indicates that students saw the comment mechanism as a
way to communicate with the staff about concerns that they had with the videos rather

than a mechanism for discussing video content.

This seems to be a somewhat natural result, though it was a more limited subset
of potential commentary than I had hoped for. The comment box default text certainly
had some influence on the types of comments that students left. This text said, “Tell us
what you thought of the video! Was it too long? Was one part particularly helpful? Leave
your comments here.“ It seems that this worked to a certain extent, but a more generic
message could have encouraged students to think about the comments as a broader

form of communication with other students and not just staff members.

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 74

Chapter 6: Future Work

Students in 6.004 and participating instructors seemed to have very positive
feedback in general for the system as a whole and the general proof-of-concept trial of
the system. Using the system in the classroom demonstrated that there is room for
improvement, however, and the following sections discuss some of the significant issues

that I observed in the course of this project.

6.1 Rating System

In general, students were less interested in going out of their way to provide
feedback through the website directly. Several students sent me email or approached me
in person to offer helpful feedback, but the level of indirection necessitated by leaving
feedback on the site seemed to make these features less popular. The indirect feedback

from the view history graphs provided the most useful information.

The view history tool should not be the only feedback mechanism that produces a
large number of data points. It is certainly valuable, but further work in the area should
focus on designing more engaging ways for students to provide feedback. As one student
suggested, a more social way to share and interact with videos may be helpful. Other
students have suggested more sophisticated algorithms for suggesting related videos
after users view a particular segment. It is an interesting challenge to provide these
more advanced features for the feedback systems without compromising student privacy
or the sense of community created by keeping these videos organized for a particular

course.

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 75

6.2 Chapter Segmentation

The TopicAssignment objects were layered on top of the basic PublicVideo
objects in the database. In order to play a TopicAssignment video chapter, JavaScript
functions set the playhead to the appropriate position and started and ended the video
player at the appropriate times. This approach caused the entire video to be loaded into
the page, however, and this was hard to manage with also using playhead information to

track user viewing habits to create ViewInterval objects.

Part of the problem with this approach was the added complication and
confusion from tracking start and end times for ViewlInterval objects relative to the
specific TopicAssignment in order to get accurate feedback about viewing habits within
that chapter. This created some synchronization bugs because ViewlInterval objects
could not be accurately recorded until the entire TopicAssignment object has been set
up in the page, and this couldn’t happen until the entire PublicVideo video file was
loaded into the page. If users started watching the video before it was fully loaded, then

it was very difficult to accurately collect ViewInterval records.

Another issue with this approach was that students didn’t seem to like the
fragmented videos as much. This was particularly relevant to the lecture videos. Direct
user comments and indirect results from the view history graphs both suggest that
students appreciated flexibility when watching lecture videos and did not find the
segmentation especially appealing. Creating separate videos instead of building
TopicAssignment objects on top of the PublicVideo objects might not mitigate this
concern, but it would provide a mechanism for drawing attention to particular clips
without introducing the additional confusion about the playback mechanism for

students.

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 76

6.3 Answering Questions Remotely

The personal nature of the tutorial videos and the fact that they answered specific
student questions were both very valuable features. It is not always possible, however,

for students to be present for office hours when they have questions.

There are many solutions for answering student questions remotely. For 6.004,
the most common method was basic emails. Other courses at MIT and at other
universities have started using tools like Piazzza. Piazzza is a system that allows students
to post questions and then other students or staff members can respond to these
questions such that all other students can view these. This provides a more streamlined
way to organize student questions than email, and allows other students to benefit from
instructor response to others. There are additional features to allow instructor to view
graphs of student activity, and to format their text based responses to students with
LaTeX or HTML. This is still incredibly limiting, however, and very far from the natural
method of sitting down with a piece of paper and a pencil to explain something to a
student.

Integrating part of the tutorial video system with a tool like Piazzza would
provide a much more effective means of answering student questions remotely and
promoting dynamic records of interactions. This could be done by making a few simple
changes to the authentication mechanisms in the tutorial video site to permit teachers to
easily direct students to individual explanations, but it would be even more appealing to
provide video explanations in line with text comments. It would also be interesting to
give students access to one or more machines with hardware for recording explanations

to see how they might use the system to create video explanations for one another.

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 77

Chapter 7: Summary

In this project, I combined a set of hardware and software to facilitate the
production of educational video content. I also created a web-based application to share
this content with students and gather their feedback. Once these things were in place, I
introduced this system as a supplementary tool in an existing MIT class for a semester. I
had other volunteers provide valuable feedback on the recording process, and I analyzed
feedback from many students using the system in order to provide recommendations for

future systems of this kind.

Overall, the user study demonstrated that students are eager to have new kinds of
educational media to help them in their studies, and that they are less willing to provide
explicit feedback unless they are having trouble accessing the material. Indirect methods
like view history tracking and more personal methods like in-person surveys and
discussions provided better feedback. Students appreciated the ability to see the
solution to a problem sequentially and many started viewing videos in the middle of an
explanation because they were looking for some critical step that they did not quite

understand.

This system is a fully functional, standalone tool for educational media recording
and distribution, but I also intend it as a helpful starting point for related applications.
The results of the user study provide valuable information for those interested in
observing the ways that students interact with new forms of educational media, and I
expect this information to be relevant to the development of future educational

technologies.

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 78

Chapter 8: Works Cited

[1] MIT Open CourseWare. (2011). About OCW. Retrieved May 2011, from MIT Open

Courseware: http://ocw.mit.edu/about/

[2] Khan Academy. (2011). FAQ. Retrieved May 2011, from Khan Academy:
http://www.khanacademy.org/about/faq

[3] SMART Technologies, Inc. (2010, Oct 19). SMART Introduces New Class of
Interactive Whiteboard. Retrieved from

http://investor.smarttech.com/releasedetail.cfm?ReleaseID=520169

[4] SMART Technolgies, Inc. (2011, Feb 2). Two New SMART Collaboration Systems
Available Globally. Retrieved from
http://smarttech.com/us/About+SMART/About+SMART/Newsroom/Media+relea

ses/English+US/Releases+by+year/2011+media+releases/2011/February+2+2011

[5] Telestream, Inc. (2011). ScreenFlow Overview and Pricing. Retrieved May 2011,

from http://www.telestream.net/screen-flow/overview.htm

[6] TechSmith, Inc. (2011). Camtasia Educational Pricing. Retrieved May 2011, from

https://store.techsmith.com/education.asp

[7] TechSmith, Inc. (2011). TechSmith Products. Retrieved May 2011, from
http://www.techsmith.com/products.asp

[8] Google Inc. (2011). Description of Data Formats. Retrieved Feb 2011, from Google
Charts API: http://code.google.com/apis/chart/image/docs/data_formats.html

[9] Piazzza Inc. (2011). Piazzza Documentation. Retrieved May 2011, from

https://www.piazzza.com/manual_v3.pdf

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 79

Appendix A: Django Files

A.1 Models

A.1.1 Models.py

from django.contrib import databrowse, admin

from django.contrib.auth.models import User, Group
Using the django admin user model

from django.db import models

from django.conf import settings

from usersite.tutorials.enums import *

import datetime, os

IMAGE_TYPE LIST=['.jpg', '.gif', '.png',]
VIDEO TYPE LIST=['.mov', '.flv', '.mp4']

def get_upload_location(instance, filename):
ret = os.path.join('%s' %(instance.author),
instance.type,
instance.semester,
filename)
return ret

class MediaSubmission(models.Model):
description = models.CharField(blank=True, max length=200)
title = models.CharField(blank=True, max_length=200)
time = models.DateTimeField(auto_now=False, auto_now_add=True)
file name=models.CharField(max _length=64, blank=True)

class Meta:
abstract = True

class PublicVideo(MediaSubmission):
author = models.ForeignKey (User)

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 80

type = models.CharField(max_length=7, choices=VIDEO CHOICES)
semester= models.CharField(max_length=3, choices=SEMESTER_CHOICES)
file = models.FileField(upload_to = get_upload location)

def _ unicode_ (self):
return u' \"%s\" by %s (%s) ' %(self.file, self.author,
self.semester)
def get_absolute url(self):
print "running get_absolute url for video %s \n" %(self.file)
return 'http://lecture.csail.mit.edu/site_media/%s'
% (self.upload location)

def _get upload location(self):
return get_upload location(self, self.file name)
upload location=property(_get upload location)

def get filesystem location(self):
fs _path = os.path.join(settings.MEDIA_ ROOT,
self.upload location)
print "(_get filesystem location) fs_path = %s\n" %(fs_path)
return fs_path
file system location=property(get filesystem location)

def num_staff favorites(self):
favoriter set = self.userprofile_set.all()
staff favorite = 0
for favoriter profile in favoriter set:
staff favorite += favoriter profile.user.is_staff
return staff favorite
staff_favorite = property(_num staff_ favorites)

def save(self):
if self.file:
if not self.file name:
Checking to make sure this does not already exist
self.file name=self.file.name
upload_location = get_upload_location(self, self.file name)
super (PublicVideo, self).save()

def _is video(self):
return os.path.splitext(self.file name)[1] in VIDEO_TYPE LIST

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 81

def

is_video = property(_is_video)

def _is image(self):

return os.path.splitext(self.file name)[1] in IMAGE TYPE LIST

is_image = property(_is_image)

open_location(filesystem location, **kwargs):
Makes the directory structure in the MEDIA ROOT directory
doesn’t work without the following two lines.
print "(open_location) filesystem_location = %s\n"
3(filesystem_location)
if not instance.file_name:
instance.file name=instance.file.name
filesystem path = "%s%s" %(settings.MEDIA_ROOT,
instance.upload location)
try: os.makedirs(filesystem path)
except: print " (save_video) trying path for %s"
% (instance.file_name)
filesystem_location = os.path.join(filesystem_path,
instance.file name)
destination = open(filesystem location, 'wb+')

print "(save_video) opened location %s\n" %(filesystem location)

destination.close()

class TopicAssignment (models.Model):

video = models.ForeignKey (PublicVideo)

start_time = models.FloatField(default=0.0)

stop_time = models.FloatField(default=0.0)

num_staff favorites=models.IntegerField(default=0)

num_student_favorites=models.IntegerField(default=0)

quiz = models.IntegerField(default=0, max_length=1,
choices=QUIZ_ CHOICES)

title models.CharField(blank=True, max_length=200)

topic models.CharField(max_length=128, choices=TOPIC_CHOICES)

constrained to match the choices of topic made available

for study materials on the .6.004 website.

def _ unicode__ (self):
return u'(%d) %s: %s' %(self.id, self.video, self.topic)

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

82

def get quiz_string(self):
return u'%s' 3%(QUIZ_CHOICES[self.quiz][1])
quiz_verbose = property(_get quiz string)

def get video author(self):
return self.video.author
author=property(_get_video_author)

def get video type(self):
return self.video.type
type=property(_get video_ type)

def get video_ semester(self):
return self.video.semester
semester=property(_get video semester)

def set_num staff favorites(self, value):
self.num_staff favorites=value

def set_ num student_favorites(self, value):
self.num_student_favorites=value

def inc_num_staff favorites(self):
print "increment staff favorites for %s from %d " %(self,
self.num_staff favorites)
self.num_staff favorites +=1
self.save()
print "to %d\n" %(self.num staff favorites)

def dec_num_staff favorites(self):
print "decrement staff favorites for %s from %d " %(self,
self.num_staff favorites)
self.num_staff favorites -=1
self.save()
print "to %d\n" %(self.num staff favorites)

def inc_num student favorites(self):
self.num _student_ favorites +=1
self.save()
print "to %d\n" %(self.num_student favorites)

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

83

def dec_num student_ favorites(self):
self.num student_favorites -=1
self.save()
print "to %d\n" %(self.num student_favorites)

class ViewInterval(models.Model):
ta = models.ForeignKey (TopicAssignment)
user = models.ForeignKey (User)
start_time = models.FloatField(default=0.0)
stop_time = models.FloatField(default=0.0)
time = models.DateTimeField(auto_now=True, auto_now_add=True)

class Meta:
unique_together = (('ta', 'user',6 'time'))

def _ unicode__ (self):
return u'(Viewer: %s) (Video: %s) (Range: %d - %d)'
% (self.user, self.ta, self.start_time, self.stop_ time)

def get range(self):
return "(%d, 3¥d)" %(self.start_time, self.stop_time)
range=property(_get_range)

def has_second(self, second):
return ((second<=self.stop time) and (second>=self.start_time))

class Comment (models.Model):

COMMENT_PERMISSION CHOICES = (

('students', 'Current and future 6.004 students'),

('staff', 'Only 6.004 sStaff Members and You'),

)
clip = models.ForeignKey(TopicAssignment, related_name='comments')
user=models.ForeignKey (User)
text=models.TextField()
permissions=models.CharField(max_length=64,

choices=COMMENT_PERMISSION_ CHOICES, default='students')

time = models.DateTimeField(auto_now=True, auto_now_add=True)

class Meta:
ordering=['time’]

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 84

def _ unicode_ (self):
return u'3s: %s' %(self.text, self.clip.topic)

class LinkedWebPage(models.Model):
name=models.CharField(max_length=50, default="")
url=models.URLField(default=
"http://6004.csail.mit.edu/currentsemester/")
topic_assignment = models.ForeignKey(TopicAssignment)
pointer_on_page=models.CharField(max length=50, default="")

class UserProfile(models.Model):
user = models.ForeignKey(User, unique=True)
User is required to have User.get_profile() work.
It has to be named "user" and refer to a "User" ForeignKey
See Django Book ch 12 for more info
athena_id = models.CharField(max length=8, primary_ key=True)
student_id = models.IntegerField(max_length=9, unigue=True,

null=True, blank=True)

def _ unicode__ (self):
return self.athena_id

class Favorite(models.Model):
ta = models.ForeignKey(TopicAssignment)
time = models.DateTimeField(auto_now=True, auto_now_add=True)
profile = models.ForeignKey(UserProfile)

class Meta:
ordering=['time']
unique together= (('ta', 'profile'))

def _ unicode__ (self):

return u'\"%s\" favorited by: %s' %(self.ta.video.title,
self.profile.user.get_full name())

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

85

def save(self, *args, **kwargs):
print "overriding favorite object save"
super (Favorite, self).save(*args, **kwargs)
if self.profile.user.is_staff:
self.ta.inc_num_staff favorites()
else:
self.ta.inc_num_student_favorites()

def delete(self, *args, **kwargs):
print "overriding favorite object delete"
super (Favorite, self).delete(*args, **kwargs)
if self.profile.user.is staff:
self.ta.dec_num staff favorites()
else:
self.ta.dec_num_student_favorites()

——- SIGNAL UTILS --

a signal is sent when a User object is being saved.

Immediately after the User is saved, we want to ensure
that there is a corresponding UserProfile object created
with that User as a ForeignKey...

see "Signals" documentation for more info

def make profile(sender, instance, **kwargs):

if (UserProfile.objects.filter(pk=instance.username).count() == 0):
If there is not already an instance
profile=UserProfile(athena_id=instance.username)
profile.user = instance
Can't get this method to save the Student ID so it is
IMPORTANT to make sure that the student_id is consistently
set in the profile after the User is saved
profile.save()

instance.is_active=True

—-—— SIGNALS ---
models.signals.post_save.connect(make profile, sender=User)

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 86

A.2 Views

A.2.1 Views.py

from
from
from
from
from
from
from
from
from
from
from
from

django.shortcuts import render to response
django.http import HttpResponseRedirect, HttpResponse
tutorials.models import *

staff views import get_img url

tutorials.filters import TopicAssignmentFilterSet
django.contrib.auth.decorators import login_required
django.contrib.auth.models import AnonymousUser
django.template import RequestContext
django.db.models import Q

django.conf import settings

django.utils import simplejson

django.core import serializers

import datetime, os, re

def get_student_info(request):
is_authenticated=request.user.is_authenticated()

if is_authenticated:

print "user %s is authenticated \n" %(request.user.username)
student=request.user
profile=UserProfile.objects.get(user=student)

return {'student' : student,
'profile' : profile,
'is_authenticated': is_authenticated,
}
else:

print "user is NOT authenticated\n"
return {'is_authenticated':is_authenticated}

def get_student_ favorites(request):
MAX DISPLAY=5
student_dict= get_student_info(request)

if student dict['is_authenticated']:

profile = student dict['profile']
faves = profile.favorite set.all()

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

87

def

def

def

def

else:
faves = TopicAssignment.objects.none()

dict = {

'faves':faves,

}
dict.update(student_dict)
return dict

render with student_context(request, template, dict):

return render to_response(template, dict,
context_instance=
RequestContext (request,
processors=[get_student_favorites]))

show_by topic(request, topic):
topic_assignments = TopicAssignment.objects.filter(topic=topic)
title _string='List of Snippets About %s' %(topic)
dict = {
'title_string': title_string,
'header_string': title_string,
'ta_query_set': topic_assignments,
}
template="topic_assignment list.html"
return render with_ student_context(request, template, dict)

show_by_quiz(request, quiz):
quiz=int(quiz)
topic_assignments = TopicAssignment.objects.filter(quiz=quiz)
title string='List of Snippets From Quiz %s' %(quiz)
dict = {
'title string': title_string,
'header_string': title_string,
'ta_query set': topic_assignments,
}
template="topic_assignment_list.html"
return render_with_student_ context(request, template, dict)

show_by author(request, author_username):
topic_assignments = TopicAssignment.objects.

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

88

filter(video__author_username=author username)

title_string='List of Snippets by %s' %(author_username)
dict = { .

'title_string': title_string,

'"header_string': title string,

'ta_query_set': topic_assignments,

}
template="topic_assignment_list.html"
return render_with_student_context(request, template, dict)

def show_ by semester(request, semester):
topic_assignments = TopicAssignment.objects
.filter(video semester=semester)

title string='List of Snippets from %s' %(semester)
dict = {

'title_string': title_string,

'header_string': title_string,

'ta_query_set': topic_assignments,

}
template="topic_assignment_list.html"
return render_ with student_context(request, template, dict)

def show_by type(request, type):
topic_assignments = TopicAssignment.objects.filter(video type=type)
title string='List of %s Snippets' %(type)
dict = {
'title_string': title string,
'header_string': title_string,
'ta_query_set': topic_assignments,
}
template="topic_assignment list.html"
return render with student context(request, template, dict)

deprecated - changed to ajax
def make comment(request, user, topic_assignment):
permissions='students’
if 'permissions' in request.POST.keys():
permissions = request.POST['permissions']

text=""

if 'text' in request.POST.keys():
text = request.POST['text']

if not (text == "Write your comment here...."):
comment=Comment (text=text, permissions=permissions)

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

comment.clip=topic_assignment

comment.user=user

comment.save()

print "saved comment %s by %s \n" %(comment.text,
comment.user.username)

deprecated - changed to ajax

def

def

def

add_favorite(request, profile, ta):

ADDED LINE TO CONSTRUCT FAVORITE MODEL INSTANCE 9/8/10
favorite=Favorite()

favorite.profile=profile

favorite.ta=ta

favorite.save()

rm_favorite(request, profile, ta):
f = Favorite.objects.filter(ta=ta).filter(profile=profile)
f.all().delete()

favorite post(request):
dict = { "is_favorite": '', "new_button_text": '' }
print "in favorite post"
if request.is_ajax():
if request.method=='POST':
username = request.POST['username']
ta_id = request.POST['ta_id']
button_value = request.POST['button value']
ta = TopicAssignment.objects.get(pk=ta_id)
user = User.objects.get(username=username)
profile = UserProfile.objects.get(user=user)
button_next = "Error"

print "button_value " + button_value
if button value == "Add Favorite":
button_next = "Remove Favorite"
print "isn't a fave and adding"
Making a favorite
favorite=Favorite()
print "made a blank favorite"
favorite.profile=profile
favorite.ta=ta
print "saving favorite"

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

90

favorite.save()
else:
print "is a fave and deleting"
f = Favorite.objects.filter(ta=ta).filter(profile=profile)
f.all().delete()

button_next = "Add Favorite"
print "new button text " + button_next
dict["new_button_text"] = button next

return HttpResponse(simplejson.dumps(dict),
mimetype="application/javascript")

main page for displaying a single movie with comment and favorite options
def show _media(request, ta_id):
ta_id = int(ta_id)
ta = TopicAssignment.objects.get(pk=ta_ id)
linked_problems=LinkedWebPage.objects.filter(topic_assignment id=ta_ id)
print "got ta with topic = %s\n" %(ta.topic)
print "got ta with src = %s\n" %(ta.video.get_absolute url())
template="show_media.html"

is_user_ favorite=False

student = AnonymousUser()

student_info = get_student_info(request)
get the profile and authentication info

comments=Comment.objects.none() .
print "there are %d comments before filtering \n" %(comments.count()

empty query set

if student_info['is_authenticated']:
student=student_info['student']
student_faves = get_student favorites(request)

comments = ta.comments.filter(
Q(permissions='students"')
| (Q(permissions='staff') & Q(user=student)))
if student.is staff:
comments=ta.comments.all()

if student faves['faves'].filter(pk=ta_id).count():
is_user_ favorite=True

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

def

def

if request.method=='POST':
if 'submit_comment' in request.POST.keys():
make_ comment (request, student, ta)
if 'add_favorite' in request.POST.keys():

add_favorite(request, student_info['profile'], ta)

if 'rm_favorite' in request.POST.keys():

rm_favorite(request, student_info['profile'], ta)

for key in request.POST.keys():

print "requst.POST[%s] = %s \n" %(key, request.POST[key])

print "there are %d comments \n" %(comments.count())

print "user.is authenticated = %s \n" %(request.user.is_authenticated())

topic_number=TOPIC_NUMBERS(ta.topic]
dict = {
'debug': True,
'selected_ta':ta,
'topic':ta.topic,
'linked _problems':linked_ problems,
"is_user favorite':is_user favorite,
'user': student,
'comments’': comments,
'permissions': ['staff', 'student’],

}

if student.is_staff:
redirect = "/view history/" + str(ta_id) + "/"
return HttpResponseRedirect(redirect)

return render_ with_student_context(request, template,

landing(request):

template="topic_list.html"

dict={}

return render_with_student_context(request, template,

tutorial main(request):

template = "tutprobs.htm"

dict = {}

return render_to_response(template, dict

dict)

dict)

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 92

def tutorial by topic(request, topic):
print "in views.tutorial by topic"
template="%s" % (topic)
print "topic is %s \n" %(topic)
dict = {}
return render_to_response(template, dict)

shows the tutorial problems for the topic assigned to this clip
want to refine to break this up by problem.
def tutorial by id(request, topic, linked problem id):
print "\n in tutorial_by_id\n"
base _url = "http://6004.csail.mit.edu/currentsemester/tutprobs/"
page = TUTORIAL_PROBLEM URLS[topic]
lp_id = int(linked_problem id)
lp = LinkedWebPage.objects.get (pk=1lp id)
lp_pointer = lp.pointer_ on_ page
direct_to = base_url + page + lp pointer
print "redirecting from tutorial by id for id=%d to %s\n"
%(lp_id, direct_to)
return HttpResponseRedirect(direct_to)

server side handler function for view intervals
def post_ interval handler(request):
print "In post_handler \n"

dict = { "img_div" : '',
"x_axis_max" : '' }

message = 'failure'

interval = ViewInterval()

if request.is_ajax():
print "request in post handler is ajax \n"
if request.method == 'POST':

iform start = request.POST['iform start']
print "iform start : %s" %(iform_start)
iform end = request.POST['iform_end']
print "iform end : %s" %(iform_end)

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

username = request.POST['user']

user = User.objects.get(username=username)
print "user : %s" %(user)

ta_id = int(request.POST['ta_id'])

print "ta_id : %s" %(ta_id)

ta = TopicAssignment.objects.get(pk=ta_id)
print "ta : %s" %(ta)

interval = ViewInterval()

print "made an interval"

interval.ta = ta

interval.user=user

interval.start_time = iform start
interval.stop_time = iform end

interval.save()

make the interval and the graph to send back
but only if it came from the staff view page

if 'url match' in request.POST.keys():
print "url matched as %s" %(request.POST['url match'])

X_length = request.POST['ta_length']
print "x_length = %s" %(x_length)
img_url = get_img url(ta_id, x_length)

img_div = "<div id=\"view_graph_div\" class=\"view_graph_div\"

style=\"float:left;align:left\">"

img_div = img_div + "<img id=\"view_graph\"
name=\"view_graph\" src=\"" + img url + "\" />"

img_div = img_div + "</div>"

message = img_div

dict{"img div"] = img div

dict["x axis_max"] = request.POST{'ta_length']

#print "dict[img_div] : %s" %(dict["img div"])

#print "dict[x_axis_max] : %s" %(dict["x_axis max"])
##interval = ViewInterval(ta=ta, user=user,
start_time=iform start, end_time=iform_end)
else
dict = {}

print "saved interval"

return HttpResponse(simplejson.dumps(dict),
mimetype="application/javascript")

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

94

def post test(request):
template = "js_test.html"
ta_id = 4
ta = TopicAssignment.objects.get(pk=ta_id)
linked_problems=LinkedWebPage.objects.filter(topic_assignment _id=ta_id)
is_user favorite=False
student = AnonymousUser()
student_info = get student info(request)
get the profile and authentication info
comments=Comment.objects.none()

empty query set
if student_info['is_authenticated’']:
student=student_info['student’]
student_faves = get_student favorites(request)
comments = ta.comments.filter(Q(permissions='students’)
| (Q(permissions='staff') &
Q(user=student)))
if student.is_staff:
comments=ta.comments.all()
if student_ faves['faves'].filter(pk=ta_id).count():
is_user_ favorite=True
if request.method=='POST':
if 'submit comment' in request.POST.keys():
make_comment (request, student, ta)
if 'add favorite' in request.POST.keys():
add_favorite(request, student_info['profile'], ta)
if 'rm_favorite' in request.POST.keys():
rm_favorite(request, student_info['profile'], ta)
for key in request.POST.keys():
print "requst.POST[%s] = %s \n" %(key, request.POST[key])
topic_number=TOPIC_NUMBERS[ta.topic]
dict = {
'debug’': True,
'selected_ta':ta,
'topic':ta.topic,
'linked_problems':linked_problems,
'is_user favorite':is_user_favorite,
'user': student,
'comments': comments,
'permissions': ['staff',6'student'],

}

return render with student_context(request, template, dict)

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

95

def comment update(request):
print "updating comment"

dict = {"username": '',

if request.is_ajax():

"text": '', "permissions": '', "ta id": ''}

print "request in comment_update is ajax"
if request.method =='POST':

username = request.POST['username']

text = request.POST['text']

permissions = request.POST['permissions']
ta_id = request.POST['ta_id']

user = User.objects.get(username=username)
ta = TopicAssignment.objects.get(pk=ta_id)
comment = Comment ()

comment.clip = ta

comment .user user

comment.text text

comment.permissions = permissions
comment.save()

print "permissions are %s" %(permissions)

dict["username"] = str(username)
dict["ta_id"] = str(ta_id)
dict["text"] = str(text)
dict["time"] = str(comment.time)

return HttpResponse(simplejson.dumps(dict),

mimetype="application/javascript")

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

96

A.2.2 Student_ views.py

import sys

sys.stdout = sys.stderr

from django.shortcuts import render_ to_response
from django.http import HttpResponseRedirect
#from records.models import *

from tutorials.models import *

from django.contrib.auth.models import AnonymousUser
from tutorials.filters import TopicAssignmentFilterSet
from django.contrib.auth.decorators import login_required

from django.template import RequestContext

from django.conf import settings
import datetime, os, re
import utils

def get_student_info(request):
is_authenticated=request.user.is_authenticated()

if is_authenticated:
print "user %s is authenticated \n" %(request.user.username)
student=request.user
profile=UserProfile.objects.get (user=student)

return {'student' : student,
'profile' : profile,
'is_authenticated': is_authenticated,
}
else:

print "user is NOT authenticated\n"
return {'is_authenticated':is_authenticated}

def get public_videos(request):
MAX DISPLAY=5
quizzes = TopicAssignment.objects.filter(video_type='01ldQuiz"')
labs = TopicAssignment.objects.filter(video__type='LabHint')
concepts = TopicAssignment.objects.filter(video__ type='Concept')
tutprobs = TopicAssignment.objects.filter(video_ type='TutProb')
all vids TopicAssignment.objects.all()

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

97

located in views.py

dict = {
'quizzes': quizzes,
'labs’':labs,
'concepts': concepts,
'tutprobs': tutprobs,
'all _vids':all_vids,
}

return dict

def favorites to tas(favorite_set):
return (favorite.ta for favorite in favorite_set)

def get_student_ favorites(request):
MAX DISPLAY=5
student_dict= get_student_info(request)
profile = student dict['profile’']
fav_quizzes = profile.favorite set.filter(ta__video_ type='0ldQuiz"')
fav_labs = profile.favorite_set.filter(ta_ video_ type='LabHint')
fav_concepts = profile.favorite set.filter(ta_ video_ type='Concept')
fav_tutprobs = profile.favorite_set.filter(ta_ video_ type='TutProb')
faves = profile.favorite set.all()
dict = {
'fav_quizzes': fav_gquizzes,
'fav_labs': fav_labs,
'fav_concepts': fav_concepts,
'fav_tutprobs': fav_tutprobs,
'faves':faves,
}
dict.update(student_dict)
return dict

def get_ student favorite tas(request):
MAX DISPLAY=5
student_dict= get_student_info(request)
profile = student_dict['profile']
fav_quizzes = profile.favorite_set.filter(ta__video_ type='0ldQuiz')
fav_labs = profile.favorite_set.filter(ta_ video_ type='LabHint')
fav_concepts = profile.favorite set.filter(ta_ video__type='Concept')
fav_tutprobs = profile.favorite set.filter(ta_video_ type='TutProb')
faves = profile.favorite_set.all()
dict = {

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 98

'fav_quizzes': fav_quizzes,
'fav_labs': fav_labs,
'fav_concepts': fav_concepts,
'fav_tutprobs': fav_tutprobs,
'faves':faves,
}

dict.update(student_dict)

return dict

def get_faves_by topic(request):
student_dict=get_ student_info(request)
student_faves = student_dict['profile'].favorite set.all()
topic_choices = [[topic[0], topic[l]] for topic in TOPIC CHOICES]
faves by topic={}
for topic_tuple in topic_choices:
topic_faves = student_faves.filter(ta__ topic=topic_tuple[0])
get all TopicAssigned video clips that match the exact topic part

entry=""
for topic_fave in topic_faves:
entry = '%$s <td>%s</td>' %(entry,

topic_fave.ta.video.get_absolute_url(),
topic_fave.ta.video.file_ name)
faves by topic{topic_tuple[l]]=entry
return faves_ by topic

def get fave tas_by topic(request):
student _dict=get_student_ info(request)
student faves = student_dict['profile'].favorite set.all()
topic_choices = [[topic[0], topic[1l]] for topic in TOPIC_CHOICES]
faves by topic={}
for topic_tuple in topic_choices:
topic_faves = student_faves.filter(ta__topic=topic_tuple[0])
get all TopicAssigned video clips that match the exact topic part

entry="'"
for topic_fave in topic_faves:
entry = '%s <td>%s</td>' %(entry,

topic_fave.ta.video.get_absolute_url(),
topic_fave.ta.video.file name)
faves by topic{topic_tuple[l]]=entry
return faves_by topic

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 99

@login_required
def preview_and_set_ topic(request, video_id):

for item in request.POST.keys():
print "request.POST[%s] = %s\n" %(item, request.POST[item])

if not request.user:
html = "<h2> Error: you are not
logged in.</h2>"
return render_ to response(html, {})
if not request.user.is_staff:
html = "<h2> Error: you are not
logged in as staff.</h2>"
return render_to_response(html, {})
video_ id=int(video_id)
video = PublicVideo.objects.get (pk=video_id)
dict = { 'video':video }
template="movie_ preview.html"
return render_to_response(template, dict)

Main view for media browser
use built in decorator to limit access to logged in users
@login_required
def student_portal(request, topic_snippet_id="", show='All', gquery_string=''):
all topic_assignments = TopicAssignment.objects.all()
if topic_snippet_id =="":
#topic_snippet id=TopicAssignment.objects.all()[0].id
topic_snippet_id = utils.get random ta_ id()

if not request.user:

return HttpResponseRedirect("/public/")
if not request.user.is authenticated():

return HttpResponseRedirect (" /public/")
#if request.user.is staff:
return HttpResponseRedirect("/view history/")
public_ta dict = get public_videos(request)
favorite dict = get_student favorites(request)
fave_tas_by topic = get fave tas_by topic(request)
ta_id = int(topic_snippet_id)
all topic_assignments=public_ta dict['all_vids']
selected ta = all_topic_assignments.get(pk=ta_id)

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 100

if 'QUERY_STRING' in request.META.keys():
query_string='?'+request.META['QUERY STRING']
query=query_string

is_favorite=u'False'
if favorite_dict['faves'].filter(ta_ pk=ta_id):
is_favorite=u'True'
verbose_topics = [topic[l] for topic in TOPIC_CHOICES]
pre_filter = TopicAssignment.objects.all()
if show=='Favorites':
inner_queryset = favorite dict['faves'].values('ta')
pre_filter = TopicAssignment.objects.filter(id__in=inner queryset)

only show a student's favorites
filterset=TopicAssignmentFilterSet(request.GET, queryset=pre filter)

dict={
'query_string':query,
'topic_assignment_ filterset':filterset,
'all _topic_assignments':pre filter,
'selected_ta':selected_ta,
'verbose_topics':verbose topics,
‘faves_by_ topic':fave tas_ by topic,
'show': show,

}

print "(student_portal) size of pre filter = %d" %(pre_filter.count())

for item in pre_filter:
print "(student_portal) pre filter(n): %s\n" %(item)

return render_to_response(template, dict,
context_instance =
RequestContext(request,
processors=[get_student_ favorites]))

public browser. no authentication or favoriting.
def browse(request, topic_snippet id='', is_favorite=False, query string='"'):
all topic_assignments = TopicAssignment.objects.all()
if topic_snippet_id =='"':
topic_snippet_id='1l"
ids = [ta.id for ta in all topic_assignments]
ta _id = int(topic_snippet_ id)
print >> sys.stderr, "ta id = %d\n" %(ta_id)

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 101

selected_ta = all_topic_assignments.get(pk=ta_id)
selected_video = selected ta.video
v_id = selected_video.id

all _videos=Publicvideo.objects.all()
selected video = all_videos.get(pk=v_id)
print "vid is %d4d" %(v_id)

student = AnonymousUser()
if request.user.is_authenticated():
student = request.user

if 'QUERY_STRING' in request.META.keys():

if not request.META['QUERY_STRING'] =='"':

query_string='?'+request.META['QUERY_ STRING']
query=query_string
print "full path = %s\n" %(query)
filterset=TopicAssignmentFilterSet(request.GET,
queryset=TopicAssignment.objects.all())

dict={

'query_string':query,

'all videos':all videos,

‘all topic_assignments':filterset,

'selected_ta':selected ta,

'user': student,

}

template="browse.html"
response = render_to_response(template, dict)
return response

def media browser(request):
all videos = PublicVideo.objects.all()
v_id=3
for now, "Timothy Leary's Calenday App - one of the smaller ones.
print "vid is %d" %(v_id)
all topic_assignments = TopicAssignment.objects.all()

staff faves={}
all faves={}

-- stuff to keep the right video-topic thing selected when
-- the filter list is modified

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 102

query_string=request.META['QUERY_ STRING']
print "query_ string = %s\n" $(query_string)
v_id field = 'v_id' in request.GET.keys()
start_char=u'?’
full path=""
if v_id_field:
v_id=request.GET['v_id']
full_path=re.sub("\?2*v_id=["&]*", '', request.get full path())
if 'topic' in request.GET.keys():
full path=re.sub("\&*v_id=[~&]*", '', request.get full path())
start_char=u's&’
-- end query string processing

selected_video = all_videos.get(pk=v_id)
print "full path = %s\n" %(full path)

for k in request.GET.keys():

print "request.GET[%s] = %$s\n" %(k, request.GET[k])
for video in all_videos:

favoriter set = video.userprofile set.ally()

staff faves[video.id]=favoriter_set.filter(user_is staff=True).count()
all faves[video.id]=favoriter set.count()
filterset=TopicAssignmentFilterSet(request.GET,
queryset=TopicAssignment.objects.all())

dict={
'full path':full path,
'start_char': start_char,
'all topic_assignments':filterset,
'selected_video':selected_video,
'staff faves':staff faves,
'all faves':all faves,

}

template="browse.html"
response = render_to_response(template, dict)

print "the outgoing response is %$s\n" %(response.content)
return response

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 103

A.2.

from
from
from
from
from
from
from

def

@log
def

3 Staff views.py

tutorials import loader

django.shortcuts import render_ to_response
django.http import HttpResponseRedirect
tutorials.models import *
django.contrib.auth.decorators import login_required
django.contrib.auth.models import AnonymousUser
tutorials.forms import PublicVideoForm

check_staff(request):
if not request.user:

return HttpResponseRedirect('accounts/login/"')
if not request.user.is_staff:

return HttpResponseRedirect('accounts/login/"')

in_required

preview_and_set_topic(request, video_ id):

print "in preview_and set topic\n"

#for item in request.POST.keys():

print "request.POST[%s] = %s\n" %(item, request.POST[item])
#check staff (request)

topic_choices = [[topic[0], topic[l]] for topic in TOPIC_CHOICES]
quiz_choices = [[quiz[0], quiz[l]] for quiz in QUIZ CHOICES]
print "about to get video # %s \n" %(video id)
video_id=int(video_id)

video = PublicVideo.objects.get(pk=video_id)

end_time_units=0;
start_time units=0;
quiz="0"

topic=""

title=""

if request.is_ajax():
if request.method == 'POST':
start_time_units = int(request.POST['start_time units']})
end _time_units = int(request.POST['end time units'])
topic = request.POST['topic']
quiz = request.POST['quiz']
else:

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

104

if request.method=="POST":
We have an upload submission from movie preview.html
print "post!"
if 'start_time units' in request.POST.keys():
then the button, with input type "onclick"
triggers the event listener
in movie_preview.html "set_start time();"
and here, this the dictionary below,
we have the conversion from start_time_units
to start_time in the
topic_assignment object itself.
start_time_units = int(request.POST['start_time_units'])
else: start_time_units = 0
print "start_time_units = %s \n" %(start_time units)

if 'end _time units' in request.POST.keys():
end_time_units = int(request.POST['end time units'])
else: end time units = 0
if 'topic' in request.POST.keys():
topic = request.POST['topic_name']
if 'title' in request.POST.keys():
title = request.POST['title']
if 'quiz_name' in request.POST.keys():
guiz = request.POST['quiz_name']
else: quiz="0"

print "end_time units = %d \n" %(end_time_units)
print "quiz is %s \n" %(quiz)
print "topic is %s\n" %(topic)
print "title is %s \n" %(title)
ta = TopicAssignment(video = video,
start_time = start_time units,
stop_time = end_time_units,
topic = topic,
quiz = quiz,
title = title)
ta.save()
print "saved the TA with id : %d \n" %(ta.id)
return HttpResponseRedirect('/topic_assign/%d/' %(video_id))

dict = { 'video': video, 'topic_choices': topic_choices,
'quiz_choices': quiz_choices, }

template="movie preview.html"

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 105

return render_ to_response(template, dict)

@login_required
def selected_video for_assignment(request):
check _staff(request)
selected_video_id = "1"
if request.method == 'POST':
print "got a post \n"
if 'selected_video' in request.POST.keys():
selected video_id = request.POST['selected video']

else:

return HttpResponseRedirect("/upload video/")
vid=int (selected_video_ id)
topic_choices = [[topic[0], topic[l]] for topic in TOPIC_CHOICES]
quiz_choices = [[quiz[0], quiz[1l]] for quiz in QUIZ_ CHOICES]
video = PublicVideo.objects.get (pk=vid)

dict = {
'video': video,
'topic_choices': topic_choices,
'quiz_choices': quiz_choices,

}

template="movie preview.html"
return render_ to response(template, dict)

@login_required
def select_video_ for_assignment(request):
check_staff (request)
print "in select_video for_ assignment \n"
if request.method=="POST":
v_id = request.POST['selected_video']
print "selected video # %s chosen for topic assignment \n" %(v_id)
vid = int(v_id)
video = Publicvideo.objects.get(pk=vid)
videos = Publicvideo.objects.all()
dict = { 'videos': videos }
template = "select_video_for_ assignment.html”
return render_to response(template, dict)

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

@login_required
def upload video(request):

makes sure that the user is staff before rendering the page
check_staff (request)

if request.method=="POST":
video form = PublicVideoForm(request.POST, request.FILES)
if not video_form.is_valid():
template = "<h2> Please check the form submission
and try again </h2>"
return render to_response(template, {})
else:
video = video_form.save(commit=False)
file = request.FILES['file']
video.file=file
print "video.file.name = %s" %(video.file.name)
print "file name is %s" %(file.name)
video.save()
return HttpResponseRedirect('/topic_assign/%d/' %(video.id))
else:
video_form = PublicvVideoForm()
videos = PublicVideo.objects.all()
dict = {
'videos': videos,
'user':request.user,
'video_ form':video_form,
}
template = 'upload_video.html'
return render_ to_response(template, dict)

def display interval list(request):
topic_assignments = TopicAssignment.objects.all()

title string = "List of Topic-Assigned Clips"
header_string = "Click one of the links to check the view history"
dict = {

'title string' : title string,
'header_string' : header_string,
'ta_query set' : topic_assignments

}

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 107

def

template = "view_history_ list.html"
return render_to_response(template, dict)

get _img url(ta_id, x_length="0"):
print "(get _img url)"
id=int(ta_id)
ta = TopicAssignment.objects.get(pk=id)
#print "(display_interval views) ta = %s" %(ta)
intervals = ta.viewinterval_set.all()
number = intervals.count()
interval_stop_times = intervals.values_list('stop_time’',
flat=True).order by('-stop_time')
if not (interval stop_times.count() == 0):
intervals max = int(interval_ stop times[0])
else:
intervals_max = 100

x_length = int(x_length)
if (x_length == 0):
x_length = intervals_max

#print "x_length = " + str(x_length)
#print "intervals max = " + str(intervals max)
#print " (display_interval_views) there are %d
intervals for this topic assignment." % (number)
view_vector = [0]
step = int(intervals max/100)
for i in range(0, intervals_max, step):
#print "in outer for loop with index = " + str(i)
view_vector.append(0)
initialize array value for this index to zero
for interval in intervals:
if interval.has_second(i):
#print "view_vector["+str(i)+"] = " + str(view vector([i])
view_vector[int(i/step)] = view vector[int(i/step)] + 1

#for i in range (intervals max):

print "-- view _vector["+str(i)+"] = " + str(view_vector[i])
max_views = max(view_vector)
if (max_views == 0):
max_views = 1
#print "max _views = " + str(max views)
img url = "http://chart.googleapis.com/chart?”

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

108

to make a line chart
img url = img url + "cht=lc&"
make a graph that is 800x300 (default)
img url = img url + "&chs=600x300"
add the data values
img_url = img_url + "&chd=t:" + str(view_vector[0]*100/max views)
view _vector_length=len(view_vector)
for i in range (0, view_vector_length, step):
img_url = img_url + ","+ str(view_vector[i]*100/max_views)
format the axis scale and color, respectively
img url = img_url + "&chxt=x,y&chxr=0,0," + str(x_length) +
"," + str(x_length/10) +"|1,0,"+str(max views)+",1"

img_url = img_url + “&chxs=0,2244FF,12,0,1t|1,0055FF,10,1,lt"

return img_url

want to count all of the people viewing at each time unit to determine

popular parts of a video. this one just counts all views, without regard to

user
@login_required
def display_interval views(request, ta_id):
user = AnonymousUser()
if request.user.is authenticated():
user = request.user
id=int(ta_id)
ta = TopicAssignment.objects.get(pk=id)

img url = get_img url(ta_id)
print "img url = " + img_url
context = {
"ta_start" : ta.start time,
"ta_id":ta_id,
"user" :user,
"ta_stop" : ta.stop_time,
"selected_ta" : ta,
"img_url" : img_url
}
template = "display_ interval views.html"
return render_ to_response(template, context)

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

109

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 110

A.3 Project Configuration

A.3.1 Urls.py

from django.conf.urls.defaults import *

from django.views.generic import list detail

from django.contrib import databrowse

from django.contrib.auth.views import login, logout, logout then login,
password_change, password_change_done

from usersite import views, student_views, staff views

#enable the admin

from django.contrib import admin

from django.contrib.auth.models import User, Group

admin.autodiscover()
student_list _info = {
'queryset': User.objects.filter(is_staff=False),
'template name': 'student list.html'}
student_detail_info = {

'queryset': User.objects.filter(is_staff=False),
'template_object_name': 'student' }

urlpatterns = patterns('"',
server side interval handler
(r'~post_interval/$', views.post_interval handler),
(r'“post_test/page/$', views.post test),

admin portal
(r'~admin/', include(admin.site.urls)),

(r'~accounts/login/$', login),
(r'~accounts/logout/$', logout_then login),
(r' ~accounts/changepw/$', password change),

(r'~accounts/changepwdone/$', password_change_done),

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 111

template: /templates/tutorials/browse.html

(r'~accounts/profile/$', student_views.student portal),

handler for uploading comments
(r'~“comment_update/$', views.comment update),

handler for adding a favorite
(r'~add favorite/$', views.favorite post),

staff editing and topic assigning page
(r'~topic_assign/(?P<video_id>\d+)/$"',
staff views.preview_and _set_topic),

staff video upload
(r'"upload video/$', staff views.upload video),

(r'“select_video_for_ assignment/$',
staff views.select video_ for assignment),

Number of views by movie timeline
(r'~view_history/$',
staff views.display_interval_ list),

(r'~view_history/(?P<ta_id>\d+)/$"',
staff views.display_ interval views),

Used to test variable landing pages to bring
attention to new features
(r'~landing/$', views.landing),

Select an existing video to add a new chapter
(r'"selected_video_for_assignment/$',
staff_views.selected_video_for_assignment),

show lists of videos with these attributes
(r'~“web/show _media/(?P<ta_id>\d+)/$"',

views.show_media),

(r'~web/show_for topic/(?P<topic>\w+)/$"',
views.show by topic),

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

112

(r'~web/show_for_ quiz/(?P<quiz>\d+)/$',
views.show by quiz),

(r'~web/show_for_author/(?P<author username>\w+)/$',
views.show_by_ author),

(r'~"web/show_for_ semester/(?P<semester>\w+)/$',
views.show_by_ semester),

(r'“web/show_for_ type/(?P<type>\w+)/$',
views.show_by_ type),

#student portal TEST
(r'~portals/(?P<athena_id>\w+)/$',
student views.student_ portal),

Student Landing Page
(r'~$', student_views.student_portal),

(r'~“public/$', student views.student portal),

Show a different video on the preview pane
(r'~(?P<topic_snippet id>\d+)/$',
student_views.student_ portal),

#Show a new topic assignment and specify

the favorite toggled as “All” or “Favorites”
(r'~(?P<topic_snippet_ id>\d+)/(?P<show>\w+)/$',
student_views.student portal),

(r'~(2P<topic_snippet id>\d+)/(2?P<show>\w+)/
(?P<query string>\w+)/$',
student_views.student portal),

tutorial problems
(r'~tutprobs/$', views.tutorial main),
(r'“tutprobs/(?P<topic>.*)$', views.tutorial by topic),

(r'~tutprobs/ (?P<topic>\w+)/
(?P<linked_problem_id>\d+)/$', views.tutorial by id),

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 113

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 114

A.3.2 Settings.py

Django settings for usersite project.

DEBUG = True
TEMPLATE_ DEBUG = DEBUG

ADMINS = (
('Your Name',6 'your_ email@domain.com'),

AUTH_PROFILE MODULE = 'tutorials.UserProfile'
This is to associate each -User- with a
-UserProfile- that stores the athena_id
and favorites of the student

MANAGERS = ADMINS

DATABASE_ENGINE = 'sglite3’

DATABASE _NAME = '/home/caitlinj/website/djcode/usersite.db’

Or path to database file if using sqglite3.

DATABASE_USER = '' # Not used with sqglite3.

DATABASE_ PASSWORD = '' # Not used with sglite3.

DATABASE_HOST = '' # Set to empty string for localhost. Not used

with sqglite3.

DATABASE PORT = '' # Set to empty string for default. Not used

with sqglite3.

Local time zone for this installation. Choices can be found here:
http://en.wikipedia.org/wiki/List_of tz_zones_by name

although not all choices may be available on all operating systems.
TIME ZONE = 'America/Chicago'

Language code for this installation. All choices can be found here:
http://www.il8nguy.com/unicode/language-identifiers.html
LANGUAGE_CODE = 'en-us'

SITE ID = 1
If you set this to False, Django will make some optimizations so as
to load the internationalization machinery.

USE_I18N = True

Absolute path to the directory that holds media.
Example: "/home/media/media.lawrence.com/"

not

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

115

MEDIA_ROOT = '/home/caitlinj/website/djcode/usersite/media/"

URL that handles the media served from MEDIA ROOT. Make sure to use a
trailing slash if there is a path component (optional in other cases).

Examples: "http://media.lawrence.com", "http://example.com/media/"

MEDIA URL = 'http://lecture.csail.mit.edu/site_media/'

URL prefix for admin media -- €SS, JavaScript and images. Make sure to use a
trailing slash.

#ADMIN MEDIA PREFIX = '/media/'

ADMIN_MEDIA PREFIX = '/media/admin-media/'

Make this unique, and don't share it with anybody.
SECRET KEY = [OMITTED]

List of callables that know how to import templates from various sources.

TEMPLATE_LOADERS = (
'django.template.loaders.filesystem.load template source',
'django.template.loaders.app_directories.load template source’',
'django.template.loaders.eggs.load_template source',

TEMPLATE_CONTEXT_PROCESSORS = (
'django.core.context processors.auth',

MIDDLEWARE_CLASSES = (
'django.middleware.common.CommonMiddleware',
'django.contrib.sessions.middleware.SessionMiddleware',
'django.contrib.auth.middleware.AuthenticationMiddleware',

ROOT_URLCONF = 'usersite.urls'

TEMPLATE_DIRS = (
'/home/caitlinj/website/djcode/usersite/templates’,
'/home/caitlinj/website/djcode/usersite/templates/records’',
'/home/caitlinj/website/djcode/usersite/templates/tutorials’,
'/home/caitlinj/website/djcode/usersite/templates/6004_ tutorial probs',
'/home/caitlinj/website/djcode/usersite/tutprobs’,

)

FIXTURE_DIRS = (
'/home/caitlinj/website/djcode/usersite/tutorials/fixtures"',

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 116

INSTALLED_APPS = (
'django_extensions',
'django.contrib.auth’',
'django.contrib.contenttypes’',
‘django.contrib.sessions’,
'django.contrib.sites’,
'usersite.tutorials’,
'django.contrib.admin’,
'django_filters',

'south’',

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 117

A.3.3 Admin.py

from django.contrib import admin
from usersite.tutorials.models import *

class PublicVideoAdmin(admin.ModelAdmin):

list_display=('type', 'title', 'file name','author',6 'semester',
'num_favorites', 'id', 'file')

list_filter=('type', 'title', 'author', 'semester', 'id', 'file')

fields=('type', 'semester', 'author', 'file', 'title')

def num_ favorites(self, obj):

return obj.userprofile_set.count()
pass

class ViewIntervalAdmin(admin.ModelAdmin) :
list display=('user', 'ta', 'time', 'range')
list filter=('user', 'ta', 'time',)

class FavoriteAdmin(admin.ModelAdmin):
list _display=('profile’', 'ta', 'time')
list _filter=('profile', 'ta’', 'time')

class TopicAssignmentAdmin(admin.ModelAdmin):
list_display=('topic', 'title', 'id', 'quiz', 'video')
list _filter=('topic', 'title', 'id', 'quiz', 'video')

class LinkedWebPageAdmin(admin.ModelAdmin):
list_display=('name', 'url', 'pointer_on page', 'topic_assignment')
list_filter=('name', 'url', 'topic_assignment')

admin.site.register(UserProfile)

admin.site.register (Publicvideo, PublicvVideoAdmin)
admin.site.register(TopicAssignment, TopicAssignmentAdmin)
admin.site.register(Comment)
admin.site.register(ViewInterval, ViewIntervalAdmin)
admin.site.register(LinkedWebPage, LinkedWebPageAdmin)
admin.site.register(Favorite, FavoriteAdmin)

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 118

A.3.4 Manage.py

from django.core.management import execute manager
try:
import settings # Assumed to be in the same directory.
except ImportError:
import sys
sys.stderr.write("Error: Can't find the file 'settings.py' in the
directory containing %r. It appears you've customized things.\nYou'll have to

run django-admin.py, passing it your settings module.\n(If the file

settings.py does indeed exist, it's causing an ImportError somehow.)\n" %
__file)

sys.exit(1l)

if _ name == "_ main_ ":
execute manager (settings)

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 119

QUIZ_ CHOICES

A.g4Miscellaneous

A.4.1 Enums.py

]
—_

("l ' ’)l
(1, 'Quiz 1),
(2, 'Quiz 2'),
(3, 'Quiz 3'),
(4, 'Quiz 4'),
(5, 'Quiz 5'),
)

SEMESTER_CHOICES = (

('', '--All Terms--'),
('sll1', 'spring 2011'),
('F10', 'Fall 2010'),
('S10', 'sSpring 2010'),
('FO9', 'Fall 2009'),
('s09', 'spring 2009°'),
('FO08', 'Fall 2008'),
('S08', 'Spring 2008'),
('FO7', 'Fall 2007'),
('s07', 'Spring 2007'),
('FO06', 'Fall 2006'),
('s06', 'Spring 2006'),
('FO5', 'Fall 2005'))

VIDEO_CHOICES = (

('', '-- All video Types
('Lecture', 'Lectures'),
('Section', 'Recitations’

=="')

) s

('0ldQuiz’', 'Past Quiz Problems'),

('LabHint', 'Lab Hints'),

('TutProb', 'Tutorial Problems'),
('Concept', 'Conceptual Reviews'))

TOPIC_CHOICES = (

('', '-- All Topics --'),
('BasicsOfInformation',
('TheDigitalAbstraction’,

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

Basics of Information'),
'The Digital Abstraction'),

120

('CMOSTechnology', 'CMOS Technology'),

('GatesAndBooleanLogic', 'Gates And Boolean Logic'),
('SynthesisOfCombinationalLogic', 'Synthesis of Combinational Logic'),
('SequentialLogic', 'Sequential Logic'),

('FSMs', 'FSMs'),

('SynchronizationAndMetastability', 'Synchronization and Metastability
('Pipelining', 'Pipelining'),

('ModelsOfComputation', 'Models of Computation'),
('ProgrammableMachines', 'Programmable Machines'),

('MachineLanguage', 'Machine Language'),

('stacksAndProcedures', 'Stacks and Procedures'),

('BuildingTheBeta', 'Building the Beta'),

('MemoryHierarchy', 'Memory Hierarchy'),

('Caches', 'Caches'),

('VirtualMemory', 'Virtual Memory'),

('VirtualMachines', 'Virtual Machines and OS Issues'),
('DevicesInterruptsAndRealTime', 'Devices Interrupts and Real Time'),
(' Semaphores', 'Semaphores'),

('PipelinedBeta', 'Pipelined Beta'))

TUTORIAL_ PROBLEM URLS = {

'BasicsOfInformation': "info.html",
'TheDigitalAbstraction': "digital.html" ,
'CMOSTechnology': "cmos.html",
'GatesAndBooleanlLogic': "gate.html",
'SynthesisOfCombinationallogic': "logic.html",
'Sequentiallogic': "sequential.html",

'FSMs': "fsm.html",
'SynchronizationAndMetastability': "synchronization.html",
'Pipelining': "pipeline.html",
'ModelsOfComputation’': "computation.html",
'ProgrammableMachines': "progmach.html",
'MachineLanguage': "machinelang.html",
'StacksAndProcedures’': "procedures.html",
'BuildingTheBeta': "beta.html",
'MemoryHierarchy': "memhierarchy.html",
'Caches': "caches.html",

'VirtualMemory': "vm.html",

'VirtualMachines': "os.html",
'DevicesInterruptsAndRealTime': "realtime.html",
'Semaphores': "semaphores.html",
'PipelinedBeta’': "pipelinedbeta.html" }

TOPIC_NUMBERS = {

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

")

121

'BasicsOfInformation': O,
'TheDigitalAbstraction': 1,
'CMOSTechnology': 2,
'GatesAndBooleanLogic': 3,
'SynthesisOfCombinationalLogic': 4,
'Sequentiallogic': 5,

'FSMs': 6,
'SynchronizationAndMetastability': 7,
'Pipelining': 8,
'ModelsOfComputation': 9,
'ProgrammableMachines’': 10,
'MachineLanguage': 11,
'StacksAndProcedures': 12,
'BuildingTheBeta': 13,
'MemoryHierarchy': 14,

'Caches': 15,

'VirtualMemory': 16,
'VirtualMachines': 17,
'DevicesInterruptsAndRealTime': 18,
'Semaphores': 19,

'PipelinedBeta': 20}

TOPIC_LIST = |
'BasicsOfInformation’,
'TheDigitalAbstraction',
'CMOSTechnology',
'GatesAndBooleanLogic’',
'SynthesisOfCombinationalLogic’,
'SequentialLogic’,

'FSMs',
'SynchronizationAndMetastability’',
'Pipelining’',
'ModelsOfComputation’,
'ProgrammableMachines’',
'MachineLanguage',
'StacksAndProcedures’,
'BuildingTheBeta',
'MemoryHierarchy',

'Caches’',

'VirtualMemory',
'VirtualMachines',
'DevicesInterruptsAndRealTime’,
'Semaphores',

'PipelinedBeta’]

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 122

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 123

A.4.2 Loader.py

from models import *

from django.db import models

from django.contrib.auth.models import User
from django.core.files import File

import os, fnmatch, re

from django.conf import settings

from models import PublicVideo

def make():

def make_ student(athena_id, first name, last_name, student id):
student=User.objects.filter (username=athena_id)
if not student.count():
s=User.objects.create_user(athena_id, '%s@mit.edu’
%(athena_id), student_id)
s.first name=first name
s.last_name=last_name
s.is_staff=False
p = s.get _profile()
p.student_id=student_id
s.save()
p.save()
return s

else:
s = student.get(username=athena_id)
s.first _name=first_ name
s.last_name=last name
s.is_staff=False
s.save()
return s

benbit=make_student('benbit', 'Ben', 'Bitdiddle', '900000001')
aphacker=make_student('aphacker', 'Alyssa P.', 'Hacker', '900000002')
chipahoy=make_ student('chipahoy', 'Chip', 'Ahoy', '900000003')
alogue=make_student('alogue', 'Anna', 'Logue’, '900000004"')

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 124

def make_staff(athena_id, first_name, last name):
staff=User.objects.filter(username=athena_id)
if not staff.count():
member=User.objects.create_user(athena_id, '%s@mit.edu’
%(athena_id), first name)
member.first name=first name
member.last name=last name
member.is_staff=True
member.save()
return member
else:
member=staff.get()
member.save()
return member

ward=make_staff('ward', 'Steve', 'Ward')
cjt=make staff('cjt', 'Chris', 'Terman')

caitlinj=make_staff('caitlinj', 'Caitlin', 'Johnson')
sneuman=make_staff('sneuman', 'Sabrina', 'Neuman')
kelleyk=make_staff('kelleyk', 'Kevin', 'Kelley')

sarina=make_ staff('sarina', 'Sarina', 'Canelake’')
dcrowell=make_ staff('dcrowell', 'David', 'Crowell')
renminbi=make_ staff('renminbi', 'Becky', 'Bianco')
bbasham=make_staff('bbasham', 'Brian', 'Basham')
colosimo=make_staff('colosimo', 'Joe', 'Colosimo')
kasittig=make_staff('kasittig', 'Karen',6 'Sittig')
drews=make_staff('drews', 'Andrew',6 'Shapiro')

staff list = User.objects.filter(is_staff=True)
semesters=[tuple[0] for tuple in SEMESTER_CHOICES]

vid_types=[tuple[0] for tuple in VIDEO_CHOICES]
usernames={user.username for user in staff list]

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

125

print "semesters: %s" %(semesters)
print "usernames: %s" %(usernames)

def fs location(auth, type, term):
return os.path.join(settings.MEDIA ROOT, auth, type, term)

def is_video(file name):
extension=os.path.splitext(file name)[1]
for type in VIDEO TYPE LIST:
if extension==type:
return True
return False

def remove_ dupes(directory, file):
for extension in VIDEO_TYPE LIST:
stem = os.path.splitext(os.path.split(file)[1])[0]
for other_file in os.listdir(directory):
other name=os.path.split(other file)[1]
[other stem, other extension]
=os.path.splitext(other name)[0:2]
if re.match(stem, other stem):
if other_stem[-1]=='_' and other extension==extension:
os.remove(os.path.join(directory, other file))
return True

def already_ there(author, type, semester, file):
authors = PublicVideo.objects.filter (author=author)
types = authors.filter(type=type)
semesters = types.filter(semester=semester)
return semesters.filter(file name=file).count()

def load_video(author, type, semester, video path):
video_name=os.path.split(video path)[1]
if not already_ there(author, type, semester, video name):
get the user object with this username to assign it
user_obj = staff list.get(username=author)
vid = PublicVideo(author=user obj, type=type, semester=semester,
file name=video_ name)
fil = File(open(video_path, 'rb'))
vid.file name=video_name
vid.file.save(vid.file name, fil, save=False)
vid.save()
return vid

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 126

look by staff/type/semester
def find media():
for username in usernames:
for vid_type in vid_types:
for semester in semesters:
directory =fs_location(username, vid_type, semester)
ONLY CHECK EXISTING DIRECTORIES!!
if os.path.exists(directory):
look at each file in the directory to laod
after duplicates are removed so we don't
load in duplicate objects with the same file
for file in os.listdir(directory):
and see if it's a movie file
if is video(file):
proposed_path = os.path.join(directory, file)
new_vid=load_video(username, vid type,
semester, proposed_path)
new_vid.save()
remove dupes(directory, file)

if we had to remove dupes, fix file name
new_vid.file name=file
new_vid.save()

print "Finding Media"

find _media()

titles = {
'LO3.mov': 'Lecture 3°',
'LO04.mov': 'Lecture 4',
'LO5.mov':'Lecture 5°',
'LO6.mov':'Lecture 6',
'LO7.mov': 'Lecture 7',
'LO08.mov': 'Lecture 8',
'LO9.mov': 'Lecture 9',
'L10.mov': 'Lecture 10',
'Lll.mov': 'Lecture 11°',
'Ll4.mov': 'Lecture 14',
'Ll15.mov': 'Lecture 15°',

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 127

'Ll16.mov':'Lecture 16',

'Ll17.mov':'Lecture 17',

'L18.mov': 'Lecture 18',

'L19.mov': 'Lecture 19°',

'L20.mov': 'Lecture 20°',

'L21.mov':'Lecture 21',

'L22.mov': 'Lecture 22',

'L23.mov"':'Lecture 23',

'L24 .mov': 'Lecture 24°',

'S10_ Q1 P3.mov': 'Static Discipline’,

'S10_Q1 P2.mov': 'Timothy Leary\'s Calendar App',
's10_s1 P4.mov': 'Deja Vu',

'S10_Q2 P2-2.mov': 'Timothy Leary\'s Calendar App (continued)',
}

..

def assign_titles():
videos = PublicvVideo.objects.all()
for video in videos:
if video.title == '':
if video.file name in titles.keys():
video.title = titles[video.file name]

assign_titles()

temp topic matcher for testing and development
topic_assignments = {
'LO3.mov':['CMOSTechnology'],
'L04.mov':['SynthesisOfCombinationallLogic'],
'LO5.mov':['Sequentiallogic'],
'LO6.mov':['FSMs'],
'LO07.mov':['SynchronizationAndMetastability'],
'L08.mov':['Pipelining'],
'LO09.mov':['Pipelining', 'ModelsOfComputation’'],
'L10.mov':['ProgrammableMachines'],
'Lll.mov':['MachineLanguage'],
'Ll14.mov':['BuildingTheBeta'],
'L15.mov':['MemoryHierarchy'],
'L16.mov':['Caches'],
'Ll17.mov':['VirtualMemory'],
'L18.mov':['VirtualMachines'],
'L19.mov':['DevicesInterruptsAndRealTime’],
'L20.mov':['DevicesInterruptsAndRealTime’],
'L21.mov':['Semaphores'],

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

128

'L22.mov':['PipelinedBeta’'],

'L23.mov':['PipelinedBeta', 'Pipelining'],

'L24.mov' : ['ProgrammableMachines'],

'S10_Q1 P3.mov': ['TheDigitalAbstraction', 'CMOSTechnology'],
'S10_0Q1 P2.mov': ['BasicsOfInformation'],

'S10_S1 P4.mov': ['TheDigitalAbstraction', 'GatesAndBooleanLogic'],
'S10_Q2_P2-2.mov': ['BasicsOfInformation'],

}

def match_topics():
base_url = "http://6004.csail.mit.edu/currentsemester/tutprobs/"
videos = PublicVideo.objects.all()
for video in videos:
name=os.path.split(video.file name)[1]
if name in topic_assignments.keys():
topic_match=topic_assignments[name]
for topic in topic_match:
ta = TopicAssignment(video=video, topic=topic)
ta.save()
lp string = u'%s' %(topic)
#print "lp string = %s\n" %(lp_string)
lp_leaf=TUTORIAL_ PROBLEM URLS[lp string]
#print "lp leaf = %s\n" %(lp_leaf)
lp_url=u'%s%s' %(base_url, lp_ leaf)
lp = LinkedWebPage(name=topic, url=lp url)
lp.topic_assignment=ta
lp.save()

print "Matching Topics"
match_topics()

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 129

A.4.3 Filters.py

import django_filters
from usersite.tutorials.models import *
from django import forms

class TopicAssignmentFilterSet(django filters.FilterSet):
class Meta:

model=TopicAssignment
list_filter=['topic']
fields=['topic’,
‘quiz',
'video__author',
'video__ type',
‘video__ semester',
'num_student_favorites',
'num_staff favorites']
def _ init_(self, *args, **kwargs):
super (TopicAssignmentFilterSet, self). init_ (*args, **kwargs)

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 130

A.4.4 Forms.py

from
from
from
from
from

django.shortcuts import render_to_response
django.forms import ModelForm

django.http import HttpResponseRedirect

django import forms

usersite.tutorials.models import Comment, PublicVideo

class CommentForm(ModelForm):

fields=['text']

want to auto populate video and username fields
class Meta:

model=Comment

class PublicVideoForm(ModelForm):

file=forms.FileField()

class Meta:

model=PublicVideo
author should be auto-assigned but pre-populated

fields=['author', 'title', 'type', 'semester', 'file', 'description’]

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

131

Appendix B: HTML Templates

B.1 Base Templates

B.1.1 Base.html

{% block header %} {% endblock %}

{%
{%

include "masthead.html" %}
block content %} {% endblock %}

B.1.2 Two__column.html

{3
{3
{3
{3
{%

extends "base.html" %} {% block content %}
block page_top %} {% endblock page_top %}
block main_column %} {% endblock main_column %}
block sidebar %} {% endblock sidebar %}
endblock content %}

B.1.3 Three_block.html

{3
{3
{%
{3
{3

extends "base.html" %} {% block content %}

block main _column %} {% endblock main_column %}

block browse_sidebar %} {% endblock browse_sidebar %}
block bottom_block %} {% endblock bottom block %}
endblock content %}

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

132

B.2 Student Landing Page

B.2.1 Browse.html

{% extends "three_block.html" %}

(%
(%
(%
(%
(%
(%
(%
(%

{%

block title %}Course Media{% endblock %}

block header %}

{% include "interval_movie_ header.html" %}

endblock header %}

block browse sidebar %)}

{% include "student_browse.html" %}

endblock browse_sidebar

block main_column %}

¥}

{% include "movie_div.html" %}

endblock main_column %}

block bottom block %}
{% include "mbrowser.
endblock bottom_block %}

html" %}

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

133

B.2.2 Student_browse.html

<div id="sidebar_content">

{% ifequal show 'Favorites' %}

Displaying your favorite videos.

 [Show All Clips]

{% else %}

Displaying all videos.

 [Show Your Favorites]

{% endifequal %}

{% if user.is_staff %}

<p>

Upload New Video and Assign Topic

<p>

Select Existing Video for Topic
Assignment

{% endif %}

</div>

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 134

B.2.3 Mbrowser.html

<table

<tr>

</tr>
<tr>

border="1" class="mbrowser"
style="display:block;clear:both">

<th>Title</th>
<th>Topic</th>

<th>Quiz #</th>
<th>Type</th>
<th>Author</th>
<th>Semester</th>
<th>Student Favorites</th>
<th>Staff Favorites</th>
<th>Preview</th>
<th>Detail View</th>

<td> -- </td>

<form action="" method="get">

<td>{{topic_assignment filterset.form.
<td>{{topic_assignment_filterset.form.
<td>{{topic_assignment filterset.form.
<td>{{topic_assignment_filterset.form.
<td>{{topic_assignment filterset.form.

<td></td>
<td></td>

topic}}</td>
quiz}}</td>

video_ type}}</td>
video author}}</td>
video__semester}}</td>

<td colspan="2" style="text-align:center">
<input style="font-weight:bold" type="submit"
value="-- Apply Filters--"/></td>

</form>

</tr>

{% for ta in topic_assignment_filterset reversed %}

<tr>

<td>
{% if ta.title %)

{{ta.title}}

{% else %}

untitled # {{ta.id}}

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 135

{% endif %}
</td>
<td>

{{ta.topic}}</td>
<td>

{{ta.quiz_verbose}}</td>
<td>

{{ta.video.type}}</td>
<td>
<a href="/web/show_for_author/
{{ta.video.author.username}}/">
{{ta.video.author}}</td>
<td>
<a href="/web/show_for semester/
{{ta.video.semester}}/">
{{ta.video.semester}}</td>
<td>{{ta.num_student_ favorites}}</td>
<td>{{ta.num staff favorites}}</td>
<td style="text-align:center">

<img style="margin:0;padding:0;height:20px"
src="/site media/images/eye.png"
height="10">
</td>
<td style="text-align:center">

<img style="margin:0;padding:0;height:20px;"
src="/site media/images/arrow.jpg"
height="10">
</td>
</tr>
{% endfor %}
</table>

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 136

B.3 Single-video Player

B.3.1 Show_media.html

{% extends "two_column.html" %}
{% block title %}Course Media{% endblock %}

{% block header %}
{% include "interval movie header.html" %}
{% endblock header %}

{% block main_column %}

{% include "comment view.html" %}
{% include "timing fields.html" $%}
{% endblock main_column%}

{% block sidebar %}

{% include "similar_ video bar.html" %}
{% include "favorite button.html" %}
{% endblock sidebar %}

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 137

B.3.2 Similar_video_bar.html

<p class="sidebar_ header">View more Videos with the same:</p>

Topic:

{{selected_ta.topic}}</1li>

Author:

{{selected_ta.author.get_ full name}}</1li>

Semester:

{{selected_ta.video.semester}}</1li>
Type:

{{selected_ta.video.type}}
</1li>

<p class="sidebar_ header">Tutorial Problems for this Topic:</p>

{% for linked problem in linked problems %}

<1li>
{{linked_problem.name}}</1i>

{% endfor %}

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

138

B.3.3 Favorite_button.html

<div name="favorite div" id="favorite div">

<table>
<tr>
<td class="sidebar header" style="display:inline">
<form action="" method="post" name="change favorite"

id="change favorite">

<input type="hidden" name="username" id="username"
value="{{user.username}}" />

<input type="hidden" name="ta_id" id="ta_id"
value="{{selected_ta.id}}" /> '

{% if user.is_authenticated and is user favorite %}

<!-- This video is marked as one of your favorites.-->

<input type="submit" id="submit favorite"
name="submit_favorite" value="Remove Favorite" />

{% endif %}

{% if user.is_authenticated and not is_user favorite %}

<!l-- You have not yet added this video to your favorites.-->

<input type="submit" id="submit_ favorite"
name="submit_ favorite" wvalue="Add Favorite"
style="align:right"/>

{% endif %)

</form>
</td></tr>
</table>
</div>

<script type="text/javascript"

src="/site_media/comment submission.js"></script>

<script type="text/javascript" src="/site media/jquery.js"></script>
<script type="text/javascript">

$ ('#change_ favorite').submit(

function() {

change_favorite();

console.log("here");

return false; }

)i

</script>

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

139

B.3.4 Timing_fields.html

<table>
<tr>
<td>
<input
<input
<input
<input
<input
<input
<input
<input
<input
<input
<input
<input
<input
</td>
</tr>

</table>

<table>

type="hidden" id="interval_start units"
name="interval_start_units"/>

type="hidden" id="interval_start_display"
name="interval_start display" value="0"/>

type="hidden" id="interval_pause_units"
name="interval_ pause units"/>

type="hidden" id="interval pause_display"

name="interval_ pause_display" value="0"/>

type="hidden" id="interval_ skip_units"

name="interval_skip units"/>

type="hidden" id="interval_skip_display"”
name="interval skip display" value="0"/>

type="hidden" id="play_ timer" name="play_ timer" value="2"/>
type="hidden" id="play timer_id" name="play timer id" value="2"/>
type="hidden" id="start_ seconds_display"

name="start seconds_display" value="2"/>

type="hidden" id="pause_seconds_display"
name="pause_seconds_display" value="2"/>

type="hidden" id="skip_seconds_display"

name="skip_ seconds_display" value="2"/>

type="hidden" id="start_timer" name="start_timer" value="0"/>
type="hidden" id="start timer id" name="start timer_ id"/>

<input type="hidden" id="timescale" name="timescale" value="?"/>
<form id="iform" method="post">
<input type="hidden" id="ta_id" name="ta_id" value="{{selected ta.id}}"/>
<input type="hidden" id="user" name="user" value="{{user}}"/>
<input type="hidden" id="iform start_time" name="iform start_time"
value="0"/>
<input type="hidden" id="iform end time" name="iform end_time" value="0"/>

</form>
</table>

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 140

B.3.5 Comment_view.html

<table border="0" id="comment_box">
{% if user.is_authenticated %}

<form id="comment_form" name="comment_ form" action="" method="post">

<tr>
<td colspan="2">

<textarea id="comment_textarea" rows="5" name="text">
Tell us what you thought of the video! Was it too long?

Was one part particularly helpful?
Leave your comments here...
</textarea>
</td>
</tr>
<tr>
<td>
Visibility:
<select name="permissions">
<option value="students"> All Students</option>
<option value="staff">
Staff Members and {{user.username}}
</option>
</select>
</td>
<td style="text-align:right">

<input type="hidden" name="username" id="username"

value="{{user.username}}" />
<input type="hidden" name="ta_id" id="ta_id"
value="{{selected ta.id}}" />
<input type="submit" name="submit" id="submit"
value="Submit Comment" />
</td>
</tr>
</form>
{% endif %}
</table>

<table id="comment_display" class="comment_display">
{% if comments.count %}
<tr>
<td colspan="2" class="sidebar header">
Comments about this video:
</td>
</tr>

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

141

(% endif %}

{% for comment in comments %}
<tr>
<td colsapn="2">
"{{comment.text}}"

 -- {{comment.user.username}} at {{comment.time}}
</td>
</tr>
{% endfor %}
</table>

<script type="text/javascript”
src="/site_media/comment_submission.js"></script>

<script type="text/javascript" src="/site_media/jquery.js"></script>
<script type="text/javascript">
<!-- make sure Jquery is loaded somewhere else,
like in interval movie header.html or movie header.html -->
$('#comment_ form').submit(
function() {
submit_comment();
return false;

</script>

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

142

B.3.6 Display_interval_views.html

{% extends "two_column.html" %}
{% block title %}Course Media{% endblock %}
{% block header %}
{% include "interval movie_header.html" %}
{% endblock header %}
{% block body_ attributes %}onload="RegisterListeners();"{% endblock
body_attributes %}
{% block main_column %}
<table border="0">

<tr>

<td>

<t--
<div id="movie_div" style="float:left;align:left"></div>

<script type="text/javascript">
document.getElementById('movie div').innerHTML = gtEmbed;
</script>
-——>
{% include "movie_div.html" %}

</td>
</tr>

<!-- 800 by 300 graph in same table -->
<tr>
<td>
<div id="view_graph_div" class="view_graph_ div"
style="float:left;align:left">

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

143

</div>
</td>
</tr>

<tr>
<td>

{% include "comment view.html" %}
</td>
</tr>

</table>

{% endblock main_column%}

{% block sidebar %}
<l--

{% include "similar_ video_bar.html" %}
-2

{% include "favorite_button.html" %}

{% endblock sidebar %}

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 144

B.4 Authentication and Password Changes

B.4.1 Login.html

{% extends "base.html" %}
{% block content %}
{% if form.errors %}

<p class="error"> Sorry, that's not a valid username or password </p>
{% endif %}

<form action="" method="post">
<label for="username">User name:</label>
<input type="text" name="username" value="" id="username">

<label for="password">Password:</label>
<input type="password" name="password" value="" id="password">

<input type="submit" value="login" />

<input type="hidden" name="next" value="/accounts/profile/" />
</form>
{% endblock %}

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 145

B.4.2 Password_change_form.html

{% extends "base.html" %}
{% block content %}

<!-- Content -->
<div id="content" class="colM">

<hl>Password change</hl>

<p>Please enter your old password, for security's sake,
and then enter your new password twice so we can verify
you typed it in correctly.</p>

<form action="" method="post">
<p class="aligned wide">
<label for="id old_password">0ld password:</label>
<input type="password" name="old password"
id="id_old_password" /></p>
<p class="aligned wide">
<label for="id_new_passwordl">New password:</label>
<input type="password" name="new_passwordl"
id="id_new_passwordl" /></p>
<p class="aligned wide">
<label for="id new password2">Confirm password:</label>
<input type="password" name="new_password2"
id="id_new_password2" /></p>

<p><input type="submit" value="Change my password" /></p>
</form>

<br class="clear" />
</div>
<!-- END Content -->

{% endblock %}

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 146

B.4.3 Password_change_done.html

{% extends "base.html" %}
{% block content %}

<!-- Content -->
<div>
<p>
<h2>
Change Successful! Please click one of the navigational links above to
continue.
</h2>

</div>
<!--~ END Content -->

{% endblock %}

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 147

B.5 Video Upload and Chapter Assignment

B.5.1 Upload_video.html

{% extends "base.html" %}
{% block title %} Upload a Public Video{% endblock %}

{% block content %}
<form action="" enctype="multipart/form-data" method="POST">
<fieldset>
<legend>
Welcome {{user.username}}.
Please Select a File to upload and fill out the
relevant fields.

You can, alternatively, select an existing video
for topic assignment from the menu at the bottom
of the page.

You will then be directed to a page where you
can set topic segments.
</legend>

{{video_form.as_p}}
</fieldset>
<input type="submit" value="Save and Proceed to Topic Assignment"/>

</form>

{% include "video_select.html" %}

{% endblock %}

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

148

B.5.2 Topic_assignment.html

{% extends "two_column.html" %}

{% block title %}
{{title_string}}
{% endblock %}

{% block page_top %}
{{header_string}}
{% endblock page_top %}

{% block main_column %}
<table border="1">
<tr>
<th>
video
</th>
<th>
of staff Faves
</th>
<th>
of Student Faves
</th>
</tr>

{% for ta in ta_dgquery set %}
<tr>
<td>

{% if ta.video.title %}
{{ta.video.title}}

{% else %}
{{ta.video.file name}}
{% endif %}

</td>
<td>
{{ta.get_num staff favorites}}
</td>
<td>
{{ta.get_num student favorites}}
</td>

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 149

</tr>

{% endfor %}
</table>
{% endblock main_column %}
{% block sidebar %}

<p class="sidebar header" align="center">

Return to Media Browser</p>

{% endblock sidebar %}

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 150

Appendix C: JavaScript

C.1 QuickTime Files

C.1.1 Common_ quicktime_methods.js

// methods that depend on document.moviel
function playhead position() {
return document.moviel.GetTime();

function time_scale() {
return document.moviel.GetTimeScale();

}

// internal methods
function set_display area_to_fit movie()
{

var obj = document.moviel;

var rectangle = obj.GetRectangle();

if (rectangle)

{

rectangle = rectangle.split(',');
var x1 parselnt(rectangle[0]);
var x2 = parselnt(rectangle[2]);
var yl = parselnt(rectangle{l]);

var y2 = parselnt(rectangle[3]);

var width = (x1 < 0) ? (x1 * -1) + x2 : x2 - x1;
var height = (yl1 < 0) 2 (yl * -1) + y2 : y2 - yl;
}

else

{

// a mov containing only audio
var width = 200;

var height = 0;

}

height_ field = document.getElementById('video_height');

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

151

width_ field = document.getElementById('video_width');

if (height_field)
document.getElementById('video_height').value = height;

if (width_field)
document.getElementById('video_width').value = width;

obj.width = width;
obj.height = height + 16;

obj.SetControllerVisible(true);

function format time(time_in_video_units){
totalSec = time_in_video_units / time_scale();
hours = parselInt(totalSec / 3600) % 24;

minutes = parselInt(totalSec / 60) % 60;
seconds = parselnt(totalSec) % 60;

fframes = Math.round(((totalSec % 60) - seconds) * 100);

result = zero_pad(hours) + ":" + zero pad(minutes) + ":" +

zero_pad(seconds) + ":" + zero_pad(fframes);
return result;

}i
function zero_ pad(number)
{
return (number < 10 2? "0" + number: number)
}
function myAddListener(obj, evt, handler, captures)
{
if (document.addEventListener)
obj.addEventListener(evt, handler, captures);
else
// 1E
obj.attachEvent('on' + evt, handler);
}

function RegisterListener (eventName, objID, embedID, listenerFcn)

{

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

152

//console.log("register listener { event : " + eventName + "

listenerFcn :
" + listenerFcn);

var obj = document.getElementById(objID);

if (!obj)
obj = document.getElementById(embedID);
if (obj)

myAddListener (obj, eventName, listenerFcn, false);

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 153

C.1.2 Interval _movie header.html

<script type="text/javascript" src="/site_media/AC_QuickTime.js"></script>
<script type="text/javascript"

src="/site_media/common_quicktime methods.js"></script>

<script type="text/javascript" src="/site_media/jquery.js"></script>

<script type="text/javascript"
src="/site_media/staff_interval methods.js"></script>

<script type="text/javascript">

// define the video here

var gqtEmbed = QT GenerateOBJECTText XHTML (
'{{selected_ta.video.get_ absolute url}}’',
'600', // width
"475', // height: set this to actual height

// + 20 (to leave space for controller)

Ty, // required blank field
‘enablejavascript', 'true',
'obj#id', 'moviel’,
'emb#name', 'moviel'’,
‘emb#id', 'moviel emb',
'postdomevents', 'true’,
'autoplay', 'false’,
‘controller', 'true',
'scale', 'aspect'

// called from body.onload to set up listeners that will wait for quicktime

// movie to send events

function RegisterListeners()

{

// when the movie 1loads,
// it will set the end time to the duration of the movie
RegisterListener('qt loadedmetadata', 'moviel’,

'moviel _emb', setup_movie);
RegisterListener('qt_loadedmetadata', 'moviel’,

'moviel_emb', set_times_and_play movie);
RegisterListener('qt_canplay', 'moviel’,

'moviel_emb', setup seconds);
RegisterListener('qt_play', 'moviel’,

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

154

'moviel_emb', check and send);

RegisterListener('qt_timechanged', 'moviel’,

‘moviel emb', pause and start);

RegisterListener('gt_stop', 'moviel’,

'moviel_emb', set_interval pause);

RegisterListener('qt_pause', 'moviel’,

'moviel emb', set interval pause);

function set_times_and_play movie()

{

var timescale = document.moviel.GetTimeScale();
console.log("(set_times_and play movie) timescale

= " + timescale);
document.getElementById('timescale').value = timescale;
var start_time = {{selected_ta.start_time}};
var end_time = {{selected ta.stop_time}};
console.log("(set_times_and play movie) start time

= " + start_time);
console.log("(set_times_and play movie) end time

= " + end_time);

if(typeof(start time) == "undefined")
{
start_time = 0;
}
if(typeof(end time) == "undefined")
{
end_time = document.moviel.GetDuration();
}
if(end_time == 0)
{
var length = document.moviel.GetDuration();
console.log("setting end time to " + length);
end_time = length;
}

set_start_and_end_times(start time, end_time);
//document .moviel.Play();

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

155

function set_start_and_end times(start time, end time)

{
console.log("(set_start_and_end_times)");
document.moviel.SetStartTime(start time);
document.moviel.SetEndTime(end_time);

}

function setup movie()

{
console.log(" (setup_movie)");
// to check that the movie meta data has been loaded sufficiently
var movie_length = document.moviel.GetDuration().value;
console.log(" (setup _movie) movie duration = " + movie_length);

// set_display area_to_fit movie();

</script>

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 156

C.2 jQuery/Ajax

C.2.1 Comment_submission.js

function change favorite()

{

console.log("in change_ favorite");
var username = $('input[name=username]').val();
console.log("username");

var ta_id

= $('input[name=ta_id]').val();

console.log("ta_id");

var button_value = $('input[name=submit favorite]').val();
var is_favorite = true;

$.ajax({

type: 'POST',

url: "/add favorite/",

data: { username: username, ta_id: ta_id,

button_value: button value },

dataType: "json",

success: function(response)

{
console.log("in change favorite success function");
document.getElementById('submit_ favorite').value

= response.new_button_text;

)i

function submit_comment()

{

var username = $('input[name=username]').val();

var ta_id

= $('input[name=ta_id]').val();

var text = $('textarea[name=text]').val();
var permissions = $('select[name=permissions]').val();
console.log("in submit comment");
console.log("username = " + username +

", permissions = " + permissions +

", ta id = " + ta_id + ", text = " + text);
$.ajax({ type: 'POST',

url: "/comment_update/",
data: { username : username,

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

157

text : text,
permissions : permissions,
ta_id : ta_id, },
success: function(response) {
console.log("in success function for submit_comment");
var new_comment = "<tr><td colsapn=\"2\">" +
response.text + "
 --" +
response.username + " at " +
response.time +"</td></tr>";
$('.comment_display').append(new_comment) ;
}r
dataType: "json",
)i
return false;
// this is supposed to prevent the default submission behavior

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

158

C.2.2 Favorite_button.js

<div name="favorite div" id="favorite div">

<table>
<tr>
<td class="sidebar_header" style="display:inline">
<form action="" method="post" name="change favorite"
id="change_ favorite">
<input type="hidden" name="username" id="username"
value="{{user.username}}" />
<input type="hidden" name="ta id" id="ta_id"
value="{{selected_ta.id}}" />
{% if user.is_authenticated and is_user_ favorite %}
<!-- This video is marked as one of your favorites.-->
<input type="submit" id="submit_ favorite"
name="submit_ favorite" value="Remove Favorite" />
{% endif %}
{% if user.is_authenticated and not is_user_favorite %}
<!-- You have not yet added this video to your favorites.-->
<input type="submit" id="submit favorite"
name="submit_ favorite" value="Add Favorite"
style="align:right"/>
{% endif %}
</form></td></tr>
</table>
</div>

<script type="text/javascript"
src="/site_media/comment submission.js"></script>

<script type="text/javascript" src="/site media/jquery.js"></script>
<script type="text/javascript">

$('#change_favorite').submit(

function() {

change_ favorite();

console.log("here");

return false;

}
)i

</script>

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

159

C.2.3 Interval_methods.js

function setup_seconds()

{
var tscale = time_scale();
document.getElementById('timescale').value = tscale;
document.getElementById('start_seconds_display').value = 0;
document.getElementById('pause_seconds_display').value = 0;
document.getElementById('start timer').value = 0;

}

function clear_ start timer()

{
var timer_id = document.getElementById('start_timer id').value;
console.log("clearing start timer");
document.getElementById('start timer').value = 0;
clearInterval(timer_id);

}

function stop_start timer()

{

var current_value = document.getElementById('start timer').value;

console.log("stopping the start timer. current value = " + current value);

// doesn't clear the displayed value or the timer value

// only stops the timer. Need to wait until after

// check_and send to clear the timer (reset to 0)

var timer_id = document.getElementById('start timer id').value;
clearInterval(timer_id);

function get_current second()

{
var units = playhead position();
var timescale = parselInt(document.getelementById('timescale')
.value);
return Math.floor(units/timescale);
}

//interval start

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

160

function increment_start_timer()

{

var timer = document.getElementById('start timer').value;

var timer value = parselnt(timer);

var timer_id = document.getElementById('start_timer id').value;

console.log("in increment_start_timer with timer #" + timer id
+ " " + timer_value);

timer_value = timer_ value + 1;

document.getElementById('start timer').value = timer value;

function begin_start timer(init)

{

var timer_id = setInterval("increment start timer()", 1000);
console.log("(begin_start_timer) create the start timer with id ="
+ timer_id);
document.getElementById('start_timer_ id').value = timer id;
console.log(" (begin_start_ timer) value of init = " + init);

//var timer_id = document.getElementById('start_timer id').value;
document.getElementById('start_timer').value = init;
var last_start_time =
document.getElementById('start_timer').value;
console.log("(begin_start timer) start timer set to = "
+ last_start time);
//increment_start_timer();

function set_interval start()

{

var start_units = playhead position();
document.getElementById('interval start units')

.value = start units;
var start = format time(start units);
document.getElementById('interval start_display').value = start;
var timescale = document.getElementById('timescale').value;
var start_seconds = Math.floor(start_units/timescale);
console.log(" (set_interval start) start seconds = "

+ start_seconds);

document.getElementById('start_seconds_display')

.value = start_seconds;

// form to send interval to server

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 161

function check_and_send()

{

var last_start_time =
parselnt(document.getElementById('start_seconds_display').value)

~

var interval length =
parseInt(document.getElementById('start timer').value);
var last_pause =
document.getElementById('pause_seconds_display').value;

/*
Note: it's necessary to use parseInt because of string addition

that will happen if we dont' convert them to ints first
*/

var current position = playhead position();
var timescale = document.getElementById('timescale').value;
var current_second = Math.floor(current_position/timescale);

console.log(" (check and send) last_start_time
+ last_start_time);
console.log(" (check and_send) interval_length
+ interval length);
var last_watched_second = last_start_time + interval_length;
console.log("(check_and_send) laast_watched_second = "
+ last_watched_second);
console.log(" (check_and_send) with current_second = "
+ current_second);

// if the latter is true, we need to package
// up a new interval and send a message to server
if ((last_start_time + interval_length) < current_second)
{
console.log("passed the if statement....");
console.log("--last_start_time = " + last_start_time);
console.log("--interval length " + interval length);
$.ajax({
type: 'POST’,
url: "/post_test/",
data: { iform_start : last_start_time,
iform end : last_pause,
user : document.getElementById('user').value,
ta_id : document.getElementById('ta_id').value,

}

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 162

success: function(responseData)
{
console.log(responseData);
//alert (responseData);

e
dataType: "text"

)i
set_interval_start();
begin_start timer(0);

else {
var last_start = document.getElementById('start_ timer').value;
console.log("in check and send, starting the timer again at "
+ last_start);
begin_start_timer(last start);

}

//set_interval start();

// start the timers again

// interval pause

function set_interval pause()

{
var pause_units = playhead position();
document.getElementById('interval_ pause units')

.value = pause_units;
var pause = format_time(pause units);
document.getElementById('interval pause_display').value = pause;
var timescale = document.getElementById('timescale').value;
var pause_seconds = Math.floor (pause_units/timescale);
console.log("(set_interval_pause) pause_seconds = "
+ pause_seconds);

document.getElementById('pause_seconds_display')

.value = pause_seconds;
stop_start_timer();

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 163

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 164

Appendix D: CSS Profiles

D.1 Main Style Sheet Definitions

D.1.1 Usersite.css

body

{
margin:0;
padding:0;
background-color:#5E778E;

}
td, th
{
line-height:105%;
max-width:220px;
}
.smtd
{
max-width:100px;
}

div, p, ul, ol

{
font-family:Arial, Helvetica, sans-serif;
font-size:100%;

}

ul, ol

{
margin-top:0.5em;

}

#base

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

165

height:100%;
background-color:#5E778E;

}

#top block

{
position:relative;
padding:0.5em;
width:90%;
height:70%;

}

#main_column

{
background-color:#99AABB;
padding:1%;
width:600px;
position:absolute;
left:0;

}

#sidebar

{
font-size:75%;
width:30%;
float:right;
margin-left:3em;
position:relative;
background-color : #AABBCC;
padding:1%;
display:table-column;

}

#browse_sidebar

{
position:absolute;
top:0;
left:700px;
float:right;

padding:lem;
background-color : #CCCCCC;
margin:10px;
width:150px;

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

166

#sidebar_content

{
font-size:16px;
display:block;
height:100%;

}

#bottom_block

{
background-color :#FAFAFF;
margin-top:0.5em;
display:inline;
position:absolute;
top:575px;
clear:top;

}

.clear

{
clear:both;
height:0;
font-size:0;

}

.sidebar_header

{
font-weight:bold;
font-size:120%;
margin-bottom:0px;

}

#masthead

{
margin:10px;
height:15px;
width:auto;
font-size:65%;
padding:.5em 2em;
background-color :#CCCCCC;
border-bottom:1px solid black;

}

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

167

#content_container

{
width:90%;
display:block;
margin:auto;
margin-top:lem;

}

#home_nav

{
display:inline;
float:left;
text-align:left;

}

#welcome message

{
display:inline;
float:right;
text-align:right;
margin-left:3em;
margin-right:5em;

}

#page_top

{
font-size: 125%;
font-weight:bold;
text-decoration:underline;
margin-bottom:10px;
width:80%

}

.movie div

{

width:80%;
margin:10%;

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

168

.comment_box

{
display:block;
float:left;
margin:2%;
width:100%;

}

.comment_ textarea

{
width:90%;

}

.mbrowser

{
background-color :#FAFAFF;
font-size:80%;
top:10px;
float:left;
margin:0;
position:absolute;

}

.mast_link

{
font-size:120%;
font-weight:bold;
padding:0.5em;

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 169

D.1.2 Default.css

/*

Design by Free CSS Templates

http://www.freecsstemplates.org

Released for free under a Creative Commons Attribution 2.5 License

*/

body ({
margin: 0;
padding: 0;
background: #28313A url(images/img0l.jpg) repeat-x left top;
font-size: 12px;
font-family: Georgia, "Times New Roman", Times, serif;
text-align: justify;
color: #5C5C5C;
}

hl, h2, h3 {
margin: 0;
text-transform: lowercase;
font-weight: normal;
color: #FFFFFF;

}

hl {
letter-spacing: -1px;
font-size: 32px;

}

h2 {
font-size: 23px;

}

p, ul, ol {
margin: 0 0 2em 0;
text-align: justify;
line-height: 26px;

color: #1B75A9;

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 170

athover, a:active {
text-decoration: none;
color: #1B75A9;

a:visited {
color: #1B75A9;

}
img {
border: none;
}
img.left {
float: left;
margin-right: 15px;
}

img.right {
float: right;
margin-left: 15px;

/* Form */

form {
margin: 0;
padding: O0;
}
fieldset {
margin: 0;
padding: 0;
border: none;
}
legend {
display: none;
}

input, textarea, select {
font-family: "Trebuchet MS", Arial, Helvetica, sans-serif;
font-size: 13px;

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 171

color: #333333;

}
#wrapper {
margin: 0;
padding: 0;
}

/* Header */

#header {

width: 880px;

margin: 0 auto;

height: 60px;

border: 10px #FFFFFF solid;
}

/* Menu */

#menu {

float: left;

width: 880px;

height: 58px;

background: url(images/img02.jpg) repeat-x left top;
}

#menu ul {
margin: O0;
padding: 23px 0 0 20px;
list-style: none;
line-height: normal;

#menu 1li {
float: left;
text-align: center;

#menu a {
display: block;
padding: 0 50px;
background: url(images/img03.jpg) no-repeat right 50%;
text-decoration: none;
text-transform: uppercase;

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 172

font-size: 1llpx;
color: #FFFFFF;

#menu a:hover {
color: #FFFFFF;

#menu .current_page_item a {
color: #FFFFFF;

/** LOGO */

#logo {
width: 880px;
height: 130px;
margin: 0 auto;
}

#logo hl, #logo h2 {
float: left;
margin: 0;
padding: 50px 0 0 Opx;
line-height: normal;

}

#logo hl {
font-family: Georgia, "Times New Roman", Times, serif;
font-size:40px;

}

#logo hl a {
text-decoration: none;
color: #28313A;

#logo hl a:hover { text-decoration: underline; }

#logo h2 {
float: left;
padding: 65px 0 0 18px;
font-family: Georgia, "Times New Roman", Times, serif;
font-size: 25px;

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 173

color: #28313Aa;

}
s #logo p a {
text-decoration: none;
color: #28313A;
}

#logo p a:hover { text-decoration: underline; }

/* Page */
#page {
width: 880px;
margin: 0 auto;
background: #FFFFFF;
border: 10px #FFFFFF solid;
}

/* Content */

#content {
float: left;
width: 620px;
border-right: 1lpx dashed #DFElEOQ;
}
/* Post */
.post {
padding: Opx 20px;
margin-bottom: 20px;
}

.post .title {
margin-bottom: 20px;
padding-bottom: 5px;

.post hl {
width: 520px;
padding: Opx 0 0 Opx;

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 174

.post

.post

.post

.post

.post

.post

.post

.post

.post

h2 {

.entry {

.meta

.meta

.meta

.meta

.meta

.meta

.meta

background: url(images/img08.3jpg) no-repeat

font-size: 24px;
color: #28313A;

width: 520px;
padding: Opx 0 0 Opx;
font-size: 22px;
color: #28313a;

padding: 15px 15px 30px Opx;
font-size: 10px;

p {

margin: 0;
padding-top: 15px;
line-height: normal;
color: #28313A;

.byline {

float: left;

.links {

float: right;

.more {

padding: 0 20px 0 18px;

.comments {

padding-left: 22px;

b {

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

left top;

175

/* Sidebar */

#sidebar

#sidebar

#sidebar

}

#sidebar

}

#sidebar

}

#sidebar

/* Search */

#search {

{

ul

1li

1li

1li

h2

display: none;

float: right;
width: 230px;
margin: 0;
padding: 0;

margin: 0;
padding: 0;
list-style: none;

margin-bottom: 40px;

ul {

1i ¢

margin: O0;

width: 250px;

padding: 8px 0 0 Opx;

margin-bottom: 10px;

background: url(images/img07.jpg) no-repeat
font-size: 20px;

color: #28313Aa;

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

left

top;

176

#search h2 {
margin-bottom: 20px;

}
#s {
width: 140px;
margin-right: 5px;
padding: 3px;
border: lpx solid #DFElEOQ;
}
#x {
padding: 3px;
border: none;
background: #0A5688;
text-transform: lowercase;
font-size: 1llpx;
color: #FFFFFF;
}

/* Boxes */

.boxl {
padding: 20px;

}

.box2 {
color: #BABABA;

}

.box2 h2 {
margin-bottom: 15px;
font-size: 16px;
color: #FFFFFF;

}

.box2 ul {
margin: O0;
padding: 0;
list-style: none;

}

.box2 a:link, .box2 a:hover, .box2 a:active, .box2 a:visited {

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 177

color: #EDEDED;
}

/* Footer */
#footer-wrap {

}
#footer {
width: 880px;
margin: 0 auto;
background: #ES5E5ES;
border: 10px #FFFFFF solid;
}

html>body #footer {
height: auto;

#footer p {
font-size: 12px;

}

#legal {
clear: both;
padding-top: 17px;
text-align: center;
color: #595959;

}

#legal a {
font-weight: normal;
color: #1B75A9;

}

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 178

Appendix E: Apache Configuration

E.1 Apache Virtual Host: tutorials

<VirtualHost *:80>
ServerAdmin webmaster@localhost

DocumentRoot /home/caitlinj/website/djcode/

Alias /site media/ /home/caitlinj/website/djcode/usersite/media/
<Directory /home/caitlinj/website/djcode/usersite/media/>

Order allow,deny

Options Indexes

Allow from all

</Directory>

Alias /media/ /home/caitlinj/website/djcode/usersite/media/

<Directory /home/caitlinj/website/djcode/usersite/media/>
Order allow,deny

Options Indexes

Allow from all

</Directory>

<Directory />
Options FollowSymLinks
AllowOverride None
</Directory>

<Directory /home/caitlinj/website/>
Options Indexes FollowSymLinks MultiViews
AllowOverride None
Order allow,deny
allow from all
</Directory>

ErrorLog /var/log/apache2/error.log

Possible values include: debug, info, notice, warn, error, crit,
alert, emerg.

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 179

LogLevel warn
CustomLog /var/log/apache2/access.log combined
Django Installation

WSGIScriptAlias /
/home/caitlinj/website/djcode/usersite/apache/django.wsgi

</VirtualHost>

WSGIPythonPath /home/caitlinj/website/djcode/

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 180

E.2Django_ wsgi.config

import os
import sys

path = '~/website/djcode/"'

if path not in sys.path:
sys.path.append(path)

path2 = '/usr/lib/pymodules/python2.6/'
if path2 not in sys.path:
sys.path.append(path2)

os.environ['DJANGO_SETTINGS MODULE'] = 'usersite.settings’

import django.core.handlers.wsgi

application = django.core.handlers.wsgi.WSGIHandler ()

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

181

