
A User Study of an Educational Video System

by

Caitlin R. Johnson

S.B., Computer Science and Engineering. M.I.T., 2009

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology f- ASS

May 20, 2011

Copyright 2011 Caitlin R. Johnson. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce and
to distribute publicly paper and electronic copies of this thesis document in whole

and in part in any medium now known or hereafter created.

Author
Department of Electrical Engineering d Computer Science

May 20, 2011

Certified by

Accepted b

Dr. C ;ispher J. Terman
Thesis Supervisor

y

Dr. Chr stopher J. Terman

Chairman, Masters of Engineering Thesis Committee

ARCHIVES

A User Study of an Educational Video System

by

Caitlin R. Johnson

S.B., Computer Science and Engineering. M.I.T., 2011

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

May 20, 2011

ABSTRACT

This thesis describes the creation of an educational video system and the results

of introducing it in a large MIT class. Experience shows that there is a high demand for

recorded, course-specific, educational content. While there are several solutions for

recording and sharing general instructional interactions, there are not as many are not

many easy ways for instructors to record and share individual interactions. The system

is meant to supplement existing course material with recordings of these interactions.

Thesis Supervisor: Christopher J. Terman

Title: Senior Lecturer, Department of Electrical Engineering and Computer Science

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 4

Acknowledgements

I would like to thank Chris Terman for being an excellent academic advisor and

for helping me get through both degrees at MIT. I also would like to thank him for

providing just as much guidance and support as my thesis supervisor. Despite various

setbacks, Chris has always had the patience and wisdom to help me stay on track, and

for that I am extremely grateful.

For giving me an opportunity to teach, for keeping me around despite my various

imperfections for all nine semesters, and for sharing his seemingly infinite wisdom

about teaching, wine cork topology, finite state machines, and everything else, I would

like to thank Steve Ward. Steve allowed me to use his course, 6.004, as a testing

environment for my thesis project, and I am very thankful for that opportunity as well.

For her infallible assistance with navigating requirements, and for providing all

kinds of advice on what was frequently short notice, I would like to thank Anne Hunter.

For being the first ones to inspire me to teach at MIT, for being fantastic summer

office mates, and for helping me out with my research project when I got stuck, I would

like to extend my sincere appreciation to Hubert Pham and Justin Mazzola Paluska.

Last, but certainly not least, I would like to thank all of the TAs and LAs who

humored me and tried recording videos to add to the course content and help me with

my thesis. I would also like to thank all of the students who tried out the system. In

particular, I sincerely appreciate the efforts of the early adopters who provided me with

useful feedback, and demonstrated admirable good humor while I worked out bugs

before introducing the system to the entire class.

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

Table of Contents

CHAPTER 1: INTRODUCTION... 10

CHAPTER 2: PREVIOUS WORK .. 11

2.1 OCW ... 11
2.2 6.004 LECTURE RECORDINGS .. 12

2.3 KHAN ACADEMY .. 13

CHAPTER 3: RECORDING TECHNOLOGIES ... 15
3.1 INPUT HARDW ARE .. 15

3.1.1 Smart Board ... 16
3.1.2 IntuOus 4 ... 17
3.1.3 Apple iPads and Similar Tablets.. 18
3.1.4 W acom Cintiq 21UX..18

3.2 TABLET INPUT SO FTW ARE ... 19

3.2.1 OneNote .. 19
3.2.2 Corel Painter .. 20
3.2.3 Sketchbook Express ... 20

3.3 RECORDING AND EDITING .. 21

3.3.1 QuickTime X ... 21
3.3.2 ScreenFlow .. 22

3.3.3 Cam tasia .. 22
3.4 FINAL DESIGN .. 23

CHAPTER 4: CONTENT DELIVERY .. 24
4.1 M ODULAR FEATURES ... 24

4.1.1 H TM L M ovie Div ... 25
4.1.2 View History Graphs ... 25
4.1.3 Comment Panel.. 26
4.1.4 Favorite Button...27
4.1.5 Sorted Content Browsing Table .. 27

4.2 W EBSITE VIEW S ... 28

4.2.1 Student Perspective ... 29
4.2.2 Staff Views.. ...- 34
4.2.3 Django Admin....... 39

4.3 W EBSITE FRAM EW ORK ... 44

4.3.1 Django .. 44
4.3.2 Cascading Style Sheets (CSS) and Base Templates 51
4.3.3 JavaScript ...--------------------.............. 53
4.3.4 Apache ..-------....... 58

CHAPTER 5: RESULTS OF USER STUDY........................ 59
5.1 TESTING ENVIRONM ENT .. 59

5.2 INSTRUCTOR FEEDBACK .. 6o

5.2.1 The Volunteers .. 61
5.2.2 Recording Environments .. 62

5.3 STUDENT FEEDBACK 65

5.3.1 Personal Interviews... 65
5.3.2 Surveys... 66
5.3.3 View History Graphs..67

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 6

5.3.4 Video Com m ents ... 74

CHAPTER 6:FUTURE WORK.. 75
6.1 RATING SYSTEMRATING- ---------... 75
6.2 CHAPTER SEGM ENTATION .. 6
6.3 ANSWERING QUESTIONS REMOTELY..77

CHAPTER 7: SUMMARY ... 78
CHAPTER 8-WORKS CITED.....................7

CHAPT MODELS.. 79

NI MoD. ... 8o
A .1 M O D E L S ... 87

A .1.1 M od els.p y ... 8 0
A .2 V I W S ... 8 7

A .2 .1 V iew s.p y ... 8 7
A .2.2 Student view s.p y ... 97
A .2-3 Staff view s.p y..104

A . 3 PROJECT CO NFIGU RATION ... 11
A -3 .1 U rls.p y .. 1i
A-3.2 Settings.py..............................-------------------------.-----------...115
A -3. 3 A dm in.p y .. 118

A -3. 4 M anage.p y .. 119
A 4 L A E.. 120
A .4 .1 E n um s.p y .. 12 0
A .4 .2 L oader.p y .. 124
A - 3 Filters.py ..---........................... 130
A.4.4 Forms.py..---------..131

APPENDIX B HTML TEMPATES..132
B .1 T L...13 2
B.1.1 Base.html................................---.-----------------------------...132
B.1.2 Twocolumn.html...........................------- ---------..-- 132

B.2 1 U D E T m l.. L AN DING ... 133

B.2.2 Student_browse.html..134
B.2.3 Mbrowser.html...........................--------------------------------...135
B 2 3 M r w e h t l ...1 3 7B-3 SINGLE -VIDEO PLAYER...137

B-3.1 Show_media.html.............................-----------------------...137
B.3.2 Similarvideobar.html................ 138
B.3.3 Favoritebutton.html..--.....139
B 3.4 Tim ing ields.htm l...140
B.3.5 Com m ent_ view .htm l..141
B.3.6 D isplayinterval_ views.htm l..143

B.4 AUTHENTICATION AND PASSWORD CHANGES .. 145
B.4.1 Login.htm l ..-----------------------------------........................ 145
B 4 .2 ... 14 6
B.4.3 Passw ord change_ done.htm l...147

B-5 VIDEO UPLOAD AND CHAPTER ASSIGNM ENT ... 148
B -5.1 Up load_ video.htm l .. 148
B.5.2 Topic assignm ent.htm l ... 149

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 7

APPENDIX C: JAVASCRIPT .. 151
C .1 Q U IC KTIM E FILES ... 151

C.1.1 Common quicktime methods.js ... 151
C.1.2 Interval movie header.html .. 154

C .2 JQ JERY/AAX ... 157
C.2.1 Commentsubmission.js .. 157
C.2.2 Favorite_ button.js..159
C.2.3 Interval_methods.js .. 160

APPENDIX D: CSS PROFILES 165
D.1 MAIN STYLE SHEET DEFINITIONS .. 165

D .1.1 U sersite.css ... 165
D .1.2 D efault.css .. 170

APPENDIX E: APACHE CONFIGURATION..179
E.1 APACHE VIRTUAL HOST: TUTORIALS ... 179
E.2 D JAN G O _W SG I.CO N FIG ... 181

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 8

List of Figures:
Figure 1: (Left) Staff views of video comments. (Right) Student view of comments 26

Figure 2: Browsing table to sort media according to key attributes 28

Figure 3: User login prompt 29

Figure 4: Password change form 30

Figure 5: Password change confirmation 30

Figure 6: Sample student landing page 31

Figure 7: Single-video viewing page 33

Figure 8: Staff form for uploading a new video 35

Figure 9: Topic assignment and movie preview 36

Figure 10: An example of a view history graph 38

Figure 11: User administration 40

Figure 12: Object browsing and filtering 42

Figure 13: Modifying object properties and adjusting foreign-key relationships 43

Figure 14: Relationships between data models 46

Figure 15: Template files involved in rendering a single-movie viewing page 50

Figure 16: View History graph showing increase for problem solution 69

Figure 17: Using view history graphs to determine most popular concepts for review 70

Figure 18: View history graph showing sharp drop off due to a mislabeling 72

Figure 19: A More typical view history graph for an hour-long video lecture 73

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

Chapter 1: Introduction

The primary goal of this project was to provide a way to record interactions

between students and teachers that would otherwise be forgotten. This creates a sense of

being "present" in a course that students might not otherwise have with traditional text-

based methods that are available to instructors for answering questions because the

videos can provide more meaningful explanations. It also allows students to see the

kinds of explanations that occur between instructors and other students, which can help

students to feel more comfortable with asking their own questions, in turn.

While other work had focused on capturing the experience of being in a

classroom, I chose to focus on capturing one-on-one office-hours type interactions

between students and teachers. In my experience helping students in one particular

course for nine semesters, I have found that many students have similar questions every

semester. Teachers invest a significant amount of time and energy in developing their

abilities within a given subject, and it seemed a shame that this expertise in teaching

often gets lost after a teacher leaves at the end of one or more semesters. Some of the

most valuable teaching moments occur somewhat spontaneously when students ask for

help or clarification, and only those students have the opportunity to remember these

interactions afterwards. Preserving these interactions could significantly add to the

educational experience of all students in the classroom, and it also might help new

teachers learn effective ways to communicate information to students.

In order to record these student-teacher interactions, I selected a set of recording

technologies and created a web-based content distribution system. I recorded material,

and invited other instructors to contribute additional material. I granted students to this

system for a semester in one particular course that I was involved in teaching. This

thesis discusses the design choices behind the recording setup, the content delivery

system architecture, and the results or this user study in an MIT classroom.

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

Chapter 2: Previous Work

There has been a good deal of previous work in publishing educational content,
and many education programs offer resources in the form of lecture videos or online

forums. Much of this work has focused on improving distance education - either in

closed enrollment settings or publicly available self-paced material. In this section, I

provide more information about examples of current strategies. First, I discuss MIT's

publicly available course archives, which frequently include lecture videos. Second, I

cover a more localized lecture video recording project where media was made

immediately available to students in the class. Third, I describe a different approach

offered by the Khan Academy, where the publicly available videos are general tutorials

rather than formal lectures.

2.1 OCW

MIT's Open CourseWare initiative, commonly referred to as "OCW," allows

people from around the world to access assignments and lecture material from many

MIT classes. Every class with an OCW record at MIT is developed individually, and

there is a resulting disparity in the level of educational content provided for every

course. Class records on OCW are relevant to a particular semester. This means that for

a single semester, one course might have all lectures recorded in a web-enabled video

format, and these lectures would be posted as part of the class record. Homework

assignments, exams, and lecture notes from that same semester are often posted, but

the exact pattern is not always consistent.

OCW is a significant undertaking that benefits many people around the world. It

also requires significant funding. The OCW site [1] mentions that each course requires

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

between $10,000 and $15,ooo dollars per semester to turn that term into an OCW

archive, and including video content can double this approximation. This funding helps

to make OCW a well-organized resource. It also supports translation for course

materials, and many class records are available in multiple languages.

There are several primary differences between OCW and the system described in

this thesis. Notably, OCW provides a central repository for course resources and does

not assume a separate course website. Each OCW record is meant as an archive of a

course website, and contains generic lecture and homework records. The records do not

contain records of personal interactions between students and instructors. The OCW

records are not media based, but rather centered on providing a simple set of links to

archived material. In addition, each OCW archive is statically linked to a course as it was

taught in a particular semester. The system that I developed and describe in this thesis

provides support for organizing media for a specific course across multiple semesters. In

this way, a student becomes more situated in a subject as it has been taught for several

semesters, because records of instructor explanations are all accessible in a single place.

2.2 6.004 Lecture Recordings

"6.004" was the course were I conducted the user study (see Section 5.1), and it

was particularly interesting to consider lecture videos made for the same course as

another resource in this area. For more than one previous semester, the lecturer used a

separate camera and screen recording software to capture two movies - one of the

lecturer and chalkboards, and the other of the PowerPoint slides and pointer movement

for calling attention to parts of the slides. This setup also involved a separate wireless

microphone. These videos required some post processing to join together, and they were

usually synchronized by manually finding the right start and end times for the identical

audio track that they both shared. Because the lectures were mostly PowerPoint based,

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

this more imprecise approach seemed to work well because the PowerPoint slides didn't

change as rapidly as a display might if it was showing an instructor writing on a tablet.
This approach also differed from the one presented in this thesis in that for more slow-

moving PowerPoint slides, the lecturer found the additional video track of a human

being moving around and gesturing to be more helpful.

In the tutorial videos developed in the course of this thesis, the more dynamic
content was presented in the single drawing surface, and merging multiple video
recordings was not as necessary for this reason, and in fact, more movement in another

section of the video file would have probably been distracting. These videos were similar

to those produced for this thesis in that they were made immediately available to
students taking the class that semester, although they were not necessarily intended as

supplements to a publicly available resource like MIT's OCW. I did reuse these videos

within the class tutorial system and found them to be popular and helpful to students in

a different and complimentary way.

2-3 Khan Academy

The Khan Academy is not-for-profit educational organization that is responsible,
primarily, for the creation of several thousand educational tutorial videos on a publicly

accessible website. Subsequently, the Khan Academy had come forth with interactive

exercises, measures to track student progress through such exercises, and more

advanced student-monitoring tools. Salman Khan is the creator of the Khan Academy,
and he is the primary author of these tutorials.

The video explanations on the Kahn Academy website are similar in style to those

created for this project. The explanations are focused on the kinds of drawings an

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

instructor might make at a chalkboard or on a piece of paper while interacting with an

individual student.

This is very similar to the approach used in the tutorial video system that I

created for this project, but the most striking difference is that I tried to create a more

localized solution. The tool that I developed could be used in any classroom, but it is

meant as more of a record of in-person explanations, whereas Mr. Kahn has suggested

that his lecture videos be used in the place of traditional lectures. Both systems are not

mutually exclusive in any way, and they would almost certainly complement one

another very well. The Kahn Academy videos are licensed under a Creative Commons

License that would allow educational re-use in a system like the one that I have created,

but even more seamless integration with the rest of the Kahn Academy tools may be

possible in the future.

I developed the idea for the tutorial video system before discovering the Kahn

Academy. This means that at least two people thought this was a good approach to

publishing online educational media, and it also means that I had a different approach.

Not only did I have a different vision for the types of recordings that would be made, but

I also ended up with a different set of recording technologies that helped to achieve this

vision. Mr. Kahn uses Camtasia recording software, free tablet input software, and a

smaller Wacom Bamboo tablet [2] . For this project, I chose an LCD tablet because I it

provides a more intuitive way to record interactions with students. The hardware

considerations for projects like this one are discussed in Section 3.1.

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

Chapter 3: Recording Technologies

In order to create a system to provide students with helpful recordings of

educational interactions, I had to determine a good way to create these videos. In order

to preserve the information from these interactions, I explored a number of different

hardware and software technologies. The set of tools that I chose for this project might

well be surpassed technologically in the near future, but the reasoning behind selecting

various tools and the feedback from students in the user study both illustrate principles

that could be helpful to anyone looking to design a similar system.

Many of the student-teacher interactions involve looking together at a piece of

paper or a chalkboard while the teacher draws and explains. In order to record this kind

of interaction, I chose to focus on the audio of the student-teacher communication and

the drawing surface where the visual part of the explanation takes place. In order to

provide this functionality, I needed recording software, video editing/processing

software, and a computer-connected drawing surface that provided an interface as

intuitive to use in an explanation as a chalkboard or piece of paper. I explored

possibilities for each kind of tool before deciding on the eventual set that worked best,
and the following sections discuss the merits of some of the notable technologies

considered for the project.

3.1 Input Hardware

Finding an intuitive drawing surface was one of the key concerns in setting up a

recording system. Versatility and portability were also important factors. I looked at a

unified recording/interaction surface, two USB tablet input devices, and mobile tablet

devices. While mobile tablet devices might be more portable and convenient in the

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

future, it seems that the hardware and applications available to easily set up a recording

system might not have been developed at the time of this project.

3-1-1 Smart Board

The SMART Board is an interactive whiteboard solution with bundled software.

This was attractive as a potential solution because it provided a highly visible surface for

student interaction. The SMART Boards provide support for user touch interaction to

scroll through content larger than the board can display, and accepts writing input

through special digital pens. Content is displayed on the board and pen input is

captured from the board using SMART Technologies proprietary software. Projectors

and cameras are used in various configurations across the different models to provide

the interactive element.

It was somewhat difficult to obtain an exact figure for the cost of a SMART Board

in any such system because the company only gives prices in individual discussions

about total "solutions." Media releases from SMART Technologies provide some general

figures for suggested retail value. The SMART Board 88o [3] offers support for

simultaneous users through the "SMART Notebook 10.7 collaborative learning software"

that is published by SMART Technologies. The suggested retail value for the board alone

is $1,999 and for the entire system, including the projector, it is listed as $3899. Some of

the newer products, such as the SMART Board 885ix interactive whiteboard system [4]

provide advanced features for meetings, including integration with SMART

conferencing software. The product announcement lists the suggested retail for this

second solution as $6499, with conferencing software starting at an additional $5999.

The SMART Board did not seem like an ideal solution because of the bundled

software limitations and the high price. The demo version software for the SMART

Board seemed very well suited for displaying and interacting with images and prepared

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

presentations, but it was incredibly unintuitive for displaying simple pen-input. The

software offered many other features to integrate with student mobile devices like tablet

PCs but the full-featured version of the software was unnecessarily expensive for the

scope of this project.

3.1.2 Intuous 4

Wacom's Intuous 4 line of tablets provides a high level of pressure sensitivity and

tilt sensitivity. These tablets are solid-color, horizontal, user-input devices that use a

dedicated, wireless pen. The tablets attach to a PC through a single USB connection, and

are compatible with Windows, Mac, and Linux. Like all Wacom tablets, the product

comes with a few software licenses, but these are not by any means the only compatible

tablet input software products. The Intuous 4 tablets start at around $200 for the

smallest model.

I used one of these to produce a few videos before switching to the Wacom Cintiq.

The experience of writing on a horizontal surface while viewing the result on the vertical

screen in front of me seemed highly counterintuitive, and while I was able to adjust to a

certain degree, I wanted to come up with a solution that was easier to learn to use for

recording. The time investment needed to train other potential video authors to write on

this tablet fluidly seemed impractical, and I also did not think it would be intuitive and

natural enough to be a good replacement for a "piece of paper" when offering

explanations to students.

Additionally, the Intuous 4 seemed to require more memory to process tablet

input because of the higher degree of granularity afforded by the device. For instructors

interested in producing tutorial videos in private, without engaging students directly,
there are other, more basic, less expensive tablets available. The Wacom Bamboo tablet,

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

is one of these simpler devices, and it is the type of tablet reportedly used by Mr. Kahn

in producing videos for the Kahn Academy, mentioned in Section 2.3.

3-1-3 Apple iPads and Similar Tablets

Apple iPads are highly portable, lightweight tablet devices produced by Apple.

Though the current leading product in their category, there are many similar

alternatives. Highly mobile solutions for recording student and teacher interactions are

very desirable, and I did look into using devices like this for doing so. Simply put, at the

time that this system was assembled, there were no readily available ways to record

screen activity on these devices, and even if there were, the hardware might not have

been able to keep up with recording and processing tablet input at the same time. Future

iterations of this type of device will almost certainly offer the kind of functionality that

would be useful for recording student-teacher interactions.

3-1-4Wacom Cintiq 21uX

The Wacom Cintiq 2iux provided the best interface for simulating the natural

feeilng of drawing on a piece of paper while explaining a concept to a student. The Cintiq

21ux is a 21-inch LCD tablet. Essentially, it functions as a 21-inch monitor with the

ability to accept tablet input with the same high-performance levels of the Intuous 4
mentioned in section 3.1.2. The Cintiq is a much larger device than the other non-LCD

Wacom tablets or mobile devices like iPads, but the bulk was actually helpful in

providing a large enough surface for drawing-based explanations, and the tablet-

enabled LCD technology provide to be incredibly intuitive to learn to use. It is also

important to mention that, while students were drawn to the large "fancy-looking"

tablet/LCD, once an instructor started using it in an explanation, the process of using a

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

pen to draw in something paper-like was so natural for students that they were not

distracted by the technology and were able to proceed with the interaction more

naturally.

3.2 Tablet Input Software

For the tablet devices that I reviewed in the course of this project, tablet input

registers as a mouse movements. There are countless software products that can

function as a canvas for user input. For this project, I wanted a software product with a

user interface that was not too cluttered because this might be too distracting during

recording and leave instructors spend more time interacting with the UI to select

brushes or colors than necessary to help students. It was also important to find a

product that produced clean, legible brush strokes so that instructors' writing would be

visible during the recording process. In addition to displaying brush strokes, I wanted to

be able to quickly add images to a background layer so that it would be easy to draw on

existing course material in the form of images and PDFs, because this is a common

method that instructors use to help to explain things to students.

3.2.1 OneNote

Microsoft OneNote is a product offered as part of the Office Suite. The product

was not offered for Mac or Linux platforms at the time of this project. OneNote offers

interesting features like note synchronization across devices, but this was not

particularly important for the immediate goals of this project. OneNote seems better

suited for individual note taking where the finished result is meant to be static. The user

controls are not large enough to be easy to find during recording. The lack of cross-

platform support also makes it a less desirable choice. OneNote does, however, offer

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

excellent support for multimedia interaction between images and writing, but given the

previous limitations, this was not the ideal choice.

3.2.2Corel Painter

Corel Painter was one of the bundled software options available with the

purchase of the Wacom Intuous 4 and the Wacom Cintiq. The user interface is

sufficiently intuitive, and there is very fine-grained control over brush size, granularity,

etc. Unfortunately, the same features that make this a great tool for artistic input also

make prone to using too much memory, which causes a lag in registering pen input on

the screen when the recording program is also running. Because extensive graphics

features were not as important as smooth writing during recording, this was not the

ideal solution.

3.2-3Sketchbook Express

SketchBook Express is a free product produced by Autodesk. There is a more full-

featured, paid version, SketchBook Pro, but the free version was suitable for tablet input

during recording. The user interface is sufficiently intuitive and free of clutter. The

program does not use too much memory, and thus capturing tablet input while

recording does not lead to significant lag in displaying pen movement. Adding images is

as simple as pasting them into the file, and the functionality for putting different images

in different layers is highly intuitive and easily accessible. The artistic depth is not as

extensive as it is in Corel Painter, but this is not as necessary for capturing simple

instructive interactions. There are also free versions of this product available on mobile

devices running Apple's iOS and Google's Android operating systems. This makes

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

SketchBook Express a promising candidate for use with more mobile solutions when

these become more feasible.

3-3 Recording and Editing

The final part of the recording setup was to select software for recording screen

activity and audio of student-teacher interactions and then editing that content before

publishing it to the course media site. Several software solutions offered simple screen

recording, but not all of them offered intuitive and effective editing functionality or a

low price point. A few notable solutions that I explored in the course of this project are

discussed briefly in the following subsections.

3.3.1 QuickTime X

QuickTime X comes free with Apple Snow Leopard. One major disadvantage is

that this is the only operating system that is compatible with it. QuickTime X. This

software has several appealing features for exporting videos easily to various formats

and web locations like YouTube, but it seems better suited for recording webcam input.

There is a desktop recording feature in QuickTime X, but it is not possible to limit the

recording to a particular window or monitor. The editing features are also very limited

compared to other options. Given these limitations, QuickTime X might not even be the

best free option for the given recording application where screen capture is the most

important feature.

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

3-3.2ScreenFlow

Telestream's ScreenFlow is a home screen casting product that allows users to

record, resize the recording area retroactively, cut video and audio tracks, splice in new

ones, add text elements, and export the finished product to QuickTime or Flash files on

disk [5] . There is also support for publishing videos directly to YouTube. ScreenFlow

was about $100 at the time of purchase, and provided very intuitive ways to record and

edit the videos for the various instructors who participated in the study. ScreenFlow is

primarily a Mac application, but it can be run on other operating systems. ScreenFlow

has some nice features to reduce the memory footprint while running, which is helpful

when the tablet input software is also using system resources. While there are

comparable solutions, I chose ScreenFlow because it provided the desired functionality

without costing more money than necessary to achieve that.

3.3-3Camtasia

TechSmith's Camtasia is a full featured recording and editing application that is

more specifically focused on screen recording and creating polished screen casts. Like

ScrenFlow, Camtasia's interface makes it very easy to resize the recording area after the

fact, add captions, and export videos to various formats. At the time of purchase,

Camtasia was more expensive than ScreenFlow, but as of May 2011, education discounts

[6] are available that reduce the price from $149 to $99. Camtasia also offers advanced

support for automatically zooming in on areas of interest for smaller screens like those

on mobile devices. Camtasia is the tool of choice for many educational media publishers,

including Salman Khan of the Khan Academy mentioned in Section 2.3. Overall,

TechSmith seems to offer more software products for conferencing, and interacting with

images [7] that integrate with Camtasia, and this might make it a better choice for

applications that would need to make use of that. I chose ScreenFlow because they both

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

offered similar functionality for my purposes, and ScreenFlow was less expensive at the
time.

3-4 Final Design

A successful educational content delivery system depends on the ability to create
useful content quickly. Producing educational videos depends a tablet device on the
hardware side, and software for displaying tablet input, screen recording software, and
video editing. Tablet input and screen recording are both computationally intensive, and
it is important to choose a set of components that balances the load placed on the
system during recording with the quality of the visual feedback from the tablet during
recording.

The physical tablet and tablet input software also need to be easy to use. The
hardware and software components used in the recording process were chosen to
balance the computational load with the quality of output and ease of production. I
chose the Wacom Cintiq 21ux as my input device because it was highly intuitive, and it
worked with a wide variety of software for displaying input and recording it. For tablet
input software, I chose SketchBook Express because it was lightweight, sufficiently
intuitive, and provided good support for including media such as images or PDFs for
background. Finally, for recording software, I chose ScreenFlow because it made the
editing process sufficiently intuitive, provided necessary functionality and was less
expensive than comparable products. Armed with this set of technologies, I set about
building the content delivery system to share recordings with students. The architecture
of this content delivery system is described in the next section.

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

Chapter 4: Content Delivery

After settling on a recording setup, I needed a way to share these videos with

students. ScreenFlow had a nice feature for exporting videos to YouTube, and I did

share a few videos publicly that way, but I mainly used it as a way to demonstrate

recording approaches to others while building the website. For some purposes, a simple

public forum like YouTube is probably sufficient, but for deployment in a specific class,

it made sense to build a website to organize the videos in a more meaningful way. I

created a site that required a username and password to login and view content because

I wanted to track user activity and because I anticipated that students might object to

having videos that included their voice being shared publicly.

I began with very little web programming experience, and decided to use a web

framework to help with managing the underlying database. This provided a good

starting point for building a basic video viewing site, and from there, I incorporated

other web programming tools for formatting specific site views, manipulating the

embedded movie objects, sending information to the server to record user viewing

habits, and generating graphs to show staff members students' aggregated viewing

patterns for each video. Finally, when it came time to grant access to all 150 students in

6.004, I set up a more robust server configuration for serving the large media files to

many users simultaneously.

4.1 Modular Features

In this section, I describe some of the key components of the site's user interface.

This is meant as a high level overview to motivate further discussion of more

complicated user views and underlying functionality. A more in-depth description of

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

entire user views from various pages can be found in Section 4.2. Section 4.3 covers the
system architecture.

The code behind each of the modular components described in this section can
also be reused to further extend existing features. The main user interaction features for
the site listed are the embedded movie object, view history graphs for staff members, a
list of comments with a submission box to add a new one, a button to select or remove a
video as a favorite, and a sorted table for browsing content.

4-1-1 HTML Movie Div

There are several JavaScript files and CSS profile definitions that define an
embedded movie player. This player displays a QuickTime movie object and provides a
navigational bar with start/stop buttons and a scrubber that one can move to change
positions in the video. The value of this scrubber in the movie timeline is referred to in
the code, and in this thesis, as the "playhead." The code involved in including the player
object on a page in the system also includes functionality for tracking users' viewing

behavior when interacting with the video controls.

4-1-2 View History Graphs

View history graphs allow staff members to see the number of users viewing the
video continuously at evenly spaced intervals of the video length. The graphs are 2D
plots with time on the horizontal axis ad the independent variable, and number of users
watching continuously at that time plotted on the vertical, dependent axis. View history

graphs are currently only visible to staff members, but they could be made visible to
students by eliminating a simple conditional statement that checks if the user is a staff

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

member within the showmedia function in views .py. These graphs are generated

using the Google Graphs [8] service. This process is described more in Section 4.2.2.3.

4.1-3 Comment Panel

The comment panel appears under the embedded movie object in the single video

view, which is discussed in further detail in Section 4.2.1.3. Students can choose whether

to make their comments visible to all students in the class, or to make them visible only

to staff and the author. An example of this contrast in the staff and student views of

comments for a particular video is shown in Figure 1. The list of comments

automatically refreshes when users add new comments without forcing a refresh on the

entire page, which would cause any video being played to restart.

Figure 1: (Left) Staff views of video comments. (Right) Student view of comments

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

.......... I I.." 11 11111111111 - - -- - -------- ------ ------- - -----

4.1.4 Favorite Button

The favorite button also appears on the single video-viewing page. This allows

students and staff easy access to toggling a video as a favorite without cluttering the

video viewing area. There is a difference between student and staff favorites in the

database and this is reflected in the media-browsing table that is discussed in Section

4.1-5. When a video has not yet been added as a particular user's favorite, then the

button text will read "Add Favorite," and when it has been added previously, the button

will read "Remove Favorite." The term "favorite" is used frequently throughout this

thesis, and it refers to the database object created when a user interacts with this button.

4-1-5 Sorted Content Browsing Table

The sorted content browser appears on the main student-landing page, and it

provides a quick way for students to find the set of videos most relevant to their needs.

The full student landing page view is discussed in Section 4.2.1.2.

The browsing table allows students to filter videos by author, semester created,

type of interaction in the video, and topic covered by the video. Students can also filter

videos by the "quiz number," which means that they can choose to view the set of videos

that staff members have chosen as study material for a particular exam. This feature was

quickly added after it became apparent that students were very interested in browsing

the videos to find study material for exams.

There are icons on the right of the row entry for each video that allow a student to

preview the given video above on the same page, or to view the video in the separate,

main video viewing page. Students can also choose to populate the entire list with only

their favorite videos or the entire set of videos available to the class.

Title Topic Quiz # Type Author Semester Fa F Preview

Alt Topics Ousnz 2 - All Video Types-- caalnj AlTerms- i-Appy Fltiers--

F Logk FSMs Qyttj QLdQuiz catini S1 0 *

SynchronizationAndMetastablity Quizu caltin Sju 0 0 [*
a smple3-
staae
p inefor Phnin Qytt Qut gajti St 0 0 *
maxima

k fl SeouentialLoic Qual OHQyiZ K~aii $_ 0 0 e *

_ [SMs lQyz 2 OdQuz [c.attir [Sri 0 1 a ____

S.....

egstet SequentialLogic Quiz 2 ltProb cain Si 0 0 * *

constrainquILoXK Qyz 2 TytProb kattle _Si 1 2 *
Pioelhninio a

ninm zer Pipehnig Qytz2 OiQuit Iciin Et0 1 e *

c~e ircut_ _

Sonna 2010 [~ 1
B a er FSMs uz2 _~~t ~ tir _IO I

FSM Full ____

Sonina 2010
FS~Z tFSMs Quz OLdgiuiz caitin _S0 0 0 slo *

Balancer"

Figure 2: Browsing table to sort media according to key attributes

4.2 Website Views

There are two different sets of possible site interactions for staff members and

students. Members of either group can manage their own passwords, view content, add

comments, and list favorites. Staff members can also upload new video files, assign

topics for chapters to create new TopicAssignment content, and view informative graphs
showing user viewing habits for each video. In addition, site administrators have

separate access to the Django admin interface for viewing all objects in the database

directly.

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

4.2.1 Student Perspective

After logging in, the first thing a student sees is the main student-landing page

described in Section 4.2.1.2. From there, students can also preview videos in the same

page, or view them in a larger player on a new page that includes a comment box and

favorite button.

4-2.1.1 Login / Change Password

The login page uses the site's CSS profiles described in Section 4.3.2, but the

main view function that handles the form processing for authentication is done with

included functions from the django.contrib.auth package. These view functions

provide necessary variables to view functions that the programmer is expected to

provide. The simple HTML templates login. html, passwordchange form.html,

and passwordchange done. html, listed in Appendix Section B.4 were the

templates that I wrote for this. The Django auth package takes care of all of the

authorization and validation, and site administrators can still change any passwords

with the convenient Django admin interface described in Section 4.2.3. The simple

login page is shown here in Figure 3 the change password form is shown in Figure 4,

and the confirmation page for a changed page is shown in Figure 5.

Figure 3: User login prompt

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

.

Figure 4: Password change form

Figure 5: Password change confirmation

In these figures, one can see that each page has the basic masthead template and

includes easily accessible links for students to login, logout, and change their passwords.

This appears at the top of every page in the site, and thus, the login pages discussed here

are accessible from anywhere in the site.

4.2.1.2 Student Landing

The main student-landing page provides a place for students to view all content

on the site and keep track of their favorites. Figure 6 shows an example of a student-

landing page. For a hypothetical student, Ben Bitdiddle.

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

...

Figure 6: Sample student landing page

At the top of the page is the usual masthead with course website and login links,

the top left of the page shows the movie preview area, the bottom of the page shows the

table that allows users to sort videos by their particular attributes, and the smaller box

at the right contains a link that will change the list of videos in the sorted table to be

either a student's favorites or all of the videos in the system.

In this example, the student, Ben, might be preparing for "Quiz 4." He might have

come to the site to look for study materials. The most recently posted videos are in-lab

explanations of old quiz problems that the instructor recorded when other students

came to office hours and asked for help in working through these particular problems.

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

.

Ben can also see if other students have added any of the new explanations as favorites,

and he can click the grey eye icon in the "Preview" column for each video to see it

displayed in the smaller preview player above. This is useful because Ben might not

know if this is a problem that he has already seen or if it's one that he would like to see

explained. Previewing the video can give Ben a sense of the problem and help him save

time in finding the most helpful content. Once Ben has viewed more videos and made

more progress in studying, he can add videos as favorites, and then, the next time that

he logs in and sees this landing page, he could click the "Show your Favorites" link to

access them quickly.

While studying, Ben might discover that one topic is especially confusing, and

this of particular interest, or perhaps he might find that one of the instructors has an

especially helpful style of teaching. He can use the drop down lists at the top of the

browsing table to update it so that it only displays the relevant videos for the specific

topic or instructor.

Using the navigational links at the top of the page, users can return to the main

landing page at any time. Clicking "Media Browser" will take the user to this landing

page with all videos displayed in the table, and clicking "My Profile" will take the user to

this page with only his or her favorites in the list. Clicking on the blue arrow icon,
located in the "Detail View" column for each video, will take a user to the single-movie

viewing page discussed in the next section.

4.2.1.3 Movie View

The single movie view page allows students to see a larger view of a particular

video chapter. They can also see all comments that others have made publicly visible,

and submit their own comments. An example of a single-movie viewing page with

commentary, the comment submission form, and favorite button is shown below in

Figure 7:

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

A student like Ben Bitdiddle, who was introduced in the previous section, could

make a comment public for the entire class, or he could select the option for sharing the

comment only with "Staff Members and [username]" if he wanted to provide feedback to

the staff or ask a question that he did not feel comfortable sharing with everyone else. As

discussed in Section 4.3.3.3, the favorite button, included in the sidebar, and the

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM , 33

..

comment submission form both use Ajax to send data to the server so that the user's

playback experience is not disrupted while the student provides feedback. This

uninterrupted video playback is also important for the collection of user viewing interval

information - which is conducted on this page and in the movie preview pane in the

student landing view discussed in Section 4.2.1.2.

4.2.2 Staff Views

Several of the views in the site are available only to authenticated staff members.

There are also parts of the student-viewable pages discussed in the previous section that

are only visible to staff members. Staff members can upload videos, assign chapter

intervals to create TopicAssignment objects, and access the separate Admin interface

discussed in Section 4.2-3.2. From the main landing page, there are links for staff

members to upload new content and assign new chapters to existing video files within

the system. When viewing the single-video player, staff members can see all comments

regardless of permission level, and they can also see view history graphs below the video

player. These perspectives that enable this integrated feedback are discussed in the

following sections.

4.2.2.1 Upload Video

This perspective allows a staff member to upload a video file, and specify basic

parameters. This completes the creation of a PublicVideo object within the database, as

discussed in Section 4.3.1.1, but it does not complete the creation of a TopicAssignment

object; that is handled by the topic assignment page that the instructor sees after

uploading a video to this form. If an instructor would like to add a new chapter to an

existing video, he or she can select one form the drop down menu at the bottom.

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

This page is specified by the uploadvideo view function in staf f_views .py

as shown Appendix Section A.2.3 and the HTML template uploadvideo.html,

shown in Appendix Section B.5.1. An example of the video upload form is shown below

in Figure 8.

Figure 8: Staff form for uploading a new video

4.2.2.2 Topic Assignment

The topic assignment page allows instructors to preview videos after uploading

then, and then designate intervals within the video as chapters assigned to a particular

topic. Instructors can move the playhead to the desired start of the chapter, and then

click "Set to Now" under start time to set the HTML form value. The chapter end time is

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

.....

set the same way with the button under the "End Time" label. Instructors need to also

assign a topic to the chapter, a subtitle that gives more information than the whole

movie title, and also designate the quiz for which this video could be study material. The

"quiz number" designation is more of a specific feature that I found particularly useful

for the specific course in which this system was evaluated. Figure 9 shows an example of

creating a topic assignment.

Figure 9: Topic assignment and movie preview

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

...............

After setting the chapter start and end times, and the other relevant information,
the author can choose to continue assigning chapters to this video file by clicking the

"Continue with this Video" button, or he or she can choose to return to a list of all videos

in the system to be able to create new chapters from them. The "Continue with this

Video" button is the only one that submits the information to the server to create a new

TopicAssignment object, though. To get back to the main media browser, an author can

click the relevant links in the masthead that appears at the top of this page, as it does

every page in the site.

Once an author saves the chapter, the information is sent through a standard

HTML form post to the server, where the HTTP request is sent to the view function,
staf f_views . previewandset topic in order to process the request and create

a new database object for the new chapter. This view function is the same one that

renders the page by providing relevant variables to the moviepreview. html

template.

4.2.2.3 View History Graphs

View history graphs are available to staff members as part of the individual video

player page. The graphs show how many students were in a state of continuously

watching that particular video for each part of it. The view history graphs are displayed

with careful formatting so that the axis scales alongside the QuickTime controller that

provides a similar timeline of the video. In this way, instructors can move the playhead

to easily view parts of the video corresponding to trends in student viewing for that part

of the video. To create these graphs, I first divide the total video length into uniform

intervals, and then run a query to determine how many ViewInterval objects cover each

time interval. The graphs are updated in real time with Ajax calls.

The graphs are generated with the help of the Google Charts tool. This tool allows

one to construct a URL with a specific format in order to render an image of a

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

corresponding chart. The function getimgurl within staf f_views. py goes

through the many steps of constructing this URL. While the long URL string may seem

complicated, the ability to construct a URL to retrieve custom images is vastly preferable

to writing the software locally to create the charts, especially while in the process of

developing a new system and determining the kinds of charts that one might want. One

example of the entire staff video player view with a view history graph, dashboard,

comment panel, and favorite button is shown in Figure 10. More discussion of how these

graphs were used and interpreted in the user study can be found in Section 5.3.3.

39 78 11i 1%6 195 234 23 312 354 3,

Tell as whatyuhuh of
the video! Wasi o og
Was wne part paricularly
helpfur Leave your comments

Figure 10: An example of a view history graph

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

................

4.2.3 Django Admin

The admin application is a standard Django library that can be enabled with a

single line in the settings . py file from the main application. This settings file also

specifies the project database, so the admin application can be associated with a single

database file. This allows it to provide a useful interface for managing objects within the

database - including users. Fore more information on the Django web application

framework, see Section 4.3.1.

I used the Django admin interface to create users, manage section lists, and

change passwords. I also used it to set up test data in the database, and change video

information after the usual staff-upload process (described in Section 4.2.2) had already

been completed.

4.2-3.1 User Management

The Django admin and auth packages provide useful functionality for managing

users, setting permissions, and assigning users to groups. I found it very helpful for

changing passwords, customizing levels of permissions for staff and students, and

setting up groups for each recitation section.

The admin interface is less appealing in some other ways. Because it uses the

built in auth package for user management, it is more complicated to try to extend the

admin packages to add user management functionality. For instance, there was not a

good way to simply add 150 students at a time. In order to give the students access to

the site, I had to click the small "add new" button, go to a new page, change the group

and permissions manually at the bottom of the page, and then repeat the process for

each student. The admin interface also does not provide a great way to send email to all

members of a group, as it seems that groups were more intended as a way to manage

varying levels of permissions. I was able to write a script to send email to an entire list,

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

but was a much less desirable solution than having standard email lists in any desktop

mail application.

Despite these shortcomings, the admin interface provided a good start for user

management, although it lacked ready interfaces for adding users in large batches and

sending email to groups. An example of the Django user administration page is shown in

Figure 11.

~4~4

~ ~

Figure ii: User administration

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

..

1. p~ 000.0wov AtoG

4.2.3.2 Object Browsing - Sorting and Filtering

For models that I defined in my own application, it was fairly straightforward to

customize the admin interface. The admin package requires a file within the main

project directory called admin. py. This is where a programmer can specify custom

filtering and sorting capabilities for object lists. For instance, when viewing Favorite

objects from the admin interface, I discovered that it would be very useful to know

which ones were more recent. In order to add this as a sorted column in the table

displaying all Favorite objects, I modified admin .py to include a FavoriteAdmin class

in which I specified which attributes of the Favorite objects should be listed in the table,
and which ones should be a way to sort the objects in the table. The simple code for the

FavoriteAdmin class below shows the basic format for all other classes specifying

custom browsing in the admin interface, and Figure 12 shows the resulting object list

view made possible through these customizations.

class FavoriteAdmin (admin.ModelAdmin):

listdisplay = ('profile', 'ta', 'time')

list-filter = ('profile', 'ta', 'time')

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

Seie1 favente f o change

'1 "~'~V ~I

~ LA ~ ~ ~

~ r~. &~ ~

v ~w~u ~AA kA t~ ~

~
~ A ~I ~

I ~) b4 ~

~ ~ ~ 4 4

4~4 ~

~ ~ A ~ I~, 4A~'~~ ~

A ~ AI~*~. ~A~4 ~ ~

I ~

~ P ~84 ~A~ii~

4 ~fl 1~~&4?~

A ~

A

A

~H

~H

~ ~

~

For things like Favorite, Comment, or ViewInterval objects, this kind of custom

sorting and attribute display made it easier to get a general idea of user interaction with

the site. The information is still provided in the form as a list of database entries,

though, and this is certainly less informative than other forms of feedback like the view

history graphs mentioned in Section 4.2.2.3, The sorted list from the admin interface

can, however, give instructors a rough view of current trends when there are not better

reporting mechanisms, and can also give instructors and developers a better idea of the

kinds of reporting that could be included to improve student-to-staff feedback in the

system.

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

*~MIt4~

$4n~ ~

~

4 ~dt ~

....

4.2.3.3 Modifying and Correcting Object Data

After viewing sets of objects in the database, as described in the previous section,

site administrators can click one of those for a detail view. This provides a way to not

only view an object's attributes, but to also modify them. This is particularly useful for

doing things like changing the quiz number associated with a particular video without

removing the existing data associated with the video, like user comments, etc. This is a

good way to quickly keep information up to date in the midst of changing course

curricula between semesters, and it is also a good way to correct errors after the fact. An

example of an object-editing page for a TopicAssignment object is shown in Figure 13.

S400p timw

Notm studif1

f~A*r0FJ

(A 1 stgnmC nt l''f- 14AIe _btC~4" ' 1

QuaK

Figure 13: Modifying object properties and adjusting foreign-key relationships

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

Djang o admintsstatton

4.3 Website Framework

The functionality behind the website views described in Section 4.3 is provided

with a python-based web application framework, an underlying database, and some

client-side scripting to facilitate collecting feedback from users. The rest of this section

describes the architecture of these system components.

4-3.1 Django

Django is an open-source web application framework written in Python. Django

projects follow the "model-view-controller" (MVC) pattern. The "model" file allows a

programmer to set up database tables automatically by specifying classes. The type of

database can be specified in a separate settings file. Django has built-in support for

PostgreSQL, MYSQL, and SQLite, among others. I used SQLite for developing this

application, but rarely had to manipulate the database tables directly, as the Django

framework provided much more intuitive ways to manage the information in the

database.

A standard Django application includes a few key files that set up the basic

model-view-controller architecture and help a user manage the application settings.

The first of these is a file called models .py, in which one specifies the objects to be

stored in database tables in python classes. The second is a file called views .py, and

this is the primary place for specifying the behavior of the "controller" part of the MVC

architecture. This file is the typical place to define functions to provide custom data to

html templates, and to process incoming HTML requests to create or change the model

data, if necessary. The fourth essential file is settings. py, in which an application

creator specifies basic application settings, including relevant file paths, and the type of

database to be used. The fifth file is uris . py, which provides a list of all URLs within

the application, and the relevant function to render the html page for each one. Finally,

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

the standard "view" component of the MVC pattern is realized by a set of html templates

that are rendered with custom content by the aforementioned functions in views .py.

All files are included in the specific data models, view-rendering functions, and

html templates together describe the basic functionality of the tutorial video system, and

these three components are described in further detail in the following sections of this

chapter. The code for the Django application is included in Appendix A.

4.3.1.1 Models (Model)

The main models in the database are depicted in Figure 14. Each User can create

a PublicVideo object as an author, comment on a video they view, view a segment of a

video, or add it as a favorite. When an instructor creates a PublicVideo and uploads it to

the site, he or she is then taken to a page to choose start an end times to create at least

one TopicAssignment. In creating a TopicAssignment, one must also choose the topic

from an enumerated list and assign a title for this new video chapter. The object is called

"TopicAssignment" because it is, at a basic level, the assignment of a topic to a pair of

times. In terms of use, it is essentially a chapter object, and throughout this thesis, I

frequently use the term "chapter" to in place of "TopicAssignment." After a

TopicAssignment is created, this is the object that is used in the media player

components of the pages, instead of the underlying PublicVideo, because each page is

set up to be able to play a single chapter of a video.

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

IdAuFI
0190 FeonnKey
simitfam Fk*oanlM

stop-tism FnatFibM
wv.~tjmStmaoris intgFleM

sum utudent fwusas WmtgesFIeM
quit btgerFiW:vkddPtm* titl ChrFM

The User object is borrowed from django. contrib. auth.models. This event

triggers a function called makeprof ile, located near the end of models.py, which

instantiates a corresponding UserProfile object for each unique User. When a User

marks a video as a favorite, the request sent to the server will trigger a function to create

a new Favorite object and associate it with the User's UserProfile.

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

A User can also be associated with a TopicAssignment through a Comment

object. A Comment object also contains a permissions field, which comes from one of

the COMMENT PERMISSIONCHOICES in enums.py. Currently, there are only two

levels in use, and those are "staff' and "all students." The staff level allows only course

staff members and the comment's author to view it in the list of comments below the

TopicAssignment in the standalone player page. The other level of permissions allows

any student with login access to the videos to see the comment. This could be easily

extended to accommodate students who may wish to leave a comment visible to those

taking the course in the same semester, or students in their recitation section, etc.

A User does not have to mark a video as a favorite or leave a comment in order to

leave a record of interaction with it. When a student plays a video for a continuous

stretch of time, the start and end times of this are recorded as a ViewInterval. Saving

these ViewInterval objects allows staff members to see the viewing behaviors of

individual students through the Django admin interface and to see the number of

students who were "tuned in" and watching each part of a video through a view history

graph, as shown in Section 4.2.2.3.

4.3.1.2 Views (Controller)

Each URL included as part of the site in uris .py points to a view function in

views .py, studentviews.py, or studentviews .py. Some of the URLs are in

the form of regular expressions, allowing variables to be passed from the arguments in

the URL. The full specification for this can be found in A-3.1. For the purposes of this

explanation, an example is shown here:

Inurls.py:

(r' viewhistory/(?P<taid>\d+) /$',
staff-views.display_interval-views)

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

In staff _views . py, the function takes t aid as an argument:

def displayintervalviews(request, taid):

The functions in views .py, studentviews.py and staff _views.py take

in these variables and use them to extract relevant information from the database and

then assign the values from the database to new names in a dictionary. This dictionary

provides a context with which the to populate a html template by calling the Django

shortcut method, rendertoresponse:

context = {
"ta start" : ta.starttime,
"ta id" : ta id,

"user": user,

"ta stop" : ta.stoptime,

"selectedta" : ta,

"imgurl" : imgurl

}
template = "displayintervalviews.html"
return renderto_response(template, context)

Once the template has been rendered, and the html source provided to the user's

browser, the user might initiate a POST request by interacting with the page to, for

example, add a video as a favorite. These requests are sent to the function specified by

uris . py for that URL. In some cases, this is the same function that rendered the

template to begin with, but in the example of adding a favorite, it is not. The "Add

Favorite" button could appear in many places, and the function f avoritepost in

views . py will handle the request to add or remove a favorite for a user and the

relevant TopicAssignment object.

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

4.3-1.3 Templates (View)

The template system in Django allows for a programmer to use some HTML files

to specify the layout of others. This makes it easy to use formatting tools like CSS

profiles, as described in Section 4.3.2, but it can also make the behavior of the template-

rendering a little bit confusing because of the number of files that are involved with

rendering a single HTML view. Figure 15 provides a visual depiction of the template

components involved in rendering the single chapter-viewing page that is described in

further detail in Section 4.2.1.3.

extandd

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

.

Figure 15: Template files involved in rendering a single-movie viewing page

In this example, the URL configuration file, urls. py contains a dictionary entry

for the regular expression string r'^web/showmedia/(?P<taid>\d+) /$' that

points to the function views. showmedia, and passes the parameter taid as an

additional variable beyond the standard HTTP request object that is passed to every

view rendering function. This function will produce a set of variable mappings with

which to render the template (shown in the trapezoidal section below the rectangle

containing the function name in the figure). This dictionary is passed to the

show media.html template, which extends a base template called

twocolumn. html. The components of twocolumn. html are blocks for the page's

title, header, maincolumn, and sidebar. The header includes the file

intervalmovieheader. html, which contains a lot of the JavaScript code for

setting up the embedded movie object, which is then instantiated by the movie div

html field within the maincolumn part of the twocolumn. html template.

The maincolumn also contains timingfields.html, which populates

several hidden html fields used to monitor the play head position in the movie object to

determine when to package up a ViewInterval object and send it to the server with an

Ajax call. Immediately below the movie div, this page displays a list of student

comments, filtered by permissions, and text area and Ajax-enabled button for adding a

new comment to the list. This is all set up within commentview.html.

In the s idebar, the "Add as a Favorite" button is similarly set up with Ajax to be

able to send information to the server and also to change the text if a user has added the

video as a favorite already. This is set up within f avoritebutton. html. Right above

that, there is a set of links that will take a user to lists of videos that were from the same

semester, author, type, or topic. This is set up when the function passes the variables to

the code in similar video bar.html.

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

This diagram is by no means complete. The standard navigational panel that

appears on every page of the site, and contains links to the main page, course homepage,

and lab help queue, is set up in the header. The commentview. html,
favoritebutton.html, and interval movie-header.html files all contain

JavaScript code that sends data to other post handling functions in views . py, and then

changes the content of the loaded web page without refreshing the entire page when the

code, running on the client's machine, receives confirmation from the server that this

request has been processed successfully. This is discussed in further detail in Section

4.3.3.3.

4-3.2 Cascading Style Sheets (CSS) and Base Templates

The basic layouts for all pages within the site are managed with Cascading Style

Sheets, in users ite .css. Using CSS allows the programmer to define style attributes

in a single location for types of HTML <div> items and classes that can be reused

throughout the pages of the site. Unique items only exist once within a page and are

identified by their name attribute within the HTML code. Classes provide general

descriptions for more general types of objects, like links, paragraphs, etc., and are

identified within the HTML code with the c las s attribute.

4-3-2.1 Base

The base template sets up the page header and the color scheme for all pages in

the site. Every html template inherits from base.html, which is how the

users ite. c s s style sheets are loaded in to every page. The base . html file includes a

header block for JavaScript functions, the masthead.html file, and a main

contentcontainer class. The masthead lays out several mastlink items in a

navigational bar, including a link to the main landing page, the external course website,

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

a login link, and a link to a page for changing the password. The formatting for the

masthead division and the mastlink class are both specified in usersite. css. The

contentcontainer is the wrapper for all other variable content on each page.

4.3.2.2 Two Block

Figure 15 in Section 4.3-1.3 shows an example of the rendering process for an

instance of the two-block template. Section 4.2.1.3 describes the main use of this

template within the system - the individual video player with comment views, and a

favorite button. The template is set up by the file twocolumn. html. These sections

are divided into two main blocks, the sidebar, and the maincolumn.

The usersite .css file contains setup information for the browsesidebar

and s idebarcontent classes that define the outer region for the smaller right block,

and the formatting for the internal content. This small block is meant to provide a set of

navigational links for quick access to related content.

The maincolumn formatting, as defined in usersite .css fixes the position

and width of this field so that it does not overlap the sidebar and so that both remain

easily visible. In the twocolumn. html template's use in its extension in

showmedia. html, the movie div and commentbox classes appear within the

maincolumn. The formatting for these two classes is also laid out in users ite .css.

4.3.2.3 Three Block

The other main user perspective within the site is the main landing page,

described in Section 4.2.1.2. The main CSS file, users ite . c s s, provides definitions for

classes and unique fields in the content container for three-block. html. This

template reuses the maincolumn and browsesidebar wrappers to display a box at

the top left and a smaller sidebar at the right. This template also includes a

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

bottomblock box that is wider and fills the width of the page below the other two

blocks.

In the main landing page where this layout is employed, the maincolumn

contains a preview of a selected video, the browse sidebar contains login

information for the student, and provides a link to toggle the query set for the table in

the bottomblock as being the student's "Favorite" videos, or simply all the videos.

This bottomblock includes a table listing the video-chapters' title, semester, author,

type, topic, number of staff favorites, number of student favorites, and the quiz number

that covers the material. The videos can then be sorted or filtered with these attributes.

Once a student finds a video to watch, then he or she can either click a link to visit the

single-video player with full comment detail, or click a link to preview that video in the

smaller box above the table on the same page in the main-column block.

4-3-3 JavaScript

JavaScript files included in the page headers serve to gather data from the

embedded QuickTime, set up the movie object, and send information about page events

to the server. In order to send information to the server without requiring the page to

refresh, I use the jQuery plugin to send AJAX (Asynchronous JavaScript with XML)

requests to the server.

4.3-3.1 QuickTime

The general JavaScript library for QuickTime, AC QuickTime . js is available

for free download from Apple. The file commonquicktimemethods. j s contains

some additions to this library that proved useful for setting up the embedded QuickTime

object. The most notable of these is set displayareatofitmovie(), which

formats the display area of the movie for playing in a movie div on either of the main

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

content viewing pages. Utilities like playheadposition () and timescale () are

convenience functions to reduce the amount of typing to get values for current attributes

of the movie object, which are then used in intervalmethods. js, and the

JavaScript methods within interval movie header. html.

The file, intervalmethods. j s includes many functions for managing a

timer, which is a variable stored as a hidden HTML form field in

timing_f ields . html. By recording the playhead position when a user starts to play a

movie, and then maintaining a timer, it is possible to determine when the playhead has

moved, and the user is no longer continuously watching the video. When a user stops or

moves the play head position, this triggers an event that will call c heckandsend (,

which determines if the playhead was moved far enough to conclude that the user has

finished watching that video segment. The method will then send an AJAX call to the

server using jQuery so that a new ViewInterval object can be created in the database to

keep track of users' viewing habits. The event listeners that associate the methods within

intervalmethods. js and corresponding QuickTime events can be found in

interval movie header.html.

4.3-3.2 jQuery

jQuery is a free, widely-used, open source JavaScript library with several features

for facilitating client-side HTML scripting. In this project, I used it primarily for putting

together client-to-server Ajax calls and overriding the default form submission behavior

for the comment and favorite forms. When an HTML form is submitted, this will

redirect the user to a reloaded page or a different page. I wanted to be able to allow

students to add a comment or create a video as a favorite without needing to refresh the

page, because refreshing the page would reset all of the local timing variables for that

video page, which would reset the position of the play head and disrupt the tracking of

users' viewing intervals.

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

In order to override the default form submission behavior, I included snippets of

jQuery code to handle the submission through a function that would send an Ajax

request, and block the page-reloading default submission behavior. As an example, I

included the following code at the bottom of the HTML comment submission form file:

<script type="text/javascript" src="/site media/comment submission.js">
$('#comment_form') .submit(

function() {
submit comment();

return false; });
</script>

This code will run when the HTML comment form is submitted. This calls

submit__comment () from comment_ submission. is (shown below), which extracts

variables from the form fields and then includes them in an Ajax request that it then

sends to the server. When that function finishes, the embedded jQuery script returns

"false" in order to block the normal HTML form submission.

function submitcomment()

{ var username = $('input[name=username]').val();
var ta-id = $('input[name=taid]').val();

var text = $('textarea[name=text]').val();

var permissions = $('select[name=permissions]').val();
console .log ("in submitcomment");

$.ajax({ type: 'POST',

url: "/commentupdate/",

data: { username : username, text : text,

permissions : permissions, taid : ta_id, },
success: function(response){

var newcomment = "<tr><td colsapn=\"2\">"
+ response.text + "
 -- "

+ response.username + " at "

+ response.time +"</td></tr>";

$(' .commentdisplay') .append(new-comment); },
dataType: "json", });

return false; }

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

This function uses the element identifiers from the HTML form to extract

variables like 'username' and then creates a dictionary object containing the relevant

information about the comment. This information is sent to the server, and upon

receiving a response confirming the comment's creation from the server, the method

will create a new HTML formatted comment and append it to the existing

commentdisplay table. This provides the illusion of reloading the entire comment

query set for a given video, by appending identical HTML code to the end of the existing

table, but it doesn't require changing anything except the comment table, so the viewing

interval and favorite variables are not affected. This is also especially important because

the favorite button is also an HTML form, so a single submission would cause both to be

submitted, and this would create a host of other problems with disambiguation as well.

With jQuery, it is easy to override the default submission behavior to package up the

form submission behavior into an Ajax call to the relevant submission handler on the

client side. The server side behavior for handling Ajax requests is discussed in further

detail in the next section.

4-3-3-3Ajax

Django provides some very helpful, built-in functionality for dealing with Ajax

requests on the server side. The jQuery functions send Ajax request data in the form of a

serializable dictionary. I chose to use JavaScript Object Notation (JSON) because

Django provides nice serializers to convert objects into this format, but the choice is

otherwise arbitrary. The requests are sent to a particular URL, which, in turn, sends

them to the associated view function as specified in uris. py. This view function sees

an incoming HTML request, and then checks to make sure that it is an Ajax request by

using the built-in is_a jax Boolean that Django provides for HTTP requests. The view

function can then treat the incoming request as a normal HTTP request object and

extract the relevant information from the request. POST dictionary, and then use

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

these values to create a new database object before providing an Ajax response to the

client-side script to update the user's view for the relevant content. The following

example shows this server-side Ajax view function that handles the Ajax request for the

comment submission. It continues the example that was started in the previous section:

def comment update(request):
dict = {"username": '', "text": '', "permissions": '', "taid": ''}

if request.isajax():

print "request in commentupdate is ajax"

if request.method =='POST':

username = request.POST['username']
text = request.POST['text']
permissions = request.POST['permissions']
taid = request.POST['taid']

user = User.objects.get(username=username)

ta = TopicAssignment.objects.get(pk=taid)
comment = Comment()

comment.clip = ta

comment.user = user

comment.text = text

comment.permissions = permissions
comment.save()

print "permissions are %s" %(permissions)

dict["username"] = str(username)
dict["taid"] = str(taid)

dict["text"] = str(text)

dict["time"] = str(comment.time)

return HttpResponse(simplejson.dumps(dict),

mimetype="application/javascript")

There are also server-side Ajax request-handling functions to create new Favorite

objects and ViewInterval objects in the database. When a user adds a video as a favorite,

the server-side function will send back information that changes the button text from

"Add Favorite" to "Remove Favorite" without reloading anything else on the page.

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

4.3.4 Apache

Apache is a web server software package used to provide pages and content in

response to client requests. While Django provides a basic development server, this is in

no way sufficient for serving large media files like the tutorial videos produced for this

system. Each Apache server is set up as a separate virtual host.

4.3-4-1 Basic Configuration

In order to set up the existing Django project with the Apache server, I installed

the modwsgi Python adapter for Apache. In order to point the Apache setup to this, I

set up two path variables. The WSGIScriptAlias in the Apache setup points to the

location of the django.wsgi configuration file. The django.wsgi file points, in turn,
to the root folder for the Django project, the correct path for the current python version,
and the correct Django settings module for the project. The WSGIPythonPath within

the Apache setup points to the root directory of all installed python modules within the

application.

4.3-4.2 Log Files for Debugging

Throughout development, I used print based debugging. For server side python

scripting, these messages went to a terminal. With Apache in place, these messages did

not go directly to the terminal. Instead, I overrode the "print" method to save all print

comments to an Apache error log. This needed to be changed for all files that were

sending print output to the terminal previously, but the result was that more

information could be saved at once.

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

Chapter 5: Results of User Study

In order to test the effectiveness of the tutorial video system, I introduced it as an

extra resource for the Spring 2011 semester of the MIT course "6.004: Computation

Structures," better known simply as "6.004." I asked other instructors to try the

recording system and provide feedback, and I also collected feedback from students in

many forms including indirect tracking of viewing habits, comments on the website,

informal paper surveys, and personal conversations. In this chapter I describe the

results of the user study in terms of this feedback.

5-1 Testing Environment

6.004 was a good choice for testing the system for several reasons. Most

importantly, it is the course that I was teaching for the Spring 2011 semester, and had

been teaching for the three semesters prior. I envision this video system a supplement to

an existing curriculum, and introducing it in a class that I was teaching allowed me to

get feedback from students on the tutorial system during office hours, and made it

easier for me to produce content relevant to the current semester.

6.004 was also a good choice because it is a fairly large class, with 150 to 200

students in a typical semester, and a sizable teaching staff of 6 to 8 undergraduate "Lab

Assistants" (LAs) and 4 to 5 graduate teaching assistants every semester. Given that

response rates are typically below 50% for institutionalized and accepted course

feedback practices, having a large number of students seemed to be a good way to try to

get useful feedback. The sizeable number of course staff members also provided me with

a great source of volunteers to try out the recording process and give me feedback about

the system from a content-generation perspective.

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

Another characteristic of the course that made it a prime candidate for a system

like this was the significant lab component, and the dedicated lab space. For Spring

2011, there were 8 lab assignments and 4 quizzes. 6.004 has a well-staffed dedicated lab

space, where students will come in for required check-off meetings, to get help on

assignments, or to ask for help on tutorial problems to study for quizzes. When trying to

record one-on-one interactions with students, it is important to have some of those

interactions to record, and the 6.004 lab provided a space where those kinds of

interactions are plentiful.

In addition to 8 weekly office hours in the lab, I taught two smaller recitation

sections that met twice weekly. This meant I had a group of about 40 students with

whom I had more regular interaction. These students were the first to try the tutorial

system, and they were very helpful in providing informal, in-person feedback before or

after teaching. In addition, over half of these students filled out an optional survey with

questions about the video system. While monitoring and feedback mechanisms are built

into the tutorial video system, informal communications and paper surveys provide

different, equally useful information. In Section 5.3, I provide more detailed results of

this feedback.

5.2 Instructor Feedback

When designing a system for recording explanations, it is important to ensure

that it is easy for someone to begin using the recording hardware and software for the

first time. It is also important to design a system that is likely to be used. Authors must

feel comfortable with the whole process and the benefits to participating in creating new

media must outweigh the time investment. In order to test the effectiveness of the

recording setup, I collected feedback from five other volunteers.

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

Overall, not as many authors contributed material as I had hoped, and but the

participants did provide some valuable insight regarding the factors that influenced

their level of contribution. The authors reported that the recording technology and video

upload process were sufficiently intuitive, but that there were larger concerns that

hindered their interest in creating tutorial videos. Surprisingly, these barriers were

mostly related to the general awkwardness of "explaining" something to a machine

instead of a human, and the self-consciousness of being recorded.

Overwhelmingly, the recording volunteers reported feeling nervous by knowing

that they were being recorded, but said that if "everyone was doing it" that they would

probably not be as nervous. The instructors seemed to be a lot less comfortable with

making mistakes when they were being recorded. Most said that this wouldn't go away

entirely, but that they would be much more relaxed about the idea if there were a larger

set of contributing instructors from past and present semesters. Surprisingly, the

instructors needed face-to-face feedback just as much as students did, if not more.

5-2.1 The Volunteers

I and five other volunteers were able to provide usability assessments after

learning to use the recording hardware and software. Not all of the recording volunteers

published content through the website for the class, but all of the instructors had

experience with teaching students in a lab and/or classroom setting.

Two of the instructors were undergraduate staff members for the course, and two

were graduate teaching assistants in 6.004 during the semester. Another volunteer has

been a graduate TA for 6.004 for several semesters, and yet another had been a TA for

two other major undergraduate courses at MIT and was interested in producing content

for another course.

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

5.2.2 Recording Environments

The author's narration provides the primary audio component of the tutorial

videos. For all of the recordings produced in the course of the project, this was

accomplished with a generic, built-in iMac microphone, though more sophisticated

hardware certainly exists. The Cintiq is not especially portable, and so there were two

main locations for recording. The first was a private office, and then later, the recording

setup was moved to the computer lab area for 6.004

5.2.2.1 Recording in Private

Initially, it seemed like a better solution to keep the hardware setup in a location

that was free of background noise for the majority of the day. This initial space was a

shared office. Despite initial concerns for background noise, it became clear that this

was not the primary barrier to producing recordings. Even if the equipment is in a

relatively private and isolated location, there are several factors that make it more

challenging to produce recordings.

Two volunteers were not active staff members for 6.004. Both tried creating

recordings in private. One had experience with teaching the course in the past and was

interested in trying to contribute material, and the other was currently engaged in

teaching another class and was interested in producing material to share with that

course. Both of these participants showed great enthusiasm, and expressed lack of

current motivation or active use of the recording system within their own course as

personal barriers to participation. One notable fact is that both of these people have had

multiple semesters of experience with teaching classroom sections, and they wanted to

share this knowledge by recording it. One problem that they noted was that the lack of

human feedback was unnatural and made them feel less satisfied with the potential use

of future videos when preparing recordings in advance.

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

Indeed, it seems easier to create videos with a student present to provide a

prompt, and this is an important factor in deploying a system like the one described in

this thesis. Many good instructors rely on student feedback like facial expressions and

body language in order to offer effective explanations. This seems to be just as important

as the feedback that students receive while working through concepts with instructors.

There were some advantages to recording in private. The most noticeable

difference was in audio clarity. In the lab, many other students were talking, and when

this happened close enough to the recording setup, it was sometimes possible to hear

others' loudly enough to make out words. A better microphone or more careful

positioning of the recording setup might mitigate this, but certain noises are

unavoidable. Many instructors also felt more comfortable with practicing in private

because of the decreased pressure and minimal distractions.

5.2.2.2 Recording with Students in the Course Lab

The primary motivation of moving the recording setup to the lab was to capture

more realistic interactions with students and teachers. A fortunate consequence of this

was that it made it much easier for teachers to create recordings of their ad hoc

explanations. This did, however, require teachers to be comfortable with recording their

unrehearsed explanations. Even though several of the instructors expressed

apprehension with being recorded when they felt unprepared, those who tried recording

prepared tutorials in private expressed that they felt the absence of students detracted

from the eventual quality of the recordings.

I observed that when students understand something is a recording of an

impromptu in-lab explanation, they are much more appreciative of supplementary

material than they are concerned about the somewhat rough audio quality or occasional

backtracking when instructors realize they need to correct mistakes. After creating many

videos in private and in the lab with students, it seems that despite the potential for

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

lower quality or mistakes given lack of preparation, that recording explanations in lab

and spending minimal time editing recordings is the best way to provide a healthy

amount of material. Regardless of the level of preparation, individual students will

always have their own reasons for preferring one explanation to another. It is important

to ensure that there are enough recordings from enough different instructors that

students can find those that are most helpful to them.

The natural "question and answer" style interaction between students and

teachers is also a very important way that students learn. Throughout my teaching

experience, there have been many times that other students asked to listen in on an

explanation that I had begun offering to a single student. They were not concerned with

my level of preparation; they simply had the same question and were eager for a new

perspective on the topic to help them understand. This is why the less-prepared, in-lab

interactions are valuable as educational media, and this is why I believe that it is a good

idea to include a means to record these interactions easily in lab or classroom settings.

There are a few disadvantages that were more surprising. As discussed before,

teachers felt as if they were put "on the spot" in lab, but I also discovered that some

students were incredibly concerned about having the answer to their question recorded.

Student privacy is an important issue that should not be overlooked, and if students are

concerned about their voices appearing in the audio track of the recording, it might

inhibit their normal pattern of interaction with the teacher. Most students were only

concerned with making sure that their dialogue with the instructor didn't end up

somewhere public like YouTube, and were satisfied with the practice of sharing content

with other students in the class. In fact, once students grew accustomed to the device

being in lab, some were more eager to ask me to record solutions instead of answering

questions manually because they were interested in reviewing the explanation later and

also sharing it with their classmate who were confused about the same topics.

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

5.3 Student Feedback

I collected student feedback through the comment and favorite mechanisms on

the site, through user viewing behavior from view history graphs, and through personal

surveys. All of these methods provided different information, and the results are

discussed in the following sections.

5-3-1 Personal Interviews

Informal interviews were helpful for gathering information about tutorial video

use. Many of the students who used the tutorial video system regularly seemed to be in

touch with one another. Several students informed me that they discussed the best

videos to watch over instant messaging with one another instead of adding videos as

"favorites" in the system. When interviewed, these students seemed very excited about

the potential for the system and contributions is could make to future academic

"generations," but they said that the favorite system didn't seem as attractive. Two

students cited the popular five star rating system used by many online retailers and

media providers as a more attractive model because it was more familiar.

One student suggested that the "favorite" feature would be more appealing if the

course had a Facebook application where students could "like" videos. Yet another

student said that the anonymity of adding a favorite seemed to render it unimportant,
but also mentioned concerns about privacy, and said that many students might feel

intimidated to share this information with their peers for fear of seeming "dumb."

Indeed, a small minority of students insisted that their voices be edited out of help

videos because they were concerned about others hearing them ask what they worried

might be "stupid questions."

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

Given somewhat scarce amount of favorite actions and commenting for the

videos, tracking users' viewing behavior was key in measuring the effectiveness of

individual videos. Overall, the graphs provide a simple, visual record of the number of

students continuously watching for each part of the video. This can give instructors

valuable feedback in determining which sections of an explanation or lecture turned out

to be most interesting to students. The information from these graphs can also give

some more surprising forms of feedback as discussed in the following sections.

5-3.2 Surveys

There were two kinds of surveys that provided student feedback for the tutorial

video system. I composed optional paper surveys for a subset of the class, and also was

able to read course reviews published by a third party group. The informal surveys

provided more specific responses because they explicitly asked about the videos, but the

more open-ended responses students submitted to the third party system provide

interesting information as well.

Just over a month after introducing the tutorial video system, I distributed

informal surveys to the approximately 50 students in my two recitation sections. These

surveys included questions about their general experiences in the class, and they also

listed questions about the video system. About two thirds of these responses indicated

that the students had started using the system. Among the responses indicating some

experience with the system, most students had watched at least three of about 15 videos

that were available at the time, and about half of them had watched over 10 of the

videos. Most students had very positive commentary about the supplementary material,
and several responses included empathic requests to make more videos. A few responses

indicated that students would like to see videos available in multiple formats instead of

just QuickTime. I did not develop that additional functionality at the time because of

concerns with getting the JavaScript view history tracking working with other embedded

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

movie players. In fact, there was a bug in the view history tracking at the time of this

survey. I noticed that the number of students viewing videos and the average number of

views per students was much higher than what I would have expected given the view

history objects in the database.

A student run organization within the Department of Electrical Engineering and

Computer Science at MIT, Eta Kappa Nu (HKN), collects anonymous student feedback

and provides this information to instructors at the end of the semester. The text of

student commentary is available to only to staff members immediately after the term,
and HKN makes general summaries of these reviews available to the MIT student

community several months later. The course evaluation did not ask specific questions

about the new video content, but several students did leave comments about the video

system in these overall evaluations. Five out of 65 responses to this course survey

mentioned the videos, and all were highly positive. Students said that they found the

videos very useful for quiz preparation, and that they preferred the videos to static

handouts for explaining concepts. The view history records also show that students are

much more interested in the videos right before a quiz, and at that time, they are

particularly the ones that demonstrate solutions to old quiz problems.

5-3-3 View History Graphs

View history graphs provided a highly useful way to measure student interest and

participation. Part of the success of these graphs is due to the fact that the tracking

occurred automatically, and students did not have to think about comments to generate

and share directly. Another reason these graphs were so helpful is that they allow

instructors to see how a particular video was viewed in order to get more specific

feedback. Of course, the graphs do not explicitly provide information about why a video

was more popular or less particular at a particular point, but observing student viewing

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

trends is enough to draw some very helpful conclusions as discussed in the following

sections.

5.3-3.1 Determining Critical Sections

Many of the view history graphs that I observed showed a sharp increase or

decrease in the number of users at some point in the video timeline. Trends like this can

provide more insight about the kind of information that students were looking for.

In videos of worked problems, more students seemed to pause and watch the

parts of the video where the instructor was simply writing down the answers and then

explaining them. Most of the videos began with an instructor reading the problem,

interpreting it, and setting it up. The instructor would then work through the example

before summarizing key points and answering student questions. An example of the

increase in number of viewers during the actual problem-solving time can be seen in

Figure 16. The previous part of the video had been more focused on explaining the way

to approach problems of this nature and discussing the diagram, which appears in the

movie to the right. Then the instructor started to focus on the solution to this specific

problem, and more people started watching continuously.

Interestingly, lecture videos often showed less dramatic changes in number of

continuous viewers throughout the course of the video, but there were still several key

instances of observable trends. This seemed to happen several times when students

were viewing information in lecture videos that covered central concepts that were

particularly useful for solving typical quiz problems. Figure 17 shows an example of this

in a lecture about processor pipelining. The students seemed to start watching the video

when they saw the slides about instruction delays and a "waterfall" diagram for

depicting pipelined instruction flows. They stopped watching when the instructor began

talking about the details of implementing logic behind control signals for the overall

behavior.

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

emt M.- a Gale mtsa

edo a t.' nr' 4en.' ag a .a .

- .St..p me tSat.. einm..%too mpp.ae es*QMar6espae sa

sa.tf.'no * w aatntdta

MAW
wwnanaeamaae flmeBe

.4 ..-. '4 t lsua....n%

I tattM ~)~
t~ttn S.
fla a' St
a--

5W WOflt
-'I

r" ~

N ~,

CrE

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

.

Load Delay

LacW, 0, W4)
AM01, r4, 5$)

0 (t3, r4, r6)

ISF AMW A*

LU W DO AW R

wn W WP AV X

if "eepetseku a ~h #'seeelyi essI Itot"n
t A m emis bhamark mpeeM
FVW b4.w-" koftvk ""

0 216 432 648 864 1080 12% 1512 1728 1944

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

Figure 17: Using view history graphs to determine most popular concepts for review

. - - -------

= 00%fte.rasherobbs
matamashed fte*st*d O
eemP**feat stadmA* te

sadAW0ireMmma

5.3-3.2 Drop off from Poorly Labeled Videos

Sometimes, the view history graphs were able to convey somewhat surprising

kinds of student feedback. By observing very unusual trends in particular videos, it

made it more obvious when something was amiss with the video. In one case, a video

was mislabeled and said to be the continuation of a previous example, when both videos

were simply duplicates of the same full worked problem. When students went to view

the rest of this example, they noticed that it was the same thing they had just watched.

As a result, there was a very sharp drop off within the first few seconds of the movie

when students left the page to find new material. After this mislabeling was corrected, I

observed the viewing trends starting to even out. Figure 18 is an image of the graph that

made this mislabeling obvious in this example, and provides an illustration of how view

history graphs can be used to make sure that titles and descriptions are sufficiently

informative.

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

ft3& A 1 e*II enssRmn 900sE

A" bm VSlSf In*t 1t l 1"10 wit*,$

a
19

18

17

16

15
14

13
12

10

9+

8

4

3

2

0
o 47 94 141 188 235 282 329 378 423 47

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

' jA - Wtl. . 46 -410 1

lllftl

ildsoA* WA,|6*A

1

5.3.3.3 Comparing Video Types and Student Response

Students seemed to watch entire lectures (with the chapter size set to the length

of the video) with less skipping around than they did in watching worked examples. In

addition, students seemed to view lectures videos to get a general sense of the material

before viewing videos of worked examples. There were, however, fewer viewers overall

for the lecture videos, and this could mean that users who did not want to invest a large

amount of time in looking for information would go to the shorter worked-example

videos first, and then skip around while looking at those videos. An example of a fairly

typical lecture-viewing graph is shown in Figure 19.

Virtual Machines

Figure 19: A More typical view history graph for an hour-long video lecture

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

...

5.3.4 Video Comments

Overall, several students provided helpful commentary, but the number of

comments was not as high as it could have been. This is, perhaps, the result of students

believing that the purpose of commentary was to provide feedback to video authors and

nothing more. When polled with optional in-class surveys, as discussed in Section 5.3.2

students had more things to say but these comments were generally positive. The

commentary on the website was mostly constructive criticism about how to improve site

features or video quality. This indicates that students saw the comment mechanism as a

way to communicate with the staff about concerns that they had with the videos rather

than a mechanism for discussing video content.

This seems to be a somewhat natural result, though it was a more limited subset

of potential commentary than I had hoped for. The comment box default text certainly

had some influence on the types of comments that students left. This text said, "Tell us

what you thought of the video! Was it too long? Was one part particularly helpful? Leave

your comments here." It seems that this worked to a certain extent, but a more generic

message could have encouraged students to think about the comments as a broader

form of communication with other students and not just staff members.

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

Chapter 6: Future Work

Students in 6.004 and participating instructors seemed to have very positive

feedback in general for the system as a whole and the general proof-of-concept trial of

the system. Using the system in the classroom demonstrated that there is room for

improvement, however, and the following sections discuss some of the significant issues

that I observed in the course of this project.

6.1 Rating System

In general, students were less interested in going out of their way to provide

feedback through the website directly. Several students sent me email or approached me

in person to offer helpful feedback, but the level of indirection necessitated by leaving

feedback on the site seemed to make these features less popular. The indirect feedback

from the view history graphs provided the most useful information.

The view history tool should not be the only feedback mechanism that produces a

large number of data points. It is certainly valuable, but further work in the area should

focus on designing more engaging ways for students to provide feedback. As one student

suggested, a more social way to share and interact with videos may be helpful. Other

students have suggested more sophisticated algorithms for suggesting related videos

after users view a particular segment. It is an interesting challenge to provide these

more advanced features for the feedback systems without compromising student privacy

or the sense of community created by keeping these videos organized for a particular

course.

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

6.2 Chapter Segmentation

The TopicAssignment objects were layered on top of the basic PublicVideo

objects in the database. In order to play a TopicAssignment video chapter, JavaScript

functions set the playhead to the appropriate position and started and ended the video

player at the appropriate times. This approach caused the entire video to be loaded into

the page, however, and this was hard to manage with also using playhead information to

track user viewing habits to create ViewInterval objects.

Part of the problem with this approach was the added complication and

confusion from tracking start and end times for ViewInterval objects relative to the

specific TopicAssignment in order to get accurate feedback about viewing habits within

that chapter. This created some synchronization bugs because ViewInterval objects

could not be accurately recorded until the entire TopicAssignment object has been set

up in the page, and this couldn't happen until the entire PublicVideo video file was

loaded into the page. If users started watching the video before it was fully loaded, then

it was very difficult to accurately collect ViewInterval records.

Another issue with this approach was that students didn't seem to like the

fragmented videos as much. This was particularly relevant to the lecture videos. Direct

user comments and indirect results from the view history graphs both suggest that

students appreciated flexibility when watching lecture videos and did not find the

segmentation especially appealing. Creating separate videos instead of building

TopicAssignment objects on top of the PublicVideo objects might not mitigate this

concern, but it would provide a mechanism for drawing attention to particular clips

without introducing the additional confusion about the playback mechanism for

students.

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

6.3 Answering Questions Remotely

The personal nature of the tutorial videos and the fact that they answered specific

student questions were both very valuable features. It is not always possible, however,

for students to be present for office hours when they have questions.

There are many solutions for answering student questions remotely. For 6.004,
the most common method was basic emails. Other courses at MIT and at other

universities have started using tools like Piazzza. Piazzza is a system that allows students

to post questions and then other students or staff members can respond to these

questions such that all other students can view these. This provides a more streamlined

way to organize student questions than email, and allows other students to benefit from

instructor response to others. There are additional features to allow instructor to view

graphs of student activity, and to format their text based responses to students with

LaTeX or HTML. This is still incredibly limiting, however, and very far from the natural

method of sitting down with a piece of paper and a pencil to explain something to a

student.

Integrating part of the tutorial video system with a tool like Piazzza would

provide a much more effective means of answering student questions remotely and

promoting dynamic records of interactions. This could be done by making a few simple

changes to the authentication mechanisms in the tutorial video site to permit teachers to

easily direct students to individual explanations, but it would be even more appealing to

provide video explanations in line with text comments. It would also be interesting to

give students access to one or more machines with hardware for recording explanations

to see how they might use the system to create video explanations for one another.

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

Chapter 7: Summary

In this project, I combined a set of hardware and software to facilitate the

production of educational video content. I also created a web-based application to share

this content with students and gather their feedback. Once these things were in place, I

introduced this system as a supplementary tool in an existing MIT class for a semester. I

had other volunteers provide valuable feedback on the recording process, and I analyzed

feedback from many students using the system in order to provide recommendations for

future systems of this kind.

Overall, the user study demonstrated that students are eager to have new kinds of

educational media to help them in their studies, and that they are less willing to provide

explicit feedback unless they are having trouble accessing the material. Indirect methods

like view history tracking and more personal methods like in-person surveys and

discussions provided better feedback. Students appreciated the ability to see the

solution to a problem sequentially and many started viewing videos in the middle of an

explanation because they were looking for some critical step that they did not quite

understand.

This system is a fully functional, standalone tool for educational media recording

and distribution, but I also intend it as a helpful starting point for related applications.

The results of the user study provide valuable information for those interested in

observing the ways that students interact with new forms of educational media, and I

expect this information to be relevant to the development of future educational

technologies.

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

Chapter 8: Works Cited

[1] MIT Open CourseWare. (2011). About OCW. Retrieved May 2011, from MIT Open

Courseware: http://ocw.mit.edu/about/

[2] Khan Academy. (2011). FAQ. Retrieved May 2011, from Khan Academy:

http://www.khanacademy.org/about/faq

[3] SMART Technologies, Inc. (2010, Oct 19). SMART Introduces New Class of

Interactive Whiteboard. Retrieved from

http://investor.smarttech.com/releasedetail.cfm?ReleaseID=520169

[4] SMART Technolgies, Inc. (2011, Feb 2). Two New SMART Collaboration Systems

Available Globally. Retrieved from

http://smarttech.com/us/About+SMART/About+SMART/Newsroom/Media+relea

ses/English+US/Releases+by+year/2011+media+releases/20 11/February+2+20 11

[5] Telestream, Inc. (2011). ScreenFlow Overview and Pricing. Retrieved May 2011,
from http://www.telestream.net/screen-flow/overview.htm

[6] TechSmith, Inc. (2011). Camtasia Educational Pricing. Retrieved May 2011, from

https://store.techsmith.com/education.asp

[7] TechSmith, Inc. (2011). TechSmith Products. Retrieved May 2011, from

http://www.techsmith.com/products.asp

[8] Google Inc. (2011). Description ofData Formats. Retrieved Feb 2011, from Google

Charts API: http://code.google.com/apis/chart/image/docs/dataformats.html

[9] Piazzza Inc. (2011). Piazzza Documentation. Retrieved May 2011, from

https://www.piazzza.com/manual-v3.pdf

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

Appendix A: Django Files

A.1 Models

A.1.1 Models.py

from django.contrib import databrowse, admin

from django.contrib.auth.models import User, Group

Using the django admin user model

from django.db import models

from django.conf import settings

from usersite.tutorials.enums import *

import datetime, os

IMAGETYPELIST=['.jpg', '.gif', '.png',

VIDEOTYPELIST=['.mov', '.flv', '.mp4']

def getuploadlocation(instance, filename):

ret = os.path.join('%s' %(instance.author),
instance.type,

instance.semester,

filename)

return ret

class MediaSubmission(models.Model):

description = models.CharField(blank=True, maxlength=200)
title = models.CharField(blank=True, maxlength=200)

time = models.DateTimeField(auto now=False, autonowadd=True)

filename=models.CharField(maxlength=64, blank=True)

class Meta:

abstract = True

class PublicVideo(MediaSubmission):

author = models.ForeignKey(User)

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

type = models.CharField(max length=7, choices=VIDEOCHOICES)
semester= models.CharField(max-length=3, choices=SEMESTERCHOICES)

file = models.FileField(upload_to = getuploadlocation)

def _unicode_(self):

return u' \"%s\" by %s (%s) ' %(self.file, self.author,

self.semester)

def getabsoluteurl(self):

print "running getabsoluteurl for video %s \n" %(self.file)
return 'http://lecture.csail.mit.edu/site-media/%s'

%(self.upload location)

def _getupload_location(self):

return getupload_location(self, self.file_name)

uploadlocation=property(_getupload_location)

def _get_filesystemlocation(self):

fs_path = os.path.join(settings.MEDIAROOT,
self.upload_location)

print "(_getfilesystemlocation) fspath = %s\n" %(fspath)
return fspath

filesystemlocation=property (_get_filesystemlocation)

def _numstaff_favorites(self):

favoriter set = self.userprofileset.all()

staff-favorite = 0

for favoriterprofile in favoriterset:

stafffavorite += favoriterprofile.user.isstaff
return staff favorite

stafffavorite = property(_numstaff-favorites)

def save(self):

if self.file:

if not self.file name:

Checking to make sure this does not already exist

self.file name=self.file.name

uploadlocation = getuploadlocation(self, self.filename)
super(PublicVideo, self).save()

def _is-video(self):

return os.path.splitext(self.file-name)[1] in VIDEOTYPELIST

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

is-video = property(_is video)

def _is image(self):

return os.path.splitext(self.file_name)[1] in IMAGETYPELIST

isimage = property(_isimage)

def openlocation(filesystem location, **kwargs):

Makes the directory structure in the MEDIA ROOT directory
doesn't work without the following two lines.

print "(openlocation) filesystemlocation = %s\n"
%(filesystemlocation)

if not instance.file name:

instance.file name=instance.file.name

filesystempath = "%s%s" %(settings.MEDIAROOT,
instance.uploadlocation)

try: os.makedirs(filesystem path)

except: print "(save_video) trying path for %s"

%(instance.file_name)

filesystem location = os.path.join(filesystem path,
instance.file name)

destination = open(filesystemlocation, 'wb+')
print "(save_video) opened location %s\n" %(filesystem location)

destination.close()

class TopicAssignment(models.Model):

video = models.ForeignKey(PublicVideo)

starttime = models.FloatField(default=0.0)

stoptime = models.FloatField(default=0.0)

numstafffavorites=models.IntegerField(default=0)

numstudentfavorites=models.IntegerField(default=O)

quiz = models.IntegerField(default=0, max length=1,

choices=QUIZCHOICES)

title = models.CharField(blank=True, max_length=200)

topic = models.CharField(maxlength=128, choices=TOPICCHOICES)

constrained to match the choices of topic made available

for study materials on the 6.004 website.

def __unicode (self):

return u'(%d) %s: %s' %(self.id, self.video, self.topic)

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

def _getquiz_string(self):

return u'%s' %(QUIZ_CHOICES[self.quiz][1])

quizverbose = property(_getquiz string)

def _getvideoauthor(self):

return self.video.author

author=property(_get_videoauthor)

def _getvideotype(self):

return self.video.type

type=property(_get-videotype)

def _getvideosemester(self):

return self.video.semester

semester=property(_getvideosemester)

def setnumstafffavorites(self, value):

self.num staff favorites=value

def setnumstudentfavorites(self, value):

self.num student favorites=value

def inc numstafffavorites(self):

print "increment staff favorites for %s from %d " %(self,

self.numstafffavorites)

self.num staff-favorites +=1

self.save()

print "to %d\n" %(self.numstaff-favorites)

def decnumstafffavorites(self):

print "decrement staff favorites for %s from %d " %(self,
self.numstafffavorites)

self.num staff-favorites -=1

self.save()

print "to %d\n" %(self.numstaff-favorites)

def inc numstudent-favorites(self):

self.num student-favorites +=1

self.save()

print "to %d\n" %(self.numstudentfavorites)

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

def decnumstudentfavorites(self):

self.num student-favorites -=1

self.save()

print "to %d\n" %(self.numstudentfavorites)

class ViewInterval(models.Model):

ta = models.ForeignKey(TopicAssignment)

user = models.ForeignKey(User)
starttime = models.FloatField(default=0.0)

stoptime = models.FloatField(default=0.0)

time = models.DateTimeField(auto-now=True, autonow add=True)

class Meta:

uniquetogether = (('ta', 'user', 'time'))

def __unicode (self):

return u'(Viewer: %s) (Video: %s) (Range: %d - %d)'

%(self.user, self.ta, self.starttime, self.stoptime)

def _getrange(self):

return "(%d, %d)" %(self.start time, self.stoptime)

range=property(_getrange)

def hassecond(self, second):

return ((second<=self.stop_time) and (second>=self.start-time))

class Comment(models.Model):

COMMENTPERMISSIONCHOICES =

('students', 'Current and future 6.004 students'),

('staff', 'Only 6.004 Staff Members and You'),

clip = models.ForeignKey(TopicAssignment, related name='comments')

user=models.ForeignKey(User)

text=models.TextField()

permissions=models.CharField(max length=64,

choices=COMMENTPERMISSIONCHOICES, default='students')
time = models.DateTimeField(auto-now=True, autonow-add=True)

class Meta:

ordering=['time']

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

def __unicode_(self):

return u'%s: %s' %(self.text, self.clip.topic)

class LinkedWebPage(models.Model):

name=models.CharField(maxlength=50, default="")

url=models.URLField(default=

"http://6004.csail.mit.edu/currentsemester/")

topicassignment = models.ForeignKey(TopicAssignment)
pointeron_page=models.CharField(maxlength=50, default="")

------- USER MANAGEMENT ------

class UserProfile(models.Model):

user = models.ForeignKey(User, unique=True)
User is required to have User.getprofile() work.

It has to be named "user" and refer to a "User" ForeignKey

See Django Book ch 12 for more info

athenaid = models.CharField(maxlength=8, primarykey=True)

studentid models.IntegerField(maxlength=9, unique=True,

null=True, blank=True)

def __unicode_(self):

return self.athena id

class Favorite(models.Model):

ta = models.ForeignKey(TopicAssignment)
time = models.DateTimeField(auto now=True, autonow add=True)
profile = models.ForeignKey(UserProfile)

class Meta:

ordering=['time']

uniquetogether= (('ta', 'profile'))

def unicode_(self):

return u'\"%s\" favorited by: %s' %(self.ta.video.title,

self.profile.user.get full name())

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

def save(self, *args, **kwargs):

print "overriding favorite object save"

super(Favorite, self).save(*args, **kwargs)

if self.profile.user.isstaff:

self.ta.incnumstafffavorites()

else:

self.ta.inc num studentfavorites()

def delete(self, *args, **kwargs):

print "overriding favorite object delete"

super(Favorite, self).delete(*args, **kwargs)

if self.profile.user.isstaff:

self.ta.dec num stafffavorites()

else:

self.ta.decnumstudentfavorites()

-- SIGNAL UTILS --

a signal is sent when a User object is being saved.

Immediately after the User is saved, we want to ensure

that there is a corresponding UserProfile object created

with that User as a ForeignKey...

see "Signals" documentation for more info

def makeprofile(sender, instance, **kwargs):

if (UserProfile.objects.filter(pk=instance.username).count() == 0):

If there is not already an instance

profile=UserProfile(athena id=instance.username)

profile.user = instance

Can't get this method to save the Student ID so it is

IMPORTANT to make sure that the studentid is consistently

set in the profile after the User is saved

profile.save()

instance.is active=True

--- SIGNALS ---
models.signals.post save.connect(makeprofile, sender=User)

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

A.2 Views

A.2.1 Views.py

from django.shortcuts import renderto response
from django.http import HttpResponseRedirect, HttpResponse
from tutorials.models import *
from staffviews import getimgurl
from tutorials.filters import TopicAssignmentFilterSet
from django.contrib.auth.decorators import loginrequired
from django.contrib.auth.models import AnonymousUser
from django.template import RequestContext
from django.db.models import Q
from django.conf import settings
from django.utils import simplejson
from django.core import serializers
import datetime, os, re

def get_student info(request):
isauthenticated=request.user.isauthenticated()

if is-authenticated:
print "user %s is authenticated \n" %(request.user.username)
student=request.user

profile=UserProfile.objects.get(user=student)
return {'student' : student,

'profile' : profile,

'isauthenticated': isauthenticated,

}
else:

print "user is NOT authenticated\n"
return {'is authenticated':isauthenticated}

def get_studentfavorites(request):
MAX DISPLAY=5

studentdict= getstudent info(request)

if student dict['is_authenticated']:

profile = studentdict['profile']
faves = profile.favorite-set.all()

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

else:
faves = TopicAssignment.objects.none()

dict = {
'faves':faves,

}
dict.update(studentdict)
return dict

def renderwithstudentcontext(request, template, dict):

return rendertoresponse(template, dict,
context instance=
RequestContext(request,

processors=[get_studentfavorites]))

def show bytopic(request, topic):

topicassignments = TopicAssignment.objects.filter(topic=topic)
titlestring='List of Snippets About %s' %(topic)
dict = {

'titlestring': titlestring,
'headerstring': titlestring,

'taquery set': topicassignments,

}
template="topicassignment_list.html"
return renderwithstudentcontext(request, template, dict)

def show byquiz(request, quiz):
quiz=int(quiz)
topicassignments = TopicAssignment.objects.filter(quiz=quiz)
titlestring='List of Snippets From Quiz %s' %(quiz)
dict = {

'titlestring': titlestring,

'headerstring': title-string,

'taquery set': topicassignments,

}
template="topicassignment_list.html"

return renderwithstudentcontext(request, template, dict)

def show byauthor(request, authorusername):

topicassignments = TopicAssignment.objects.

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

filter(video author username=author username)
titlestring='List of Snippets by %s' %(authorusername)
dict = {

'title string': title string,
'headerstring': title-string,
'taqueryset': topic assignments,

}
template="topicassignmentlist.html"
return renderwithstudentcontext(request, template, dict)

def show bysemester(request, semester):
topicassignments = TopicAssignment.objects

.filter(video semester=semester)
titlestring='List of Snippets from %s' %(semester)
dict = {

'title string': title string,
'headerstring': title-string,
'taqueryset': topicassignments,

}
template="topicassignmentlist.html"
return renderwithstudentcontext(request, template, dict)

def show bytype(request, type):
topicassignments = TopicAssignment.objects.filter(videotype=type)
titlestring='List of %s Snippets' %(type)
dict = {

'title string': title string,

'headerstring': title-string,
'taqueryset': topicassignments,

}
template="topicassignmentlist.html"
return renderwithstudentcontext(request, template, dict)

deprecated - changed to ajax
def makecomment(request, user, topicassignment):

permissions='students'
if 'permissions' in request.POST.keys(:

permissions = request.POST['permissions']

text=""
if 'text' in request.POST.keys(:

text = request.POST['text']
if not (text == "Write your comment here...."):

comment=Comment(text=text, permissions=permissions)

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

comment.clip=topicassignment
comment.user=user

comment.save()

print "saved comment %s by %s \n" %(comment.text,
comment.user.username)

deprecated - changed to ajax
def addfavorite(request, profile, ta):

ADDED LINE TO CONSTRUCT FAVORITE MODEL INSTANCE 9/8/10
favorite=Favorite()

favorite.profile=profile
favorite.ta=ta

favorite.save()

def rmfavorite(request, profile, ta):
f = Favorite.objects.filter(ta=ta).filter(profile=profile)
f.all().delete()

def favoritepost(request):
dict = { "is-favorite": '', "newbutton text":

print "in favoritepost"
if request.isajax():

if request.method=='POST':
username = request.POST['username']
ta-id = request.POST['ta id']
buttonvalue = request.POST['buttonvalue']
ta = TopicAssignment.objects.get(pk=taid)
user = User.objects.get(username=username)
profile = UserProfile.objects.get(user=user)
button-next = "Error"

print "button value " + button value
if button value == "Add Favorite":

button-next = "Remove Favorite"
print "isn't a fave and adding"
Making a favorite
favorite=Favorite()
print "made a blank favorite"
favorite.profile=profile

favorite.ta=ta

print "saving favorite"

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

favorite.save()
else:

print "is a fave and deleting"
f = Favorite.objects.filter(ta=ta).filter(profile=profile)
f.all().delete()
button next = "Add Favorite"

print "new button text " + button next
dict["new buttontext"] = buttonnext

return HttpResponse(simplejson.dumps(dict),

mimetype="application/javascript")

main page for displaying a single movie with comment and favorite options
def showmedia(request, ta_id):

ta-id = int(taid)
ta = TopicAssignment.objects.get(pk=taid)
linkedproblems=LinkedWebPage.objects.filter(topicassignment__id=ta-id)
print "got ta with topic = %s\n" %(ta.topic)
print "got ta with src = %s\n" %(ta.video.getabsoluteurl())
template="showmedia.html"

is user favorite=False
student = AnonymousUser()
studentinfo = get_student info(request)
get the profile and authentication info

comments=Comment . objects .none ()
print "there are %d comments before filtering \n" %(comments.count()

empty query set
if student info['isauthenticated']:

student=student info['student']
studentfaves = get studentfavorites(request)

comments = ta.comments.filter(
Q(permissions='students')

I (Q(permissions='staff') & Q(user=student))
if student.is staff:

comments=ta.comments.all ()

if studentfaves['faves'].filter(pk=taid).count():
is user favorite=True

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

if request.method=='POST':
if 'submitcomment' in request.POST.keys(:

makecomment(request, student, ta)

if 'addfavorite' in request.POST.keys(:
addfavorite(request, student info['profile'], ta)

if 'rm favorite' in request.POST.keys(:

rm favorite(request, student info['profile'], ta)

for key in request.POST.keys(:

print "requst.POST[%s] = %s \n" %(key, request.POST[key])

print "there are %d comments \n" %(comments.count()

print "user.isauthenticated = %s \n" %(request.user.is-authenticated())

topicnumber=TOPICNUMBERS[ta.topic]
dict = {

'debug': True,

'selected ta':ta,
'topic':ta.topic,

'linkedproblems':linked problems,
'is user favorite':is user favorite,

'user': student,
'comments': comments,
'permissions': ['staff','student'],

}

if student.is staff:
redirect = "/viewhistory/" + str(taid) + "/"

return HttpResponseRedirect(redirect)

return renderwith studentcontext(request, template, dict)

def landing(request):

template="topiclist.html"

dict={}
return renderwithstudentcontext(request, template, dict)

def tutorial main(request):

template = "tutprobs.htm"
dict = {}
return rendertoresponse(template, dict

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

def tutorial_bytopic(request, topic):

print "in views.tutorial_bytopic"
template=" %s" %(topic)
print "topic is %s \n" %(topic)
dict = {}
return renderto_response(template, dict)

shows the tutorial problems for the topic assigned to this clip
want to refine to break this up by problem.
def tutorial_byid(request, topic, linked problem id):

print "\n in tutorial by-id\n"
baseurl = "http://6004.csail.mit.edu/currentsemester/tutprobs/"
page = TUTORIALPROBLEMURLS[topic]
lpid = int(linkedproblem id)
lp = LinkedWebPage.objects.get(pk=lpid)
lppointer = lp.pointer_onpage
direct-to = base-url + page + lppointer
print "redirecting from tutorial by id for id=%d to %s\n"

%(lpid, directto)
return HttpResponseRedirect(directto)

server side handler function for view intervals
def post_intervalhandler(request):

print "In post-handler \n"

dict = { "imgdiv" : '',
"xaxismax" '' }

message = 'failure'

interval = ViewInterval()

if request.is ajax():
print "request in post handler is ajax \n"

if request.method == 'POST':

iformstart = request.POST['iform start']
print "iformstart : %s" %(iform start)

iformend = request.POST['iformend']
print "iformend : %s" %(iform-end)

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

username = request.POST['user']
user = User.objects.get(username=username)
print "user : %s" %(user)

ta-id = int(request.POST['taid'])
print "taid : %s" %(taid)

ta = TopicAssignment.objects.get(pk=taid)
print "ta %s" %(ta)

interval = ViewInterval()
print "made an interval"

interval.ta = ta

interval.user=user
interval.start time = iform start
interval.stop time = iformend
interval. save(
make the interval and the graph to send back

but only if it came from the staff view page

if 'url match' in request.POST.keys(:
print "urlmatched as %s" %(request.POST['urlmatch'])

x_length = request.POST['talength']
print "xlength = %s" %(xlength)
imgurl = getimgurl(ta id, x-length)
img-div = "<div id=\"view graphdiv\" class=\"view graphdiv\"

style=\"float:left;align:left\">"
imgdiv = imgdiv + "<img id=\"view graph\"

name=\"view graph\" src=\"" + imgurl + "\" />"

imgdiv = imgdiv + "</div>"

message = imgdiv

dict["imgdiv"] = imgdiv
dict["xaxis max"] = request.POST['talength']
#print "dict[imgdiv] : %s" %(dict["imgdiv"])
#print "dict[xaxis max] : %s" %(dict["xaxis max"])
##interval = ViewInterval(ta=ta, user=user,

starttime=iformstart, endtime=iform end)
else :

dict = {}

print "saved interval"

return HttpResponse(simplejson.dumps(dict),
mimetype=" application/ javascript")

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

def post_test(request):
template = "js-test.html"

ta id = 4

ta = TopicAssignment.objects.get(pk=taid)
linkedproblems=LinkedWebPage.objects.filter(topicassignmentid=ta-id)
is user favorite=False
student = AnonymousUser()
studentinfo = get_student info(request)
get the profile and authentication info

comments=Comment.objects.none()

empty query set
if student info['is_authenticated']:

student=studentinfo['student']
studentfaves = get studentfavorites(request)
comments = ta.comments.filter(Q(permissions='students')

I (Q(permissions='staff') &
Q(user=student)

if student.is staff:
comments=ta.comments.all()

if studentfaves['faves'].filter(pk=taid).count(:
is user favorite=True

if request.method=='POST':
if 'submit comment' in request.POST.keys():

makecomment(request, student, ta)
if 'addfavorite' in request.POST.keys(:

addfavorite(request, student info['profile'], ta)
if 'rmfavorite' in request.POST.keys(:

rmfavorite(request, student info['profile'], ta)
for key in request.POST.keys(:

print "requst.POST[%s] = %s \n" %(key, request.POST[key])
topicnumber=TOPICNUMBERS[ta.topic]
dict = {

'debug': True,
'selected ta':ta,
'topic':ta.topic,

'linkedproblems':linkedproblems,
'is user favorite':is user favorite,
'user': student,

'comments': comments,
'permissions': ['staff','student'],

}
return render withstudentcontext(request, template, dict)

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

def commentupdate(request):
print "updating comment"

dict = {"username": '', "text": '', "permissions": '', "taid":

if request.is ajax():

print "request in commentupdate is ajax"
if request.method =='POST':

username = request.POST['username']
text = request.POST['text']
permissions = request.POST['permissions']
ta-id = request.POST['ta-id']

user = User.objects.get(username=username)
ta = TopicAssignment.objects.get(pk=taid)
comment = Comment()
comment.clip = ta

comment.user = user
comment.text = text
comment.permissions = permissions
comment.save()

print "permissions are %s" %(permissions)

dict["username"] = str(username)
dict["taid"] = str(taid)

dict["text"] = str(text)
dict["time"] = str(comment.time)

return HttpResponse(simplejson.dumps(dict),
mimetype="application/javascript")

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

A.2.2 Studentviews.py

import sys
sys.stdout = sys.stderr

from django.shortcuts import renderto response
from django.http import HttpResponseRedirect
#from records.models import *

from tutorials.models import *

from django.contrib.auth.models import AnonymousUser
from tutorials.filters import TopicAssignmentFilterSet
from django.contrib.auth.decorators import loginrequired

from django.template import RequestContext

from django.conf import settings
import datetime, os, re
import utils

def get_student info(request):
isauthenticated=request.user.isauthenticated()

if is-authenticated:

print "user %s is authenticated \n" %(request.user.username)
student=request.user

profile=UserProfile.objects.get(user=student)
return {'student' : student,

'profile' : profile,
'is-authenticated': isauthenticated,

}
else:

print "user is NOT authenticated\n"
return {'is authenticated':isauthenticated}

def getpublicvideos(request):
MAXDISPLAY=5

quizzes = TopicAssignment.objects.filter(videotype='OldQuiz')
labs = TopicAssignment.objects.filter(videotype='LabHint')
concepts = TopicAssignment.objects.filter(video__type='Concept')
tutprobs = TopicAssignment.objects.filter(videotype='TutProb')
all-vids = TopicAssignment.objects.all()

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

located in views.py

dict = {
'quizzes': quizzes,
'labs':labs,
'concepts': concepts,

'tutprobs': tutprobs,

'all vids':all vids,

}
return dict

def favoritestotas(favorite set):

return (favorite.ta for favorite in favorite_set)

def getstudentfavorites(request):
MAXDISPLAY=5
student dict= get_student info(request)

profile = student dict['profile']
favquizzes = profile.favoriteset.filter(ta videotype='OldQuiz')

favlabs = profile.favoriteset.filter(ta__videotype='LabHint')
favconcepts = profile.favorite-set.filter(tavideotype='Concept')
favtutprobs = profile.favoriteset.filter(tavideotype='TutProb')
faves = profile.favoriteset.all()

dict = {
'favquizzes': fav_quizzes,

'fav labs': fav labs,

'fav concepts': fav concepts,

'fav-tutprobs': fav-tutprobs,

'faves':faves,

}
dict.update(studentdict)
return dict

def getstudentfavoritetas(request):

MAXDISPLAY=5

student dict= get_student info(request)
profile = student dict['profile']
favquizzes = profile.favoriteset.filter(ta videotype='OldQuiz')

favlabs = profile.favoriteset.filter(ta__videotype='LabHint')
favconcepts = profile.favorite-set.filter(tavideotype='Concept')
favtutprobs = profile.favoriteset.filter(tavideotype='TutProb')
faves = profile.favoriteset.all()

dict = {

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

'fav_quizzes': fav_quizzes,
'favlabs': favlabs,
'favconcepts': fav_concepts,
'fav_tutprobs': fav_tutprobs,
'faves':faves,

}
dict.update(student-dict)
return dict

def get_favesbytopic(request):
studentdict=get student_info(request)
studentfaves = student_dict['profile'].favorite set.all()
topicchoices = [[topic[O], topic[l]] for topic in TOPICCHOICES]
faves-bytopic={}
for topictuple in topicchoices:

topicfaves = studentfaves.filter(tatopic=topictuple[0])
get all TopicAssigned video clips that match the exact topic part
entry=''

for topicfave in topic_faves:
entry = '%s <td>%s</td>' %(entry,

topicfave.ta.video.get absolute url(),

topicfave.ta.video.filename)

faves bytopic[topictuple[1]]=entry
return faves bytopic

def get_fave_tasbytopic(request):

studentdict=get student_info(request)
studentfaves = student_dict['profile'].favoriteset.all()
topicchoices = [[topic[O], topic[1]] for topic in TOPICCHOICES]
favesbytopic={}
for topictuple in topic-choices:

topicfaves = studentfaves.filter(tatopic=topic_tuple[0])
get all TopicAssigned video clips that match the exact topic part
entry=''
for topicfave in topicfaves:

entry = '%s <td>%s</td>' %(entry,
topic fave.ta.video.getabsolute url(),
topic fave.ta.video.file-name)

faves bytopic[topictuple[1]]=entry
return faves_bytopic

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

@loginrequired
def previewandsettopic(request, video_id):

for item in request.POST.keys(:
print "request.POST[%s] = %s\n" %(item, request.POST[item])

if not request.user:

html = "<h2> Error: you are not
logged in.</h2>"

return rendertoresponse(html, {})
if not request.user.isstaff:

html = "<h2> Error: you are not
logged in as staff.</h2>"

return rendertoresponse(html, {})
video id=int(videoid)

video = PublicVideo.objects.get(pk=video-id)
dict = { 'video':video }
template="moviepreview.html"

return rendertoresponse(template, dict)

Main view for media browser
use built in decorator to limit access to logged in users
@loginrequired

def studentportal(request, topicsnippetid="", show='All', querystring=''):
alltopicassignments = TopicAssignment.objects.all()
if topicsnippetid =="":

#topicsnippetid=TopicAssignment.objects.all()[0].id
topicsnippetid = utils.get_random-taid()

if not request.user:
return HttpResponseRedirect("/public/")

if not request.user.isauthenticated(:
return HttpResponseRedirect("/public/")

#if request.user.isstaff:

return HttpResponseRedirect("/view history!")
public ta-dict = getpublic videos(request)

favoritedict = getstudentfavorites(request)

favetas bytopic = getfavetasbytopic(request)
taid = int(topicsnippetid)
alltopicassignments=publicta dict['all_vids']

selected ta = all_topic-assignments.get(pk=taid)

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 100

if 'QUERYSTRING' in request.META.keys():
query string='?'+request.META['QUERYSTRING']

query=querystring

is favorite=u'False'

if favorite dict['faves'].filter(tapk=taid):
is favorite=u'True'

verbosetopics = [topic[l] for topic in TOPICCHOICES
pre_filter = TopicAssignment.objects.all()
if show=='Favorites':

innerqueryset = favorite_dict['faves'].values('ta')
pre-filter = TopicAssignment.objects.filter(idin=innerqueryset)

only show a student's favorites
filterset=TopicAssignmentFilterSet(request.GET, queryset=prefilter)

dict={
'querystring':query,

'topicassignmentfilterset':filterset,
'alltopic assignments':pre filter,
'selectedta':selectedta,

'verbose topics':verbose topics,
'faves-bytopic':fave-tas-by_topic,
'show': show,

}

print "(student_portal) size of prefilter = %d" %(prefilter.count())

for item in pre filter:
print "(studentportal) pre-filter(n): %s\n" %(item)

return rendertoresponse(template, dict,
context-instance =

RequestContext(request,

processors=[get studentfavorites]))

public browser. no authentication or favoriting.
def browse(request, topicsnippet id='', is-favorite=False, querystring=''):

alltopic assignments = TopicAssignment.objects.all()
if topicsnippetid =='':

topicsnippetid='l'
ids = [ta.id for ta in all_topicassignments]

ta-id = int(topicsnippetid)
print >> sys.stderr, "ta id = %d\n" %(taid)

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 101

selectedta = alltopicassignments.get(pk=taid)
selected video = selected ta.video
v id = selected video.id

allvideos=PublicVideo.objects.all()
selected video = all-videos.get(pk=vid)
print "vid is %d" %(vid)

student = AnonymousUser()
if request.user.isauthenticated():

student = request.user

if 'QUERY STRING' in request.META.keys(:
if not request.META['QUERYSTRING'] =='':

querystring='?'+request.META['QUERYSTRING']

query=querystring
print "fullpath = %s\n" %(query)
filterset=TopicAssignmentFilterSet(request.GET,

queryset=TopicAssignment.objects.all())
dict={

'querystring':query,

'all videos':all videos,
'all topicassignments':filterset,

'selected ta':selected ta,
'user': student,

}

template="browse.html"
response = rendertoresponse(template, dict)
return response

def media-browser(request):

allvideos = PublicVideo.objects.all()
v id=3

for now, "Timothy Leary's Calenday App - one of the smaller ones.
print "vid is %d" %(vid)
alltopicassignments = TopicAssignment.objects.all()

stafffaves={}
allfaves={}

#-- stuff to keep the right video-topic thing selected when

#-- the filter list is modified

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 102

querystring=request.META['QUERYSTRING']

print "querystring = %s\n" %(querystring)
v id field = 'v id' in request.GET.keys()
start char=u'?'
full-path=''

if v id field:
v-id=request.GET['vid']

fullpath=re.sub("\?*vid=[A&]*", '', request.getfullpath())
if 'topic' in request.GET.keys():

fullpath=re.sub("\&*vid=[^&]*", '', request.get_fullpath())

start char=u'&'
-- end query string processing

selectedvideo = allvideos.get(pk=vid)
print "fullpath = %s\n" %(fullpath)

for k in request.GET.keys():
print "request.GET[%s] = %s\n" %(k, request.GET[k])

for video in all videos:
favoriterset = video.userprofileset.all()

stafffaves[video.id]=favoriterset.filter(user__isstaff=True).count()

allfaves[video.id]=favoriterset.count()
filterset=TopicAssignmentFilterSet(request.GET,

queryset=TopicAssignment.objects.all())

dict={
'fullpath':fullpath,

'start char': start-char,
'all-topicassignments':filterset,

'selected video':selected video,

'staff faves':staff faves,

'all faves':all faves,

}

template="browse.html"

response = render to response(template, dict)
print "the outgoing response is %s\n" %(response.content)
return response

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 103

A.2.3 Staffviews.py

from tutorials import loader
from django.shortcuts import render toresponse
from django.http import HttpResponseRedirect
from tutorials.models import *
from django.contrib.auth.decorators import loginrequired
from django.contrib.auth.models import AnonymousUser
from tutorials.forms import PublicVideoForm

def checkstaff(request):
if not request.user:

return HttpResponseRedirect('accounts/login/')
if not request.user.isstaff:

return HttpResponseRedirect('accounts/login/')

@loginrequired
def previewandsettopic(request, video_id):

print "in previewandsettopic\n"
#for item in request.POST.keys(:

print "request.POST[%s] = %s\n" %(item, request.POST[item])
#checkstaff(request)
topic-choices [[topic[O], topic[1]] for topic in TOPIC CHOICES]
quizchoices = [[quiz[O], quiz[1]] for quiz in QUIZCHOICES]
print "about to get video # %s \n" %(videoid)
videoid=int(video id)
video = PublicVideo.objects.get(pk=video-id)

end time units=O;
starttimeunits=O;

quiz="O"
topic=""

title=""

if request.is ajax():

if request.method == 'POST':

start time units = int(request.POST['starttime units'])
end time units = int(request.POST['end time units'])
topic = request.POST['topic']
quiz = request.POST['quiz']

else:

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 104

if request.method=="POST":
We have an upload submission from moviepreview.html
print "post!"
if 'start time units' in request.POST.keys(:

then the button, with input type "onclick"
triggers the event listener
in movie preview.html "setstart_time();"
and here, this the dictionary below,
we have the conversion from start time units
to start-time in the
topicassignment object itself.
start time units = int(request.POST['start-time-units'])

else: start time units = 0
print "starttimeunits = %s \n" %(start timeunits)

if 'end time units' in request.POST.keys(:
end time units = int(request.POST['endtime units'])

else: end time units = 0

if 'topic' in request.POST.keys(:
topic = request.POST['topicname']

if 'title' in request.POST.keys(:
title = request.POST['title']

if 'quiz name' in request.POST.keys():
quiz = request.POST['quizname']

else: quiz="0"

print "endtimeunits = %d \n" %(endtime-units)
print "quiz is %s \n" %(quiz)
print "topic is %s\n" %(topic)
print "title is %s \n" %(title)

ta = TopicAssignment(video = video,
starttime = starttime_units,
stop time = endtimeunits,
topic = topic,
quiz = quiz,
title = title)

ta.save()
print "saved the TA with id : %d \n" %(ta.id)
return HttpResponseRedirect('/topicassign/%d/' %(video-id))

dict = { 'video': video, 'topicchoices': topicchoices,
'quiz-choices': quiz-choices, }

template="moviepreview.html"

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 105

return rendertoresponse(template, dict)

@loginrequired

def selectedvideoforassignment(request):
checkstaff(request)

selected video id = "1"

if request.method == 'POST':

print "got a post \n"

if 'selectedvideo' in request.POST.keys(:
selected video id = request.POST['selectedvideo']

else:
return HttpResponseRedirect("/upload video/")

vid=int(selected video id)

topic_choices = [[topic[O], topic[l]] for topic in TOPICCHOICES]
quizchoices = [[quiz[O], quiz[1]] for quiz in QUIZCHOICES]
video = PublicVideo.objects.get(pk=vid)

dict = {
'video': video,

'topic choices': topicchoices,
'quiz-choices': quizchoices,

}

template="moviepreview.html"
return rendertoresponse(template, dict)

@loginrequired

def selectvideofor assignment(request):
checkstaff(request)

print "in selectvideoforassignment \n"
if request.method=="POST":

v_id = request.POST['selectedvideo']
print "selected video # %s chosen for topic assignment \n" %(vid)
vid = int(v id)

video = PublicVideo.objects.get(pk=vid)
videos = PulicVideo.objects.all()
dict = { 'videos': videos }
template = "selectvideofor_assignment.html"
return render_toresponse(template, dict)

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 106

@loginrequired

def uploadvideo(request):

makes sure that the user is staff before rendering the page
checkstaff(request)

if request.method=="POST":
videoform = PublicVideoForm(request.POST, request.FILES)
if not videoform.isvalid(:

template = "<h2> Please check the form submission
and try again </h2>"

return renderto_response(template, {})
else:

video = videoform.save(commit=False)
file = request.FILES['file']

video.file=file
print "video.file.name = %s" %(video.file.name)

print "file name is %s" %(file.name)
video.save()
return HttpResponseRedirect('/topicassign/%d/' %(video.id)

else:

videoform = PublicVideoForm()
videos = PublicVideo.objects.all()
dict = {

'videos': videos,
'user':request.user,
'video form':video form,

}
template = 'uploadvideo.html'
return renderto_response(template, dict)

def display interval_list(request):

topicassignments = TopicAssignment.objects.all()
titlestring = "List of Topic-Assigned Clips"

headerstring = "Click one of the links to check the view history"

dict = {
'title-string' : title-string,
'header string' : header-string,

'taqueryset' : topicassignments

}

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 107

template = "viewhistorylist.html"
return render_toresponse(template, dict)

def getimgurl(taid, x_length="O"):

print "(getimg_url)"
id=int(taid)

ta = TopicAssignment.objects.get(pk=id)
#print "(displayintervalviews) ta = %s" %(ta)
intervals = ta.viewintervalset.all()
number = intervals.count()
intervalstop times = intervals.valueslist('stoptime',

flat=True).orderby('-stoptime')

if not (intervalstoptimes.count() == 0):
intervalsmax = int(interval stoptimes[0])

else:

intervals-max = 100

x_length = int(xlength)

if (xlength == 0):

x_length = intervalsmax

#print "xlength = " + str(xlength)
#print "intervalsmax = " + str(intervals-max)
#print "(display interval-views) there are %d

intervals for this topic assignment." %(number)
viewvector = [0]
step = int(intervals_max/100)
for i in range(0, intervalsmax, step):

#print "in outer for loop with index = " + str(i)
viewvector.append(0)

initialize array value for this index to zero
for interval in intervals:

if interval.has second(i):

#print "viewvector["+str(i)+"] = " + str(viewvector[i])
viewvector[int(i/step)] = view-vector[int(i/step)] + 1

#for i in range (intervals max):
print "-- viewvector["+str(i)+"] = " + str(view-vector[i])
maxviews = max(view-vector)
if (max views == 0):

max views = 1

#print "maxviews = " + str(max views)
imgurl = "http://chart.googleapis.com/chart?"

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 108

to make a line chart
imgurl = imgurl + "cht=lc&"
make a graph that is 800x300 (default)
imgurl = imgurl + "&chs=600x300"
add the data values
imgurl = imgurl + "&chd=t:" + str(view-vector[O]*100/maxviews)
viewvector length=len(viewvector)
for i in range (0, viewvectorlength, step):

img-url = imgurl + ","+ str(viewvector[i]*100/maxviews)

format the axis scale and color, respectively
imgurl = imgurl + "&chxt=x,y&chxr=0,0," + str(xlength) +

"," + str(xlength/10) +"|1,0,"+str(maxviews)+",1"
imgurl = imgurl + "&chxs=0,2244FF,12,0,lt|l,0055FF,10,1,lt"

return imgurl

want to count all of the people viewing at each time unit to determine
popular parts of a video. this one just counts all views, without regard to
user
@loginrequired

def display interval views(request, ta-id):
user = AnonymousUser()
if request.user.is authenticated(:

user = request.user
id=int(taid)
ta = TopicAssignment.objects.get(pk=id)

imgurl = getimgurl(taid)
print "imgurl = " + imgurl
context = {

"ta start" : ta.starttime,
"ta id":ta id,
"user":user,
"ta-stop" : ta.stop time,

"selected ta" : ta,
"imgurl" : imgurl

}
template = "displayintervalviews.html"
return rendertoresponse(template, context)

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 109

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 110

A-3 Project Configuration

A-3.1 Urls.py

from django.conf.urls.defaults import *

from django.views.generic import listdetail
from django.contrib import databrowse
from django.contrib.auth.views import login, logout, logoutthenlogin,

password-change, passwordchangedone
from usersite import views, student-views, staff views
#enable the admin
from django.contrib import admin
from django.contrib.auth.models import User, Group

admin.autodiscover()

student list-info = {
'queryset': User.objects.filter(is_staff=False),
'template-name': 'studentlist.html'}

studentdetailinfo = {
'queryset': User.objects.filter(is_staff=False),
'templateobject name': 'student' }

urlpatterns = patterns('',
server side interval handler
(r'^post_interval/$', views.postintervalhandler),
(r'^post_test/page/$', views.posttest),

admin portal
(r'^admin/', include(admin.site.urls)),

(r'^accounts/login/$', login),

(r'^accounts/logout/$', logout_then_login),

(r' ̂accounts/changepw/$', password_change),

(r' ̂accounts/changepwdone/$', password changedone),

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 111

template: /templates/tutorials/browse.html
(r'^accounts/profile/$', studentviews.studentportal),

handler for uploading comments

(r'"comment_update/$', views.commentupdate),

handler for adding a favorite

(r'^addfavorite/$', views.favorite_post),

staff editing and topic assigning page
(r'^topicassign/(?P<videoid>\d+)/$,
staffviews.previewandsettopic),

staff video upload
(r'^upload video/$', staffviews.uploadvideo),

(r'^selectvideo for assignment/$',
staffviews.selectvideofor assignment),

Number of views by movie timeline
(r'^viewhistory/$',

staffviews.display_interval list),

(r'^view -history/(?P<ta-id>\d+)/$',

staffviews.displayinterval views),

Used to test variable landing pages to bring
attention to new features
(r'^landing/$', views.landing),

Select an existing video to add a new chapter
(r'^selectedvideofor assignment/$',
staffviews.selectedvideofor-assignment),

show lists of videos with these attributes
(r'^web/show media/(?P<ta id>\d+)/$',

views.showmedia),

(r' "web/show for topic/(?P<topic>\w+)/$',

views.showby-topic),

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 112

(rAweb/showforquiz/(?P<quiz>\d+)/$',
views.showbyquiz),

(r'^web/showforauthor/(?P<authorusername>\w+)/$',
views.showbyauthor),

(r' Aweb/showfor semester/(?P<semester>\w+)/$',
views.showby_semester),

(r'^web/showfortype/(?P<type>\w+)/$',
views.showbytype),

#student portal TEST
(r' ̂portals/(?P<athena id>\w+)/$',
studentviews.studentportal),

Student Landing Page
(r'^$', studentviews.student_portal),

(r'^public/$', student views.student_portal),

Show a different video on the preview pane
(r' ̂(?P<topicsnippetid>\d+)/$',
studentviews.studentportal),

#Show a new topic assignment and specify
the favorite toggled as "All" or "Favorites"
(r'^(?P<topicsnippetid>\d+)/(?P<show>\w+)/$',
studentviews.studentportal),

(r'^(?P<topicsnippetid>\d+)/(?P<show>\w+)/

(?P<querystring>\w+)/$',
studentviews.studentportal),

tutorial problems
(r' ̂tutprobs/$', views.tutorial main),
(r' ̂tutprobs/(?P<topic>.*)$', views.tutorialbytopic),

(r' ̂tutprobs/(?P<topic>\w+)/
(?P<linked problem id>\d+)/$', views.tutorial-byid),

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 113

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 114

A.3.2 Settings.py

Django settings for usersite project.

DEBUG = True

TEMPLATEDEBUG = DEBUG

ADMINS = (

('Your Name', 'your email@domain.com'),

AUTH PROFILE MODULE = 'tutorials.UserProfile'

This is to associate each -User- with a

-UserProfile- that stores the athena id

and favorites of the student

MANAGERS = ADMINS

DATABASEENGINE = 'sqlite3'

DATABASENAME = '/home/caitlinj/website/djcode/usersite.db'

Or path to database file if using sqlite3.

DATABASE USER = '' # Not used with sqlite3.

DATABASE PASSWORD = '' # Not used with sqlite3.

DATABASE HOST = '' # Set to empty string for localhost. Not used

with sqlite3.

DATABASEPORT = '' # Set to empty string for default. Not used

with sqlite3.

Local time zone for this installation. Choices can be found here:

http://en.wikipedia.org/wiki/Listoftzzones byname

although not all choices may be available on all operating systems.
TIMEZONE = 'America/Chicago'

Language code for this installation. All choices can be found here:
http://www.il8nguy.com/unicode/language-identifiers.html

LANGUAGE CODE = 'en-us'

SITEID = 1

If you set this to False, Django will make some optimizations so as not

to load the internationalization machinery.

USEI18N = True

Absolute path to the directory that holds media.

Example: "/home/media/media.lawrence.com/"

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 115

MEDIAROOT = '/home/caitlinj/website/djcode/usersite/media/'

URL that handles the media served from MEDIA ROOT. Make sure to use a
trailing slash if there is a path component (optional in other cases).
Examples: "http://media.lawrence.com", "http://example.com/media/"
MEDIAURL = 'http://lecture.csail.mit.edu/sitemedia/'

URL prefix for admin media -- CSS, JavaScript and images. Make sure to use a
trailing slash.

#ADMIN MEDIA PREFIX = '/media/'
ADMINMEDIAPREFIX = '/media/admin-media/'

Make this unique, and don't share it with anybody.
SECRETKEY = [OMITTED]

List of callables that know how to import templates from various sources.
TEMPLATELOADERS = (

'django.template.loaders.filesystem.load templatesource',

'django.template.loaders.appdirectories.load_template source',
'django.template.loaders.eggs.loadtemplatesource',

TEMPLATECONTEXTPROCESSORS =

'django.core.context-processors.auth',

MIDDLEWARECLASSES =

'django.middleware.common.CommonMiddleware',
'django.contrib.sessions.middleware.SessionMiddleware',
'django.contrib.auth.middleware.AuthenticationMiddleware',

)

ROOTURLCONF = 'usersite.urls'

TEMPLATEDIRS =(

'/home/caitlinj/website/djcode/usersite/templates',

'/home/caitlinj/website/djcode/usersite/templates/records',
'/home/caitlinj/website/djcode/usersite/templates/tutorials',

'/home/caitlinj/website/djcode/usersite/templates/6004_tutorialprobs',

'/home/caitlinj/website/djcode/usersite/tutprobs',

FIXTUREDIRS =

'/home/caitlinj/website/djcode/usersite/tutorials/fixtures',

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 116

INSTALLEDAPPS = (
'django extensions',
'django.contrib.auth',
'django.contrib.contenttypes',

'django.contrib.sessions',
'django.contrib.sites',
'usersite.tutorials',

'django.contrib.admin',

'django filters',
'south',

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 117

A-3.3 Admin.py

from django.contrib import admin
from usersite.tutorials.models import *

class PublicVideoAdmin(admin.ModelAdmin):
list-display=('type', 'title', 'file name','author', 'semester',

'num favorites', 'id', 'file')
list-filter=('type', 'title', 'author', 'semester', 'id', 'file')
fields=('type', 'semester', 'author', 'file', 'title')
def numfavorites(self, obj):

return obj.userprofileset.count()

pass

class ViewIntervalAdmin(admin.ModelAdmin):

list display=('user', 'ta', 'time', 'range')
list-filter=('user', 'ta', 'time',)

class FavoriteAdmin(admin.ModelAdmin):
list-display=('profile', 'ta', 'time')
list filter=('profile', 'ta', 'time')

class TopicAssignmentAdmin(admin.ModelAdmin):
listdisplay=('topic', 'title', 'id', 'quiz', 'video')
list-filter=('topic', 'title', 'id', 'quiz', 'video')

class LinkedWebPageAdmin(admin.ModelAdmin):

list-display=('name', 'url', 'pointer_onpage', 'topicassignment')
listfilter=('name', 'url', 'topicassignment')

admin.site.register(UserProfile)
admin.site.register(PublicVideo, PublicVideoAdmin)
admin.site.register(TopicAssignment, TopicAssignmentAdmin)
admin.site.register(Comment)
admin.site.register(ViewInterval, ViewIntervalAdmin)
admin.site.register(LinkedWebPage, LinkedWebPageAdmin)
admin.site.register(Favorite, FavoriteAdmin)

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 118

A-3-4 Manage.py

from django.core.management import executemanager
try:

import settings # Assumed to be in the same directory.
except ImportError:

import sys

sys.stderr.write("Error: Can't find the file 'settings.py' in the
directory containing %r. It appears you've customized things.\nYou"l1 have to
run django-admin.py, passing it your settings module.\n(If the file
settings.py does indeed exist, it's causing an ImportError somehow.)\n" %
file)

sys.exit(1)

if name == " main

executemanager (settings)

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 119

A.4 Miscellaneous

A.4.1 Enums.py

QUIZCHOICES =

(''I, '-----'I),

(1, 'Quiz 1'),
(2, 'Quiz 2'),
(3, 'Quiz 3'),
(4, 'Quiz 4'),
(5, 'Quiz 5'),

SEMESTERCHOICES =

('', '--All Terms--'),

('Sll', 'Spring 2011'),

('FlO', 'Fall 2010'),

('S10', 'Spring 2010'),

('F09', 'Fall 2009'),

('S09', 'Spring 2009'),

('F08', 'Fall 2008'),

('S08', 'Spring 2008'),

('F07', 'Fall 2007'),

('S07', 'Spring 2007'),

('F06', 'Fall 2006'),

('S06', 'Spring 2006'),

('F05', 'Fall 2005'))

_CHOICES =
''I '-- All

'Lecture',
'Section',
'OldQuiz',

'LabHint',

'TutProb',
'Concept',

Video Types -- '),

'Lectures'),
'Recitations'),
'Past Quiz Problems'),
'Lab Hints'),
'Tutorial Problems'),

'Conceptual Reviews')

TOPICCHOICES = (

('' ' I~All Topics -- '),

('BasicsOfInformation', 'Basics of Information'),

('TheDigitalAbstraction', 'The Digital Abstraction'),

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

VIDEO

120

('CMOSTechnology', 'CMOS Technology'),

('GatesAndBooleanLogic', 'Gates And Boolean Logic'),

('SynthesisOfCombinationalLogic', 'Synthesis of Combinational Logic'),

('SequentialLogic', 'Sequential Logic'),

('FSMs', 'FSMs'),

('SynchronizationAndMetastability', 'Synchronization and Metastability'),

('Pipelining', 'Pipelining'),

('ModelsOfComputation','Models of Computation'),

('ProgrammableMachines', 'Programmable Machines'),

('MachineLanguage','Machine language'),

('StacksAndProcedures','Stacks and Procedures'),

('BuildingTheBeta', 'Building the Beta'),

('MemoryHierarchy', 'Memory Hierarchy'),

('Caches','Caches'),

('VirtualMemory','Virtual Memory'),

('VirtualMachines','Virtual Machines and OS Issues'),

('DevicesInterruptsAndRealTime', 'Devices Interrupts and Real Time'),

('Semaphores','Semaphores'),

('PipelinedBeta','Pipelined Beta')

TUTORIALPROBLEMURLS = {
'BasicsOf Information': "info.html",

'TheDigitalAbstraction': "digital. html"

'CMOSTechnology': "cmos.html",

'GatesAndBooleanLogic': "gate.html",

'SynthesisOfCombinationalLogic': "logic.html",

'SequentialLogic': "sequential.html",

'FSMs': "fsm.html",

'SynchronizationAndMetastability': "synchronization.html",

'Pipelining': "pipeline.html",

'ModelsOfComputation': "computation.html",

'ProgrammableMachines': "progmach.html",

'MachineLanguage': "machinelang.html",

'StacksAndProcedures': "procedures. html",

'BuildingTheBeta': "beta.html",

'MemoryHierarchy': "memhierarchy.html",

'Caches': "caches.html",

'VirtualMemory': "vm.html",

'VirtualMachines': "os.html",

'DevicesInterruptsAndRealTime': "realtime.html",

'Semaphores': "semaphores.html",

'PipelinedBeta': "pipelinedbeta.html" }

TOPICNUMBERS = {

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 121

'BasicsOfInformation': 0,
'TheDigitalAbstraction': 1,
'CMOSTechnology': 2,
'GatesAndBooleanLogic': 3,
'SynthesisOfCombinationalLogic': 4,
'SequentialLogic': 5,
'FSMs': 6,

'SynchronizationAndMetastability': 7,
'Pipelining': 8,

'ModelsOfComputation': 9,
'ProgrammableMachines': 10,
'MachineLanguage': 11,

'StacksAndProcedures': 12,
'BuildingTheBeta': 13,
'MemoryHierarchy': 14,

'Caches': 15,
'VirtualMemory': 16,
'VirtualMachines': 17,

'DevicesInterruptsAndRealTime': 18,
'Semaphores': 19,
'PipelinedBeta': 20}

TOPICLIST = [

'BasicsOfInformation',
'TheDigitalAbstraction',
'CMOSTechnology',
'GatesAndBooleanLogic',

'SynthesisOfCombinationalLogic',
'SequentialLogic',
'FSMs',

'SynchronizationAndMetastability',
'Pipelining',
'ModelsOfComputation',

'ProgrammableMachines',
'MachineLanguage',
'StacksAndProcedures',

'BuildingTheBeta',
'MemoryHierarchy',

'Caches',

'VirtualMemory',
'VirtualMachines',

'DevicesInterruptsAndRealTime',
'Semaphores',

'PipelinedBeta']

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 122

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 123

A.4.2 Loader.py

from models import *

from django.db import models
from django.contrib.auth.models import User

from django.core.files import File

import os, fnmatch, re
from django.conf import settings

from models import PublicVideo

def make():

----- Students -----

def makestudent(athenaid, firstname, last_name, studentid):
student=User.objects.filter(username=athena-id)
if not student.counto:

s=User.objects.create_user(athenaid, '%s@mit.edu'
% (athena-id), student-id)

s.first name=first name
s.last name=last name

s.is staff=False
p = s.getprofile()
p.student id=student id

s.save()
p.save(
return s

else:
s = student.get(username=athenaid)
s.first name=first name
s.last name=last name
s.is staff=False

s.save()
return s

benbit=makestudent('benbit', 'Ben', 'Bitdiddle', '900000001')
aphacker=makestudent('aphacker', 'Alyssa P.', 'Hacker', '900000002')
chipahoy=make student('chipahoy', 'Chip', 'Ahoy', '900000003')
alogue=makestudent('alogue', 'Anna', 'Logue', '900000004')

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 124

----- staff Members ----- ##

def makestaff(athenaid, first_name, last name):
staff=User.objects.filter(username=athena-id)
if not staff.count():

member=User.objects.create-user(athena_id, '%s@mit.edu'
%(athenaid), first_name)

member.first name=first name
member.last name=last name
member.is staff=True
member.save()
return member

else:

member=staff.get()
member.save()
return member

ward=make staff('ward', 'Steve', 'Ward')
cjt=make-staff('cjt', 'Chris', 'Terman')

caitlinj=make_staff('caitlinj', 'Caitlin', 'Johnson')
sneuman=makestaff('sneuman', 'Sabrina', 'Neuman')
kelleyk=make_staff('kelleyk', 'Kevin', 'Kelley')

sarina=makestaff('sarina', 'Sarina', 'Canelake')
dcrowell=makestaff('dcrowell', 'David', 'Crowell')
renminbi=makestaff('renminbi', 'Becky', 'Bianco')
bbasham=makestaff('bbasham', 'Brian', 'Basham')
colosimo=makestaff('colosimo', 'Joe', 'Colosimo')
kasittig=makestaff('kasittig', 'Karen', 'Sittig')
drews=make-staff('drews', 'Andrew', 'Shapiro')

----- Lecture ----- ##

stafflist = User.objects.filter(isstaff=True)

semesters=[tuple[O] for tuple in SEMESTERCHOICES]
vidtypes=[tuple[O] for tuple in VIDEOCHOICES]
usernames=[user.username for user in staff-list]

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 125

print "semesters: %s" %(semesters)
print "usernames: %s" %(usernames)

def fslocation(auth, type, term):
return os.path.join(settings.MEDIAROOT, auth, type, term)

def isvideo(file name):
extension=os.path.splitext(filename)[1]

for type in VIDEOTYPELIST:

if extension==type:
return True

return False

def removedupes(directory, file):

for extension in VIDEO TYPE LIST:
stem = os.path.splitext(os.path.split(file)[1])[0]
for other file in os.listdir(directory):

other name=os.path.split(other_file)[1]
[otherstem, otherextension]
=os.path.splitext(other_name)[0:2]
if re.match(stem, otherstem):

if other stem[-1]=='_' and otherextension==extension:
os.remove(os.path.join(directory, otherfile))
return True

def alreadythere(author, type, semester, file):
authors = PublicVideo.objects.filter(author=author)
types = authors.filter(type=type)
semesters = types.filter(semester=semester)
return semesters.filter(filename=file).count()

def load video(author, type, semester, videopath):
video name=os.path.split(videopath)[1]
if not alreadythere(author, type, semester, videoname):
get the user object with this username to assign it

userobj = staff list.get(username=author)
vid = PublicVideo(author=userobj, type=type, semester=semester,

filename=video name)
fil = File(open(video path, 'rb'))
vid.file name=video name
vid.file.save(vid.filename, fil, save=False)
vid.save()

return vid

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 126

look by staff/type/semester
def findmedia(:

for username in usernames:
for vidtype in vidtypes:

for semester in semesters:
directory =fs_location(username, vidtype, semester)
ONLY CHECK EXISTING DIRECTORIES!!
if os.path.exists(directory):

look at each file in the directory to laod
after duplicates are removed so we don't
load in duplicate objects with the same file
for file in os.listdir(directory):
and see if it's a movie file

if isvideo(file):
proposedpath = os.path.join(directory, file)
newvid=loadvideo(username, vidtype,
semester, proposedpath)
new vid.save()
removedupes(directory, file)

if we had to remove dupes, fix file name
new vid.file name=file
new vid.save()

print "Finding Media"
findmedia()

------ Topics ------ ##

titles = {
'L03.mov':'Lecture 3',
'L04.mov':'Lecture 4',
'L05.mov':'Lecture 5',

'L06.mov':'Lecture 6',
'L07.mov':'Lecture 7',
'L08.mov':'Lecture 8',
'L09.mov':'Lecture 9',
'L1O.mov':'Lecture 10',
'Lll.mov':'Lecture 11',

'L14.mov':'Lecture 14',
'L15.mov':'Lecture 15',

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 127

'L16.mov':'Lecture 16',
'L17.mov':'Lecture 17',
'L18.mov':'Lecture 18',

'L19.mov':'Lecture 19',

'L20.mov':'Lecture 20',
'L21.mov':'Lecture 21',

'L22.mov':'Lecture 22',

'L23.mov':'Lecture 23',
'L24.mov':'Lecture 24',

'S10 Q1 P3.mov': 'Static Discipline',
'S10_Q1_P2.mov': 'Timothy Leary\'s Calendar App',
'S1O_SlP4.mov': 'Deja Vu',

'S10 Q2 P2-2.mov': 'Timothy Leary\'s Calendar App (continued)',

}

def assigntitles():
videos = PublicVideo.objects.all()
for video in videos:

if video.title == '':
if video.filename in titles.keys(:

video.title = titles[video.file name]

assigntitles()

temp topic matcher for testing and development
topicassignments = {

'L03.mov':['CMOSTechnology'],
'L04.mov':['SynthesisOfCombinationalLogic'],
'L05.mov':['SequentialLogic'],
'L06.mov':['FSMs'],
'L07.mov':['SynchronizationAndMetastability'],
'L08.mov':['Pipelining'],

'L09.mov':['Pipelining', 'ModelsOfComputation'],
'L1O.mov':['ProgrammableMachines'],

'L11.mov':['MachineLanguage'],

'L14.mov':['BuildingTheBeta'],
'L15.mov':['MemoryHierarchy'],

'L16.mov':['Caches'],

'L17.mov':['VirtualMemory'],
'L18.mov':['VirtualMachines'],
'L19.mov':['DevicesInterruptsAndRealTime'],

'L20.mov':['DevicesInterruptsAndRealTime'],
'L21.mov':['Semaphores'],

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 128

'L22.mov':['PipelinedBeta'],
'L23.mov':['PipelinedBeta', 'Pipelining'],
'L24.mov':['ProgrammableMachines'],

'S10 Ql P3.mov': ['TheDigitalAbstraction', 'CMOSTechnology'],
'S10 Ql P2.mov': ['BasicsOfInformation'],
'S10 Sl P4.mov': ['TheDigitalAbstraction', 'GatesAndBooleanLogic'],
'S10 Q2 P2-2.mov': ['BasicsOfInformation'],

}

def matchtopics():
baseurl = "http://6004.csail.mit.edu/currentsemester/tutprobs/"
videos = PublicVideo.objects.all()
for video in videos:

name=os.path.split(video.filename)[1]
if name in topicassignments.keys(:

topicmatch=topicassignments[name]
for topic in topic match:

ta = TopicAssignment(video=video, topic=topic)
ta.save()
lpstring = u'%s' %(topic)
#print "lp_string = %s\n" %(lpstring)

lpleaf=TUTORIALPROBLEMURLS[lp_string]
#print "lp_leaf = %s\n" %(lpleaf)
lp-url=u'%s%s' %(base_url, lp_leaf)
lp = LinkedWebPage(name=topic, url=lpurl)
lp.topic_assignment=ta
lp.save()

print "Matching Topics"
match topics()

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 129

A.4.3 Filters.py

import djangofilters
from usersite.tutorials.models import *

from django import forms

class TopicAssignmentFilterSet(djangofilters.FilterSet):
class Meta:

model=TopicAssignment

listfilter=['topic']
fields=['topic',

'quiz',

'video author',
'video type',

'video semester',
'num student favorites',

'numstaff_f avorites']

def __init_(self, *args, **kwargs):
super(TopicAssignmentFilterSet, self). init (*args, **kwargs)

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 130

A.4.4 Forms.py

from django.shortcuts import renderto response
from django.forms import ModelForm
from django.http import HttpResponseRedirect
from django import forms
from usersite.tutorials.models import Comment, PublicVideo

class CommentForm(ModelForm):
fields=['text']
want to auto populate video and username fields
class Meta:

model=Comment

class PublicVideoForm(ModelForm):
file=forms.FileField()
class Meta:

model=PublicVideo
author should be auto-assigned but pre-populated
fields=['author','title', 'type', 'semester', 'file', 'description']

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 131

Appendix B: HTML Templates

B.1 Base Templates

B.1.1 Base.html

{% block header %} {% endblock %}

{% include "masthead.html" %}

{% block content %} {% endblock %}

B.1.2 Two column.html

{% extends "base.html" %} {% block content %}

{% block pagetop %} {% endblock pagetop %}
{% block maincolumn %} {% endblock maincolumn %}

{% block sidebar %} {% endblock sidebar %}

{% endblock content %}

B.1.3 Threeblock.html

{% extends "base.html" %} {% block content %}

{% block maincolumn %} {% endblock maincolumn %}
{% block browsesidebar %} {% endblock browsesidebar %}
{% block bottomblock %} {% endblock bottomblock %}

{% endblock content %}

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 132

B.2 Student Landing Page

B.2.1 Browse.html

{% extends "threeblock.html" %}

{% block title %}Course Media{% endblock %}

{% block header %}
{% include "intervalmovieheader.html" %}

{% endblock header %}

{% block browsesidebar %}
{% include "studentbrowse.html" %}

{% endblock browse sidebar %}

{% block maincolumn %}
{% include "moviediv.html" %}

{% endblock maincolumn %}

{% block bottomblock %}
{% include "mbrowser.html" %}

{% endblock bottomblock %}

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 133

B.2.2 Student browse.html

<div id="sidebar content">

{% ifequal show 'Favorites' %}
Displaying your favorite videos.

 [Show All Clips]

{% else %}
Displaying all videos.

 [Show Your Favorites]
{% endifequal %}
{% if user.isstaff %}
<p>
Upload New Video and Assign Topic

<p>
Select Existing Video for Topic

Assignment
{% endif %}

</div>

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 134

B.2.3 Mbrowser.html

<table border="1" class="mbrowser"
style="display:block; clear:both">

<tr>
<th>Title</th>
<th>Topic</th>
<th>Quiz #</th>
<th>Type</th>
<th>Author</th>
<th>Semester</th>
<th>Student Favorites</th>
<th>Staff Favorites</th>
<th>Preview</th>
<th>Detail View</th>

</tr>

<tr>
<td> -- </td>

<form action="" method="get">
<td>{{topicassignmentfilterset.form.topic}}</td>
<td>{{topicassignmentfilterset.form.quiz}}</td>
<td>{{topicassignmentfilterset.form.video_type}}</td>
<td>{{topicassignmentfilterset.form.video__author}}</td>
<td>{{topicassignment filterset.form.video semester}}</td>
<td></td>
<td></td>
<td colspan="2" style="text-align:center">

<input style="font-weight :bold" type="submit"
value="-- Apply Filters--"/></td>

</form>
</tr>

{% for ta in topicassignment filterset reversed %}
<tr>

<td>
{% if ta.title %}
{{ta.title}}
{% else %}
untitled # {{ta.id}}

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 135

{% endif %}
</td>
<td>

{{ta.topic}}</td>
<td>

{{ta.quiz_verbose}}</td>

<td>

{{ta.video.type}}</td>
<td>

<a href="/web/show for author/
{{ta.video.author.username}}/">

{{ta.video.author}}</td>
<td>

<a href="/web/show for semester/
{{ta.video.semester}}/">

{{ta.video.semester}}</td>
<td>{{ta.numstudentfavorites}}</td>
<td>{{ta.numstafffavorites}}</td>
<td style="text-align:center">

<img style="margin:O;padding:0;height:20px"
src="/sitemedia/images/eye.png"
height="10">

</td>

<td style="text-align:center">

<img style="margin:0;padding:0;height:20px;"
src="/sitemedia/images/arrow.jpg"
height="10">

</td>

</tr>

{% endfor %}
</table>

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 136

B-3 Single-video Player

B-3.1 Showmedia.html

{% extends "twocolumn.html" %}

{% block title %}Course Media{% endblock %}

{% block header %}

{% include "intervalmovieheader.html" %}
{% endblock header %}

{% block maincolumn %}
{% include "commentview.html" %}
{% include "timingfields.html" %}
{% endblock maincolumn%}

{% block sidebar %}

{% include "similarvideobar.html" %}
{% include "favoritebutton.html" %}
{% endblock sidebar %}

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 137

B.3.2 Similarvideobar.html

<p class="sidebarheader">View more Videos with the same:</p>

Topic:

{{selectedta.topic}}

Author:

{{selectedta.author.getfullname}}

Semester:

{{selectedta.video.semester}}

Type:

{{selectedta.video.type}}

<p class="sidebarheader">Tutorial Problems for this Topic:</p>

{% for linkedproblem in linkedproblems %}

{{linkedproblem.name}}

{% endfor %}

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 138

B.3.3 Favoritebutton.html

<div name="favorite div" id="favorite div">
<table>

<tr>
<td class="sidebar header" style="display:inline">

<form action="" method="post" name="change-favorite"
id="changefavorite">

<input type="hidden" name="username" id="username"
value="{{user.username}}" />

<input type="hidden" name="ta id" id="ta id"
value="{{selectedta.id}}" />

{% if user.isauthenticated and isuserfavorite %}
<!-- This video is marked as one of your favorites.-->

<input type="submit" id="submitfavorite"
name="submit favorite" value="Remove Favorite" />

{% endif %}

{% if user.isauthenticated and not isuserfavorite %}
<!-- You have not yet added this video to your favorites.-->

<input type="submit" id="submitfavorite"
name="submit favorite" value="Add Favorite"
style="align:right"/>

{% endif %}
</form>

</td></tr>
</table>

</div>

<script type="text/javascript"
src=" /sitemedia/commentsubmission.js"></script>
<script type="text/javascript" src="/site-media/jquery. js"></script>
<script type="text/javascript">

$('#changefavorite').submit(
function() {
change_favorite();

console.log("here");
return false; }

</script>

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 139

B-3.4 Timingfields.html

<table>
<tr>

<td>
<input type="hidden" id="interval start units"

name="interval start units"/>

<input type="hidden" id="intervalstart display"

name="intervalstart_display" value="O"/>

<input type="hidden" id="intervalpause-units"
name="interval-pause units"/>

<input type="hidden" id="intervalpausedisplay"

name="intervalpausedisplay" value="0"/>

<input type="hidden" id="interval_skipunits"

name="intervalskipunits"I/>
<input type="hidden" id="interval_skipdisplay"

name="intervalskipdisplay" value="0"/>

<input type="hidden" id="play_timer" name="playtimer" value="?"/>

<input type="hidden" id="play_timerid" name="playtimer id" value="?"/>

<input type="hidden" id="startsecondsdisplay"

name="startsecondsdisplay" value="?"/>

<input type="hidden" id="pauseseconds display"
name="pause seconds_display" value="?"/>

<input type="hidden" id="skipsecondsdisplay"
name="skip-secondsdisplay" value="?"/>

<input type="hidden" id="start timer" name="start timer" value="O"/>

<input type="hidden" id="start timer id" name="start timer id"/>
</td>

</tr>
</table>

<table>
<input type="hidden" id="timescale" name="timescale" value="?"/>

<form id="iform" method="post">

<input type="hidden" id="ta id" name="ta-id" value="{{selectedta.id}}"/>

<input type="hidden" id="user" name="user" value="{{user}}"/>

<input type="hidden" id="iform start time" name="iform start time"
value="O"/>

<input type="hidden" id="iform end time" name="iform end time" value="0"/>

</form>
</table>

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 140

B.3.5 Commentview.html

<table border="O" id="comment box">

{% if user.isauthenticated %}
<form id="commentform" name="comment form" action="" method="post">

<tr>
<td colspan="2">

<textarea id="comment textarea" rows="5" name="text">
Tell us what you thought of the video! Was it too long?
Was one part particularly helpful?
Leave your comments here...
</textarea>

</td>
</tr>

<tr>
<td>
Visibility:

<select name="permissions">
<option value="students"> All Students</option>
<option value="staff">
Staff Members and {{user.username}}
</option>
</select>

</td>
<td style="text-align:right">

<input type="hidden" name="username" id="username"
value="{{user.username}}" />
<input type="hidden" name="ta id" id="ta id"
value="{{selected_ta.id}}" />
<input type="submit" name="submit" id="submit"
value="Submit Comment" />

</td>
</tr>

</form>
{% endif %}

</table>

<table id="commentdisplay" class="commentdisplay">
{% if comments.count %}
<tr>

<td colspan="2" class="sidebarheader">
Comments about this video:

</td>
</tr>

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 141

{% endif %}

{% for comment in comments %}
<tr>

<td colsapn="2">

"{{comment.text}}"

 -- {{comment.user.username}} at {{comment.time}}

</td>
</tr>
{% endfor %}

</table>

<script type="text/javascript"
src="/site media/commentsubmission.js"></script>

<script type="text/javascript" src="/sitemedia/jquery.js"></script>
<script type="text/javascript">
<!-- make sure Jquery is loaded somewhere else,

like in interval movie header.html or movie header.html -- >
$('#comment-form').submit(

function() {
submitcomment();
return false;

}

</script>

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 142

B.3.6 Displayintervalviews.html

{% extends "twocolumn.html" %}

{% block title %}Course Media{% endblock %}

{% block header %}

{% include "interval movie header.html" %}

{% endblock header %}

{% block body_attributes %}onload="RegisterListeners(;"{% endblock
body-attributes %}

{% block maincolumn %}

<table border=" 0">

<tr>
<td>

<div id="movie div" style="float:left;align:left"></div>

<script type="text/javascript">
document.getElementById('movie div').innerHTML = qtEmbed;

</script>

{% include "movie div.html" %}

</td>

</tr>

<!-- 800 by 300 graph in same table -- >
<tr>

<td>
<div id="view graphdiv" class="view graphdiv"

style="float:left;align:left">

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 143

</div>

</td>

</tr>

<tr>

<td>
{% include "commentview.html" %}

</td>

</tr>

</table>

{% endblock main-column%}

{% block sidebar %}

{% include "similarvideobar.html" %}

{% include "favoritebutton.html" %}

{% endblock sidebar %}

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 144

B.4 Authentication and Password Changes

B.4.1 Login.html

{% extends "base.html" %}

{% block content %}

{% if form.errors %}
<p class="error"> Sorry, that's not a valid username or password </p>
{% endif %}

<form action="" method="post">
<label for="username">User name:</label>
<input type="text" name="username" value="" id="username">

<label for="password">Password:</label>

<input type="password" name="password" value="" id="password">

<input type="submit" value="login" />
<input type="hidden" name="next" value="/accounts/profile/" />

</form>
{% endblock %}

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 145

B.4.2Passwordchangeform.html

{% extends "base.html" %}

{% block content %}

<!-- Content -- >

<div id="content" class="colM">

<hl>Password change</hl>

<p>Please enter your old password, for security's sake,

and then enter your new password twice so we can verify

you typed it in correctly.</p>

<form action="" method="post">

<p class="aligned wide">
<label for="id old-password">Old password:</label>

<input type="password" name="old password"

id="id-old-password" /></p>

<p class="aligned wide">
<label for="id new passwordl">New password:</label>

<input type="password" name="new passwordl"
id="id newpassword1" /></p>

<p class="aligned wide">

<label for="id new password2">Confirm password:</label>

<input type="password" name="newpassword2"

id="id-new-password2" /></p>
<p><input type="submit" value="Change my password" /></p>

</form>
<br class="clear" />

</div>
<!-- END Content -- >

{% endblock %}

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 146

B.4-3 Passwordchangedone.html

{% extends "base.html" %}

{% block content %}

<!-- Content -- >

<div>

<p>

<h2>

Change Successful! Please click one of the navigational links above to
continue.

</h2>

</div>
<!-- END Content -- >

{% endblock %}

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 147

B-5 Video Upload and Chapter Assignment

B.5.1 Uploadvideo.html

{% extends "base.html" %}

{% block title %} Upload a Public Video{% endblock %}

{% block content %}
<form action="" enctype="multipart/form-data" method="POST">

<fieldset>

<legend>
Welcome {{user.username}}.

Please Select a File to upload and fill out the
relevant fields.

You can, alternatively, select an existing video
for topic assignment from the menu at the bottom
of the page.

You will then be directed to a page where you
can set topic segments.

</legend>

{{videoform.asp}}

</fieldset>
<input type="submit" value="Save and Proceed to Topic Assignment"/>

</form>

{% include "video select.html" %}

{% endblock %}

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 148

B-5.2 Topicassignment.html

{% extends "twocolumn.html" %}

{% block title %}
{{titlestring}}
{% endblock %}

{% block pagetop %}
{{headerstring}}

{% endblock pagetop %}

{% block maincolumn %}
<table border="1">

<tr>
<th>

Video
</th>

<th>
of Staff Faves

</th>

<th>
of Student Faves

</th>

</tr>

{% for ta in taqueryset %}
<tr>

<td>

{% if ta.video.title %}

{{ta.video.title}}
{% else %}
{{ta.video.filename}}
{% endif %}

</td>

<td>

{{ta.getnumstafffavorites}}
</td>

<td>
{{ta.getnumstudentfavorites}}

</td>

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 149

</tr>
{% endfor %}

</table>
{% endblock maincolumn %}

{% block sidebar %}

<p class="sidebar header" align="center">

Return to Media Browser</p>

{% endblock sidebar %}

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 150

Appendix C: JavaScript

C.1 QuickTime Files

C.1.1 Common-quicktime methods.js

// methods that depend on document.moviel
function playheadposition() {

return document.moviel.GetTime(;

}

function time scale() {
return document.moviel.GetTimeScale();

}

// internal methods
function set_displayareato_fitmovie()

{
var obj = document.moviel;
var rectangle = obj.GetRectangle(;

if (rectangle)

{
rectangle = rectangle.split(',');
var xl = parseInt(rectangle[O]);
var x2 = parseInt(rectangle[2]);
var yl = parseInt(rectangle[l]);
var y2 = parseInt(rectangle[3]);

var width = (xl < 0) ? (xl * -1) + x2 x2 - xl;

var height = (yl < 0) ? (yl * -1) + y2 y2 - yl;

}
else

{
// a mov containing only audio
var width = 200;

var height = 0;

}

heightfield = document.getElementById('video height');

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 151

widthfield = document.getElementById('videowidth');

if (heightfield)

document.getElementById('videoheight').value = height;

if (width-field)

document.getElementById('videowidth').value = width;

obj.width = width;

obj.height = height + 16;

obj.SetControllerVisible(true);

}

function formattime(time invideounits){

totalSec = time in video units / time scale(;

hours = parseInt(totalSec / 3600) % 24;
minutes = parseInt(totalSec / 60) % 60;
seconds = parseInt(totalSec) % 60;
fframes = Math.round(((totalSec % 60) - seconds) * 100);

result = zeropad(hours) + ":" + zeropad(minutes) + ":" +

zeropad(seconds) + ":" + zeropad(fframes);
return result;

};

function zeropad(number)

{
return (number < 10 ? "0" + number: number)

}

function myAddListener(obj, evt, handler, captures)

{
if (document.addEventListener
obj.addEventListener(evt, handler, captures);

else

// IE
obj.attachEvent('on' + evt, handler);

}

function RegisterListener(eventName, objID, embedID, listenerFcn)

{

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 152

//console.log("register listener { event + eventName + " listenerFcn
+ listenerFcn);

var obj = document.getElementById(objID);
if (!obj)
obj = document.getElementById(embedID);
if (obj)
myAddListener(obj, eventName, listenerFcn, false);

}

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 153

C.1.2 Interval movie header.html

<script type="text/javascript" src="/sitemedia/ACQuickTime.js"></script>
<script type="text/javascript"
src="/sitemedia/common quicktimemethods.js"></script>
<script type="text/javascript" src="/sitemedia/jquery.js"></script>
<script type="text/javascript"
src="/site media/staff intervalmethods.js"></script>

<script type="text/javascript">

// define the video here
var qtEmbed = QTGenerateOBJECTTextXHTML(

'{{selectedta.video.getabsolute_url}}',

'600', // width
'475', // height: set this to actual height

// + 20 (to leave space for controller)
// required blank field

'enablejavascript', 'true',
'obj#id', 'moviel',
'emb#name', 'moviel',

'emb#id', 'moviel emb',
'postdomevents', 'true',

'autoplay', 'false',
'controller', 'true',
'scale', 'aspect'

// called from body.onload to set up listeners that will wait for quicktime
// movie to send events

function RegisterListeners()

{
// when the movie loads,
// it will set the end time to the duration of the movie
RegisterListener('qtloadedmetadata', 'moviel',

'movielemb', setup-movie);
RegisterListener('qt-loadedmetadata', 'moviel',

'movielemb', set times-and-play-movie);
RegisterListener('qtcanplay', 'moviel',

'movielemb', setup-seconds);
RegisterListener('qtplay', 'moviel',

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 154

RegisterListener(

RegisterListener(

RegisterListener(

'moviel_emb', checkand_send);
'qttimechanged', 'moviel',
'moviel_emb', pause_andstart);

'qtstop', 'moviel',
'movielemb', setintervalpause);
'qtpause', 'moviel',
'movielemb', set-interval_pause);

function settimesandplaymovie()

{
var timescale = document.moviel.GetTimeScale(;
console.log("(settimes_andplay movie) timescale

= " + timescale);

document.getElementById('timescale').value = timescale;
var start time = {{selectedta.starttime}};
var endtime = {{selectedta.stop-time}};
console.log("(settimes_andplay movie) starttime

= " + starttime);

console.log("(settimesandplay movie) end-time
= " + endtime);

if(typeof(starttime) == "undefined")

{
start time = 0;

if(typeof(endtime) == "undefined")

{
end-time = document.moviel.GetDuration(;

}

if(endtime == 0)

{
var length = document.moviel.GetDuration(;
console.log("setting end-time to " + length);
end-time = length;

setstartandend times(start time, endtime);

//document.moviel.Play();

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 155

function setstartandendtimes(starttime, endtime)

console.log("(set_start_ andend times)");

document.moviel.SetStartTime(starttime);
document.moviel.SetEndTime(end time);

function setupmovie()

f
console .log ("(setupmovie)");

// to check that the movie meta data has been loaded sufficiently
var movielength = document.moviel.GetDuration().value;
console.log("(setup movie) movie duration = " + movie-length);

// set-displayarea to fit movie();

}

</script>

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 156

C.2 jQuery/Ajax

C.2.1 Commentsubmission.js

function changefavorite()

{
console.log("in change-favorite");
var username = $('input[name=username]').val();
console.log("username");
var taid = $('input[name=ta-id]').val();
console.log("ta_id");
var buttonvalue $('input[name=submitfavorite]').val();
var isfavorite = true;

$.ajax({ type: 'POST',
url: "/add favorite/",

data: { username: username, ta id: ta id,
button-value: buttonvalue },
dataType: "json",

success: function(response)

{
console.log("in change favorite success function");
document.getElementById('submit favorite').value

= response.newbuttontext;

});

}

function submit-comment()

{
var username = $('input[name=username]').val();
var taid = $('input[name=ta-id]').val();
var text = $('textarea[name=text]').val();
var permissions = $('select[name=permissions]').val();
console. log ("in submitcomment");
console.log("username = ' + username +

", permissions = " + permissions +
", taid = " + taid + ", text = " + text);

$.ajax({ type: 'POST',
url: "/comment-update/",
data: { username : username,

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 157

text : text,
permissions : permissions,
taid : taid, },

success: function(response){
console.log("in success function for submitcomment");

var new comment = "<tr><td colsapn=\"2\">" +
response.text + "
 -- " +

response.username + " at " +
response.time +"</td></tr>";
$(' .comment display') .append(new comment);

},
dataType: "json",

});
return false;
// this is supposed to prevent the default submission behavior

}

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 158

C.2.2 Favoritebutton.js

<div name="favorite div" id="favorite div">
<table>

<tr>
<td class="sidebarheader" style="display:inline">

<form action="" method="post" name="change-favorite"
id="change-favorite">

<input type="hidden" name="username" id="username"
value="{{user.username}}" />

<input type="hidden" name="ta id" id="ta id"
value="{{selected_ta.id}}" />

{% if user.isauthenticated and is userfavorite %}
<!-- This video is marked as one of your favorites.-->
<input type="submit" id="submitfavorite"

name="submit favorite" value="Remove Favorite" />

{% endif %}

{% if user.isauthenticated and not is user favorite %}
<!-- You have not yet added this video to your favorites.-->

<input type="submit" id="submit_f avorite"
name="submit favorite" value="Add Favorite"

style="align:right"/>
{% endif %}

</form></td></tr>

</table>
</div>

<script type="text/javascript"
src="/sitemedia/commentsubmission.js"></script>
<script type="text/javascript" src="/site media/jquery.js"></script>
<script type="text/javascript">

$('#changefavorite').submit(

function() {
change_favorite();

console. log ("here");
return false;

}

</script>

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 159

C.2-3 Intervalmethods.js

function setupseconds()

{
var tscale = timescale(;
document.getElementById('timescale').value = tscale;

document.getElementById('start secondsdisplay').value = 0;
document.getElementById('pause secondsdisplay').value = 0;
document.getElementById('start timer').value = 0;

}

function clearstart timer()

{
var timer id = document.getElementById('starttimerid').value;
console.log("clearing start timer");
document.getElementById('start timer').value = 0;
clearInterval(timer id);

}

function stopstart timer()

var currentvalue = document.getElementById('starttimer').value;
console.log("stopping the start timer. current value = " + currentvalue);
// doesn't clear the displayed value or the timer value
// only stops the timer. Need to wait until after
// checkandsend to clear the timer (reset to 0)
var timer id = document.getElementById('start-timer-id').value;
clearInterval (timer id);

}

function get_currentsecond()

{
var units = playheadposition(;
var timescale = parseInt(document.getelementById('timescale')

.value);
return Math.floor(units/timescale);

}

//interval start

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 160

function incrementstarttimer()

{
var timer = document.getElementById('starttimer').value;
var timervalue = parseInt(timer);
var timerid = document.getElementById('starttimerid').value;
console.log("in increment start timer with timer #" + timer id

+ " " + timervalue);

timervalue = timervalue + 1;

document.getElementById('starttimer').value = timer-value;
}

function begin_start timer(init)

{
var timer id = setInterval("incrementstarttimer(", 1000);
console.log("(beginstart timer) create the starttimer with id

+ timerid);
document.getElementById('start timer id').value = timer id;
console.log("(beginstart timer) value of init = " + init);

//var timer id = document.getElementById('start timerid').value;
document.getElementById('starttimer').value = init;
var last start time =

document.getElementById('start timer').value;
console.log("(beginstart timer) starttimer set to =

+ laststarttime);
//incrementstart timer();

}

function setinterval start()

{
var startunits = playhead position();
document.getElementById('intervalstartunits')

.value = start units;
var start = format time(startunits);
document.getElementById('intervalstart_display').value = start;
var timescale = document.getElementById('timescale').value;
var startseconds = Math.floor(startunits/timescale);
console.log("(setinterval start) startseconds =

+ startseconds);
document.getElementById('startseconds_display')

.value = startseconds;

}

// form to send interval to server

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 161

function checkand_send()

{
var last start time =

parseInt(document.getElementById('startseconds display').value)

var intervallength =

parseInt(document.getElementById('starttimer').value);

var lastpause =
document.getElementById('pause_seconds display').value;

/*
Note: it's necessary to use parseInt because of string addition

that will happen if we dont' convert them to ints first

var currentposition = playheadposition();
var timescale = document.getElementById('timescale').value;
var currentsecond = Math.floor(currentposition/timescale);

console.log("(checkandsend) last start time =
+ laststart_time);

console.log("(checkandsend) interval_length =
+ intervallength);

var last watched second = last start time + intervallength;
console.log("(checkandsend) laast watched second =

+ lastwatchedsecond);
console.log("(checkand-send) with currentsecond =

+ currentsecond);

// if the latter is true, we need to package

// up a new interval and send a message to server

if ((laststarttime + interval-length) < currentsecond)

{
console.log("passed the if statement....");

console.log("--last start time = " + laststarttime);
console.log("--intervallength = " + interval_length);

$.ajax({

type:'POST',

url: "/post test!",
data: { iformstart : laststarttime,

iformend : last_pause,
user : document.getElementById('user').value,
ta id : document.getElementById('taid').value,

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 162

success: function(responseData)

{
console.log(responseData);

//alert(responseData);

dataType: "text"

}) ;
setintervalstart();
begin start timer(0);

}
else {

var laststart = document.getElementById('starttimer').value;
console.log("in check and send, starting the timer again at
+ last start);
begin starttimer(last start);

}
//setintervalstart();

// start the timers again

}

// interval pause
function setintervalpause()

{
var pause units = playheadposition();
document.getElementById('intervalpause units')

.value = pause_units;
var pause = format time(pause_units);
document.getElementById('intervalpausedisplay').value = pause;
var timescale = document.getElementById('timescale').value;
var pauseseconds = Math.floor(pause units/timescale);
console.log("(setintervalpause) pause-seconds =

+ pauseseconds);

document.getElementById('pause seconds_display')
.value = pauseseconds;

stopstart timer();

}

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 163

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 164

Appendix D: CSS Profiles

D.i Main Style Sheet Definitions

D.1.1 Usersite.css

body

{
margin: 0;
padding:0;
background-color:#5E778E;

}

td, th

{
line-height:105%;
max-width:220px;

}

smtd

{
max-width:100px;

}

div, p, ul, ol

{
font-family:Arial, Helvetica, sans-serif;
font-size:100%;

}

ul, o1

margin-top:0.5em;

}

#base

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 165

height: 100%;

background-color:#5E778E;

}

#topblock

{
position:relative;

padding:0 .5em;

width:90%;
height:70%;

}

#main column

{
background-color:#99AABB;

padding:1%;
width:600px;

position:absolute;
left:0;

}

#sidebar

font-size:75%;
width:30%;

float:right;
margin-left:3em;
position:relative;
background-color:#AABBCC;

padding:1%;
display:table-column;

}

#browse sidebar

{
position:absolute;
top:0;
left:700px;

float:right;
padding:lem;
background-color:#CCCCCC;

margin:10px;
width:150px;

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 166

#sidebar content

{
font-size:16px;
display:block;
height:100%;

}

#bottom-block

{
background-color:#FAFAFF;
margin-top:0.5em;

display:inline;
position:absolute;
top:575px;
clear:top;

}

.clear

{
clear:both;
height:0;
font-size:0;

}

.sidebar header

{
font-weight:bold;
font-size:120%;
margin-bottom:Opx;

}

#masthead

{
margin:10px;
height:15px;

width:auto;
font-size:65%;
padding:.5em 2em;
background-color:#CCCCCC;

border-bottom:1px solid black;

}

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 167

#content-container

width:90%;
display:block;

margin:auto;

margin-top: lem;

}

#home nav

{
display:inline;
float:left;

text-align:left;

}

#welcomemessage

{
display:inline;
float:right;

text-align:right;
margin-left:3em;
margin-right:5em;

}

#pagetop

{
font-size: 125%;
font-weight:bold;
text-decoration:underline;
margin-bottom:10px;
width:80%

}

.movie div

width:80%;
margin:10%;

}

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 168

.comment-box

display:block;
float:left;
margin:2%;
width:100%;

}

.comment textarea

width:90%;

}

.mbrowser

background-color:#FAFAFF;
font-size:80%;
top:10px;

float:left;
margin:0;
position:absolute;

}

.mast-link

font-size:120%;
font-weight:bold;

padding:0.5em;

}

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 169

D.1.2 Default.css

Design by Free CSS Templates

http://www.freecsstemplates.org

Released for free under a Creative Commons Attribution 2.5 License

body {
margin: 0;

padding: 0;
background: #28313A url(images/img01.jpg) repeat-x left top;

font-size: 12px;

font-family: Georgia, "Times New Roman", Times, serif;
text-align: justify;

color: #5C5C5C;

}

hl, h2, h3 {
margin: 0;
text-transform: lowercase;
font-weight: normal;

color: #FFFFFF;

hl {
letter-spacing: -ipx;

font-size: 32px;

h2 {
font-size: 23px;

}

p, ul, ol {
margin: 0 0 2em 0;

text-align: justify;
line-height: 26px;

color: #1B75A9;

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 170

a:hover, a:active {
text-decoration: none;
color: #1B75A9;

a:visited {
color: #1B75A9;

img {
border: none;

}

img.left {
float: left;
margin-right: 15px;

img.right {

}

/* Form */

form {

float: right;
margin-left: 15px;

margin: 0;
padding: 0;

fieldset {
margin: 0;
padding: 0;
border: none;

}

legend {
display: none;

input, textarea, select {
font-family: "Trebuchet MS", Arial, Helvetica, sans-serif;
font-size: 13px;

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 171

color: #333333;

}

#wrapper {
margin: 0;

padding: 0;

}

/* Header */

#header {
width: 880px;

margin: 0 auto;

height: 60px;

border: 10px #FFFFFF solid;

}

/* Menu */

#menu {
float: left;

width: 880px;
height: 58px;
background: url(images/img02.jpg) repeat-x left top;

}

#menu ul {
margin: 0;
padding: 23px 0 0 20px;
list-style: none;
line-height: normal;

}

#menu li {
float: left;

text-align: center;

}

#menu a {
display: block;
padding: 0 50px;
background: url(images/img03.jpg) no-repeat right 50%;

text-decoration: none;

text-transform: uppercase;

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 172

font-size: llpx;
color: #FFFFFF;

#menu a:hover {
color: #FFFFFF;

}

#menu .currentpage-item a {
color: #FFFFFF;

}

/** LOGO */

#logo {
width: 880px;
height: 130px;
margin: 0 auto;

}

#logo hl, #logo h2 {
float: left;
margin: 0;
padding: 50px 0 0 Opx;
line-height: normal;

}

#logo hl {
font-family: Georgia, "Times New Roman", Times, serif;
font-size:40px;

}

#logo hl a {
text-decoration: none;
color: #28313A;

}

#logo hl a:hover { text-decoration: underline; }

#logo h2 {
float: left;
padding: 65px 0 0 18px;

font-family: Georgia, "Times New Roman", Times, serif;
font-size: 25px;

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 173

color: #28313A;

}

#logo p a {
text-decoration: none;

color: #28313A;

}

#logo p a:hover { text-decoration: underline; }

/* Page */

#page {
width: 880px;
margin: 0 auto;
background: #FFFFFF;

border: 10px #FFFFFF solid;

}

/* Content */

#content {
float: left;
width: 620px;
border-right: 1px dashed #DFElEO;

}

/* Post */

.post {
padding: Opx 20px;
margin-bottom: 20px;

.post .title {
margin-bottom: 20px;
padding-bottom: 5px;

.post hl {
width: 520px;

padding: Opx 0 0 Opx;

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 174

background: url(images/imgO8.jpg) no-repeat left top;
font-size: 24px;
color: #28313A;

.post h2 {
width: 520px;
padding: Opx 0 0 Opx;
font-size: 22px;

color: #28313A;

}

.post .entry {
}

.post .meta {
padding: 15px 15px 30px Opx;
font-size: 10px;

.post .meta p {
margin: 0;
padding-top: 15px;
line-height: normal;

color: #28313A;

}

.post .meta .byline {
float: left;

.post .meta

}

.post .meta

.post .meta

.links {
float: right;

.more {
padding: 0 20px 0 18px;

.comments {
padding-left: 22px;

}

.post .meta b {

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 175

display: none;

}

/* Sidebar */

#sidebar {
float: right;

width: 230px;
margin: 0;

padding: 0;

}

#sidebar ul {
margin: 0;

padding: 0;
list-style: none;

}

#sidebar li {
margin-bottom: 40px;

}

#sidebar li ul {
}

#sidebar li li {
margin: 0;

}

#sidebar h2 {
width: 250px;
padding: 8px 0 0 Opx;

margin-bottom: 10px;
background: url(images/img07.jpg) no-repeat left top;
font-size: 20px;

color: #28313A;

}

/* Search */

#search {

}

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 176

#search h2 {
margin-bottom: 20px;

width: 140px;
margin-right: 5px;
padding: 3px;
border: lpx solid #DFEIEO;

padding: 3px;

border: none;

background: #0A5688;
text-transform: lowercase;
font-size: llpx;

color: #FFFFFF;

}

/* Boxes */

padding: 20px;

color: #BABABA;

.box2 h2 {
margin-bottom: 15px;
font-size: 16px;
color: #FFFFFF;

}

.box2 ul {
margin: 0;
padding: 0;
list-style: none;

.box2 a:link, .box2 a:hover, .box2 a:active, .box2 a:visited {

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM

#s {

}

#x {

.boxl {

}

.box2 {

177

color: #EDEDED;

}

/* Footer */

#footer-wrap {
}

#footer {
width: 880px;

margin: 0 auto;
background: #E5E5E5;

border: 10px #FFFFFF solid;

}

html>body #footer {
height: auto;

}

#footer p {
font-size: 12px;

}

#legal {
clear: both;

padding-top: 17px;
text-align: center;

color: #595959;

}

#legal a {
font-weight: normal;
color: #1B75A9;

}

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 178

Appendix E: Apache Configuration

E.1 Apache Virtual Host: tutorials

<VirtualHost *:80>

ServerAdmin webmaster@localhost

DocumentRoot /home/caitlinj/website/djcode/

Alias /sitemedia/ /home/caitlinj/website/djcode/usersite/media/
<Directory /home/caitlinj/website/djcode/usersite/media/>
Order allow,deny
Options Indexes
Allow from all
</Directory>

Alias /media/ /home/caitlinj/website/djcode/usersite/media/

<Directory /home/caitlinj/website/djcode/usersite/media/>

Order allow,deny
Options Indexes
Allow from all
</Directory>

<Directory />
Options FollowSymLinks
AllowOverride None

</Directory>

<Directory /home/caitlinj/website/>
Options Indexes FollowSymLinks MultiViews
AllowOverride None
Order allow,deny

allow from all

</Directory>

ErrorLog /var/log/apache2/error.log

Possible values include: debug, info, notice, warn, error, crit,
alert, emerg.

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 179

LogLevel warn

CustomLog /var/log/apache2/access.log combined

Django Installation

WSGIScriptAlias /
/home/caitlinj/website/djcode/usersite/apache/django.wsgi

</VirtualHost>

WSGIPythonPath /home/caitlinj/website/djcode/

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 180

E.2 Djangowsgi.config

import os
import sys

path = '-/website/djcode/'

if path not in sys.path:

sys.path.append(path)

path2 = '/usr/lib/pymodules/python2.6/'
if path2 not in sys.path:

sys.path.append(path2)

os.environ['DJANGOSETTINGSMODULE'] = 'usersite.settings'

import django.core.handlers.wsgi
application = django.core.handlers.wsgi.WSGIHandler()

A USER STUDY OF AN EDUCATIONAL VIDEO SYSTEM 181

