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Road traffic congestion is one of the biggest frustrations for the daily commuter.

By improving the currently available travel estimates, one can hope to save time, fuel

and the environment by avoiding traffic jams. Before one can predict the best route

for a user to take, one must first be able to accurately predict future travel times. In

this thesis, we develop a classification-based technique to extract information from

historical traffic data to help improve delay estimates for road segments.

Our techniques are able to reduce the traffic delay prediction error rate from

over 20% to less than 10%. We were hence able to show that by using historical

information, one can drastically increase the accuracy of traffic delay prediction. The

algorithm is designed to enable delay prediction on a per-segment basis in order to

enable the use of simple routing schemes to solve the bigger problem of predicting

best future travel paths.
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Chapter 1

Introduction

As commuters, we have all experienced long traffic delays and have wished that we

knew the shortcuts that the "locals" know which would help us avoid congested

streets, traffic lights, stop signs and the like. Though we have access to road maps

and the speed limits in each of these roads, this information is often insufficient for

us to find the least frustrating route to our destination. We can experience drastic

deviations from our estimated travel time due to factors like traffic light cycle lengths,

rush-hour times, construction and special events like a Red Sox game at Fenway Park.

In order to address this issue, it becomes critical that our routing software incorporate

some of these factors during route planning. This chapter introduces some of benefits

of developing traffic-aware routing systems.

Chapter two describes existing techniques used to predict traffic delays and some

of the merits and demerits of these methods. Additionally, I also overview some of

the prior work done in the CarTel project [1] on which my work relies.

Chapter three describes the structure of the traffic prediction system including the

prediction algorithm, routing system and visualization suite as well as the motivations

for the various design choices.

Chapter four describes the performance of the traffic prediction system on various



data sets when compared to the previously used scheme. Possible future expansions

to the project are also discussed.

1.1 Traffic Congestion : A global epidemic

Traffic congestion is one of the biggest time-sinks for the daily commuter. The average

person is are estimated to lose roughly 5 days a year to traffic jams [25]. With every

major city facing this problem, the US experiences roughly 3.9 billion gallons in

wasted fuel and $115 billion in lost productivity, or about 0.8% of the nation's GDP

[30][3] due to traffic. By finding efficient routes using a traffic-aware system that

also reduces the idle engine time (time wasted in traffic jams, signals, stop signs,

etc.), we can not only decrease the commute time, but also reduce the amount of fuel

consumed, thereby reducing emissions and alleviating some of the pressure on our

natural resources.

This problem of traffic congestion is

not just restricted to the United States.

It is a global phenomenon prevalent

in almost every urbanized city - from

cities far north like Moscow, Russia to

Auckland, New Zealand in the South-

ern Hemisphere, from Tehran, Iran in the

Eastern Hemisphere to Toronto, Canada Figure 1-1: A traffic jam in the Himalayas

in the West. Traffic jams have been fre-

quently observed in more low population areas that lie on major travel routes such

as the high mountainous roads of Garhwal, India in the Himalayas (Figure 1-1) and

the China National Highway 110 that connects the coal mines in Inner Mongolia to

Beijing. Perhaps surprisingly, the United States doesn't hold the title for the most



congested city in the world. Sao Paulo, Brazil claims this title [11] and set this record

on June 10, 2009 with more than 293 km (182 mi) of accumulated traffic out of 835

km (522 mi) monitored road segments. A solution to alleviate traffic conditions will

hence be globally beneficial to people and the environment.

In many cases, restrictions are imposed to help reduce the number of cars on

streets. Hong Kong has resorted to imposing a high vehicle purchase tax [16]. Bo-

gota, Colombia, used the Pico y placa system [9], which restricts the use of vehicles

for several days each week based on the last digits of license plates. The UK has

introduced a Road Pricing system to encourage drivers to switch to public transport

[13]. These systems of taxation and restriction have been unpopular amongst cit-

izens. Alternative strategies could help reduce congestion while not imposing such

constraints on the general public.

Since varying the hour of commute

by introducing a non-standard work day

is not economically feasible [12], people

in many countries have tried alternate

modes of transport like switching to two

wheeled vehicles to better weave through

traffic. However, cities like Taipei, Tai-

wan (Figure 1-2) and Ho Chi Minh City,

Vietnam have daily traffic jams compris- Figure 1-2: A Taipei traffic jam comprising
of primarily two wheeled

ing of mainly motorcycles and other two

wheeled vehicles. Other cities have tried introducing public transit which has helped

alleviate traffic to some extent, but not solved problem.

- --------------------------- -- . .............



1.2 Finding an Immediate, Inexpensive solution

Rather than imposing restrictions or switching modes of transport, another option

for dealing with traffic congestion is to find alternative routes that help users bypass

backed-up road segments during periods of congestion. Some highways now have

displays indicating congestion further down the road, thereby providing the commuter

with some real-time information about traffic congestion levels.

In some other cases, the government makes the traffic levels that they monitor

in some regions publicly available. For example, the Transport Department in Hong

Kong has set up websites with maps showing congestion for the Cross Harbor Tunnel

and provides commuters with signs on both sides of the harbor informing drivers of

the quickest way to get to the other side of Victoria Harbor [10].

Unfortunately such systems are not common because they require the deployment

and maintenance of sensors. Even when this information is available, drivers must

go to the website and manually find a low traffic route to their destinations. Current

traffic routing algorithms used by GPS navigation devices and Internet websites. often

don't account for these traffic patterns and typically predict estimated travel times

based on the speed limit of roads. Though the speed limit is a good indicator of the

time taken to reach our destination under ideal conditions, it fails to provide a more

efficient route during periods of congestion.

The difficulty of predicting traffic delays along different routes is a major deterrent

for traffic-aware routing systems. In order to tackle the problem of predicting the most

efficient possible route, one must first be able to predict traffic delays along any given

path. Given this ability, one may then use a route planning algorithm to find the most

optimal route. By making the reasonable assumption that traffic delays are additive

over traffic segments, the problem reduces to predicting the traffic delay across any

given road segment at any time.

The problem of determining the delay across a particular road segment is itself



not a trivial problem. Though one way to predict traffic delays along a road segment

is to build an extensive physical model of the entire road system that factors in signal

times, rush hour traffic, etc., such a system quickly becomes complex due to the

large number of parameters involved. Further, obtaining the data to set each of the

parameters (such as the cycle times of each traffic light and their relative offsets) can

be near impossible. Additionally, such a system can not account for segments where

vehicles show characteristic human behaviors - like traveling faster than the speed

limit.

Another way to predict delays is to extract them from observed delays obtained

from vehicles actually traversing the roads. This would help us frame the problem

as an inference problem rather than a simulated physical model. Correspondingly,

there are other obstacles to overcome in order to predict traffic trends from vehicular

observations. Nodes that collect vehicle positions must first be built and installed

which can be a slow and expensive process. GPS data is invariably noisy in downtown

areas and this data is available for a limited number of road segments. Due to the

unpredictability of traffic, estimating levels of traffic congestion is extremely difficult.
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Chapter 2

Background

2.1 Previous Work

Many different approaches have been attempted to estimate and predict traffic delays

in urban city streets and highways and each system has its merits and demerits.

The first hurdle that makes developing traffic estimation algorithms challenging is

obtaining good data. Ideally, one would like fine-grained (to the level of seconds), low

error and extensive data for each road segment for all times of day. Obtaining such

data is difficult because typically vehicles are tracked with lower granularity (level of

minutes), GPS data is noisy and only sparse data is available for inner streets and

areas further away from the main city. However, many different mechanisms have

been developed to circumvent these problems.

2.1.1 Traffic Simulators

Many algorithms have been developed using traffic simulators like [5] [2] [4] to obtain

extensive amounts of fine-grained data for every road segment in a simulated city.

This has lead to the development of methods like Kernel regression [5] to capture

traffic trends and queuing techniques [2] for modeling delays introduced by traffic

19



signals,

The advantage of using a simulator is the large amount of data that one can use to

rigorously train and test the prediction scheme. It is possible to see how the system

would behave in extreme scenarios that we may not be easily able observe in the real

world and we have the ability to introduce hand crafted changes in the environment

that would give us a strong indication of the flexibility of the prediction scheme.

On the other hand, while these algorithms perform very well on simulator data,

they have been untested on real traffic data. Another common problem with such

methods is that they rely on large amounts of data to learn the parameters of the

model.

2.1.2 Hand-Picked Loops

In many cases, authors hand-pick a few road paths of interest and periodically drive

their vehicles through these paths [8]. This allows the authors to collect data at the

granularity they desire and error reduction techniques can be effectively applied to

obtain accurate training data.

While it may be possible to increase the accuracy of predictions for these segments,

it is not clear how well these methods generalize to other segments, especially since we

may not be able to obtain such regular accurate data for these other segments. These

methods do however, provide insight into some of the local factors that influence

traffic.

2.1.3 Other Traffic Detectors

Obtaining GPS data typically requires installing units on vehicles or distributing a

smart-phone application or buying this data from other vendors. These methods can

be time-consuming, expensive and in the case of smart-phones a significant power

drain [7]. To resolve these issues, many systems obtain traffic information from loop



sensors [8] [20] installed on roads. These devices are buried under the road and use

changes in electric and magnetic fields to "count" the number of cars that cross them.

Such loop detectors are typically installed and maintained by the government.

Loop detectors serve as an accurate (3.5% error [32]) stationary source of traffic

flux information for a given lane of a road. By placing two successive loop detectors,

speed-traps can be created to estimate the speed of passing vehicles.

Unfortunately, loop detectors are expensive to install and prone to failure. There-

fore, these detectors are only placed in areas of interest, resulting in data coverage

that is not extensive. Since the sensors can only count cars, there is no information

available about the behavior of the car, such as its acceleration, signal stops and

turn information. Traffic estimation algorithms using loop detectors have also been

developed but face the problem of information gathering.

The wide-spread use of traffic cameras has led to the development of schemes

that use frames captured from these cameras to count vehicles and estimate their

speed [32]. One scheme out-performed Gaussian-based machine learning scheme, but

achieved a counting accuracy of only 72% which is not competitive with loop detectors

(3.5% error in count [6]). This scheme faces the same problem as loop detectors; it is

unable to effectively track the trajectory of a vehicle.

2.1.4 Jam-Bayes

The Jam-Bayes [19] system developed at Microsoft Research labs in for traffic predic-

tion in Seattle has many common goals with our effort. The traffic prediction system

at Microsoft incorporates not only monitored traffic from sensed traffic cells in the

Seattle road network, but also uses traffic incident reports, major city events and

weather information like precipitation, visibility, temperature and sunshine.

In their paper, the Jam-Bayes authors identified 22 key traffic "bottleneck" regions

of the Seattle network. Once these regions were identified, the Jam-Bayes system then



learned a Bayesian network over all the variables (like events, time, weather) in order

to obtain the best estimation model to determine the time taken for traffic jams to

clear up in these bottleneck regions of Seattle.

The Jam-Bayes development team also created a website and smart-phone appli-

cation to make their service more accessible for subscribers. This service provided uses

with estimated traffic conditions as well as a confidence measure of the estimation.

Our project draws inspiration from the Jam-Bayes project. We aimed to design

a system that could incorporate multiple traffic influencing factors as well. We also

wanted to have a system that provides users with feedback on the conditions. How-

ever, we wanted to do more than just identify bottlenecks and predict conditions on

these bottlenecks.

Instead, our goal is to provide traffic predictions on an individual path basis

in order to obtain an estimated travel time between any two points in our region of

coverage. We also wanted to use this system to design a routing algorithm for vehicles

that could take these traffic predictions into account and suggest the best route to

take at some point in the future that would be able to avoid congested segments.

2.2 Previous work done in the CarTel Project

The CarTel system provides a traffic-aware routing engine for finding the best route

for people to take to their destination. This system developed two key components

that I utilize for the traffic prediction problem:

" GPS nodes on taxi-cabs (CarTel Vehicular Testbed)

* Map-matching and delay extraction

* A traffic-aware routing engine



2.2.1 CarTel Vehicular Testbed

The CarTel testbed [14] consists of nodes deployed on a few taxicabs in Boston. Each

node includes a collection of hardware sensors placed on vehicles that constantly relay

GPS position information to our servers and record the data for future use.

The hardware unit comprises of a GPS unit, a WiFi communication module and

some on-board storage. GPS information obtained is first locally buffered on the on-

board storage device, and then relayed via WiFi or cellular modems to our servers.

These hardware units were deployed on about 27 taxicabs in the Boston area as

well as a few personal vehicles of lab members. Since taxicabs are not confined to

bus-routes or highways, are operational for a significant portion of the day (and some

times in the night) and since they face traffic that a daily commuter would face, we

decided that taxicabs were the best set of vehicles to piggy-back our traffic collection

devices on.

These devices record GPS information roughly once every second and hence pro-

vide us with fine-grained information about the position of the vehicle. This is our

primary source of traffic information in this thesis. We hope to expand our coverage

by deploying nodes on many more taxicabs in the future.

2.2.2 Map Matching

Once the vehicular testbed was set up to obtain GPS information from various taxi-

cabs that housed the GPS recording units, we needed a way to convert these GPS

points into routes taken by the cab drivers with the corresponding route delays.

CarTel's vehicular tracking and map-matching system, VTrack [31], was developed

as an efficient solution to this problem. The Map-matching algorithm uses the road

adjacency constraints imposed by the road network and a simple physical model of

vehicles to calculate the probability the sequence of GPS points corresponds to a

particular sequence of road segments. The adjacency constraint ensures that the



trajectory is continuous, thereby ensuring that observation error in raw GPS points

does not result in physically impossible paths of cars briefly jumping to other road

segments. The simple physical model of a vehicle captures the fact that the velocity

of a car changes smoothly. This allows us to model the true position of the taxicabs

as a hidden state variable and ensures that we don't see erratic behavior like rapid

acceleration and deceleration.

This modeling of the true position of the taxicabs enables us to infer the speed

of the vehicle from the positions that we extract from the hidden state variable.

Further, this process also allows us to interpolate the position of the vehicle over time

to determine the travel time along really short road segments which otherwise would

have been impossible. Further, this interpolation enables us to predict when a vehicle

entered and exited a segment. It also enables us to infer the direction of travel on a

road segment.

Another major advantage of interpolation is our ability to roughly infer the speed

of the vehicle when no GPS observations are made. This occurs when a taxi travels

though a tunnel or when the GPS satellite is temporarily lost due to environmental

factors.

The Map-matching algorithm processes the sequence of GPS points using a Hidden

Markov Model (HMM) with transitions specified by simple dynamic model in con-

junction with the road network information of the United States to compute the most

likely trajectory traversed by the cab. This system uses the Viterbi algorithm [15]

under the hood and therefore provides accurate matching of the observed trajectory

of GPS points to the true trajectory of road segments. uses the Viterbi algorithm [15]

to find the hidden variables that maximize the likelihood of our observations under

our constraints. The efficiency and error reducing properties of the Viterbi algorithm

makes it a highly attractive algorithm for us to use for map matching.

This algorithm plays a key role in extracting travel delays across individual road



segments from taxicab trajectories, which serves as an input to the travel delay pre-

diction algorithm developed in this thesis.

2.2.3 CarTel Routing Engine

Once the GPS points were map-matched to road segments, delay observations for

road segments traversed by taxis became available. The next step was to determine

the most efficient route from the source to the destination. However, since road traffic

delays vary over time, an efficient routing algorithm that could adapt to changes in

traffic delays was required.

The CarTel routing engine answers this problem with a three component routing

pipeline :

" iCarTel portal

" Stochastic routing system

" Dynamic Route Planning via Continuous Queries

iCarTel Portal

The iCarTel portal [22] provides a web interface for users to obtain their optimal

traffic-aware travel routes by utilizing the underlying routing machinery. Additionally,

the iCarTel portal serves as a platform for the collection of GPS data from nodes using

the CarTel vehicular testbed (Section 2.2.1) and the map-matching of this data into

traversed trajectories.

Stochastic Routing System

The stochastic routing component [21] of the CarTel routing engine utilizes a stochas-

tic model of travel delay on road networks in order to enable routing under uncertainty.

Such a stochastic model allows the optimization of cost functions of the delay data



probability distribution, thereby enabling the CarTel routing algorithm to find routes

that satisfy particular travel deadlines.

Dynamic Route Planning

The traffic-aware routing problem varies from the standard minimum cost routing

problem in that the delays (cost) estimates along road segments constantly change

over time. It would be impractical to recompute the optimal route ever time the delay

estimate across a road segment changes - especially when we are dealing with large

road networks like that in Boston. Recomputing paths becomes even more infeasible

in a practical setting with a large number of incoming routing queries.

The dynamic route planning algorithm [23] offers an approximate solution to this

problem while still guaranteeing run-time efficiency. By using K-Paths and proximity

measures, the algorithm speeds up the processing of the routes specified by incoming

routing queries by computing likely good paths and by recomputing routes only when

delay estimates have changed significantly.

Since this system delivers routes that are within 5% of the best shortest path

under frequent delay updates while maintaining a run-time efficiency at an order of

magnitude under the naive re-computation scheme, this algorithm made it possible

for me to design a traffic prediction system that could interact with the routing system

without incurring a heavy computational penalty.

In order to ensure that the delay updates given to this routing algorithm are

valid updates, one must first understand the principles behind the backbone routing

scheme of the dynamic route planning algorithm, the A-star search algorithm.

Predicted Delays in the A-star Routing Algorithm

The A-star algorithm [18], a popular search algorithm known for its performance

and accuracy, lies at the core of the dynamic route planning algorithm. The A-star



algorithm plays a critical role in determining how traffic delay estimates effect the

resulting minimum cost path from the routing algorithm.

The A-star algorithm performs a "best-first" search of trajectories from point A

to point B by expanding along the node C that nminimizes

f(A, B) = d(A, C) + h(C, B)

Where d(x, y) is the distance function between points x and y and h(x, y) is an

admissible heuristic distance from x to the goal y.

In the setting of searching for the shortest travel time routes, the distance ftmction

d(x, y) becomes the time taken to travel from x to y. The heuristic function h(x, y)

used was the as-the-crow-flies time, taking into account the curvature of the Earth

using the Haversine Formula [29]. By setting the as-the-crow-flies time to be smaller

than the time taken for a car traveling faster than the maximum speed to traverse

the straight line path from x to y, h(x, y) qualifies as an admissible heuristic since

h(x, y) < d(x, z) + h(z, y)

for any point z where equality holds only if z is on the shortest arc from x to y.

Since there is a known effect of the hour of day on the traffic delays on road

segments, this feature was taken into account for computing the distance function

d(x, y) in the A-star search algorithm. Rather than using just the travel time at

the speed limit for the road segment, the expected travel time based on hour of day

d(x, y t) was used.

To compute this quantity, all delay observations for the road segment were first

split into 24 bins, one for each hour of the day. Then then expected travel time

d(x, ylt) was computed as the sample mean of bucket hour(t) (hour of day corre-

sponding to time t) for the shortest computed path from x to y.



While this system performed reasonably well, it was evident that one could im-

prove on the prediction accuracy by utilizing various traffic influencing factors (Section

3.1.2). Further, it was not clear if splitting the observations into 24 buckets, one for

each hour of the day, was the optimal granularity for delay estimation. My goal in

this project was to develop a road traffic prediction technique that could significantly

reduce errors in traffic delay predictions while still being computationally feasible to

integrate into the CarTel's online routing engine.



Chapter 3

Design and Implementation

Estimation of traffic delays is a complex problem and has many components. Firstly,

we need a data source that gives us the traffic information for delay prediction and

validation. We then need mechanisms to filter noisy data from our source to increase

the data accuracy. Next, we need to come up with a traffic model and determine

the variables that influence traffic. With this informati n, we can then develop an

algorithm for predicting traffic delays. Finally, we need a mechanism to validate the

predictions and determine the accuracy and efficiency of the algorithm.

3.1 Design

Our prediction system begins with the collection of GPS data from taxicabs. Travel

delay information is then extracted from the raw GPS points through the Map-

matching algorithm. Weather conditions obtained from the National Weather Ser-

vices database, day, time and other information are all compiled which each delay

observation to populate a database of historical observations for each road segment.

With the data for a road segment all in one place, we then use this information build

a classification tree for traffic delay predictions for each road segment.

When our system receives a query to estimate the traffic delay for a route, the route



is first broken down into its corresponding road segments. Using the classification

trees, we then predict delays for individual segment and finally sum the predictions

together to obtain an estimate for the expected travel time along the route. Figure

3-1 summarizes the flow of data in or system and how predictions are obtained.

Before we design an algorithm to extract traffic delays, let us first explore the

data sets we use to determine the strengths and limitations of our information.

3.1.1 Data Source

This project uses two primary types of data - traffic data from vehicles traversing

roads and street layout information of the corresponding cities.

Traffic Data

As described in Section 2.2.1, we get traffic information primarily from GPS devices

on taxicabs in and around the Greater Boston area. The information collected by

these devices is relayed to our database via the Cabernet system [14]. The data is

available across a three year period from January 2 4th 2007 to February 4 th 2010

in three chunks (Table 3.1). As we go from the first chunk to the third chunk, our

lab updated the number of hardware GPS nodes, made some improvements to the

Map-matching algorithm, etc.

Vehicle Start Date End Date count
Taxi Sun Sep 16 14:14:28 2007 Tue Oct 16 16:45:29 2007 7,383,910
Taxi Mon Jan 5 08:10:23 2009 Thu Feb 4 16:53:44 2010 12,209,422
Taxi Thu Feb 4 16:55:16 2010 Wed Jul 28 15:26:09 2010 3,485,718
Bus Wed Apr 28 22:16:10 2010 Tue May 18 23:59:58 2010 13,115,450

Table 3.1: Data Sets

An important characteristic of the GPS data procured from taxicabs is that the

data coverage across different road segments is not uniform. Some of the streets in

Boston have very good historical coverage. These streets typically correspond to those
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Figure 3-1: Flow chart of the traffic delay prediction algorithm



around the Boston Logan airport and the streets around the taxicab parking garages.

Some commonly used highways and streets have moderate historical coverage like

segments of the Massachusetts Turnpike within the Boston city limit.

However, most other road segments have very limited coverage across history.

In fact, there are many road segments that our taxis never used during the entire

two year period. We have no information about the actual traffic behavior on these

segments as they have no coverage.

The number of observations per road segment is an inverse exponential distribu-

tion. This trend is displayed in Figure 3-2 using a random sample of 10,000 road

segments, each with more than 100 observations.
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Figure 3-2: Prediction accuracy vs number of observations for individual road segments

This sparsity in coverage primarily arises from the limited number of deployed

nodes available to us. We currently have at most 27 taxi-cabs providing GPS data

at any given instant. This number decreases as we go further back in history since

we had even fewer tracker nodes deployed. The reason we have some well covered

segments and some poorly covered segments is due to the behavior of taxis. Since

taxis pick up passengers primarily from places like the airport and commonly drop

off people at locations such as shopping complexes and hotels, we tend to have good



coverage of road segments around these hubs. However, most road segments in Boston

do not have daily data available across history.

It is important to note one caveat regarding the information available frotn these

regions; taxis tend to exhibit behaviors that cause reported speeds to deviate from

that of normal traffic speeds. This effect is most pronounced when taxis are picking

up or dropping off passengers. Since the only information we obtain from the taxi

cabs is their location, we have no means of directly distinguishing between a taxicab

parked on a side of a street and one stuck at a traffic signal. Taxis driving around

slowly waiting to be called have GPS traces that are indistinguishable from traces of

cabs moving on a congested road segment.

Yet another artifact of GPS data is that it can be noisy. This noise can become

the quite significant in regions with cloud cover, high rise buildings, tunnels and other

regions with environmental disturbances. Therefore, our data from downtown Boston

is typically more noisy than those from the suburbs. Our data must be pre-processed

(Section 3.2) to reduce this noise before it can be used for inference .

MBTA Bus Data

In addition to the GPS data collected from taxi-cabs, we also had access to GPS

trackers installed by the MBTA (Massachusetts Bay Transportation Authority) in

public transit buses in Boston for a period of about a month in May 2010 (Table 3.1).

The sampling frequency here was at a much lower rate (on average, one sample every

two minutes) than what we had for cars (roughly one sample very second). This low

sampling rate made it difficult for us to accurately determine the speed of travel of

the bus or the travel time on an individual road segment.

Additionally, this data contained no information about how much time each bus

spent at a bus stop. This combined with the low sampling rate made filtering out the

true travel time on a road segment very difficult.



Street Layout Data

Individual GPS coordinates themselves don't directly enable us to determine which

street segments the vehicle traveled. The actual road traversed must be inferred from

the sequence of GPS points. In order to identify these roads, we first need a map of

the road network.

We use two road segment maps : one compiled by Navteq [26] and the other from

Open Street Maps [17]. Both maps have detailed information available for all streets

in the USA, but we restricted ourselves to streets in and around the Boston, MA.

Both the Navteq and Open Street Maps databases split up streets into multiple

road segments to ensure that proper road adjacency information is provided and all

intersections are taken into account. Many times, the intersection itself is reasonably

long, in which case, a separate tiny road segment is created to account for the road

length of the intersection. This process of splitting streets into smaller road segments

yields road segments that vary widely in length but uniquely identify each segment.

Additionally, information about one-way and two way streets, altitude (when there

are overlapping roads), etc are provided which allows us to distinguish between road

segments and determine the direction of flow of traffic on these segments.

One important feature of this data set is that intersections occur at the end points

of road segments. When a vehicle stops at a traffic signal, the GPS error causes the

observed points to lie on multiple segments rather than the segment the vehicle is

on. By tracking trajectories rather than looking at raw GPS points, we can narrow

this down to two segments - the segment with the stop and the segment the vehicle

travels on next. Even then, it is not trivial to determine how long vehicle stayed on

the first segment versus the second. The problem of determining how long a vehicle

stayed on each segment becomes even harder when cars take left turns (when they

are in the middle of the intersection) or when the roads are congested since simple

heuristics (like associating all the stop time with the first segment) do not work as



well.

Sometimes, these road segments can get as small as 5m, especially at intersections.

Such small segments make traffic prediction difficult due to the same problem of

associating GPS points to road segments. It becomes hard to determine whether the

vehicle got stuck on the short road segment or on any of its adjacent ones. This results

in a large variance in the observed travel times for such segments where the observed

distribution of travel times can deviate quite drastically from the true travel time.

Conversely, observed delays across longer road segments more accurately reflect the

actual delay experienced by the vehicle. This results in our distribution of observed

travel times to more closely follow the ground truth. More details about matching

GPS points to road segments can be found in Section 3.2.

The Navteq database provides us with the road segments in USA with their lengths

(in km) and speed limits (in kph). For this project, we use kph as our unit for speed

and km as the unit for distance.

Weather Data

A goal of this project was to consider the effect of weather on traffic conditions to

help us more accurately predict traffic delays. To do so, we first needed a source of

weather information.

We obtained weather data from the National Oceanic and Atmospheric Adminis-

tration's weather service database [28]. This data provides weather recordings from

various weather stations around a given area. We used the KBOS weather station

[27] located at Boston Logan International Airport as the weather provider for the

Greater Boston.

The weather data consisted of hourly observations from a large range of weather

sensors that provided information on temperature, humidity, cloud cover, aiount of

precipitation and more. We used the data provided in their Surface Hourly A bbrevi-



ated Format (Appendix A). This format consists of an enumeration of one hundred

different weather conditions such as "Mist" or "Patches of shallow fog or ice fog at

the station, whether on land" and has separate enumerations for different types and

intensities of precipitation such as "Drizzle (not freezing) or snow grains not falling

as shower(s)" or "Rain, freezing, slight" or "Rain, freezing, moderate or heavy" or

"Snow shower(s), moderate or heavy." This set of enumerated values provided an

adequate summary of weather information to utilize for traffic estimation.

3.1.2 Traffic Influencing Factors

Traffic is affected by a number of factors including time of day, day of week, weather,

etc. These factors lead to changes in the delay of a road segment. Rush hour tends

to be more congested than lam traffic, snowy days lead to slower moving vehicles

and weekend traffic tends to be lighter than weekday traffic. In Boston, we can even

observe a clear effect of the month of the year on traffic speeds. The traffic tends to

be lighter in August when compared to May, which can possibly be explained by the

fact that, most of the student population is gone due to summer vacation in August.

Here, we briefly explore the effects of the factors we account for when predicting

traffic delays: time of day, day of week, month, weather conditions and previous and

next segments.

Time of day: Traffic is typically congested during rush hour whereas most

segments are not congested during early morning hours. Using the time of

day to classify traffic is probably one of the most important factors to help

us estimate traffic delays due to the fixed routines of most humans. People

typically commute to work between 7-8am and head back home around 5pm.

These patterns increase traffic on road segments during the stated times, which

gives rise to rush hour delays.



Figure 3-3: A road segment on 1-93 with some evident traffic influencing factors

On the other hand, people are typically asleep at 3am in the morning resulting

in unobstructed traffic flow during this time. At 3pm, most people are at work

and so we observe traffic that moves faster than rush hour, but slower than

3am. By accounting for the time of day when estimating travel times, we can

capture these periodic behaviors which very strongly dictate the behavior of

traffic. We can clearly see the evening rush hour (4pm to 6pm) on a segment

on 1-93 (Figure 3-4) with significantly lower observed speeds when compared to

the other hours of day.
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* Day of week: Weekend traffic exhibits different characteristics than weekday

traffic. Rush hour traffic observed on weekdays are typically not present when

Figure 3-4:



looking at weekend traffic. Also, people tend to commute to different places

over the weekend. During weekends, routes to shopping centers and highways

en route to beaches tend to experience heavier than average traffic conditions

whereas most other roads experience a decrease in traffic. On the 1-93 seg-

ment, we can observe higher speeds over the weekends and slower speeds over

the weekdays. We can also see the increased variance in traffic over weekdays

(Figure 3-5).
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Figure 3-5: Classification of the 1-93 road segment along the days of the week

* Month: While the effect of the month of the year may not be that apparent

in most places, we can observe surprisingly distinct traffic patterns for different

months of the year in Boston. Since the city of Boston has a high percentage of

college students, one can observe smoother traffic flow during summer vacation

months. Since most students go home over the summer, Boston experiences a

drop in population which creates a notable ease in traffic congestion on some

road segments. Figure 3-6 shows a significant increase in observed traffic speeds

in August.

* Weather: Snow and heavy rain typically cause traffic to slow down significantly.

These conditions experience an elevated rate of traffic accidents thereby further

hampering traffic conditions. Furthermore, people tend to drive more cautiously
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Figure 3-6: Classification of the 1-93 segment along the months of the year. Labels go
from 0=January to 11 = December

during inclement weather conditions, thereby decreasing the free-flow speed of

traffic, even if the roads are not congested. Correspondingly, good weather

conditions yields better flowing traffic, but also causes increased congestion on

highways to local beaches during weekends.

It must be noted that we can not capture this behavior by just considering

the months of the year that correspond to winter or summer. On winter days

after snowstorms, the roads are typically clear thanks to snow plowing and

salting, allowing the traffic on these days to flow better than on the days with

snowstorms.

As we can see in Figure 3-7, the presence of precipitation results in slower traffic

speeds (weather codes higher than 40). Further, we can also observe that we

have very limited data from extreme weather conditions like snowfall (weather

code 73).

* Previous and next segments: As described in Section 3.1.1, we have informa-

tion about the segment a vehicle was previously on and information about the

segment the vehicle took after the current segment. While this information is

not so important in segments like the highways, it can become critical in better

estimating travel times at intersections and other city streets.

.. ........ . ..... ........ ........ ..
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Figure 3-7: Classification of the I-93 segment along for different weather codes

In Boston intersections, those taking left turns have to yield to through traffic

on the opposite side before turning on to the cross street. Consequently, on

average, it takes vehicles much longer to take a left turn when compared to

going straight through the light. Similarly, on intersections where right turns

are allowed on red lights, drivers don't have to wait for the signal to change,

thereby completely bypassing the signal delay.

Since right are not allowed on all red lights, not all intersections have signals or

stop signs and signal patterns and cycle lengths can vary drastically from one

intersection to another, sparse observations can severely impair our ability to

provide low error estimates on traffic delays.

In order to deal with these differences across road segments, we estimate traffic

delays at a segment by segment granularity.

3.2 Data Pre-Processing

In order to obtain individual traffic delays for each road segment, the raw GPS data

is subject to a few pre-processing steps aimed at noise reduction, delay extraction

and route determination. GPS points are Map-matched, drives are extracted from

raw trajectories and outlier observations are removed.

................... - - - - - 0 0 " " -: ii -- - - -- --- - - -- - -



3.2.1 Map-matching

The first step of pre-processing GPS points is the Map-matching process (Section

2.2.2) In this thesis, we assume that the Map-matching process provides us with the

ground truth taxi trajectories. All predictions are based on travel times extracted

from the map-matching algorithm and all prediction errors are calculated between

predicted travel times and delays reported by the map-matching algorithn. Our

traffic delay prediction model does not take into account possible errors that may

arise through incorrectly mapped data points or erroneous delay times and average

speeds.

If the road segments are small, then the assumption that Map-matching estimates

correspond to the actual path the car took can break down due to the difficulty of

accurately determining how much delay to associate with small segments.

3.2.2 Finding Drives

Once we have the GPS points mapped to their corresponding road segments, we need

to process the data a little further before extracting the experienced delay. Since the

data is gathered by taxicabs, we need to distinguish between a stop at a signal and

when the taxi is simply parking on the roadside or dropping a passenger. Since traffic

signals have much shorter cycle lengths than 5 minutes, we split a trajectory into a

new drive when we observe a taxi that is stationary for more than five minutes. This

allows us to exclude some of the taxicab specific delays from our observations.

Since we know the sequence of road segments at this point, we can use the road

network database to identify the intersections at which the vehicle took a turn and

the direction the vehicle was traveling. We drop the delays obtained from the first

and last segments since they do not accurately determine our travel time oi these

segments.

After breaking trajectories into drives, we are finally ready to extract the travel



delay on each individual road segment from interpolation of the estimated hidden

states. We store these separately for each road segment along with the other infor-

mation such as previous and next road segment, observed speed and time of day.

3.2.3 Heuristic Outlier Removal

Despite these pre-processing steps, some errors propagate through, resulting in delay

observations that seem physically impossible. For example, some processed obser-

vations indicate travel speeds on highways at twice the speed limit, which is highly

unlikely and therefore a potentially spurious observation.

We filter these errors out by upper-bounding the speed limit to allow observations

that are strictly under a threshold speed of 160 kph (roughly 100 mph).

In using the all the above pre-processing steps to extract traffic delay times, we

are implicitly making the following assumptions:

" Taxicabs approximate the behavior of the general traffic

" Map matching accurately allocates data points to the corresponding road seg-

ments

" The extracted average speed and travel times are close to the ground truth of

what the vehicle actually experienced

3.3 Algorithm

Given this background, we no present of delay prediction algorithm.

We use a modified classification tree approach to predict delays from our sparse

data set. The predictions for individual segments are then combined together to

estimate the delay experienced along a full trajectory from a source to a destination

location. The high-level operation of this algorithm is summarized in Figure 3-1.



These steps involve finding the optimal traffic factor for classification for each level

of the classification tree, merging branches with similar distributions and estimating

the travel delay for the leaves of the classification tree.

We will first explore the traffic model we are using to construct our splitting

criterion for classification.

3.3.1 Traffic Model

For a given road segment, we have a continuous distribution of observable speeds.

This distribution for the road segment s is represented as a probability distribution

over the traffic metric (either speed or travel time) X, given by Pr, [X - x]. Figure 3-8

shows the typical shape of the probability density of speeds and travel times for a well

behaved road segment. We consider a segment to be "well behaved" if the underlying

traffic distribution looks like a mixture model of a few Gaussian distributions.

Figure 3-9 shows an road segment on Rt 1 where the probability distribution over

vehicle speed does not show simple mixture model behavior.

For a given set of factors F and historical observations for the segment Hs, we

can compute the speed that we would expect a car to observe on that road segments

using the expected travel speed, as follows:

E[X|HS,F| = Z Pr,[X=x|Hs,F|-x

Where E[YlZ] is the expectation of the random variable Y, given Z and X is our

variable of interest (traffic delay or speed). These factors F are the traffic influencing

factors we explored in Section 3.1.2.

Given historical observations H, for segment s, we can compute the set of obser-

vations H, F that correspond to speeds observed under similar factors F in the past.
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Figure 3-8: The probability densities for the 1-93 segment. Note how the speed probability
density appears to be a Gaussian mixture of two speed components

For example, if our factor is hour of day at 2pm-3pm, then our set H, IF are those

observations across history on segment s that were taken between 2pm and 3pm. The

inferred traffic metric (speed or travel time) X is given by

{
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Figure 3-9: Probability distribution of a road segment on Rt 1 where a simple Gaussian
mixture model assumption may not be valid

XS = JHsjFIx (3.1)
HF xE{Hs\F}

Now, as we obtain more observations for a given road segment, by the strong

law of larger numbers, we have that X, -+ E[XIH,, F]. Note that we are making the

assumption that our inferred travel times and speeds are independently and identically

distributed. This is a reasonable assumption since different observations on the same

street are made by different taxis at different times. Given the set of traffic influencing

factors, we assume that the Markov property of time independence to hold.

If we had a very large number of observations recorded for every road segment and

if we still had sufficient observations for every possible combination of factors, then

we could simply predict the speed directly from the sample average by conditioning

on the corresponding factors.

However, we do not have such extensive observations for any road segment. If we

assume 24 different values for the time of day (one for every hour), 7 days of week, 12

months, 100 weather conditions and two previous and two next segments, we already

..... .......



have more than 8 million possible factors. For our sample average to converge to the

true average speed for a particular set of features, we would need much, much more

than 8 million observations, which our sparse data set falls short by a huge margin.

Therefore, we need to turn to alternative strategies for estimating and predicting

traffic conditions.

3.3.2 Tree Classifiers

Rather than splitting our data along all the factors at once, we can instead consider

splitting our data along one factor at a time until we reach a state with too few

observations to continue the splitting process. If at some point of the classification

process, we have split along features F1, F2 and F3, then we can view our traffic metric

estimation as

E[X|H,, F1 = fi, F2 = f2, F3 = f 3 ] = x -Pr,[X = xH, F1 = fi]-

Pr, [X = x I H(H, F1 = f1), F2 = f2]

Pr,[X = x H(H(H, F1 = fi), F2 = f2), F3 = f3]

Here, H(X, F = fi) is the subset of observations in X satisfying F = fi.

This process allows us to make predictions based on at least a few features before

running out of observations to further classify. However, a standard tree classifier

still does not provide optimal splitting for our sparse data set. For example, if our

first factor was Hour of Day, then we would have 24 partitions, one corresponding to

each hour of day, at the top level. This would put 4:00pm and 12:00am in different

buckets and we would be able to make different predictions of traffic delay for rush

hour and midnight. Though this does not take all the features into account, we would

still increase our accuracy of prediction.



However, though traffic at 2:00am is very similar to that at 3:00am, the classifier

still splits the data along these buckets. Hence, when we split the second time (say

along Weather Condition), we will have only the data from 3:00am in the 3:00am

bucket which may not contain sufficient samples for further splitting without risk-

ing over-fitting our data. If we had some how decided to combine the 2:00am and

3:00am buckets, then we potentially would have had sufficient samples to further split

according to weather, which would have helped us better estimate our traffic metric.

To classify as much as possible without over-fitting our model and to intelligently

split a factor only into buckets that help increase our prediction accuracy, our splitting

criterion should satisfy the following conditions:

1. We should have sufficient data points in each sub-tree after a split for the sample

average to reflect the true average.

2. We should merge two partitions of a factor together if they have similar predic-

tions of the traffic metric.

The first rule ensures that we do not split if there are very few observations for

given conditions and the second rule ensures that we split only if we obtain useful

information from the split so as to provide the next splitting step, with more data.

Determining Useful Splits

If traffic observations across different factors were highly separable, then a simple

linear classification strategy would suffice to determine the strength of classification.

However, the traffic data obtained is not always so separable. We can see in Figure

3-11, that across different hours of the day, the observed speeds have large variances,

but similar means. Here, a simple first order fit would not yield us an improvement

in prediction accuracy. There is high overlap in the traffic metric probability density



between the buckets when we split based on a traffic influencing factor. Hence, the

linear classification strategy does not provide us with a feasible classification criterion.

Figure 3-10: The road segment at the intersection of Austin St and New Rutherford Ave
is very short and most of the data is available from interpolation. The data
provided from such small segments typically prove to be very difficult to
predict from
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Figure 3-11: Some road segments like the intersection of Austin St and New Rutherford
Ave have data that is not separable by a simple linear classifier

From Figure 3-8(b), it seems like we can use a simple Gaussian mixture model to

estimate the parameters of the mixture components and then use the traffic factors

to infer the probabilities of each of these components. However, it is not so simple.

When we split based on factors, we almost always end up with another mixture model.

This is especially true when we are looking at a segment with a traffic signal (Figure

3-12). There is typically an exponential mixture component that is associated with

cars that had to wait at the signal and there is another Gaussian mixture component

associated with those that travel through the signal without having to stop. When

the mixture model starts becoming complicated, the number of parameters increase,

. .. ................ ----- - - - - - -- - - - l



Figure 3-12:
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The probability density for Main St in Boston. This segment has a traf-
fic signal on one end. We can see how the distribution looks much more
complicated than a simple mixture model

thus requiring more samples to accurately estimate delays. This leads to the same

problem as above of either over-fitting or limiting the number of features we are able

to account for.

As mentioned before, there are some road segments that have limited historical

data due to differences in coverage (Figure 3-13). Therefore, we must try to find a

classification strategy that performs well when we have many observations but that

doesn't completely break down when we have many fewer observations.
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segments like parts of Rt 2 near Athol have limited historical



Figure 3-14: This section of Rt 2 in Athol is quite far away from central Boston and we
have very limited data points for this road segment

Taking all these factors into account, we define a "useful" split to be one which

separates two statistically significant speed distributions when comparing their cu-

mulative distribution functions. Such splits yield buckets with statistically different

traffic metric distributions when compared. The advantage of defining a useful split

based on an arbitrary distribution (rather than a parametrized distribution) is that

we can bypass the step of inferring the parameters of the distribution and skip directly

to estimating the sample traffic metric average V.

In order to compare distributions without directly computing the parameters of

the model, we can use non-parametric statistical tests such as the Mann-Whitney

U rank sum test or the Kolmogorov-Smirnov test to determine if two buckets repre-

sent statistically significant distributions. These tests provide us with a p-value that

indicates the probability with which we can reject the null hypothesis that the two

buckets have the same underlying distribution. We can then create a classification

strategy that decides to split the observations only if the traffic influencing factor

yields statistically significant results.

Note that if we can find such statistically different distributions, our prediction

accuracy will improve since such differences imply that traffic behaves very differently

under the different values of the traffic factor. By splitting the distributions, we are

predicting different values for different traffic behaviors, which is exactly what we



want to do. Our algorithm uses the Mann-Whitney U test [24] as the non-parametric

test of distribution similarity.

Modified Classification Strategy

With the splitting strategy defined, we can now build a classification tree using the

desired factors. The ideal mechanism would be to construct all possible classification

trees and pick the most accurate one via cross validation. However, the number

of trees grows exponentially in the number of factors; finding the best classifier by

constructing all possible classifiers quickly becomes infeasible, especially since such a

classification tree needs to be built for each segment.

We instead use the following simple greedy strategy.

1. For each factor F, compute the splits that would be generated by grouping the

observations for each value of F

2. Select the factor F that produces the best split (as defined below)

3. Classify using F to produce the required splits

4. Combine the branches that are not significantly different from each other

5. Delete branches with insufficient reported observations (less than 10)

6. Recurse on the branches

In order to determine which factor produces the "best" fit, we can consider the fol-

lowing strategies:

* Contains the most significant splits between two factors (largest difference in

means). This enables us to immediately separate buckets where different pre-

dictions provide more accurate predictions.



* On average across all splits, provides the lowest p-value. This corresponds to

the case where a split produces multiple significant splits. The average p-value

is dominated by the highest p-value across the splits.

" Provides lowest geometric mean of p-value across splits. This strategy penalizes

the highest p-value less.

" Provides lowest average variance across splits. Here, we aim to directly reduce

uncertainty by finding splits that result in tighter delay distributions.

At the end of this process, we will be left with the classification tree that we can

use for prediction. An example classification tree is shown in Figure 3-15. During the

classification process, splits with no observations are ignored. This is evident in the

classification split based on time of day where, for example, 1:00am is not a part of

any sub-branch since there were none of our taxicabs traversed this road segment at

that time.

3.3.3 Prediction

Once we have our classification strategy in place, we can go build a classification

tree for each road segment. Before classification, we first split drives into test and

train drives. This allows us to have separate training and test sets for evaluating the

prediction scheme for both individual road segments and for full drives. We now use

the training data for each road segment to build up the classification tree.

In order to predict the traffic delay for a particular segment we can simply traverse

down the classification tree based on the factors that we used for each split until we

reach a leaf node. At this point, we estimate the traffic metric by computing the

sample average of the observations at the leaf node as described in equation 3.1.

If we need to predict the delay for a trajectory instead, we first split the path into

its corresponding road segments S = {si}. We then predict the traffic delays on each



[5 : 00 - 7 : 30],
[8 : 30 - 21 : 00]

Figure 3-15: A sample classification tree generated by our algorithm.

road segment Xi from the classification tree of si. Finally, we simply add the delays

up to obtain the final delay.

sjes

This process of sunning the delays actually helps us reduce the prediction error

and increase the accuracy of prediction as discussed in Section 4.1.3.

A special case for obtaining delay predictions is when there are no observations

for a particular value of a traffic factor. For example, let us consider a case where the

classification tree splits for a particular road segment first based on the day of week

and then splits according to the time of day. Let us further assume that there are

no recorded observations for Tuesday on a particular road segment. Let the resulting



classification tree look like Figure 3-16

0noo 201

10 ni11  n12

Figure 3-16: A sample classification tree generated by our algorithm

If we are then asked for a travel estimate for Tuesday at 8:00am, then following

the standard classification procedure would result in estimating the delay as the mean

of observed delay estimates in the root node. This prediction strategy does factor in

the time of day.

In order to overcome this limitation, we continue classification by "marginalizing

out" the day of week variable. This step involves finding the weighted mean of the

predictions for the two branches no and ni for the remaining factor (hour of day).

This process can be mathematically described as

n0| -k00 + n1o-

xf00o + ri10n

Here, ni is the number of observations associated with branch ni of the classifica-

tion tree and Xi is the predicted travel delay estimate for the classification sub-tree



with ni as the root.

This step of marginalizing out traffic factor for which we have no observations

allows the classification tree to utilize other factors for travel delay estimation, thereby

improving the accuracy of predictions.
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Chapter 4

Results

4.1 Methods and Results

In this section, we evaluate the accuracy of prediction on our taxicab data. We explore

the performance of the prediction scheme at the level of individual road segments as

well as on full routes. We limit our prediction to estimating traffic delays rather than

traffic speeds since most people are interested in the time it would take to reach their

destination.

In order to determine the performance of our method, we compare the prediction

accuracy of travel times from it to that of classifying according to the hour of day

only (referred to as the Naive Method).

4.1.1 Training and Test Data

As described in Section 3.3.3, we split our trajectories from taxicabs into a training

set and a test set. These sets were randomly created such that the test data set

comprises of 10% of the total paths (10 fold cross validation).

The training paths were then divided into their component road segments and the

delays for these road segments were recorded as our "observations" for an individual



road segment.

When measuring performance at an individual road segment level, the observa-

tions for the road segment were further divided into test and training observations

via 10-fold cross-validation.

4.1.2 Individual Road Segments

In order to determine how the classification strategy performs relative to the naive

strategy of just splitting according to the hour of day, I first compared the predictive

power of the two methods at an individual road segment level.

10,000 road segments were randomly chosen from the entire Boston network. Road

segments with fewer than 10 testing observations (less than 100 observations over-

all) were not chosen as candidate test segments because no prediction strategy will

perform well on segments with so little data.

From Table 4.1, we can see that the classification method gains a slight edge over

the naive method at the individual road segment level. We can also see that the

algorithm provides an exponentially decreasing probability of generating inaccurate

predictions (Figure 4-1).

Statistic Naive Strategy Classification Improvement

Average Mean abs(Error) 0.4023 0.3655 1.10
Average Median Error 0.2765 0.2258 1.22

Variance 0.3375 0.3000 1.13

Table 4.1: Prediction Errors on an individual road segment level

Though the predictive edge gained by the classification strategy seems marginal

when looking at individual road segments, the classification approach significantly

out-performs the naive strategy when we run predictions on full trajectories, as we

show in the next section.
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Figure 4-1: The distribution of the error rate for travel delays across 10,000 randomly
chosen road segments shows that more than 50% of the time, travel delays
are predicted with greater than 77% accuracy

4.1.3 Trajectories

In most cases, it is more important for a user to accurately know the end-to-end

commute time accurately rather than the amount of time spent on each individual

road segment.

As mentioned in Section 3.1.1, we obtained the data in three installments where

slight changes were made in the number of cabs and the Map-matching process. We

ran our algorithm on each chunk individually to determine the performance of our

algorithm under these different conditions before we examined its performance with

the combined data set.

Test paths were chosen to have travel time of more than 10 minutes when com-

paring the accuracy of travel delay predictions of the classification approach and

naive approach. This ensured that trajectories closely reflected those that an actual

commuter would take.

As we can see from Table 4.3 our algorithm provides best improvement in delay

prediction accuracy and prediction confidence on the data chunk with the longest



span of coverage (January 2009 - January 2010) when compared to the other two

data sets (Table 4.2 and Table 4.4). Our algorithm brings the median prediction

error down from 11.14% to 6.89% thereby providing a 1.62 fold decrease in prediction

error.

Statistic Naive Strategy Classification Improvement

Mean abs(Error) 0.1363 0.1019 1.34
Median Error 0.1138 0.0759 1.50

Variance 0.0301 0.0181 1.66

Table 4.2: Prediction Errors on the first batch of data (September 2007 - October 2007)

Statistic Naive Strategy Classification Improvement

Mean abs(Error) 0.1410 0.0920 1.53
Median Error 0.1114 0.0689 1.62

Variance 0.0332 0.0139 2.39

Table 4.3: Prediction Errors on the second batch of data (January 2009 - January 2010)

Statistic Naive Strategy Classification Improvement

Mean abs(Error) 0.1758 0.1150 1.53
Median Error 0.1433 0.0892 1.61

Variance 0.0462 0.0230 2.01

Table 4.4: Prediction Errors on the third batch of data (February 2010 - July 2010)

When predicting the traffic delay for a trajectory, the input is given in the form

of a set of segment IDs and the time at which we desire to predict the traffic delay.

With the given time of day, we can deternine the weather conditions from the Na-

tional Weather Services weather database. This algorithm assumes that the weather

conditions are roughly the same for all parts of the drive.

The next step of the algorithm is to split the path into segments and run the

delay inference for each segment individually. Given the training data, the algorithm

constructs the classification tree and then determines the best leaf node to predict

the traffic conditions at the desired input time.



The delays obtained from this leaf node are then added to the total travel time of

the car on the path.

When this process completes for all segments, we have a prediction of the total

travel time of the vehicle at the given time of day. This prediction is then compared

to the ground truth to calculate the prediction error.

By using 1000 randomly selected paths from the test data set, we see that the

classification approach significantly reduces travel delay estimation error versus the

naive scheme. It also reduces the uncertainty of our prediction (Table 4.5). With a

median error rate of 6.75%, the system is able to predict the travel time of hour long

drives to an accuracy of within 4 minutes.

From the error distribution (Figure 4-2), we can see a strong trend of decreasing

frequency of predictions at higher error rates.

By visualizing the errors through overlaying the paths on a real map (Section

4.1.4), we were able to observe that most of our inaccuracies in predictions arose from

incorrect signal delay predictions. Typically, the algorithm underestimated signal

delays.

There are many reasons why predictions for individual segments results in larger

errors than those over longer paths. One of these reasons is the averaging out of

prediction error over multiple segments; since the prediction of traffic delay for a

trajectory is the sum of predicted traffic delays of the corresponding road segments,

some amount of the noise gets canceled out in this summation. For example, the

estimated total time at signals over a trajectory has less variance than the variance

for an individual signal, assuming that the signals are independent of each other (this

is a valid assumption except for a very small set of coordinated traffic lights).

Another source of error which is averaged out in this process that is less obvious

is the map-matching error around end points of road segments. The Map-matching

algorithm is oblivious of the details such as location of traffic lights and the width



Statistic Naive Strategy Classification Improvement

Mean abs(Error) 0.1349 0.0908 1.46
Median Error 0.1083 0.0675 1.60

Variance 0.0303 0.0149 2.03

Table 4.5: Prediction Errors with delay observations from all three data sets

of intersections. Therefore, when the map-matching algorithm receives many points

near an intersection, such as when a car has stopped at a traffic light, it is not evident

which road segments correspond to the recorded GPS points. This results in the signal

delays being allocated to different segments at the intersection for different runs at

the same intersection.

By predicting traffic delays with different sets of factors, we found that the most

dominant traffic influencing factors for highway segments are the hour of day and

the day of week. We found that including weather conditions as a traffic factor

marginally improved our predictions by reducing the average error rate by a little

under 1%. Though sever weather conditions play a critical role in influencing traffic

patterns, our taxicab data did not have good coverage of road segments during periods

of inclement weather and therefore limited the observable impact of this factor.

In the case of city streets, the hour of day, day of week and the segment a vehicle

turns onto at an intersection all strongly influence traffic conditions. The behavior

of a vehicle at an intersection was typically the first splitting factor or the second

(after hour of day) in the generated classification trees, indicating that, as expected,

the direction a vehicle turns at aim intersection has a significant, observable effect on

vehicle travel times. Once again, weather played a marginal role in the creation of the

classification trees due to insufficient data coverage for different weather conditions.
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Figure 4-2: The distribution of the error rate for travel delays across 1,000 randomly
chosen taxi drives (> 10 min) shows that more than 50% of the time, travel
delays are predicted with greater than 93% accuracy

4.1.4 Visualization

To allow the user to visualize the predicted delays and the errors made by my al-

gorithm, we implemented a Google Earth exporter that allows a user to open any

path in GoogleEarth and see the segments and intersections that are predicted to be

congested. (Figure 4-3).

The segments are colored according to the percentage error of predicted travel

time vs the true travel time at the segment level. Green indicates good prediction

accuracy and red indicates high error rates.

Additionally, one can click on any segment and obtain detailed information about

the segment (Figure 4-4), including error statistics, the classification path down the

classification tree and number of points used for classification.



Figure 4-3: Green segments correspond to low error rates and red segments correspond
to high error rates

4.2 Discussion and Future Work

While the above implemented algorithm significantly improves our prediction accu-

racy, there are still many improvements one can make to reduce the error rate and

to increase the confidence of prediction. Clearly, enriching the data set by obtaining

more data from taxicabs would enable us to provide better predictions, but since this

process requires us to install hardware GPS nodes in more taxicabs, we will explore

some other avenues of improvement.

4.2.1 Probabilistic Models

In our current traffic model, the our classification tree building procedure uses non-

parametric statistical tests to create branches and predictions are made using the

sample mean. We explored another approach with reported median speeds instead
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Figure 4-4: Advanced statistics and information is available by just clicking on the desired
segment

of average speeds. This approach helped prevent outlier samples from significantly

affecting prediction and increased our prediction accuracy at the level of an individ-

ual road segment. However, this scheme doesn't perform as well as predicting full

trajectories due to the fact the linearity of expectations allows us to readily sum up

the mean delays across segments to find the full path delay, whereas this property

does not hold true for the median.

Rather than statistical methods, using a probabilistic model to build the tree

and predicting speeds based on the maximum likelihood estimate could help provide

more accurate estimates of travel delays. However, learning a continuous distribution

(without making strong Gaussian assumptions) takes a lot of training data points.

On the other hand, estimates of the mean converge more quickly to the true value

---- -------- ....... ........... '-- - - - I I-



with fewer observations.

Finally, as we obtain more data, building more complicated probabilistic models

may become feasible for those segments with abundant data points. In this scenario,

we can use the classification strategy for those segments with insufficient data while

using a more accurate and powerful prediction algorithm for the other segments.

4.2.2 Grouping Segments

The Navteq street segment graph contains segments that are very small (many that

are less than 10m long) such as the intersection of Austin St and New Rutherford Ave

(Figure 3-10). With such segments, the amount of available historical data is typically

very small compared to longer segments around it. Further, since slow moving cars

are much more likely to report GPS data from small segments when compared to fast

moving cars, the available data is biased towards congested conditions.

A naive approach to solve this problem would be to merge adjacent segments.

While this would work on highways, it is not possible to merge other road segments

due to traffic intersections or forks in the road.

In such cases, a more optimal approach would be to implement an additional mod-

ule to this algorithm that determines which streets have similar traffic characteristics

to each other based on various factors. This would enable us to pool together data

from various segments. Pooling data is especially helpful when we have limited infor-

mation available for a road segment as it allows us to either make better predictions

or use a more powerful machine learning algorithm.

We started experimenting with this technique, but simply scaling speeds or travel

times from one segment to directly predict the estimated travel time on another did

not work as expected. This is due to the fundamentally different traffic distributions

that exist across road segments. For example, the addition of a traffic light, the

presence of a yield sign, or the right-on-red policy results in drastically different



travel times across otherwise similar segments.

In order to overcome this problem, we are trying alternate approaches such as

finding a measure of "congestion" in one road segment and using this information as

an attribute to classify along when predicting the delay across another road segment

where we have observed a strong correlation in traffic patterns. The large number

of road segments in the Navteq network makes finding such correlations hard, but

we are exploring some heuristics like using this strategy for segments where we have

particularly high errors or when more recent traffic is available for a nearby segment.

4.2.3 Using Bus data to predict car delays

In order to further decrease our prediction error, we tried to use real time traffic delays

from buses in order to predict the expected delays for cars. Using roughly three weeks

worth of data from MBTA bus routes, we Map-matched these trajectories to obtain

periodic observations for bus routes in the Boston area. When predicting delays for

a route traveled by a car, we used the bus delays and historical car delays to predict

the travel time on road segments that were on bus routes and just historical delays

otherwise.

Unfortunately, this mechanism performed worse than just using historical delays.

One of the primary reasons for this drop in performance was that the MBTA bus data

was reported at a granularity of approximately one observation every two minutes for

a single bus. These coarse observations not only increased our uncertainty in inferring

the bus travel delay across a particular road segment, but also made it difficult to

filter out delays introduced by bus stops.

4.2.4 Traffic Aware Routing

As mentioned in Section 2.2.3, as a part of the CarTel project, our group already

implemented a routing system that uses the A-star algorithm to find the trajectory



with the shortest travel time from a source location to a destination. We are currently

working on integrating our predictions into the A-star routing scheme.

In the A-star scheme, the goal is to set the distance function d(x, z) to the values

estimated by my traffic prediction scheme. Hence, a run of A-star would result in the

shortest predicted travel time from the source to the destination. We note that our

admissible heuristic h(z, y) still holds true, meaning the routes obtained from A-star

should reflect the real least transit time paths if our predictions are accurate.

Another interesting application is routing using paths of low variance. This would

be useful for cases where commuters have strict bounds on when they need to reach

their destination. For instance, if we are traveling to Boston Logan Airport, then we

would prefer to take a slightly longer path with low variation in travel time and leave

our homes slightly earlier rather than just take the path of lowest travel time, which

may have higher variance.

Though our predictions return a mean and a variance, we have so far only con-

sidered the mean travel times on individual road segments to compute the net travel

time. However, just as linearity of expectation holds across road segments, vari-

ances are also additive. Therefore, we can determine our confidence of prediction

in terms of the total expected variance of travel time across the trajectory. We can

route through low variance paths by utilizing this variance as our distance function

in A-star, thereby providing users with reliable routes when required.

The advantage of integrating our prediction values with the routing scheme is that

we obtain routes that are traffic-aware. Different routes between the same two points

will be returned at different hours of the day, allowing congested road segments to

be avoided and realistic travel estimates to be obtained in various conditions, such as

during snow showers or torrential rain.



4.3 Conclusion

As we can see from the results, the distribution based tree classification approach cuts

down error rates by almost a factor of 1.5 versus the naive scheme. This approach

results in a median traffic delay prediction error rate of 6.75% on routes of ten minutes

or longer. The algorithm also reduced the prediction variance by more than a factor

of 2, providing much more reliable delay estimates for travel delay queries.

Once the model is trained, predicting delays simply involves traversing a path

from the root of the prediction tree to the leaf, which is computationally very fast.

Hence, predictions are very efficient. This allows the prediction trees to be used in

algorithms like shortest path routing, socially optimal routing and flow control where

many delay computations may be required.
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Appendix A

NWS Weather Code Table

Code Weather Condition
00 Cloud development not observed or not observable
01 Clouds generally dissolving or becoming less developed
02 State of sky on the whole unchanged
03 Clouds generally forming or developing
04 Visibility reduced by smoke, e.g. veldt or forest fires, industrial smoke or

volcanic ashes
05 Haze
06 Widespread dust in suspension in the air, not raised by wind at or near the

station at the time of observation
07 Dust or sand raised by wind at or near the station at the time of observation,

but no well-developed dust whirl(s) or sand whirl(s), and no duststorm or
sandstorm seen or, in the case of ships, blowing spray at the station

08 Well developed dust whirl(s) or sand whirl(s) seen at or near the station
during the preceding hour or at the time of observation, but no (hststorm
or sandstorm

09 Duststorm or sandstorm within sight at the time of observation, or at the
station during the preceding hour

10 Mist
11 Patches of shallow fog or ice fog at the station, whether on land or sea, not

deeper than about 2 meters on land or 10 meters at sea

12 More or less continuous shallow fog or ice fog at the station, whether on land
or sea, not deeper than about 2 meters on land or 10 meters at sea

13 Lightning visible, no thunder heard
14 Precipitation within sight, not reaching the ground or the surface of the sea
15 Precipitation within sight, reaching the ground or the surface of the sea, but

distant, i.e., estimated to be more than 5 km from the station

16 Precipitation within sight, reaching the ground or the surface of the sea, near
to, but not at the station

17 Thunderstorm, but no precipitation at the time of observation



18 Squalls at or within sight of the station during the preceding hour or at the
time of observation

19 Funnel cloud(s) (Tornado cloud or waterspout) at or within sight of the
station during the preceding hour or at the time of observation

20 Drizzle (not freezing) or snow grains not falling as shower(s)
21 Rain (not freezing) not falling as shower(s)
22 Snow not falling as shower(s)
23 Rain and snow or ice pellets not falling as shower(s)
24 Freezing drizzle or freezing rain not falling as shower(s)
25 Shower(s) of rain
26 Shower(s) of snow or of rain and snow
27 Shower(s) of hail (Hail, small hail, snow pellets), or rain and hail
28 Fog or ice fog
29 Thunderstorm (with or without precipitation)
30 Slight or moderate duststorm or sandstorm has decreased during the preced-

ing hour
31 Slight or moderate duststorm or sandstorm no appreciable change during the

preceding hour
32 Slight or moderate duststorm or sandstorm has begun or has increased during

the preceding hour
33 Severe duststorm or sandstorm has decreased during the preceding hour
34 Severe duststorm or sandstorm no appreciable change during the preceding

hour
35 Severe duststorm or sandstorm has begun or has increased during the pre-

ceding hour
36 Slight or moderate drifting snow generally low (below eye level)
37 Heavy drifting snow generally low (below eye level)
38 Slight or moderate blowing snow generally high (above eye level)
39 Heavy blowing snow generally high (above eye level)
40 Fog or ice fog at a distance at the time of observation, but not at the station

during the preceding hour, the fog or ice fog extending to a level above that
of the observer

41 Fog or ice fog in patches
42 Fog or ice fog, sky visible, has become thinner during the preceding hour
43 Fog or ice fog, sky invisible, has become thinner during the preceding hour
44 Fog or ice fog, sky visible, no appreciable change during the preceding hour
45 Fog or ice fog, sky invisible, no appreciable change during the preceding hour
46 Fog or ice fog, sky invisible, has begun or has become thicker during the

preceding hour
47 Fog or ice fog, sky invisible, has begun or has become thicker during the

preceding hour
48 Fog, depositing rime, sky visible
49 Fog, depositing rime, sky invisible



50 Drizzle, not freezing, intermittent, slight at time of observation
51 Drizzle, not freezing, continuous, slight at time of observation
52 Drizzle, not freezing, intermittent, moderate at time of observation
53 Drizzle, not freezing, continuous, moderate at time of observation
54 Drizzle, not freezing, intermittent, heavy (dense) at time of observation
55 Drizzle, not freezing, continuous, heavy (dense) at time of observation
56 Drizzle, freezing, slight
57 Drizzle, freezing, moderate or heavy (dense)
58 Drizzle and rain, slight
59 Drizzle and rain, moderate or heavy
60 Rain, not freezing, intermittent, slight at time of observation
61 Rain, not freezing, continuous, slight at time of observation
62 Rain, not freezing, intermittent, moderate at time of observation
63 Rain, not freezing, continuous, moderate at time of observation
64 Rain, not freezing, intermittent, heavy at time of observation
65 Rain, not freezing, continuous, heavy at time of observation
66 Rain, freezing, slight
67 Rain, freezing, moderate or heavy
68 Rain or drizzle and snow, slight
69 Rain or drizzle and snow, moderate or heavy
70 Intermittent fall of snowflakes, slight at time of observation
71 Continuous fall of snowflakes, slight at time of observation
72 Intermittent fall of snowflakes, moderate at time of observation
73 Continuous fall of snowflakes, moderate at time of observation
74 Intermittent fall of snowflakes, heavy at time of observation
75 Continuous fall of snowflakes, heavy at time of observation
76 Diamond dust (with or without fog)
77 Snow grains (with or without fog)
78 Isolated star-like snow crystals (with or without fog)
79 Ice pellets
80 Rain shower(s), slight
81 Rain shower(s), moderate or heavy
82 Rain shower(s), violent
83 Shower(s) of rain and snow mixed, slight
84 Shower(s) of rain and snow mixed, moderate or heavy
85 Show shower(s), slight
86 Snow shower(s), moderate or heavy
87 Shower(s) of snow pellets or small hail, with or without rain or rain and snow

mixed, slight
88 Shower(s) of snow pellets or small hail, with or without rain or rain and snow

mixed, moderate or heavy



89 Shower(s) of hail (hail, small hail, snow pellets) , with or without rain or rain
and snow mixed, not associated with thunder, slight

90 Shower(s) of hail (hail, small hail, snow pellets), with or without rain or rain
and snow mixed, not associated with thunder, moderate or heavy

91 Slight rain at time of observation, thunderstorm during the preceding hour
but not at time of observation

92 Moderate or heavy rain at time of observation, thunderstorm during the
preceding hour but not at time of observation

93 Slight snow, or rain and snow mixed or hail (Hail, small hail, snow pellets),
at time of observation, thunderstorm during the preceding hour but not at
time of observation

94 Moderate or heavy snow, or rain and snow mixed or hail(Hail, small hail,
snow pellets) at time of observation, thunderstorm during the preceding hour
but not at time of observation

95 Thunderstorm, slight or moderate, without hail (Hail, small hail, snow pel-
lets), but with rain and/or snow at time of observation, thunderstorm at
time of observation

96 Thunderstorm, slight or moderate, with hail (hail, small hail, snow pellets)
at time of observation, thunderstorm at time of observation

97 Thunderstorm, heavy, without hail (Hail, small hail, snow pellets), but with
rain and/or snow at time of observation, thunderstorm at time of observation

98 Thunderstorm combined with duststorm or sandstorm at time of observation,
thunderstorm at time of observation

99 Thunderstorm, heavy, with hail (Hail, small hail, snow pellets) at time of
observation, thunderstorm at time of observation
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