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Abstract

In recently published integrated medical monitoring systems, a common thread is
the high power consumption of the radio compared to the other system components.
This observation is indicative of a natural place to attempt a reduction in system
power. Narrowband receivers in-particular can enjoy significant power reduction by
employing high-Q bulk acoustic resonators as channel select filters directly at RF,
allowing down-stream analog processing to be simplified, resulting in better energy
efficiency. But for communications in the ISM bands, it is important to employ
multiple frequency channels to permit frequency-division-multiplexing and provide
frequency diversity in the face of narrowband interferers. The high-Q nature of the
resonators means that frequency tuning to other channels in the same band is nearly
impossible; hence, a new architecture is required to address this challenge.

A multi-channel ultra-low power OOK receiver for Body Area Networks (BANs)
has been designed and tested. The receiver multiplexes three Film Bulk Acoustic
Resonators (FBARs) to provide three channels of frequency discrimination, while at
the same time offering competitive sensitivity and superior energy efficiency in this
class of BAN receivers. The high-Q parallel resonance of each resonator determines
the passband. The resonator's Q is on the order of 1000 and its center frequency is
approximately 2.5 GHz, resulting in a -3 dB bandwidth of roughly 2.5 MHz with
a very steep rolloff. Channels are selected by enabling the corresponding LNA and
mixer pathway with switches, but a key benefit of this architecture is that the switches
are not in series with the resonator and do not de-Q the resonance. The measured
1E-3 sensitivity is -64 dBm at 1 Mbps for an energy efficiency of 180 pJ/bit. The
resonators are packaged beside the CMOS using wirebonds for the prototype.
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Chapter 1

Background

1.1 Introduction

Over the last five decades, computing has continuously progressed to smaller scales

and ever more powerful platforms. Today's wireless handsets, for example, contain

more computing power than the average room-sized computing machine of the 1960s.

As a result of this dramatic trend in miniaturization, human-computer interaction

continues to become more affordable, fluid, and pervasive in our daily lives.

Personal health monitoring is an area that has benefited significantly from these

advances in electronics and computing. Whereas health monitoring is traditionally

performed with bulky equipment and is usually confined to doctor's offices and hos-

pitals, new unobtrusive on-body monitoring systems aim to capture biological signals

in a relaxed and natural setting and communicate this information to health-care

providers automatically via the Internet. Not only does this improve the frequency

and the quality of the data gathered, but it also enhances the ability to react quickly

to unexpected medical events. Moreover, this same technology has applications in

many related areas such as fitness and entertainment.

With the potential for on-body medical monitoring to reach a large market in the

coming years, the IEEE 802.15 Task Group 6 was formed in 2007 to create a new RF
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infrastructure for Wireless Body Area Networks (WBANs). The aim is to promote

interoperability between equipment vendors, and address the challenge of ultra low

energy consumption for the on-body nodes. From a radio hardware perspective, the

latest draft of the standard [1] proposes an energy-efficient Media Access Control

(MAC) layer and three energy-efficient RF Physical layers (PHYs) including body

coupled communication, ultra-wideband, and low power narrowband. The hope is

that the standard provides new tools to system designers that will lead to a host of

new applications in the near future.

1.2 Motiviation

Today's advanced on-body sensors can cover a wide range of biological signals in small

form factors, including EEG, ECG, blood pressure, glucose, oxygenation, breathing,

body temperature, and limb motion, to name a few. In addition, CMOS technology

is helping to ease integration of the various parts of these systems onto a single

silicon die. But despite the impressive progress in sensor technology and integration,

key challenges still remain communicating this information around the body in a

coordinated and energy efficient way.

One challenge in particular is the design of an ultra-low power receiver for on-

body wireless nodes. While much research has focused on transmitting data from

on-body sensor nodes to a central basestation, there are a number of applications

where it would be useful for data to travel in the opposite direction. Whether it is

for streaming audio to a cochlear implant, stimulating an insulin pump, or simply

for coordinating media access among wireless nodes, the low power on-body receiver

should play an important role in body area networks.

Secondly, radio communication is currently the dominant power consumer in most

integrated wireless body nodes. Recently published health monitoring Systems-on-

Chip (SoCs) [2, 3, 4, 5] show how the radios currently consume a significant fraction,
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about 80%, of the system budget. This indicates that power reductions in the radio

architectures have the potential to directly impact the overall system energy.

Finally, for communication in unlicensed frequency bands, it is often important

to employ multiple frequency channels to permit frequency-division-multiplexing and

provide frequency diversity in the face of narrowband interferers. Unfortunately,

many of the lowest power receivers in the literature have traded the ability to select

channels for their ultra low power consumption.

1.3 Scope and contributions

This thesis addresses the simultaneous challenges of energy efficiency and frequency

selectivity in low power receivers destined for use in body-worn nodes in a Wireless

Body Area Network scenario.

Compared to commercial low-power peer-to-peer technologies such as Bluetooth

and Zigbee, it will be shown that the typical Body Area Network scenario offers

important opportunities for energy reduction. One such opportunity is the shorter

communication distance-on the order of 1 to 2 meters-compared to today's com-

mercial technology, allowing for a sensitivity reduction in the receiver. Another is

the notion that most scenarios will involve low-rate medical information that can be

buffered and transmitted in bursts at higher data rates, thus reducing the circuit and

MAC-layer energy overhead. A final opportunity is the use of a star-network topol-

ogy in which all of the energy-starved nodes communicate with an energy-abundant

basestation. With the pervasiveness of low-cost multi-standard wireless devices in to-

day's society, it is not unreasonable to assume that the user's cellular handset could

serve as such a basestation and be capable of transmitting on the order of typical

Bluetooth power levels.

By exploring the design space enabled by the above assumptions, a new multi-

channel low-power wireless receiver has been designed and tested. The key features
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and contributions of this design are:

1. A new combined LNA/mixer architecture that allows three channels of

frequency discrimination by multiplexing three high-Q resonators. The circuits

designed for this task avoid the use of series voltage switches that would other-

wise impact the quality factor, and the architecture as a whole can be extended

to many additional channels.

2. The capability to transmit at high (1 Mbps) data rates and duty cycle the

radio quickly (within 6 bit periods) in order to maintain a low average power

without sacrificing in wasted overhead.

3. A competitive energy efficiency (180 pJ/bit for -65 dBm sensitivity) com-

pared to previously published radios in this space.

4. And finally, narrowband operation in the 2.4 GHz ISM band underneath

regulatory operating limits and suitable for use in most jurisdictions around the

world.

1.4 Organization of this thesis

After discussing background information on Body Area Networks and reviewing pre-

vious work, this thesis will present the detailed design and measurement results for

the above-mentioned ultra low power receiver architecture. It will then conclude with

a summary and ideas for future research directions.

Chapter 2 provides the necessary background information on radio architectures

for Body Area Networks, including a survey of previously published radios of various

types, and a discussion of techniques used to reduced power consumption in radio

receivers. Next, Chapter 3 describes the high-Q resonators that were used as filtering

elements in this project. Afterwards, Chapter 4 presents the detailed design of each

of the receiver blocks, and a simulation of the noise performance for the system as a
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whole. Finally, Chapter 5 presents the main simulation and measurement results, and

Chapter 6 presents a summary and a discussion of potential future research directions.
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Chapter 2

Design considerations

The previous chapter introduced Wireless Body Area Networks (WBANs) and dis-

cussed the need for a multi-channel transceiver. This chapter begins by presenting

a high-level comparison of WBANs to a related technology, Wireless Sensor Net-

works (WSNs). Next, the focus will shift to the channel model for WBAN, and to

previously designed low power receivers. Finally, general techniques for designing

ultra-low power receivers will be discussed, and an architecture for the multi-channel

transceiver will be proposed.

2.1 WBANs versus WSNs

The vision for Wireless Body Area Networks (WBANs) is one in which a number of

micro-power nodes are scattered around the human body in order to collect physiolog-

ical information and relay it to a less power-constrained device for further processing.

Considerable research over the last few years has focused on a related technology,

Wireless Sensor Networks (WSNs). While some portions of sensor network research

can be carried into Body Area Networks, recent review papers [6, 7, 8] point out

some key differences between the two. The information presented in Table 2.1 dis-

cusses some important specifications for body area networks by way of comparison
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to traditional wireless sensor networks.

Table 2.1: Comparison of WSNs and WBANs

Criteria Comparison

Transmission distance WBANs generally have a shorter transmission dis-
tance (1 to 2 meters) than traditional WSNs (10 to
100 meters)

Energy efficiency Both are concerned with minimizing circuit and MAC-
layer overhead, with WBANs particularly concerned
with achieving overall minimum energy consumption
per bit for the energy constrained nodes

Redundancy WBANs will generally have less redundancy than tra-
ditional WSNs, where redundancy is a common tech-
nique to deal with failures. Patients will expect to
wear the minimum number of sensors.

Topology In WSNs, multi-hop and and ad-hoc scenarios prevail,
whereas for WBANs, a star-topology is often sufficient
and optimal

Form Factor WBAN nodes are generally smaller (eg. < 1cm 3) com-
pared to traditional WSNs

Device lifetime Similar, although the physical volume of the energy
storage devices can be more of a problem in the space
constrained WBAN nodes

Heterogeneity Nodes in WBANs may not all communicate the same
type of medical information, hence they may have
vastly different demands in terms of bandwidth, power
consumption, and reliability

Channel Loss The body is generally lossier than the channel seen by
traditional sensor nodes

Movement Since the human body could be in motion, body sensor
transceivers must be robust to channel variations

Perhaps most importantly, both the review papers and the proposed WBAN stan-

dard [1] point to the star network topology as the most popular configuration for

Body Area Networks. In this configuration, all of the on-body nodes communicate

with a central basestation. This allows the complexity and power consumption of a

transceiver system to be transfered onto the power abundant basestation and away

from the energy-starved nodes.
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2.2 Receiver specifications

In peer-to-peer communication among energy constrained nodes, both the receiver

sensitivity and the transmitter output power need to be co-optimized to obtain the

best energy efficiency for the end-to-end link. The asymmetric link enabled by the

star topology, however, allows the specs on the body-node receiver to be relaxed

compared to the peer-to-peer case.

For this scenario, two important transmitter metrics should be taken into account

when designing the energy constrained receiver. The first concerns the maximum

permissible radiated power of the transmitter due to regulations. If we take the FCC

limit on radiation in the 2.4 GHz ISM band as an example, the maximum is 30 dBm

effective isotropic radiated power [9] . The second is the expected radiated power of

a typical basestation transmitter. As an example, 802.15.1 (eg. Bluetooth) sets a

power range between 0 dBm minimum and +20 dBm maximum for Class 1 devices

[10].

Using the modified Friis transmission formula [11, 12, 13], one can estimate the

required sensitivity for a receiver design under the above assumptions:

Pr = GtGr P, (2.1)
47r2 d1n

where Pt and Pr are the transmit and receive powers, Gt and Gr are the transmitter

and receiver antenna directivity gains, A is the wavelength, d is the path length, and

n is an experimentally determined path loss factor, usually between 2 and 4, that

models fading and multi-path losses that occur for the channel under consideration.

It should be noted that n = 2 only for an ideal line-of-sight scenario, therefore, a

worst-case value of 4 is assumed for the obstructed propagation around the body.

Assuming omnidirectional radiation and reception from the antennas, Gt and Gr can
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be set to 1. At 2.4 GHz, this equation can be rewritten in terms of dBm:

P, = P - 40logd - 40 [dBm]. (2.2)

For 2 meters of propagation, and a moderate basestation radiated power (10 dBm),

the received power is -42 dBm, for a path loss of 52 dBm.

Recently published path loss measurements of the wireless channel around the

human body [14, 15] provide estimates of "average" path loss ranging from 40 to

60 dB depending on the transmission distance and antenna positions on the body.

However, both studies did not examine how body movement affects the path loss.

-30

-40

0 -50
.6

-60

-70'-
0 1 2 3 4 5 6 7 8 9

Time (s)

Figure 2-1: On-body path loss measurement from the chest to the back pocket (*cour-
tesy of Haitham Hassanieh and Dina Katabi, MIT, 2011)

A recent experiment conducted by a group at MIT suggests large deviations from

the baseline "average" loss due to body movement, as depicted in Figure 2-1. These

plots were created using 2.4 GHz Software Defined Radios which took measurements

of the path loss over time. Both stationary and walking measurements of the path

loss around the human body were taken in an office environment, with the transmitter

- ---------- --.- ........................
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placed on the subject's chest, and the receiver placed in the subject's back pocket.

The study concluded that substantial variations in path loss due to movement are

possible, and across many combinations of receiver and transmitter positions, the

maximum observed losses were on the order of 80 dBm. Therefore, given a +10

dBm Bluetooth-style transmitter, receiver sensitivities on the order of -70 dBm are

preferable

Using the noise bandwidth of the receiver front end (BWoise), the receiver noise

figure (NF), and the required SNR to achieve the target bit error rate (SNRBER),

the receiver sensitivity can be expanded into the following form:

Psens = -174dBc/Hz + 101ogl0 (BWnoise) + NF + SNRBER- (2.3)

Assuming a received power of -70 dBm, a reasonable demodulation SNR of about

10 dB, and a noise bandwidth of 2 MHz (for a 1 Mbps data rate), then (2.3) suggests

the required noise figure is about 30 dB. This is a significantly relaxed requirement

compared to state of the art receivers, and a key ingredient in reducing the receiver

power consumption.

Finally, Table 2.2 sets out definitions for additional receiver specifications that

will be considered in this thesis. Where it is useful to associate a specification to a

particular unit, the unit has been specified in square brackets.

2.3 Previously published low-power receivers

With the enormous number of ways that a wireless receiver can be constructed for

various power levels, spectral efficiencies, channel conditions, and interference sce-

narios, it is very challenging to formulate a single figure of merit that fairly and

accurately compares two receivers. However, since this thesis deals with energy ef-

ficient receivers, and since the power consumption noise performance of a receiver
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Table 2.2: Definitions for common receiver specifications referred to in this thesis

Name Unit Description

Center frequency [GHz] Center of the transmitted spectrum
Energy efficiency [pJ/bit] Energy required to receive one raw bit
Front-end bandwidth [MHz] Width of spectrum used in demodulation
Modulation scheme Method used to convert bits to

continuous-time RF signals
Raw bit rate [Mbps] Uncoded bit rate
Sensitivity [dBm] Receiver input power that generates a raw

bit error rate of 10-3
Spectral efficiency [bit/Hz] Raw bit rate divided by the font-end band-

width
Startup time [As] Time required to start the radio from the

its off state

are strongly correlated, the primary metrics that will be considered in this thesis are

energy efficiency and sensitivity. A simple way of thinking about the relationship

between the two metrics is as follows: the more energy spent capturing a bit, the

higher quality that bit should be.

A literature survey of previously published low power receivers was conducted.

The survey focused on the three main physical layer types found in the proposed

WBAN standard, namely Human Body Communication, ultra-wideband, and nar-

rowband. The survey is presented in Figure 2-2 and Table 2.3. The narrowband

case considered 2.4 GHz ISM receivers and was further divided into three subtypes:

802.15.4 (Zigbee) quadrature down-conversion architectures, super-regerative archi-

tectures, and other non-coherent techniques.

The selected data are from recently published receivers in ISSCC and JSSC in the

last 5 years. In general, where multiple operating points were specified, the one with

the best energy efficiency was selected. In the case of Zigbee front-ends, where noise

figure is usually published instead of sensitivity, equation (2.3) was applied with a

'sensitivity is 350 pV, referenced to 50 Q
2sensitivity given for BER = 10-8
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Table 2.3: Table of related low power receivers

Ref Type Data rate
(kbps)

Power

(1W)

Efficiency
(pJ/bit)

Sensitivity
(dBm)

[16] BCC 10000 3700 370 -65
[17] BCC 8500 2200 260 -651
[18] BCC 1000 3200 3200 -752
[19] UWB 2604 4200 1610 -63
[20] UWB 1000 1640 1640 -60
[21] UWB 16000 20200 1260 -76
[22] NB-Zigbee 250 32500 130000 -88
[23] NB-Zigbee 250 5400 21600 -98
[24] NB-Zigbee 250 3600 14400 -92
[25] NB-Super-regen 3000 516 170 -75
[26] NB-Super-regen 5 400 80000 -101
[27] NB-Super-regen 500 2800 5600 -80
[28] NB-Other 200 52 260 -70
[29] NB-Other 500 415 830 -82
[30] NB-Other 100 51 510 -64

This work 1000 180 180 -65

CH APT ER 2.
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noise bandwidth of 2 MHz and a typical required SNR of 7 dB.

There is a clear trend towards the bottom right of the plot due to the notion of a

tradeoff between sensitivity and energy per bit. There is also, however, considerable

overlap between the techniques. Since the receivers were constructed under varying

sets of assumptions about channel rejection, availability of reference clocks, interfer-

ence scenarios, and modulation schemes, no explicit trend line can be drawn. There-

fore, in order to explore some of the more subtle differences between the architectures,

the following subsections present a brief overview of the receivers, highlighting the

main tradeoffs discussed in the research publications.

2.3.1 Human Body Communication

Human Body Communication, also known as Body Coupled Communication (BCC),

is a technique used to transmit information using the human body as a communi-

cation medium. These transceivers enable low power communication that does not

itself interfere with FCC regulations or existing systems, but is nevertheless suscep-

tible to interference from such systems, especially in the proximity of high-powered

broadcasting stations.

Previous studies has shown that the optimal frequency for BCC communication

is somewhere between 10 and 100 MHz [31, 32], the lower end limited by propagation

losses, and the upper-end limited by a body antenna effect whereby the RF energy is

no longer confined to the body and is radiated into the environment. Therefore, BCC

signals are typically modulated to a sub- 100 MHz carrier before they are capacitively

coupled to the body via electrodes on or near the surface of the skin.

Recently published BCC transceivers [16, 17, 18] have shown receiver energy ef-

ficiencies on the order of 1 nJ/bit, data rates on the order of 1 Mbps, and receiver

sensitivities of roughly -60 to -70 dBm. A key benefit to intra-body signaling is the

low amount of power that radiates outside the body, making it easier to meet FCC

regulations, providing a layer of inherent security to the user, and allowing spectrum
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reuse between adjacent users without requiring an explicit cellularized structure. A

major concern however, is interference rejection due to the substantial presence of

high-powered television and radio stations that occupy the same bandwidth. Two of

the BCC receivers attempt to explicitly address this problem: one adopts a cognitive

Frequency Shift Keying (FSK) modulation to avoid frequencies with high interfer-

ence [16], whereas the other employs a high RX input resistance to reject offending

spectrum above 30 MHz, and a correlation-based scheme to reject signals with poor

correlation to the expected one [17].

2.3.2 Ultra-Wideband

In situations where capacitively coupling to the body is not appropriate or feasible, a

pulse-based ultra-wideband (UWB) approach can be used. These systems achieve ul-

tra low energy consumption per transmitted and received pulse, but with considerable

tradeoffs in sensitivity and susceptibility to interferers.

UWB architectures use narrow (nanosecond) pulses in the time-domain to spread

the transmission spectrum over a wide frequency bandwidth of several hundred mega-

hertz, maintaining the same total signal power while transmitting considerably lower

power spectral density. In fact, the power spectral density is so low that it is under the

FCC limit for unintended radiators such as personal or laptop computers. The trans-

mitters in such systems are highly amenable to all-digital architectures that eliminate

power-expensive components such as frequency synthesizers and phase locked loops

(PLLs), leading to ultra low power consumption.

The past few years have seen a large amount of research dedicated to develop-

ing energy efficient UWB transceiver architectures with considerable success. The

18 pJ/pulse transmitter in [33] and the 108 pJ/pulse receiver in [19] provide excel-

lent representative samples, and also show how the receiver generally consumes more

power than the transmitter, due to the transmitter's comparatively simpler imple-

mentation. Behind this energy efficiency however, there are considerable tradeoffs in
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sensitivity and robustness to interferers.

As an example, the 108 pJ/pulse receiver in [19] achieves a -63 dBm average

sensitivity only after 15 pulses are integrated together to construct the received bit.

The energy efficiency is then 1.6 nJ/bit for -63 dBm operation, which is comparable

to the previously discussed BCC transceivers. Moreover, since the UWB spectrum

covers wide swaths of bandwidth from DC all the way up to 10 GHz and beyond,

narrowband interference from the countless services that occupy this bandwidth is

an important and well-studied consideration [34, 35]. UWB systems must employ

clever coding and modulation techniques to enable robust signaling, with an ultimate

tradeoff against throughput and energy efficiency.

2.3.3 Narrowband

Finally, three main classes of narrowband receivers were considered. The first class are

low power Zigbee receivers, which are equipped with quadrature mixers that support

Quadrature Phase Shift Keying (QPSK) as a modulation scheme. In general, these

have a worse energy efficiency than the BCC and UWB transceivers due to power

expensive PLLs and quadrature oscillators, but are more capable of peer-to-peer

communication due to their excellent sensitivity.

The second class consists of super-regenerative receivers that use regenerative

positive-feedback to achieve gain and non-coherent detection to reduce power. These

schemes support simple amplitude-based signaling schemes like On-Off-Keying (OOK).

As pointed out by [27], a classic concern with superregenerative receivers, is poor se-

lectivity, since unwanted signals that are too close to the tank frequency may start

up the oscillation.

The final category includes some additional low power narrowband architectures

that use clever techniques to reduce the power consumption. In particular, [30] uses

a double-sampling technique to avoid 1/f noise at DC. Also, [28, 29] use a clever

frequency plan that reduces the specification on the frequency stability of the oscil-
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lator, and [28] in particular makes use of an-off chip resonator to greatly improve the

frequency selectivity. Finally, two of the receivers [28, 30] achieve the lowest reported

power consumption of all the surveyed radios at 52 and 51 [tW respectively.

2.4 Low power narrowband receiver techniques

2.4.1 CMOS scaling

Historically, scaling has achieved important power reductions in ultra-low power re-

ceivers due to switching loss reduction and subthreshold operation.

Firstly, decreasing supply voltages and smaller transistors have led to a reduction

is CV 2 switching losses. This leads to lower power consumption in high-activity

blocks like oscillators.

Secondly, CMOS ft's have continued to scale, with some of the most recent max-

imum ft's reaching as high as 400 GHz at the 32-nm process node [36]. In general,

ft scaling has allowed designers, with careful verification, to bias devices in the sub-

threshold region, where the highest 2 efficiency can be obtained, without significantly

compromising device performance at low GHz frequencies [37].

Challenges still remain for RF-CMOS however, as scaling trends have also intro-

duced higher subthreshold leakage, reduced small signal rd, output resistance, and

higher gate parasitics [38]. The 65-nm technology used for this thesis project rep-

resents a good compromise between these competing factors, and does not suffer

extensively from the most recent scaling challenges for RF-CMOS. In certain key

transistors, however, the gate length should be doubled to increase the small signal

output resistance.
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2.4.2 Low Power Oscillators

A high-level survey of the most recently published low power oscillators designed

for near-2.4-GHz operation is presented in Table 2.4. One representative oscillator

for each type is selected, and some of the major tradeoffs are contrasted. The ring

oscillator power measurement was taken from the oscillator implemented in this thesis.

In high performance transceivers, oscillators are typically locked to very precise

crystals to enable complex modulation schemes with increasingly dense constellation

points. The biggest power savings occurs by eliminating the phase-locking require-

ment, however this is at the expense of spectral efficiency since lower-order modulation

schemes must be used when phase drift starts to become problematic.

The next step in power savings is obtained by relaxing phase noise and frequency

stability requirements. At the lowest end of this spectrum, modulation schemes be-

come almost exclusively amplitude-based since the phase is no longer stable enough

to convey information. The ring oscillator typically obtains the best power consump-

tion, but with severe tradeoffs in frequency stability and phase noise. When choosing

a ring oscillator for LO generation, the frequency planning and modulation scheme

must take these tradeoffs into account.

2.4.3 Modulation

The use of high-order complex modulation types such as QAM and QPSK is often mo-

tivated by the need to increase the spectral efficiency and throughput of a transmission

system. Unfortunately, this comes at the expense of hardware power consumption

due to tighter specifications for the oscillator and more stringent noise figure require-

ment. Though the increased throughput could potentially amortize these extra power

costs to achieve an overall better energy per bit, previous studies and radio designs

suggest that simpler modulations schemes can be optimal.

In particular, [42] suggests that simple modulation schemes like OOK are optimal
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Table 2.4: Comparison of low power oscillator architectures

Advantages

- No off-chip components
- Tunable (2.29 to 2.92 GHz)
- Phase locked to a reference
- Low phase noise (-112 dBc/Hz)

Drawbacks

- mW power consumption
- Long startup time (30 us)

- Precise frequency generation
- Ultra-low phase noise (-144
dBc/Hz)

- Off-chip BAW required
- Low tuning range (< 0.1 %)
- No phase locking

LC- 180 uW*
tank - No off-chip components - No phase locking
[41] - Tunable (typically 10s of MHz)

- Low power consumption
- Low phase noise (-113 dBc/Hz)

Ring 70 uW
oscil- - No off-chip components Poor phase noise
lator - No integrated inductors (very No phase locking

small area consumption) Frequency instability
- Wide tuning range (several GHz)
- Very fast startup time (< 1 ps)
- Ultra-low power consumption

* simulated

Power

8 mW

Name

All-
Digital
PLL

[39]

BAW
[40]

600 uW
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since they reduce the synchronization overhead of the wireless system. Another study

[43] concluded that for M-QAM transmitters, the lowest order M modulation is opti-

mal when reducing the constellation size leads to a linear decrease in throughput but

an exponential savings in power consumption, leading to an overall better energy per

bit. Such a situation is present in a power constrained receiver if, for example, reduc-

ing the constellation size allows a power expensive frequency synthesizer (eg. 8 mW)

to be reduced to a simpler architecture such as a ring oscillator (eg. 70 pW). Another

example is the case where the LNA dominates the power consumption. In this case,

reducing the constellation size leads to a linear decrease in throughput, but due to

the relaxed SNR requirement, the LNA power consumption decreases substantially.

Finally, in the representative narrowband receivers presented in Figure 2-2, the

QPSK-based Zigbee architectures generally had worse energy efficiencies than the

super-regenerative and"other" categories, all of which relied on simpler schemes such

as on-off-keying (OOK) and pulse position modulation (PPM) that are compatible

with non-coherent detection.

One big advantage of OOK and PPM is the opportunity to use a simple non-

coherent envelope detector for demodulation. This leads to a very low power hardware

implementation since it relaxes the requirements on the local oscillator, or in some

cases, eliminates the requirement for oscillators altogether.

2.4.4 High-Q resonators

For a receiver design, the high quality factor of electromechanical resonators enables

very sharp passive filters with low loss, and can enable very simple energy-efficient

architectures. These resonators have stable resonance frequencies and a vastly im-

proved quality factor compared to traditional LC-based tanks. In typical receiver

applications, resonators are used in ladder filters in order to select an entire RF band,

such as the 2.4 to 2.4835 GHz ISM band. Afterwards, individual channel selection

within the band is accomplished at IF. More recently, designs such as [28, 44, 45
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have used single resonators to filter the desired channel directly at RF, simplifying

the down-stream hardware and thereby reducing power consumption.

The resonators are physical devices that vibrate in the mechanical domain at spe-

cific frequencies. The vibrating resonance modes are excited by electrical signals that

are transduced into the mechanical domain by piezoelectric or electrostatic forces.

The mechanical vibrations themselves then inject electrical energy back into the elec-

trical circuit, and the result, at resonance, is the conversion of energy back and forth

between the electrical and mechanical domains with very high quality factor and low

loss. Since special materials and geometric structures are often required, the main

challenge is integrating these devices into CMOS-compatible processing in order to

leverage the existing foundry infrastructure to reduce cost.

Research on electromechanical resonators continues to improve the performance

of these devices, and significant progress is being made on the integration front [46]

which could one day provide access to 100's of resonators on a single silicon wafer.

For now, if the designer is willing to tolerate an off-chip component, then resonator

technology is still an excellent way to build ultra low power receivers by using the

resonance for frequency selectivity. As will be shown in Section 3.5 however, one

disadvantage of single-resonator approaches, integrated or otherwise, is that they are

typically forced to operate at the single high-Q resonance frequency of the resonator.

Therefore, while single high-Q resonators can breed very simple and energy effi-

cient receiver architectures, they are typically not well suited to a low power multi-

channel receiver that employs channel selection directly at RF.

2.5 Receiver Architecture

The frequency plan for the mult-channel transceiver is based on an idea presented in

previous receivers [28, 29], and uses the concepts discussed above. The plan calls for

an ultra-low-power ring oscillator as the LO, and compensates for the uncertainty
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in the downconverted IF frequency by designing wideband IF gain followed a simple

envelope detector. The frequency plan is presented in Figure 2-3. The key to obtaining

channel selectivity is to use the high-Q resonance of a MEMS resonator to filter the

incoming RF and select the desired channel.

Envelope Detector
Uncertainty in IF Uncertainty in LO

. . . High-Q filtering

2.5 MHz BW

DC 1 MHz 10 MHz 100 MHz 2.450 GHz 2.480 GHz

BB IF LO

Figure 2-3: Frequency plan

As will be discussed in Chapter 3, the resonators have only a few megahertz of

capacitive tuning capability without degrading the resonance. Therefore, to extend

the frequency plan to multiple channels, an architecture is required to multiplex many

resonators into a single design. Such an architecture was developed for this thesis and

is presented in Figure 2-4.

The architecture is based on the premise that multiplexing the resonators with

series voltage switches will serve to de-Q the resonance and severely restrict the

filtering capability. Instead, the architecture uses the LNA cascode transistors as

current steering devices to select which receiver pathway to enable. Multiplexing

at the mixer is achieved by sharing a single wideband resistive load and tri-stating

the unused mixers. Though the architecture is shown with three channels, it can be

scaled to many additional channels. The subsequent portion of the receiver consists

of energy efficient IF amplifiers and a low-power envelope detector.

The discussion in the next chapter will highlight the high-Q resonators used in
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off chip
on chip

on chip off chip

IF Gain (x 5) Envelope
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Open
Drain

(Wired-OR)

Figure 2-4: Receiver block diagram
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this project. Afterwards, the design of the multi-channel CMOS receiver (Chapter

4), and measurement results (Chapter 5) will be presented.
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Chapter 3

FBAR Resonators

The previous chapter introduced an architecture for the multi-channel ultra-low power

receiver and specified that RF-MEMS resonators would be used to provide channel

selection at RF. The current chapter provides necessary background information on

Film Bulk Acoustic Resonators (FBARs)-the particular type of MEMS resonator

used for channel selection in this prototype. This information is presented in order to

enable the subsequent discussion in Chapter 4 on the detailed design of the receiver

circuits.

3.1 Introduction to FBARs

Work on commercializing piezoelectric thin-film bulk acoustic resonators (FBARs)

began at Hewlett Packard in 1993. Over the course of a decade, HP and later, Agilent

developed the technology into a very commercially successful duplexer product for

the celluar PCS band [47]

Commercial FBAR products fabricated by Avago Technologies such as the RX

filter shown in Figure 3-la [47] typically consist of a number of resonators arranged

in a ladder filter configuration. A close-up of a single resonator's structure in Fig-

ure 3-1b, and the cross section in Figure 3-1c, show how the resonator consists of a
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thin piezoelectric film sandwiched between two electrodes and then suspended over

an air cavity. For this project, single-resonator process-control-monitoring (PCM)

dies were used, as opposed to the standard multi-resonator filters of Figure 3-la.

These resonators were packaged with an all-silicon wafer-level packaging technique,

the result of which is shown in Figure 3-1d.

(a) Multiple FBARs in a ladder filter (b) Close-up of a single FBAR

E4B

Thin Top electrode (Mo
Film

Bottom electrode (N

Air cavity

U'-.

(c) Typical FBAR stackup (d) Capped FBAR die

Figure 3-1: Introduction to FBAR

3.2 Modeling

Complete resonator modeling can be accomplished with the Mason model [48], though

in the case of the FBAR, it is frequently simplified to a compact 4-element Butter-
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worth Van Dyke (BVD) model. More recently, the Modified-Butterworth-Van-Dyke

(mBVD) model was introduced by Larson et al. [49] by adding R, to capture ad-

ditional resistive losses caused by charges circulating internally to the device. The

complete model is shown in Figure 3-2a, with yet another additional resistor, R.,

included to capture electrical terminal losses.

Excellent references on the electro-mechanical interaction that occurs in piezoelec-

tric resonators are found in the literature [50, 51, 52]. The series R2-Lm-Cm portion

of the model represents the motional branch, which can be derived from fundamental

physics by using electrostatic forces and the piezoelectric coefficients to relate the

resonator's motion to it's terminal voltages and currents. One of the circuit elements,

Rm represents the motional losses in the mechanical system, such as heating losses

and leakage motion though the anchor points. Also, the large capacitor C, is the

physical parallel-plate capacitance formed across the piezoelectric layer.

Current injection on the capacitor sets the resonator into a thickness mode oscil-

lation where energy is converted back and forth between elastic, kinetic, and electro-

static forms, before it is ultimately dissipated by the motional and electrical losses.

Depending on the frequency and the loading condition, two main types of oscilla-

tions can be excited. The first type is the series resonance, where large currents can

circulate freely in to and out of the device while developing only a small voltage at

the terminals. This makes the overall device appear as a short circuit. The second

type is the parallel resonance, where the large currents circulate internally between

the motional branch and the device capacitance C,, developing a larger voltage at

the terminals, but drawing little current from the external circuitry. This makes the

overall device appear as an open-circuit.

The frequencies of the parallel and series resonances can be computed from the

mBVD model parameters:

Wseries = (3.1)
LmCm
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Cm
Wparallel = Wseries 1+ .

C,
(3.2)

3.3 Measurement and fitting

The resonators used in this thesis were experimentally measured to obtain the S-

parameters, after which a least-squares fitting operation was performed to determine

the mBVD model parameters. The measurements were performed on a Cascade

probe-station with 150-GSG probes, and the raw S-parameter data were captured by

an Agilent Network Analyzer. The measurement setup is presented in Figure 3-2a.

FBAR

R
Network
analyzer

..............

Rm
Rp

L
C

C

(a) FBAR Su1 measurement setup and
mBVD model

Figure 3-2: FBAR

1no

-measured .paa~t......
- fit ..... .....

........ .s.....
spurious ..........c

.m... .... ....des. ... ..
2. ...2 . ... 2 .. .6. .. 2. . 8.. ... .

2 2.2 2.4 2.'6 2.8 3
Frequency (Hz) x 10,

(b) FBAR impedance magnitude response

modeling and measurement

The first step in fitting was to convert the S-parameter data into impedance mag-

nitude and phase: log(|ZFBAR|) and ZZFBAR. The impedance scale was preferred in

order to most accurately fit the high-impedance parallel resonance, and the logarith-

mic axis was used to help spread the fitting accuracy more evenly at lower impedances.

The fitting was performed using a MATLAB@ least squares fitting routine. Since the

desired model parameters differed by many orders of magnitude (C in pF, Cm in fF,

Lm in nH, and the R's in Q), it was crucial to scale all of the parameters to be on the
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same order of magnitude, for example, between 1 and 10, in order to obtain a good

fit. The results of the fitting operation are shown in Figure 3-2b.

3.4 Quality Factor

The quality factor of a resonance determines its fractional frequency bandwidth and

hence, its filtering capability. There are a number of methods to calculate the Q of

piezoelectric resonators, four of which are listed below:

WseriesLm (3.3)series R(+.R)Rm +Rs

Qparae WparaiieiLm (3.4)
Oparallel = A

Rm + Rp

Qden W~ energy stored in the reactive elements (35)
average power dissipated

QFeld W d(ZS 1 ) gS11 2 (3.6)

Equations (3.3) and (3.4) are computed directly from the model parameters, and

are valid only at the series and parallel resonances respectively. Equation (3.5) is the

basic definition for quality factor [53], which can be used to simulate the Q at all

frequencies, also by using the model parameters. Finally, (3.6) was developed by Feld

et. al [54] to compute the Q at all frequencies directly from the measured S11.

Though only Qseries and Qparaliel are required, all four formulas were computed

for a particular resonator in order to verify the accuracy of the model. The results

are presented in Figure 3-3a. It should be noted that the much higher Q between the

two resonances is representative of extra energy storage due to both resonances being

partially activated, though this is not representative of the two resonance bandwidths.

At the series and parallel resonances however, the Q's match almost perfectly.
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(a) Q determined from the model fit and the (b) Scatter plot of the parallel resonance frequency
measured S11  and Q for 140 resonators

Figure 3-3: FBAR parallel resonance frequency and Q

3.5 Frequency Variation and Loading Effects

For the prototype, approximately 140 resonators from an untuned wafer were received,

measured, and characterized using the above techniques. A scatter plot of Qparauei

versus the parallel resonance frequency fparaulel is presented in Figure 3-3b.

The resonators show approximately 60 MHz of frequency variation that can be

leveraged to design a multi-channel receiver prototype. In a production application,

the FBARs can be tuned to achieve better tolerance [55]. The average unloaded

parallel resonance Q is 1300, for a -3 dB bandwidth of 1.9 MHz in these particular

prototypes; though Q's in excess of 2500 are not uncommon [56].

A particularly dangerous type of loading for a filtering application is capacitive

loading. The effect is presented via a simulation in Figure 3-4 for parallel capacitive

loading. As the capacitive loading increases, the parallel resonance frequency shifts

lower according to (3.2). However, the closer it approaches Wseries, the more the

series RLC branch starts to looks like a short circuit, smearing out the sharp high-Q

resonance. The design must minimize the capacitive loading or else live with the

. .... .. .. .... - ------- -
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reduced filtering capability.

10 -

3
* 10
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102

0
L10 -

10 0-
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FBAR Impedance Magnitude

2.45 25 2.55
Frequency (GHz) X10,

Figure 3-4: FBAR capacitive loading effect
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Chapter 4

Detailed Receiver Design

This chapter presents the detailed design of the multi-channel receiver circuitry broken

down into five major circuit blocks, namely, the LNA, Mixer, Oscillator, IF Gain, and

Envelope detector blocks. Afterwards, block-level noise simulations will be described

in order to create a picture of the overall system noise. This exercise will suggest

that the noise performance of the system is LNA-gain-limited and can be improved

by increasing the LNA's power consumption.

4.1 LNA

4.1.1 Tank

In the standard common-source LNA design, a transconductance stage provides gm

conversion of voltage to current, which is later converted to an output voltage by

passing it through a high-impedance load. Ideally the load should have the shape

of the desired frequency response. A cascode is normally employed to reduce output

resistance and mitigate the Miller effect. The magnitude of the small signal voltage
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gain from gate to output is given by:

Vina = gM|ZO|. (4.1)
V9

In this design, the FBAR was included in the LNA tank to provide the |ZOl; the

reasons for doing so are two-fold.

Firstly, the magnitude of the FBAR impedance response, |ZFBAR|, already has

the desired filter shape at the parallel resonance. Therefore the magnitude of the

voltage gain will have the shape of the desired filtering characteristic via equation

(4.1).

Secondly, the parallel resonance provides a very high tank impedance at 2.5 GHz.

By way of comparison, the standard LC-tank tuned load can be analyzed assuming

some reasonable on-chip parameters and the parallel version of the Q formula for

reactive components. Assuming an on-chip inductor with L = 5 nH and Q = 10, the

equivalent parallel resistance of the inductor can be calculated:

Rfp araulel
Qparallel = wL (4.2)

wL

+ Rparauet = QparaueiWL

=10 x 27r x 2.5 GHz x 5 nH = 785 Q.

By contrast, the FBAR offers a parallel resonance impedance of roughly 2 to 3 kQ,

or about 2.5 to 3.8x of the tuned LC tank. This directly translates into 8 to 12 dB

of additional voltage gain.

The next step is to design the LNA for multiplexing many center frequencies.

4.1.2 Design for multiplexing

In general, it is difficult to insert switches in series with very high Q resonators because

they cause power dissipation that de-Q's the resonance. With this in mind, an initial
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design that avoids series switches is shown in Figure 4-1.

I I I

VIna ina2 VIna3

lit X

V

Figure 4-1: Initial LNA multiplexing scheme (biasing omitted)

The cascode transistors are used as current steering switches, but they do not

impact the parallel resonance Q since only the injected current passes through the

switches - the circulating parallel resonance currents do not. Therefore, this first pass

design shows how multiplexing can be obtained, though it creates an input pole that

degrades the response at 2.5 GHz due to the extra capacitance at node x. Using some

simulated values for the transistors and n as the number of cascode devices, the pole

location is given approximately by:

fplx = m (4.3)fpoie,x 2wr(Cgd + nCgs,casc)'

2 mS
for n = 1-+ fpoie,x 2 =17 GHz.

27r(10 fF + 1 x 12 fF)

Clearly this solution is not scalable to additional cascode devices (n) due to the

capacitive load.

Instead a scheme shown in Figure 4-2 is used, where both the cascode device and

the input transistor can be replicated, with the additional capacitive loading absorbed

into the 50 Q input matching network. The next section will describe the design of

the matching network.
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TC TC2 [ 4
Figure 4-2: Final LNA multiplexing scheme (biasing omitted)

4.1.3 Matching network

Since the design will be tested with 50 Q standard equipment, maximum power should

captured by designing a 50 Q match for the LNA. The input impedance before match-

ing was simulated to be approximately ZLNAs,in = RLNA + 1 4j400Q.
jWJCLNA

One simple way to accomplish a reasonable match would be to directly tune out

the -j400 Q capacitance with 25 nH inductor (eg. +j400 Q @ 2.5 GHz). However,

this does not allow much room for post-fabrication tuning, and also represents a fairly

large on-chip inductance.

Instead, a ir-match network was designed with regard to the simplified network

shown in Figure 4-3. For simplicity, RLNA can be ignored since its inclusion does

not significantly affect the calculations. First, a "large" capacitance C2 is assumed

in parallel to the LNA gates to help reduce the reactance that needs to be cancelled.

Next, a reasonable on-chip inductor is chosen with L = 5 nH and Q = 13 (Rseries @

2.5 GHz ~ 6 Q). Finally, C1 is added to tune out any leftover inductance after the

real part is matched to 50 Q.

The matching proceeds by calculating the input admittance of the series RLC
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Figure 4-3: r-match network

branch, which yields:

1
Yi" R+j(wL- )

R . _-(wL-_ )

R 2 +(wL - 1)2 R 2 +(wL - 1)2

Gi B

(4.4)

By setting B = 1 , C is calculated to be 1.0 pF, which can easily absorb

the gate capacitance of the LNAs. C1 is chosen as 3.4 pF in order to cancel the

susceptance from B*. C1 can absorb the pad and package capacitance, and can

be adjusted slightly to account for the bondwire inductance. In general C2 adjusts

the real part and C1 compensates the imaginary part, hence the network was made

tunable with binary weighted capacitors in order to adjust the match after fabrication.

Additionally, an extracted simulation was performed along with packaging parasitics

to fine-tune the match.

The final matching network will be shown in Figure 4-4 along with the biasing

4.1. LNA
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details presented in the next section.

4.1.4 Biasing

Two factors require special consideration when biasing the LNA.

Firstly, the low supply voltage of 0.7 V presents a headroom challenge. In weak

inversion, VDSAT is approximately 4 Vthermal ~ 100 mV. Despite this, simulation dic-

tates that VDS = 200 mV is more comfortable to maintain high enough ro, limiting

the stack height to about 3 transistors. It is therefore not desirable to have a current

source directly biasing the LNA as is traditionally done. Instead, the RF signal is

ac-coupled to the LNA gate, and the gate's dc-bias voltage is set via a large resistor

as shown in Figure 4-4.

The resistor was chosen by examining the RF input impedance of the LNA input

transistor, and sizing the resistor to be much larger that the LNA impedance. From

simulation, Cg. = 16 fF and Ce = 5 fF. At 2.5 GHz, the impedance is 1 ~ -j3 kQ.

Thus the resistor was chosen to be 100 kQ so as not to disturb the circuit. The bias

voltage is generated by injecting current from an on-chip current DAC into a diode

connected transistor in the same fashion as a usual current mirror. The DAC is

tunable over a wide range of current for experimentation purposes, from roughly 10

pA to 1 mA.

The second factor in biasing the LNA is that the FBAR acts like a capacitor at all

frequencies other than in the immediate vicinity of the resonance. This means that a

bias circuit is required in order to allow DC current to flow down the LNA stack. A

PMOS transistor current source could be used, with feedback employed in order to

equalize the PMOS and NMOS currents and set a stable bias voltage at the output.

However, these feedback techniques could be costly to the power budget. Instead,

a nice solution is to use a diode-connected PMOS "active inductor" similar to that

presented in [44, 45]. Doing so allows the NMOS current mirror to set the bias,

however, the frequency response of the active inductor should be tuned to improve



4.1. LNA

the 1 output impedance to a higher value at 2.5 GHz. The final LNA design is

presented in Figure 4-4.

Cb

9m, FBAR1~ FBAR2 M9 FBAR3

Rb v,, vina2 vna3

C M2 M5 M8

c v
M 1 M4 M7

C I C 29

Figure 4-4: Final LNA design with biasing shown in grey

Important tradeoffs were considered when sizing the components. Firstly, since

RB is in parallel with the tank impedance, it must be considerably larger to avoid

reducing the tank gain; hence RB was chosen as 100 kQ. Next, the DC bias at the LNA

output must leave enough headroom for the two transistors underneath. Therefore

M3 must be sized large enough to keep the bias point high, but not so large that it's

output resistance impacts the response. An example value of gm,p = 1.5 mS is chosen

for illustrative purposes.

The small signal frequency response of the impedance was derived by considering

a test voltage vt and dividing by the test current it:

Zbias - Vt - + SOBRB (4.5)
zi gm,p 1+ s /

A plot of the parallel combination of Zbias, ZFBAR, and ro,bias multiplied by gm

shows that the circuit generates undesirable gain below 1 GHz. In fact, the gain for

some frequencies is higher than the 2.5 GHz RF gain!

Some insight can be gained by examining the ratio of the zero and pole location
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(a) Wideband calculated and simulated LNA (b) LNA gain zoomed to the FBAR's
gain resonance frequency

Figure 4-5: Calculated and simulated LNA gain

in Zia,:

fpole = 9m,pRB = (1.5 mS)(100 kQ) = 150. (4.6)
fzero

Ideally the pole should take effect at a lower frequency than the zero to minimize

the undesired impedance, however, gm,p and RB cannot be significantly reduced for

the reasons discussed above. The solution is to employ a differential mixer structure

to reject signals at frequencies below 1 GHz, and this will be described in the next

section.

4.2 Mixer

Because a single phase clock minimizes power consumption, a single-ended mixer was

analyzed first. In the final mixer design of Figure 4-6, M1, M2 and R+ form a single

phase mixer, where M1 is the input transistor and M2 is driven by the clock. In

effect, M1's gm is modulated by a square wave oscillating between 0 and 1. The gain

....... -_ -_ -_ _- . .. ........... ........ ........ .........................................................................................
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is therefore:

VMix (t) 2 1
= 9M 0.5 + -r E - sin (nWLOt) RL. (4.7)

olna (t) I-' n=r 3,.n
DC feedthrough , 1,3,..

harmonics

Incoming RF signals between WLO + wIlow and WLO + WIFhigh are down-converted

to the IF band by the desired n = 1 harmonic term with a conversion gain of lgmRL,

where an additional j gain has been included due to the multiplication of the RF

sinusoid with the LO harmonic sinusoid. The image frequency range between WLO +

WIF,high and WLO - WIF,low has been rejected by the FBAR filtering and is therefore

not considered.

The DC feedthrough term, however, is highly undesirable because of the large

amount of IF-band noise from the LNA that it allows to propagate to the IF amplifiers.

Therefore, a balanced mixer structure must be used, along with the both the LO and

LO signals, in order to reject this noise.

In the balanced structure, v~i2 is the same as in (4.7) while v-ix is also the same

except with the sinusoids phase-shifed by 1800 (eg. they have minus signs). The

differential gain is therefore:

+ -4 1Vmix (t) - v(ix(M) 9m17 - sin(nWLO t) RL, (4.8)
Vna(t) 7r n=3,5.. n

where the DC term has been eliminated and the conversion gain is doubled.

Multiplexing of the three mixers can be achieved by sharing a common resistive

load in a wired-OR structure. The circuit is shown in Figure 4-6

Since the transistors will be biased in subthreshold, the maximum gain achievable

from a resistively loaded amplifier is limited by the voltage headroom as seen by the

following relation:

A = gmRL= ID RL = Vswing (4.9)
nVf) nVT
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R+1 R

V-
mix mix

Inal a3 a3

Figure 4-6: Three mixers with a wired-OR connection

The value of the resistor is set so that the high frequency pole at the output of the

mixer is at 100 MHz. Assuming a 60 fF fixed capacitance from all the mixer drains

plus the routing, the resistor is therefore 25 kQ. With a voltage headroom of roughly

Vwing ~ 200 mV, the bias current is therefore set to 8 pA per resistor, or 16 tA total

for the mixer. Assuming a typical value for the subthreshold slope factor (n = 1.5),

the theoretical conversion gain for the desired -1 sideband calculated using (4.8) and

(4.9) is 16 dB.

In order to reject the DC feedthrough, it is essential for LO and LO to have

matched duty cycles. For matched 50% duty cycles, the DC term is perfectly rejected

(simulated to -70 dB). Figure 4-7 shows the effect of slight mismatches. While the

desired sideband's gain is relatively unaffected by small differences in duty cycle, the

DC feedthrough gain starts to become significant even for a 1% mismatch. Therefore,

the oscillator topology should generate matched duty cycles for LO and LO as much

as possible.
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Figure 4-7: Conversion gain from the LNA gate to the differential mixer output
showing the effect of duty cycle mismatch on the DC feedthrough gain

4.3 Oscillator

A three-stage ring oscillator was designed to operate at 2.5 GHz, where three stages

were selected to minimize CV 2 losses. The circuit and its buffers are presented

in Figure 4-8. The main considerations in designing the oscillator were frequency

tunability, duty cycle control, and LO generation.

Ring oscillators are typically tuned by current starving, either with tunable resis-

tors or tunable current sources. Both of these methods were analyzed via simulation.

For less than 50 MHz tuning accuracy, resistance tuning steps of less than 3%, or

current source tuning steps of less than 2.5% are required. Though in current source

tuning, a small amount of overhead power consumption is required due to mirroring,

this method was selected because on-chip resistors are known to be poorly controlled

in CMOS processes (typically ~ 25% accuracy).

The duty cycle is a function of the finite rise time of the oscillator signal at node

x, and the midpoint of the virtual supply rail voltages with respect to inverter I1's

switching threshold. By adjusting the relative current difference between the top

and bottom current sources, the virtual supply rails can be simultaneously shifted
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VDD

matched LO
delays

. --

DN[ 7 :0] LO

Figure 4-8: Three-stage ring oscillator with current starving and LO generation

upwards or downwards in voltage without significantly affecting the frequency of

the oscillation. This adjusts the time at which the oscillator crosses the inverter's

switching threshold, and hence, tunes the duty cycle. The adjustment of the duty

cycle versus the current difference between the top and bottom current sources is

illustrated in Figure 4-9.

The inverse LO was generated by matching the delay of a pass transistor with

an inverter [57]. Sizing of the pass-gate was achieved via simulation over all process

corners. The worst case deviation from a perfect 1800 phase was 130 in the slow-slow

corner.

4.4 IF gain

This project uses a differential bandpass resistively-loaded amplifier shown in Figure

4-10 [58]. The key design considerations in this work are the passband gain, and the

bandwidth.

V *
VDD
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Figure 4-9: Tuning the LO and LO duty cycles using mismatch in the current sources

Figure 4-10: Offset-compensated resistively-loaded IF amplifier
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Since the transistors are biased in subthreshold for maximum gm over ID efficiency,

the overall gain for each stage is again limited by the available swing as expressed

previously in (4.9). The theoretical maximum gain, assuming Vwing = 200 mV,

typical n = 1.5, and VT = 26 mV, is 14 dB per stage.

The differential frequency response for a single IF stage was derived with r, ignored

for simplicity:

Vod (______c 1 (4.10)
vid S C-ra-+1 \1 1+ sRLCOIm 9 m

The upper pole is set by the fixed capacitance at the drain of each IF stage,

comprising the output capacitance of the current stage, the input capacitance of the

next stage, the envelope detector capacitance, and the routing. A fixed capacitance

from all sources of 40 fF is assumed, setting the resistor to 40 kQ for a low-pass corner

at 100 MHz. This sets the drain current IB,IF to 5 p.tA, after which the high-pass

corner - is placed at 10 MHz by choosing Cc.

The simulated passband frequency response is shown in Figure 4-11. The maxi-

70.

60 ...... ...... .

60 ...... > ................. ....
m 50 -
V 40 - ---

3 staaes::
O 30 -- -.-

-2 sta' es
20

1 stame
10

20-10

-20 6 108 90
10 10

Frequency (Hz)

Figure 4-11: IF frequency response for various stage lengths
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mum gain when all 5 stages are active is 54 dB or about 10.8 dB per stage. The -3

dB bandwidth is approximately 10 to 100 MHz for all of the configurations.

4.5 Envelope detector

The final analog processing block of the design is the envelope detector. The classic

envelope detector, consisting of a diode rectifier in series with a capacitor, cannot

be implemented here due to the lack of headroom. However, an envelope detector

can still be constructed by substituting the diode with the exponential response of a

subthreshold-biased MOSFET. The circuit is shown in Figure 4-12.

M4 M5

V,,* +e-| V V. + - - Vl

S M2 M3 S SS V
if1 f, 1 if,2 f,2 d

20pF

M1 T
Figure 4-12: Envelope detector circuit for selecting an IF stage

The architecture allows multiple IF-gain stages to be multiplexed onto a single

20 pF output capacitor. A similar approach to [58] was used here, keeping in mind

that instead of multiple IF-gain paths with varying lengths, there is a single chain of

IF amplifiers from which the IF signal can be extracted from the output of any one

stage.

This fact meant that careful co-layout of the IF and envelope detector stages was

required. Metal lines operating at the IF frequency needed to be kept extremely short

to minimize capacitance (< 20 fF) and maintain the 100 MHz frequency response.

By contrast, lines connecting the envelope detector transistor to it's 20 pF output
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capacitor could be much longer.

4.6 Noise simulation

Though an exact modeling of the total receiver noise is complicated by the presence of

the non-linear envelope detector and the wideband IF stages, an approximate analysis

can be performed by simulating the noise output of each of the blocks, and referring

the noise to the antenna input.

The first step is to determine how the noise from each stage will be filtered before

reaching the output. In the case of the antenna and LNA, only noise contained

within the noise bandwidth of the FBAR will be propagated to the output, whereas

for the mixer and IF stages, all noise in the 10 to 100 MHz will be propagated. Next,

the spectral densities for each block can be determined via SPECTRE@ noise and

pnoise simulations. Finally the input referred contributions from each block can be

calculated using the following formula:

Pn n = kT Bn ina + NinaBn,ina + NmiBn,mix NiyfI B,f 1 + (4.11)
'* Aina(50 Q) AmixAina(50 Q) Aif1AmixAna(50 Q)

Pn,in,ant
Pn,in,lna Pn,in,mix Pn,in,if 1

The results of this analysis are presented in Table 4.1.

The analysis calculates the total input referred noise to be -82.5 dBm. Accounting

for the 10 dB SNR required for OOK demodulation, plus some additional margin, the

analysis suggests that a sensitivity on the order of -70 dBm should be expected. The

analysis also confirms that the first wideband block, eg. the mixer, is the limiting

block for noise performance. It also suggests that the receiver sensitivity should

trade off proportionally with LNA gain since doubling the LNA gain reduces the

input referred noise by j. Relating this to LNA power consumption, a doubling of

the LNA current should increase the LNA gain by 6 dB, and hence reduce the input



4.6. NOISE SIMULATION

Table 4.1: Simulation of noise sources in the receive chain

Gain Noise PSD
Ablock

(dB)
Nblock

(V2ms)

Noise Bandwidth

Bn,bock
(MHz)

Input Referred Noise
Pn,in,bock

(fW)

Antenna 0 4.1 x 10-21 5 0.4
LNA 20.6 9.6 x 10-17 5 83.6
Mixer 13.2 7.0 x 10-15 90 5250.0
IF Stage 1 10.8 4.0 x 10-15 90 250.0
IF Stage 2 10.8 4.0 x 10-15 90 20.8
IF Stage 3 10.8 4.0 x 10-15 90 1.7
Total noise 5606.5
(in dBm) -82.5 dBm

referred noise by 6 dBm. The can be used to adapt the receiver sensitivity to the

channel conditions if required.

Block
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Chapter 5

Results

This chapter presents simulation and measurement results for the ultra-low power

multi-channel receiver designed in this thesis. First the CMOS implementation, pack-

aging, and measurement set-up will be described. Next, measurement results will be

provided including the power consumption, BER, frequency response, input return

loss, and scalability of the sensitivity with LNA efficiency. These measurements will

confirm that an excellent energy efficiency has been obtained due to the low power

consumption and high data rate.

5.1 CMOS Implementation and packaging

The receiver prototype was designed and implemented in a 65 nm standard CMOS

technology. A detailed layout screenshot and a die photo of the 2 mm x 2 mm

fabricated IC are presented in Figure 5-1a and 5-1b respectively. For RF-specific

components, the process featured Metal-Insulator-Metal (MiM) capacitors and a thick

top-layer metal for the on-chip inductor in the matching network.

Aspects of the final design were influenced by testing and experimentation con-

cerns, and some additional testing circuitry has been added to aid in the characteri-

zation of it's performance:
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(a) Layout screenshot

(b) Die photo

(c) Packaging with three FBAR resonators

Figure 5-1: Prototype layout, CMOS die photo, and packaging

..... ..........
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1. A serial shift register is used to configure all of the internal tunable compo-

nents including capacitors, resistors, and the bias currents and shutdown state

of all the main circuit blocks.

2. Each circuit block features a binary-weighted current DAC to adjust it's

DC bias point. An on-chip current mirror network supplies reference currents

to all of the on-chip DACs, and is referenced to a single off-chip resistor. The

DACs can also be individually overridden by external resistors if required.

3. Each main block features it's own separate supply rail with 20 pF of on-chip

supply decoupling per rail.

4. A series of flip flops operate as a clock divider to divide down the LO by 128x

so that its frequency can be measured off-chip.

5. A unity-gain opamp buffer is used to drive the envelope detector output to

an off-chip.

Finally the design was packaged in a QFN48 package along with three FBAR

resonators supplied by Avago technologies (Figure 5-1c).

The next section details the measurement set-up used to obtain the results in

Section 5.3.

5.2 Measurement Set-up

Two boards were fabricated for the purposes of the testing the IC and are shown in

Figure 5-2. The IC itself is mounted on a small daughterboard that contains an SMA

connector and a 50 Q transmission line for the RF input. The daugherboard also

contains a simple opamp circuit configured to provide gain to the envelope detector

output so that it fills a majority of the full-scale range of the ADC. The daughter-

board interfaces to a mainboard that contains support circuitry. Most notably, the
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mainboard contains the ADC, some level shifters and voltage regulators, and a series

of jumpers that provide the capability to power each of the design blocks from either

the on-board 0.7 V regulator or an external source connected via BNC cable. Finally,

the mainboard plugs into an Opal Kelly@ XEM3001v2 which contains a Xilinx@

FPGA capable of implementing custom logic.

The measurement set-up used to quantify the BER is presented in Figure 5-3. An

Agilent@ 8267C Vector Signal Generator (VSG) was used to modulate OOK data on

to a 2.5 GHz carrier for transmission over a 50 Q coaxial cable to the RF test board.

The Real-Time I/Q baseband mode is used, with a custom I/Q constellation for

OOK, and an internal control loop that ensures the average modulated output power

matches the power level demanded by the PC. A linear feedback shift register (LFSR)

configured as a Pseudo-Noise (PN) generator supplies continuous random data to the

signal generator's baseband. At the time a measurement is to be performed, a trigger

from the PC enables the FIFO and captures the current state of the PN generator. On

the PC, the captured state is used to seed an identical software-based PN generator

which reconstructs the PN-sequence and compares it to the demodulated OOK data.

The OOK demodulation threshold is taken as the average of the incoming digital

codes given that the PN-sequence generates approximately equal quantities of Is and

Os.

5.3 Measured and Simulated Results

This section will present the measurement and simulation results for the multi-channel

receiver. Since there is some flexibility in trading off the power consumption for

sensitivity, the data will be presented at the default power and gain settings shown

in Figure 5-4. Finally, this section will conclude with a plot showing how the energy

efficiency can be traded for sensitivity.

Figure 5-4 shows the measured power consumption and the simulated gain for
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Figure 5-2: Test boards

Figure 5-3: Measurement setup
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Figure 5-4: System power consumption and gain by block

each of the blocks for the default setting. The total power consumption for all the

blocks is 180 uW and the total simulated signal gain prior to the envelope detector

is 66.2 dB. It should be noted that these figures reflect only three stages of IF gain

since, as will be shown shortly, three stages are optimum from a noise performance

perspective.

Figure 5-5 shows some of the measured characteristics of the ring oscillator. First,

the ring oscillator digital codes (DN and Dp) were varied together over their eight

bits of tuning range from 0 to 255. Figure 5-5a shows how the frequency increases

and then crests at roughly 3 GHz. At this point, it is likely that one of the nodes in

LO chain or testing circuit is no longer able to switch fast enough, and therefore the

frequency no longer increases. The mean frequency step in the monotonic region of

the plot is 15 MHz per digital code.

Next, the oscillator was set at roughly 2.48 GHz and was allowed to run freely

at room temperature for two uninterrupted days. Frequency measurements were

recorded for every minute, and the results of the two-day test are shown in Figure

5-5b. The frequency variation was no more than 20 MHz over the course of the test,
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Figure 5-5: Ring oscillator characteristics

which indicates that only periodic frequency calibration is required in slow-changing

temperature conditions.

Figure 5-6 shows a family of BER waterfall curves, each measured with a different

number of IF gain stages enabled as indicated in the legend. With both four and

five gain stages enabled, the BER no longer decreases monotonically with increasing

input power. This is likely due to the envelope detector becoming saturated, firstly,

by the output noise, and secondly, at higher power levels, from the gained input signal

itself. In fact, based on the noise simulation results presented in Table 4.1, the noise

level referred to the envelope detector input for five IF gain stages can be tabulated

as 400 mVrms, which is very near to the saturation regime for the envelope detector.

Figure 5-7a presents the frequency response of the receiver over the three channels.

The channel center frequencies are a result of the parallel resonance of the FBARs

selected in the packaging. To generate the plot, a -50 dBm RF input was swept

over the frequency range while the envelope detector's output was measured and

normalized to the DC bias level. The average -3 dB bandwidth across three packaged

dies is 6.4 MHz as measured at the detector output. The packaging parasitics and
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the non-linear nature of the envelope detector are responsible for the degradation in

the 3 dB bandwidth from the ideal 1.9 MHz discussed in Chapter 3. In Figure 5-7b,

the return loss (Sal) was measured with the on-chip matching network configured to

place the notch at 2.5 GHz. The plot shows better than -20 dB return loss across a

bandwidth of 68 MHz.

-+-- Total receiver
1 -e- LNA only

0.1 .x OthmX::
0 ~negy::

U .......... S itiv

improvement Energy

0.01
-80 -75 -70 -65 -60 -55 -50

Sensitivitivy for E-3 BER (dBm)

Figure 5-8: Tradeoff between energy per bit and sensitivity

Next, the tradeoff between energy efficiency and receiver sensitivity for this par-

ticular architecture was measured (Figure 5-8). In order to perform the measurement,

the LNA power supply was boosted from 0.7 V to 1.0 V to provide sufficient head-

room to the transistors at the highest power settings. As the LNA current varied

from 30 [pA to 1 mA, BER measurements were taken and the 10- 3 sensitivity point

was used to create a plot of energy per bit versus sensitivity. Both the LNA-only and

total receiver energies are shown.

The noise simulation results presented in Table 4.1 suggested that the mixer was

the limiting stage for sensitivity, and that additional LNA gain should improve the

sensitivity at a rate of -6 dBm per octave of LNA power consumption. Below 100
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pJ/bit LNA-only energy, the tradeoff follows the predicted trend very closely. At

higher power levels, the LNA gain begins to saturate due to a worsening output

resistance from transistor M3 in Figure 4-4 which in turn causes a reduced resonance

quality factor. This effect serves to dampen the sensitivity improvement at higher

power levels.

Finally, the startup time of the receiver was measured as 6 ps from the rising

edge of the shift register interface's strobe signal until the time at which the first bits

appear at the output of the envelope detector.

5.4 Results Summary

The measured and simulated results reported above have been summarized and pre-

sented in Table 5.1 alongside the most relevant previously published low-power re-

ceivers.

Table 5.1: Summary and comparison to related work

Ref Freq. Rate Power E/bit Sens. -3 dB BW no.
(GHz) (kbps) (pW) (pJ/bit) (dBm) (MHz) chan.

[44] 1.9 80 3600 45000 -78 3 2
[28] 2 200 52 260 -70 < 10 1
[29] 2.4 500 415 830 -82 ~40 1
[30] 2.4 100 51 510 -64 59 1

This work

(Low E) 2.4 1000 140 140 -55 6 3
(Med. E) 2.4 1000 180 180 -65 6 3
(High E) 2.4 1000 1140 1140 -77 6 3

In general, the results show

published designs in terms of its

the architecture is very competitive with recently

energy per bit and sensitivity.

In particular, compared to the multi-channel MEMS-based receiver in [44], this

work represents a substantial improvement in energy efficiency. Also, compared to
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[29] and [30], this design has an improved bandwidth efficiency due to the use of

MEMS resonators.
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Chapter 6

Conclusions

6.1 Thesis summary

In wireless body-worn medical systems, a key bottleneck is the high power consump-

tion of the radio components. This leads to shortened device lifetimes, bulky energy

storage requirements, and the inability to power the system from scavenged energy.

In addition, for operation in unlicensed frequencies bands, a key challenge is the

presence of multiple users transmitting simultaneously at different frequencies within

the allocated spectrum. This can lead to very unreliable operation if the transceiver

system operates only at a single fixed frequency.

To address both of these challenges, a highly energy efficient multi-channel receiver

has been presented. The design leverages some of the main opportunities in Body Area

Networks to improve energy efficiency, including reduced communication distances,

buffered low rate medical data for high rate transmission, and a star network topology.

The design also leverages the benefits of MEMS resonator technology in order to

provide better frequency selectivity at low power.

The presented non-coherent narrowband receiver is capable of operating in the 2.4

GHz ISM band and achieves 180 pJ/bit at -65 dBm sensitivity while providing three

selectable frequency channels of operation. The use of MEMS resonators, a low power
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ring oscillator, simple envelope detection, and a low Vdd of 0.7 V have all contributed

to the low power consumption. The channel selection has been enabled by the use of

multiple MEMS resonators and an architecture to select them dynamically. With a

startup time of 6 bit periods and a maximum data rate of 1 Mbps, the design is also

highly amenable to duty cycling in order to achieve a very low average power while

minimizing waste energy.

6.2 Future Directions

With the upcoming IEEE 802.15.6 Wireless Body Area Network standard, and a

potential future market for body-worn wireless medical systems, there are a number

of exciting potential directions for this research. Two areas that will be specifically

highlighted are directions in MEMS integration, and directions for integrated low

power on-body health systems.

Over the last two decades, Micro-Electro-Mechanical Systems have revolutionized

electronics in such diverse applications as television, gaming, and communications.

It is worth noting however, that in many applications, including the receiver in this

project, the MEMS devices and the CMOS are fabricated on separate substrates

to take advantage of specialized materials and processing steps. With FBARs in

particular, a number of techniques are helping to ease integration, including above-

IC fabrication [59], flip-chip bonding [60], and through-silicon-vias [45]. But with

an eye on cost and size minimization, an imporant direction for research in MEMS-

based transceivers is total integration of RF-MEMS resonators with standard CMOS

processes [61, 62]. Integration brings some key advantages including reduced cost

from off-chip components, reduced parasitic loading from pads and bondwires, and

the opportunity to employ redundancy to combat variation since many devices could

be fabricated very inexpensively. Two key challenges should be overcome in order

to realize more opportunities for integrated resonators. The first is the development
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of new techniques to help reduce or handle the high motional impedance of silicon

resonators. Currently, the motional impedance presents a challenge to filtering with

low insertion loss. The second is a reduced dependence on specialized processing steps,

which would bring about additional cost savings compared to today's technology.

With separate advances in ultra low power transmitters [63], efficient biomedical

signal processors [64], and energy harvesting circuits [65], another exciting direction

is integration of all of these components into an energy-efficient on-body sensor node.

When creating such a system, size and overall energy efficiency are the goals, and

therefore, important system-level concerns should be addressed. Bringing together

a system would require work on power management for each of the components to

control peak demand and to duty cycle components that are not in use. It would

also require an energy-efficient medium access protocol that minimizes the transceiver

overhead. Finally, integration into a small form-factor poses unique challenges for the

energy harvester and energy storage components, and the power electronics circuitry.

In summary, an energy efficient multi-channel narrowband receiver has been pre-

sented in this thesis. However, a number of important integration challenges still re-

main, including integration with MEMS filters, and the development of a self-powered

on-body medical system that brings together research on the various components into

a single integrated system.
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Appendix A

List of Acronyms

150-GSG: 150 pm-pitch, Ground-Signal-Ground probe

BAN: Body Area Network

BAR: Bulk Acoustic Resonator

BCC: Body Coupled Communication

BER: Bit Error Rate

DAC: Digital to Analog Converter

FBAR: Film Bulk Acoustic Resonator

FCC: Federal Communications Commission

FIFO: First-In First-Out

FSK: Frequency Shift Keying

IEEE: Institute of Electrical and Electronics Engineers

IF: Intermediate Frequency

ISM: Industrial-Scientific-Medical

ISSCC: International Solid-State Circuits Conference

JSSC: Journal of Solid-State Circuits

LFSR: Linear Feedback Shift Register

LNA: Low Noise Amplifier

LO: Local Oscillator
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MAC: Medium Access Control

mBVD: Modified Butterworth-Van-Dyke model

MEMS: Micro-Electro-Mechanical Systems

OOK: On-Off Keying

Q: Quality Factor

QAM: Quadrature Amplitude Modulation

QPSK: Quadrature Phase-Shift Keying

PCM: Process Control Monitoring

PHY: Physical Layer

PLL: Phase-locked loop

PN: Pseudo-Noise

PPM: Pulse-Position Modulation

RF: Radio Frequency

SoC: System on Chip

UWB: Ultra-Wideband

VSG: Vector Signal Generator

WBAN: Wireless Body Area Network

WSN: Wireless Sensor Network
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