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Problem Set 9 Solutions April 29, 2007 

Problem 1: This problem deals with a salient pole machine with the following characteristics: 

Number of Poles p 14 
Frequency f 60 Hz 
Peak Field to Armature Mutual Inductance M 300 mHy 
Direct Axis Stator Inductance Ld 5 mHy 
Quadrature Axis Stator Inductance Lq 3 mHy 
Rated (Line-Line, RMS) Terminal Voltage VB 4,200 V 
Machine Rating PB 15 MVA 

1. (AFNL) is simply found by, first, estimating the peak voltage: 

2 
|Va| = × 4, 200 ≈ 3, 429V 

3 

Then field current to reach this voltage at no load is: 

Va 3, 429 
Ifnl = = ≈ 30.32A 

ωM 377 × .3 

2. In operating conditions, it is appropriate to, first, find the components of operating 
current This is cone with the aid of the phasor diagram shown in Figure 1. The details 
are shown on the appended script, with the numbers generated repeated here. (I have 
edited out a number of blank lines) 
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Phase Voltage = 2424.87 RMS

I_fnl = 30.3215

I_a = 2061.97

V_x = 3886.71

I_ffl = 62.0682

I_f for full VA, Zero PF = 78.9225

I_f for underexcited Stability Limit = -20.2144

Absorbed VARs at underexcited Stability Limit = 1.55972e+07


3. To operate in the under-excited region it is necessary to remember that power and torque 
are proportional and that generator power is: 

3 V Eaf V 2 1 1 
P = sin δ + − 

2 Xd 2 Xq Xd 
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Figure 1: Salient Pole Phasor Diagram 

Stability requires that the derivative of torque with respect to angle be negative, so we 
can find the point of stability by doing the derivative assuming δ = 0: 

∂P 3 V Eaf 2 1 1 
= − + V − 

∂δ 2 Xd Xq Xd 

This is zero (the edge of the stable region) when 

Xd
Eaf = −V − 1 

Xq 

Substituting this into the expression for reactive power: 

3 V 2 

Q = 
2 Xq 

The rest of this is in the script. the results indicate that the machine can supply reactive

power from about -5.6 to +15 MVAR.


A summary and approximate vee curve for zero power operation is sketched in Figure 2.


Problem 2: The slip-ring machine can be represented as shown in Figure 3. This looks just like 
an induction machine equivalent circuit (at least the flux linkage parts). In this case the 
magnetizing branch reactance is Lm = 3

2 M = 12mHy. The leakage inductance is therefore 
L1 = Ld − Lm = 0.2mHy. 

The voltage at the slip ring (left-hand) terminals is proportional to rotor frequency: 

ωe − ωm
V = sV = Vr x x

ωe 
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Figure 3: Slip Ring Machine Equivalent Circuit 

And, quite conveniently, Vx is the voltage that would appear in the stator frame.


For operation as a generator at overexcited conditions, the relationship between voltage and

current is as shown in Figure 4. Components of current are:


V − jQ 
I = s 3 V

2 

Assuming that generation voltage is known, we can easily estimate the other voltages and 
currents in the circuit: 

V m = Vs + jωeL1Is 

V
I = m 

m 
jωLm 

I = I + Ir s m 

V x = V m + jωeL1Ir 

3 
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Figure 4: Generation Voltage and Current 

Then, finally, real and reactive power are found as:


3

∗
Pr + jQr = V rIr2 

Of course at 75% speed, slip s = .25 and at 125% speed, slip is s = −.25. A script which carries 
out these calculations is appended. Here is an edited (to eliminate white space) transcript of 
the running of that script. The last two lines show rotor input real and reactive power for 
positive and negative slips. 

Note that when slip is negative, the relative phase relationships reverse, and this reverses the 
sign of reactive power. 
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Stator Output P + j Q = 80000 + j 60000

Rotor Input at Slip = 0.25 P + j Q = 20000 + j 30630.3

Rotor Input at Slip = -0.25 P + j Q = -20000 + j 30630.3


Problem 3: for 6.690 Essentially all of the development of this solution is the same as for Prob
lem 2. The only difference is to note that the ratio between rotor and stator real power is, 
taking the sign convention for a generator: 

Pr = sPs 

and, since Pm = Pout = Ps − Pr (this assumes the power electronics is lossless, but that is 
another story), we have: 

Pout Ps = 
1 − s 

Since the power electronics is assumed to operate at unity power factor at the stator side of 
the system: 

Qs = Qout 

The rest is automated in the script which is appended. The resulting real and reactive power 
curves vs. machine speed are shown in Figures 5 and 6. 
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Figure 5: Real Power: Stator, Rotor and Mechanical 
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Figure 6: Rotor Input Reactive Power 
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Appendix: Scripts 

% 6.061 Problem Set 9, Problem 1


om = 2*pi*60; % real power

M=.3; % mutual inductance

Ld=.011; % d-axis inductance

Lq=.008; % q-axis inductance

Xd=om*Ld;

Xq=om*Lq;

V=sqrt(2/3)*4200; % peak phase voltage

VA=15e6; % machine rating

pf=.8; % operating power factor

psi=acos(pf); % power factor angle

Ia= VA/(1.5*V); % this is peak armature phase current

Ir = Ia*cos(psi); % this is real current

Ii = Ia*sin(psi); % this is reactive current

E1 = V+Ii*Xq+j*Ir*Xq; % this establishes the d-axis

delt = angle(E1); % and this is the torque angle

angi = delt+psi; % this is the angle between current and d-axis

Id = Ia*cos(angi); % this is d-axis current

Ef = abs(E1)+(Xd-Xq)*Id; % and this is internal voltage

Iffl = Ef/(om*M); % field current required to achieve same

Ifnl = V/(om*M); % field current required to achieve no-load voltage

Vx = Xd*Ia;

Ifsc = (V+Vx)/(om*M); % field current for overexcited sync condenser operation

Efue = -V*(Xd/Xq-1); % stability limit if negative field voltage

Ifue = Efue/(om*M); % stability limiting negative field current

Que = (3/2)*V^2/Xq; % max absorbed reactive power


fprintf(’6.061/6.690 Homework Set 9, Problem 1\n’)

fprintf(’I_fnl = %g\n’, Ifnl)

fprintf(’I_ffl = %g\n’, Iffl)

fprintf(’I_f for full VA, Zero PF = %g\n’, Ifsc)

fprintf(’I_f for underexcited Stability Limit = %g\n’, Ifue)

fprintf(’Absorbed VARs at underexcited Stability Limit = %g\n’, Que)
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% Problem set 9, Problem2


om = 2*pi*60;

Lm = .012; % magnetizing inductance

Ll = .0002; % leakage inductance

Xm = om*Lm;

Xl = om*Ll;

V = 480*sqrt(2/3) % working in peak amplitudes

P = 80000; % real part of 100 kVA, 80% power factor

Q = 60000; % reactive part

Ir = P/(1.5*V); % real part of current

Ii = Q/(1.5*V); % reactive part of current

Is = Ir-j*Ii; % complex stator current

Vm = V+j*Xl*Is; % voltage at magnetizing branch

Im = Vm/(j*Xm); % magnetizing branch current

Ir = Is+Im; % current into the rotor

Vx = Vm+j*Xl*Ir; % rotor voltage in stator frame

ss = .25; % slip at 75%

sf = -.25; % slip at 125%

Vrs = ss*Vx; % rotor voltage at low speed

Pcs = 1.5*Vrs*conj(Ir); % complex power into rotor at low speed

Vrf = sf*Vx; % rotor voltage at high speed

Pcf = conj(1.5*Vrf*conj(Ir)); % complex power into rotor at high speed


% note rotor phase sequence is reversed (conj(conj()) = ..;

fprintf(’6.061/6.960 Problem Set 9, Problem 2\n’)

fprintf(’Stator Output P + j Q = %g + j %g\n’, P, Q)

fprintf(’Rotor Input at Slip = %g P + j Q = %g + j %g\n’, ss, real(Pcs), imag(Pcs))

fprintf(’Rotor Input at Slip = %g P + j Q = %g + j %g\n’, sf, real(Pcf), imag(Pcf))
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% 6.960 Problem set 9, Problem 3


om = 2*pi*60;

Lm = .012; % magnetizing inductance

Ll = .0002; % leakage inductance

Xm = om*Lm;

Xl = om*Ll;

V = 480*sqrt(2/3); % working in peak amplitudes

omm = om .* (.75:.01:1.25); % range of working speeds

N = 30/(2*pi) .* omm;

s = 1 - omm ./ om; % and resulting slips

Pout = 75000; % at system terminals

Qout = 0;

P = Pout ./ (1 - s); % real part at machine terminals

Q = Qout; % reactive part

Ir = P ./ (1.5*V); % real part of current

Ii = Q ./ (1.5*V); % reactive part of current

Is = Ir-j .* Ii; % complex stator current

Vm = V + j*Xl .* Is; % voltage at magnetizing branch

Im = Vm ./ (j*Xm); % magnetizing branch current

Ir = Is+Im; % current into the rotor

Vx = Vm+j*Xl .* Ir; % rotor voltage in stator frame

Vrs = s .* Vx; % rotor voltage at low speed

Pcr = 1.5 .*Vrs .* conj(Ir); % complex power into rotor

Pr = real(Pcr);

Qr = imag(Pcr) .* sign(s);

Pw = P-Pr;

figure(1)

plot(N, P, N, Pr, ’--’, N, Pw, ’-.’)

title(’Problem Set 9, Problem 3’)

ylabel(’Real Power, Watts’)

xlabel(’Rotor Speed, RPM’)

legend(’Stator Output’, ’Rotor Input’, ’Mechanical’)

figure(2)

plot(N, Qr)

title(’Problem Set 9, Problem 3’)

ylabel(’Reactive Power, VARs’)

xlabel(’Rotor Speed, RPM’)
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