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1 Introduction 

Installment 3 of these notes dealt primarily with networks that are balanced, in which the three 
voltages (and three currents) are identical but for exact 120◦ phase shifts. Unbalanced conditions 
may arise from unequal voltage sources or loads. It is possible to analyze some simple types 
of unbalanced networks using straightforward solution techniques and wye-delta transformations. 
However, power networks can be come quite complex and many situations would be very difficult 
to handle using ordinary network analysis. For this reason, a technique which has come to be called 
symmetrical components has been developed. 

Symmetrical components, in addition to being a powerful analytical tool, is also conceptually 
useful. The symmetrical components themselves, which are obtained from a transformation of the 
ordinary line voltages and currents, are useful in their own right. Symmetrical components have 
become accepted as one way of describing the properties of many types of network elements such 
as transmission lines, motors and generators. 

2 The Symmetrical Component Transformation 

The basis for this analytical technique is a transformation of the three voltages and three currents 
into a second set of voltages and currents. This second set is known as the symmetrical components. 

Working in complex amplitudes: 

va = Re V ae
jωt (1) 

vb = Re V be
j(ωt− 2

3 
π ) (2) 
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vc = Re V ce
j(ωt+ 2
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π ) (3) 
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The transformation is defined as: 
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ 

V 1 1 a a2 V a1 
⎢ ⎥ ⎢ 2 ⎥ ⎢ ⎥ 

⎣	
V 2 ⎦ 

= 
⎣ 

1 a a 
⎦ ⎣ 

V b ⎦ 
(4) 

3 
V 0 1 1 1 V c 

where the complex number a is: 

j 2π − 1
2

+ j 

√
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3	
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√
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(6) 

a 3 = 1	 (7) 

This transformation may be used for both voltage and current, and works for variables in 
ordinary form as well as variables that have been normalized and are in per-unit form. The inverse 
of this transformation is: 

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ 

V a 1 1 1 V 1 
⎢ ⎥ ⎢ 2 ⎥ ⎢ ⎥ 

⎣	
V b ⎦ 

= 
⎣ 

a a 1 
⎦ ⎣ 

V 2 ⎦ 
(8) 

V a a2 1 V 0c 

The three component variables V 1, V 2, V 0 are called, respectively, positive sequence, negative 
sequence and zero sequence. They are called symmetrical components because, taken separately, 
they transform into symmetrical sets of voltages. The properties of these components can be 
demonstrated by tranforming each one back into phase variables. 

Consider first the positive sequence component taken by itself: 

V 1 = V	 (9) 

V 2 = 0	 (10) 

V 0 = 0	 (11) 

yields: 

V a = V or va = V cos ωt (12) 

2π 
V = a 2V or vb = V cos(ωt − )	 (13) b 3 

2π 
V c = aV or vc = V cos(ωt + )	 (14) 

3 

This is the familiar balanced set of voltages: Phase b lags phase a by 120◦, phase c lags phase 
b and phase a lags phase c. 

The same transformation carried out on a negative sequence voltage: 

V 1 = 0	 (15) 

V 2 = V	 (16) 

V 0 = 0	 (17) 
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yields: 

V a = V or va = V cos ωt (18) 

2π 
V b = aV or vb = V cos(ωt + ) (19)

3 
2π 

V = a 2V or vc = V cos(ωt − ) (20)c 3 

This is called negative sequence because the sequence of voltages is reversed: phase b now leads 
phase a rather than lagging. Note that the negative sequence set is still balanced in the sense 
that the phase components still have the same magnitude and are separated by 120◦ . The only 
difference between positive and negative sequence is the phase rotation. This is shown in Figure 1. 

Vc Vb 

� �Va � �Va 

Vb 
�� Vc 

��
Positive Sequence Negative Sequence 

Figure 1: Phasor Diagram: Three Phase Voltages 

The third symmetrical component is zero sequence. If: 

V 1 = 0 (21) 

V 2 = 0 (22) 

V 0 = V (23) 

Then: 

V a = V or va = V cos ωt (24) 

V b = V or vb = V cos ωt (25) 

V c = V or vc = V cos ωt (26) 

That is, all three phases are varying together. 
Positive and negative sequence sets contain those parts of the three-phase excitation that rep

resent balanced normal and reverse phase sequence. Zero sequence is required to make up the 
difference between the total phase variables and the two rotating components. 

The great utility of symmetrical components is that, for most types of network elements, the 
symmetrical components are independent of each other. In particular, balanced impedances and ro
tating machines will draw only positive sequence currents in response to positive sequence voltages. 
It is thus possible to describe a network in terms of sub-networks, one for each of the symmetrical 
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components. These are called sequence networks. A completely balanced network will have three 
entirely separate sequence networks. If a network is unbalanced at a particular spot, the sequence 
networks will be interconnected at that spot. The key to use of symmetrical components in handling 
unbalanced situations is in learning how to formulate those interconnections. 

Sequence Impedances 

Many different types of network elements exhibit different behavior to the different symmetrical 
components. For example, as we will see shortly, transmission lines have one impedance for positive 
and negative sequence, but an entirely different impedance to zero sequence. Rotating machines 
have different impedances to all three 

Positive Sequence Negative Sequence 

Figure 2: Sequence Connections For A Line-To-Line Fault 

sequences. 
To illustrate the independence of symmetrical components in balanced networks, consider the 

transmission line illustrated back in Figure 20 of Installment 3 of these notes. The expressions for 
voltage drop in the lines may be written as a single vector expression: 

V ph1 − V ph2 = jωL
ph 

Iph	 (27) 

where	
⎡ ⎤ 

V a 
⎢ ⎥

V ph = 
⎣	

V b ⎦ 
(28) 

V c 
⎡ ⎤ 

Ia 
⎢ ⎥

Iph = 
⎣	

Ib ⎦ 
(29) 

Ic 
⎡ ⎤ 

L M	 M 
⎢ ⎥

L 
ph 

= 
⎣	

M L M 
⎦ 

(30) 
M M L 

Note that the symmetrical component transformation (4) may be written in compact form:


V s = TV p (31) 
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1 a a2 
1 

⎢ 2 ⎥

T = 
⎣ 

1 a a 
⎦ 

(32) 
3 

1 1 1 

and V s is the vector of sequence voltages: 
⎡ ⎤ 

V 1 
⎢ ⎥

V s = 
⎣ 

V 2 ⎦ 
(33) 

V 0 

Rewriting (27) using the inverse of (31): 

T−1V s1 − T−1V = jωL T−1I (34) s2 ph s 

Then transforming to get sequence voltages: 

V s1 − V s2 = jωTL T−1Is (35) 
ph 

The sequence inductance matrix is defined by carrying out the operation indicated: 

L = TL T−1 (36) 
s ph 

which is: 
⎡ ⎤ 

L − M 0 0 
⎢ ⎥

L = 
⎣ 

0 L − M 0 
⎦ 

(37) 
s 

0 0 L + 2M 

Thus the coupled set of expressions which described the transmission line in phase variables becomes 
an uncoupled set of expressions in the symmetrical components: 

V 11 − V 12 = jω(L − M)I1 (38) 

V 21 − V 22 = jω(L − M)I2 (39) 

V 01 − V 02 = jω(L + 2M)I0 (40) 

The positive, negative and zero sequence impedances of the balanced transmission line are then: 

Z1 = Z2 = jω(L − M) (41) 

Z0 = jω(L + 2M) (42) 

So, in analysis of networks with transmission lines, it is now possible to replace the lines with three 
independent, single- phase networks. 

Consider next a balanced three-phase load with its neutral connected to ground through an 
impedance as shown in Figure 3. 

The symmetrical component voltage-current relationship for this network is found simply, by 
assuming positive, negative and zero sequence currents and finding the corresponding voltages. If 
this is done, it is found that the symmetrical components are independent, and that the voltage-
current relationships are: 

V 1 = ZI1 (43) 

V 2 = ZI2 (44) 

V 0 = (Z + 3Zg)I0 (45) 
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Figure 3: Balanced Load With Neutral Impedance 

Unbalanced Sources 

Consider the network shown in Figure 4. A balanced three-phase resistor is fed by a balanced 
line (with mutual coupling between phases). Assume that only one phase of the voltage source is 
working, so that: 

V a = V (46) 

V b = 0 (47) 

V c = 0 (48) 

The objective of this example is to find currents in the three phases. 

L 

Va 

Vb 

Vc 

R 

R 

R 
MM 

ML 

L 
+ 

+ 

-
-+ 

-

Figure 4: Balanced Load, Balanced Line, Unbalanced Source 

To start, note that the unbalanced voltage source has the following set of symmetrical compo
nents: 

V 
V 1 = 

3 
(49) 

V 
V 2 = 

3 
(50) 

V 
V 0 = 

3 
(51) 
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Next, the network facing the source consists of the line, with impedances: 

Z1 = jω(L − M) (52) 

Z2 = jω(L − M) (53) 

Z0 = jω(L + 2M) (54) 

and the three- phase resistor has impedances: 

Z1 = R (55) 

Z2 = R (56) 

Z0 = (57) ∞ 

Note that the impedance to zero sequence is infinite because the neutral is not connected back 
to the neutral of the voltage source. Thus the sum of line currents must always be zero and this 
in turn precludes any zero sequence current. The problem is thus described by the networks which 
appear in Figure 5. 

jω(L − M) jω(L − M) jω(L + 2M) R 

�� ∧ ∧ ∧ 
∨ ∨ 

∩∩∩∩ ∩∩∩∩ ∩∩∩∩ 
<
>

<
>

< 

<
>

<
>

<�� 
+ 
− 

V 
3 

+ V + V
R
 R
3 − 3− 

Positive Negative Zero 

Figure 5: Sequence Networks 

Currents are: 

V 
I1 = 

3(jω(L − M) + R) 

V 
I2 = 

3(jω(L − M) + R) 

I0 = 0 

Phase currents may now be re-assembled: 

I
 = I1 + I2 + I0 
2

a 

Ib I1 + aI2 + I0 = a

2I
 aI1 + a
 I2 + I0 =
c 

or: 

2V 
I
a = 

3(jω(L − M) + R) 

(a2 + a)V 
Ib = 

3(jω(L − M) + R) 
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−V 
= 

3(jω(L − M) + R) 

(a + a2)V 
I = c 3(jω(L − M) + R) 

−V 
= 

3(jω(L − M) + R) 

(Note that we have used a2 + a = −1). 

Rotating Machines 

Some network elements are more readily represented by sequence networks than by ordinary phase 
networks. This is the case, for example, for synchronous machines. synchronous motors and 
generators produce a positive sequence internal voltage and have terminal impedance. For reasons 
which are beyond the scope of these notes, the impedance to positive sequence currents is not the 
same as the impedance to negative or to zero sequence currents. A phase-by-phase representation 
will not, in many situations, be adequate, but a sequence network representation will. Such a 
representation is three Thevenin equivalent circuits, as shown in Figure 6 

�� 
�� 

+ 
− 

E1 

∩∩∩∩ 
jX1 

V 1 

+ 

− 

�I1 
∩∩∩∩ 
jX2 

V 2 

+ 

− 

�I2 
∩∩∩∩ 
jX0 

V 0 

+ 

− 

�I0 

Positive Negative Zero 

Figure 6: Sequence Networks For A Synchronous Machine 

Transformers 

Transformers provide some interesting features in setting up sequence networks. The first of these 
arises from the fact that wye-delta or delta-wye transformer connections produce phase shifts from 
primary to secondary. Depending on connection, this phase shift may be either plus or minus 30◦ 

from primary to secondary for positive sequence voltages and currents. It is straightforward to 
show that negative sequence shifts in the opposite direction from positive. Thus if the connection 
advances positive sequence across the transformer, it retards negative sequence. This does not 
turn out to affect the setting up of sequence networks, but does affect the re-construction of phase 
currents and voltages. 

A second important feature of transformers arises because delta and ungrounded wye connec
tions are open circuits to zero sequence at their terminals. A delta connected winding, on the 
other hand, will provide a short circuit to zero sequence currents induced from a wye connected 
winding. Thus the zero sequence network of a transformer may take one of several forms. Figures 7 
through 9 show the zero sequence networks for various transformer connections. 
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Xl 
∩∩∩∩ 

Figure 7: Zero Sequence Network: Wye-Wye Connection, Both Sides Grounded 

Xl ⊃⊃
⊃⊃

Figure 8: Zero Sequence Network: Wye-Delta Connection, Wye Side (Left) Grounded 

7 Unbalanced Faults 

A very common application of symmetrical components is in calculating currents arising from 
unblanced short circuits. For three-phase systems, the possible unbalanced faults are: 

1. Single line-ground, 

2. Double line-ground, 

3. Line-line. 

These are considered separately. 

7.1 Single Line-To-Ground Fault 

The situation is as shown in Figure 10 
The system in this case consists of networks connected to the line on which the fault occurs. 

The point of fault itself consists of a set of terminals (which we might call “a,b,c”). The fault sets, 

Figure 9: Zero Sequence Network: Wye-Delta Connection, Ungrounded or Delta-Delta 
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Network Network 

Figure 10: Schematic Picture Of A Single Line-To-Ground Fault


at this point on the system: 

V a = 0 

Ib = 0 

Ic = 0 

Now: using the inverse of the symmetrical component transformation, we see that: 

V 1 + V 2 + V 0 = 0 (58) 

And using the transformation itself: 

1 
I1 = I2 = I0 = I (59)

3 a 

Together, these two expressions describe the sequence network connection shown in Figure 11. 
This connection has all three sequence networks connected in series. 

7.2 Double Line-To-Ground Fault 

If the fault involves phases b, c, and ground, the “terminal” relationship at the point of the fault 
is: 

V b = 0 

V = 0c 

I = 0a 

Then, using the sequence transformation: 

1 
V 1 = V 2 = V 0 = aV

3 

Combining the inverse transformation:


Ia = I1 + I2 + I0 = 0 

These describe a situation in which all three sequence networks are connected in parallel, as 
shown in Figure 12. 
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I1 + 
Positive 

Sequence V1 
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I 2 
+ 

Negative 
Sequence V2 

-

I 
0 + 

Zero 
Sequence 

V0 
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Figure 11: Sequence Connection For A Single-Line-To-Ground Fault


Sequence 
Positive 

I I 

Sequence 
Negative 

I1 2 0+ + 

Sequence 
Zero 

+ 

V1 V2 V0 
- - -

Figure 12: Sequence Connection For A Double-Line-To-Ground Fault 

7.3 Line-Line Fault 

If phases b and c are shorted together but not grounded, 

V b = V c 

Ib = −Ic 

Ia = 0 

Expressing these in terms of the symmetrical components: 

V 1 = V 2 
1 2 = a + a V b3 

I0 = Ia + Ib + Ic 

= 0 

Ia = I1 + I2 
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= 0 

These expressions describe a parallel connection of the positive and negative sequence networks, 
as shown in Figure 13. 

V2Sequence 
Negative 

-

+ 
I
2 

Sequence 
Positive 

I
1 

V1 
-

+ 

Figure 13: Sequence Connection For A Line-To-Line Fault 

7.4 Example Of Fault Calculations 

In this example, the objective is to determine maximum current through the breaker B due to a 
fault at the location shown in Figure 14. All three types of unbalanced fault, as well as the balanced 
fault are to be considered. This is the sort of calculation that has to be done whenever a line is 
installed or modified, so that protective relaying can be set properly. 

T1 T2 
L1 L

2 

Fault 

Figure 14: One-Line Diagram For Example Fault


Parameters of the system are: 

System Base Voltage 138 kV 
System Base Power 100 MVA 
Transformer T1 Leakage Reactance .1 per-unit 
Transformer T2 Leakage Reactance .1 per-unit 
Line L1 Positive And Negative Sequence Reactance j.05 per-unit 
Line L1 Zero Sequence Impedance j.1 per-unit 
Line L2 Positive And Negative Sequence Reactance j.02 per-unit 
Line L2 Zero Sequence Impedance j.1 per-unit 
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The fence-like symbols at either end of the figure represent “infinite buses”, or positive sequence 
voltage sources. 

The first step in this is to find the sequence networks. These are shown in Figure 15. Note that 
they are exactly like what we would expect to have drawn for equivalent single phase networks. 
Only the positive sequence network has sources, because the infinite bus supplies only positive 
sequence voltage. The zero sequence network is open at the right hand side because of the delta
wye transformer connection there. 

j.1 I�1B j.05 j.02 j.1 
∩∩∩∩ ∩∩∩∩ ∩∩∩∩ ∩∩∩∩ �� 

+ +
1 Fault 1 

Positive Sequence 
j.1 I�1B j.05 j.02 j.1 

∩∩∩∩ ∩∩∩∩ ∩∩∩∩ ∩∩∩∩ 

Fault 

�� − �� − 

Negative Sequence 
j.1 I�0B j.1 j.1 

∩∩∩∩ ∩∩∩∩ ∩∩∩∩ 

Fault 

Zero Sequence 

Figure 15: Sequence Networks 

7.4.1 Symmetrical Fault 

For a symmetrical (three-phase) fault, only the positive sequence network is involved. The fault 
shorts the network at its position, so that the current is: 

1 
i1 = 

j.15 
= −j6.67per − unit 

7.4.2 Single Line-Ground Fault 

For this situation, the three networks are in series and the situation is as shown in Figure 16 
The current i shown in Figure 16 is a total current, and is given by: 

1 
i = = 

2 × (j.15||j.12) + j.2 
−j3.0 

13 



�� 
�� 

�i 

i1B � j.15 j.12 
⊃⊃
⊃⊃

⊃⊃
⊃⊃

+ 
1 i2B � j.15 j.12 

− ⊃⊃
⊃⊃

⊃⊃
⊃⊃

i0B � j.2 
⊃⊃
⊃⊃

Figure 16: Completed Network For Single Line-Ground Fault 

Then the sequence currents at the breaker are: 

i1B = i2B 

j.12 
= i ×

j.12 + j.15 
= −j1.33 

i0B = i 

= −j3.0 

The phase currents are re-constructed using: 

ia = i1B + i2B + i0B 

ib = a 2i1B + ai2B + i0B 

ic = ai1B + a 2i2B + i0B 

These are: 

i = −j5.66 per-unita 

ib = −j1.67 per-unit 

i = −j1.67 per-unitc 

7.4.3 Double Line-Ground Fault 

For the double line-ground fault, the networks are in parallel, as shown in Figure 17. 
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i1B � j.15 j.12 i2B � j.15 j.12 i0B � j.2 

�� 
�� 

+ 
− 

1 

⊃⊃
⊃⊃

⊃⊃
⊃⊃

⊃⊃
⊃⊃

⊃⊃
⊃⊃

⊃⊃
⊃⊃

�i 

Figure 17: Completed Network For Double Line-Ground Fault 

To start, find the source current i: 

1 
i = 

j(.15 .12) + j(.15 .12 .2)|| || ||
= −j8.57 

Then the sequence currents at the breaker are: 

j.12 
i1B = i ×

j.12 + j.15 
= −j3.81 

i2B = −i
j.12||j.2 ×

j.12||j.2 + j.15 

= j2.86 

i0B = i
j.12||j.15 ×

j.2 + j.12||j.15 

= j2.14 

Reconstructed phase currents are: 

i = j1.19a 

1 
√

3 
ib = i0B − (i1B + i2B) − j(i1B − i2B )2 2 

= j2.67 − 5.87 

1 
√

3 
(i1B + i2B) + j(i1B − i2B )ic = i0B − 2 2 

= j2.67 + 5.87 

|ia = 1.19 per-unit| 
|ib| = 6.43 per-unit 

|i = 6.43 per-unitc| 
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7.4.4 Line-Line Fault 

The situation is even easier here, as shown in Figure 18 

i1B � j.15 j.12 i2B � j.15 j.12⊃⊃
⊃

⊃⊃
⊃
⊃ ⊃⊃

⊃⊃
⊃⊃
⊃⊃

⊃
�� 

+ 
1

− 

i � �� 

Figure 18: Completed Network For Line-Line Fault 

The source current i is: 

1 
i = 

2 × j(.15||.12) 

= −j7.50 

and then: 

i1B = −i2B 

j.12 
= i 

j.12 + j.15 
= −j3.33 

Phase currents are: 

i = 0a 

1 
√

3 
ib = (i1B − i2B)

2
−

2
(i1B + i2B) − j 

|ib = 5.77 per-unit| 
|ic| = 5.77 per-unit 

7.4.5 Conversion To Amperes 

Base current is: 

PB
IB = √

3VBl−l 
= 418.4A


Then current amplitudes are, in Amperes, RMS:
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Phase A Phase B Phase C

Three-Phase Fault 2791 2791 2791

Single Line-Ground, φa 2368 699 699

Double Line-Ground, φb,φc 498 2690 2690

Line-Line,φb,φc 0 2414 2414
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