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Abstract
This paper introduces a principled approach for the design of a scalable general reinforcement

learning agent. Our approach is based on a direct approximation of AIXI, a Bayesian optimality
notion for general reinforcement learning agents. Previously, it has been unclear whether the theory
of AIXI could motivate the design of practical algorithms. We answer this hitherto open question
in the affirmative, by providing the first computationally feasible approximation to the AIXI agent.
To develop our approximation, we introduce a new Monte-Carlo Tree Search algorithm along with
an agent-specific extension to the Context Tree Weighting algorithm. Empirically, we present a set
of encouraging results on a variety of stochastic and partially observable domains. We conclude by
proposing a number of directions for future research.

1. Introduction

Reinforcement Learning (Sutton & Barto, 1998) is a popular and influential paradigm for agents that
learn from experience. AIXI (Hutter, 2005) is a Bayesian optimality notion for reinforcement learn-
ing agents in unknown environments. This paper introduces and evaluates a practical reinforcement
learning agent that is directly inspired by the AIXI theory.

1.1 The General Reinforcement Learning Problem

Consider an agent that exists within some unknown environment. The agent interacts with the
environment in cycles. In each cycle, the agent executes an action and in turn receives an observation
and a reward. The only information available to the agent is its history of previous interactions. The
general reinforcement learning problem is to construct an agent that, over time, collects as much
reward as possible from the (unknown) environment.

1.2 The AIXI Agent

The AIXI agent is a mathematical solution to the general reinforcement learning problem. To
achieve generality, the environment is assumed to be an unknown but computable function; i.e.
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the observations and rewards received by the agent, given its past actions, can be computed by some
program running on a Turing machine. The AIXI agent results from a synthesis of two ideas:

1. the use of a finite-horizon expectimax operation from sequential decision theory for action
selection; and

2. an extension of Solomonoff’s universal induction scheme (Solomonoff, 1964) for future pre-
diction in the agent context.

More formally, let U(q, a1a2 . . . an) denote the output of a universal Turing machine U supplied
with program q and input a1a2 . . . an, m ∈ N a finite lookahead horizon, and ℓ(q) the length in bits
of program q. The action picked by AIXI at time t, having executed actions a1a2 . . . at−1 and having
received the sequence of observation-reward pairs o1r1o2r2 . . . ot−1rt−1 from the environment, is
given by:

a∗t = arg max
at

∑
otrt

. . .max
at+m

∑
ot+mrt+m

[rt + · · · + rt+m]
∑

q:U(q,a1...at+m)=o1r1...ot+mrt+m

2−ℓ(q). (1)

Intuitively, the agent considers the sum of the total reward over all possible futures up to m steps
ahead, weighs each of them by the complexity of programs consistent with the agent’s past that can
generate that future, and then picks the action that maximises expected future rewards. Equation (1)
embodies in one line the major ideas of Bayes, Ockham, Epicurus, Turing, von Neumann, Bellman,
Kolmogorov, and Solomonoff. The AIXI agent is rigorously shown by Hutter (2005) to be optimal
in many different senses of the word. In particular, the AIXI agent will rapidly learn an accurate
model of the environment and proceed to act optimally to achieve its goal.

Accessible overviews of the AIXI agent have been given by both Legg (2008) and Hutter (2007).
A complete description of the agent can be found in the work of Hutter (2005).

1.3 AIXI as a Principle

As the AIXI agent is only asymptotically computable, it is by no means an algorithmic solution to
the general reinforcement learning problem. Rather it is best understood as a Bayesian optimality
notion for decision making in general unknown environments. As such, its role in general AI re-
search should be viewed in, for example, the same way the minimax and empirical risk minimisation
principles are viewed in decision theory and statistical machine learning research. These principles
define what is optimal behaviour if computational complexity is not an issue, and can provide im-
portant theoretical guidance in the design of practical algorithms. This paper demonstrates, for the
first time, how a practical agent can be built from the AIXI theory.

1.4 Approximating AIXI

As can be seen in Equation (1), there are two parts to AIXI. The first is the expectimax search
into the future which we will call planning. The second is the use of a Bayesian mixture over
Turing machines to predict future observations and rewards based on past experience; we will call
that learning. Both parts need to be approximated for computational tractability. There are many
different approaches one can try. In this paper, we opted to use a generalised version of the UCT
algorithm (Kocsis & Szepesvári, 2006) for planning and a generalised version of the Context Tree
Weighting algorithm (Willems, Shtarkov, & Tjalkens, 1995) for learning. This combination of ideas,
together with the attendant theoretical and experimental results, form the main contribution of this
paper.
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1.5 Paper Organisation

The paper is organised as follows. Section 2 introduces the notation and definitions we use to
describe environments and accumulated agent experience, including the familiar notions of reward,
policy and value functions for our setting. Section 3 describes a general Bayesian approach for
learning a model of the environment. Section 4 then presents a Monte-Carlo Tree Search procedure
that we will use to approximate the expectimax operation in AIXI. This is followed by a description
of the Context Tree Weighting algorithm and how it can be generalised for use in the agent setting
in Section 5. We put the two ideas together in Section 6 to form our AIXI approximation algorithm.
Experimental results are then presented in Sections 7. Section 8 provides a discussion of related
work and the limitations of our current approach. Section 9 highlights a number of areas for future
investigation.

2. The Agent Setting

This section introduces the notation and terminology we will use to describe strings of agent expe-
rience, the true underlying environment and the agent’s model of the true environment.

Notation. A string x1x2 . . . xn of length n is denoted by x1:n. The prefix x1: j of x1:n, j ≤ n,
is denoted by x≤ j or x< j+1. The notation generalises for blocks of symbols: e.g. ax1:n denotes
a1x1a2x2 . . . anxn and ax< j denotes a1x1a2x2 . . . a j−1x j−1. The empty string is denoted by ϵ. The
concatenation of two strings s and r is denoted by sr.

2.1 Agent Setting

The (finite) action, observation, and reward spaces are denoted by A,O, and R respectively. Also,
X denotes the joint perception space O × R.

Definition 1. A history h is an element of (A×X)∗ ∪ (A×X)∗ ×A.

The following definition states that the environment takes the form of a probability distribution
over possible observation-reward sequences conditioned on actions taken by the agent.

Definition 2. An environment ρ is a sequence of conditional probability functions {ρ0, ρ1, ρ2, . . . },
where ρn : An → Density (Xn), that satisfies

∀a1:n∀x<n : ρn−1(x<n | a<n) =
∑
xn∈X
ρn(x1:n | a1:n). (2)

In the base case, we have ρ0(ϵ | ϵ) = 1.

Equation (2), called the chronological condition in (Hutter, 2005), captures the natural constraint
that action an has no effect on earlier perceptions x<n. For convenience, we drop the index n in ρn

from here onwards.
Given an environment ρ, we define the predictive probability

ρ(xn | ax<nan) :=
ρ(x1:n | a1:n)
ρ(x<n | a<n)

(3)

∀a1:n∀x1:n such that ρ(x<n | a<n) > 0. It now follows that

ρ(x1:n | a1:n) = ρ(x1 | a1)ρ(x2 | ax1a2) · · · ρ(xn | ax<nan). (4)
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Definition 2 is used in two distinct ways. The first is a means of describing the true underlying
environment. This may be unknown to the agent. Alternatively, we can use Definition 2 to describe
an agent’s subjective model of the environment. This model is typically learnt, and will often only
be an approximation to the true environment. To make the distinction clear, we will refer to an
agent’s environment model when talking about the agent’s model of the environment.

Notice that ρ(· | h) can be an arbitrary function of the agent’s previous history h. Our definition of
environment is sufficiently general to encapsulate a wide variety of environments, including standard
reinforcement learning setups such as MDPs or POMDPs.

2.2 Reward, Policy and Value Functions

We now cast the familiar notions of reward, policy and value (Sutton & Barto, 1998) into our setup.
The agent’s goal is to accumulate as much reward as it can during its lifetime. More precisely, the
agent seeks a policy that will allow it to maximise its expected future reward up to a fixed, finite,
but arbitrarily large horizon m ∈ N. The instantaneous reward values are assumed to be bounded.
Formally, a policy is a function that maps a history to an action. If we define Rk(aor≤t) := rk for
1 ≤ k ≤ t, then we have the following definition for the expected future value of an agent acting
under a particular policy:

Definition 3. Given history ax1:t, the m-horizon expected future reward of an agent acting under
policy π : (A×X)∗ → A with respect to an environment ρ is:

vm
ρ (π, ax1:t) := Eρ

 t+m∑
i=t+1

Ri(ax≤t+m)
∣∣∣∣∣ x1:t

 , (5)

where for t < k ≤ t +m, ak := π(ax<k). The quantity vm
ρ (π, ax1:tat+1) is defined similarly, except that

at+1 is now no longer defined by π.

The optimal policy π∗ is the policy that maximises the expected future reward. The maximal
achievable expected future reward of an agent with history h in environment ρ looking m steps ahead
is Vm

ρ (h) := vm
ρ (π∗, h). It is easy to see that if h ∈ (A×X)t, then

Vm
ρ (h) = max

at+1

∑
xt+1

ρ(xt+1 | hat+1) · · ·max
at+m

∑
xt+m

ρ(xt+m | haxt+1:t+m−1at+m)

 t+m∑
i=t+1

ri

 . (6)

For convenience, we will often refer to Equation (6) as the expectimax operation. Furthermore,
the m-horizon optimal action a∗t+1 at time t + 1 is related to the expectimax operation by

a∗t+1 = arg max
at+1

Vm
ρ (ax1:tat+1). (7)

Equations (5) and (6) can be modified to handle discounted reward, however we focus on the
finite-horizon case since it both aligns with AIXI and allows for a simplified presentation.

3. Bayesian Agents

As mentioned earlier, Definition 2 can be used to describe the agent’s subjective model of the true
environment. Since we are assuming that the agent does not initially know the true environment,
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we desire subjective models whose predictive performance improves as the agent gains experience.
One way to provide such a model is to take a Bayesian perspective. Instead of committing to any
single fixed environment model, the agent uses a mixture of environment models. This requires
committing to a class of possible environments (the model class), assigning an initial weight to each
possible environment (the prior), and subsequently updating the weight for each model using Bayes
rule (computing the posterior) whenever more experience is obtained. The process of learning is
thus implicit within a Bayesian setup.

The mechanics of this procedure are reminiscent of Bayesian methods to predict sequences
of (single typed) observations. The key difference in the agent setup is that each prediction may
now also depend on previous agent actions. We incorporate this by using the action conditional
definitions and identities of Section 2.

Definition 4. Given a countable model classM := {ρ1, ρ2, . . . } and a prior weight wρ0 > 0 for each
ρ ∈ M such that

∑
ρ∈M wρ0 = 1, the mixture environment model is ξ(x1:n | a1:n) :=

∑
ρ∈M

wρ0ρ(x1:n | a1:n).

The next proposition allows us to use a mixture environment model whenever we can use an
environment model.

Proposition 1. A mixture environment model is an environment model.

Proof. ∀a1:n ∈ An and ∀x<n ∈ Xn−1 we have that∑
xn∈X
ξ(x1:n | a1:n) =

∑
xn∈X

∑
ρ∈M

wρ0ρ(x1:n | a1:n) =
∑
ρ∈M

wρ0
∑
xn∈X
ρ(x1:n | a1:n) = ξ(x<n | a<n)

where the final step follows from application of Equation (2) and Definition 4. �

The importance of Proposition 1 will become clear in the context of planning with environment
models, described in Section 4.

3.1 Prediction with a Mixture Environment Model

As a mixture environment model is an environment model, we can simply use:

ξ(xn | ax<nan) =
ξ(x1:n | a1:n)
ξ(x<n | a<n)

(8)

to predict the next observation reward pair. Equation (8) can also be expressed in terms of a convex
combination of model predictions, with each model weighted by its posterior, from

ξ(xn | ax<nan) =

∑
ρ∈M

wρ0ρ(x1:n | a1:n)∑
ρ∈M

wρ0ρ(x<n | a<n)
=

∑
ρ∈M

wρn−1ρ(xn | ax<nan),

where the posterior weight wρn−1 for environment model ρ is given by

wρn−1 :=
wρ0ρ(x<n | a<n)∑

ν∈M
wν0ν(x<n | a<n)

= Pr(ρ | ax<n) (9)

If |M| is finite, Equations (8) and (3.1) can be maintained online in O(|M|) time by using the
fact that

ρ(x1:n | a1:n) = ρ(x<n | a<n)ρ(xn | ax<na),

which follows from Equation (4), to incrementally maintain the likelihood term for each model.

99



Veness, Ng, Hutter, Uther, & Silver

3.2 Theoretical Properties

We now show that if there is a good model of the (unknown) environment inM, an agent using the
mixture environment model

ξ(x1:n | a1:n) :=
∑
ρ∈M

wρ0ρ(x1:n | a1:n) (10)

will predict well. Our proof is an adaptation from the work of Hutter (2005). We present the full
proof here as it is both instructive and directly relevant to many different kinds of practical Bayesian
agents.

First we state a useful entropy inequality.

Lemma 1 (Hutter, 2005). Let {yi} and {zi} be two probability distributions, i.e. yi ≥ 0, zi ≥ 0, and∑
i yi =

∑
i zi = 1. Then we have ∑

i

(yi − zi)2 ≤
∑

i

yi ln
yi

zi
.

Theorem 1. Let µ be the true environment. The µ-expected squared difference of µ and ξ is bounded
as follows. For all n ∈ N, for all a1:n,

n∑
k=1

∑
x1:k

µ(x<k | a<k)
(
µ(xk | ax<kak) − ξ(xk | ax<kak)

)2
≤ min
ρ∈M

{
− ln wρ0 + D1:n(µ ∥ ρ)

}
,

where D1:n(µ ∥ ρ) :=
∑

x1:n µ(x1:n | a1:n) ln µ(x1:n | a1:n)
ρ(x1:n | a1:n) is the KL divergence of µ(· | a1:n) and ρ(· | a1:n).

Proof. Combining Sections 3.2.8 and 5.1.3 from the work of Hutter (2005) we get
n∑

k=1

∑
x1:k

µ(x<k | a<k)
(
µ(xk | ax<kak) − ξ(xk | ax<kak)

)2

=

n∑
k=1

∑
x<k

µ(x<k | a<k)
∑

xk

(
µ(xk | ax<kak) − ξ(xk | ax<kak)

)2

≤
n∑

k=1

∑
x<k

µ(x<k | a<k)
∑

xk

µ(xk | ax<kak) ln
µ(xk | ax<kak)
ξ(xk | ax<kak)

[Lemma 1]

=

n∑
k=1

∑
x1:k

µ(x1:k | a1:k) ln
µ(xk | ax<kak)
ξ(xk | ax<kak)

[Equation (3)]

=

n∑
k=1

∑
x1:k

( ∑
xk+1:n

µ(x1:n | a1:n)
)

ln
µ(xk | ax<kak)
ξ(xk | ax<kak)

[Equation (2)]

=

n∑
k=1

∑
x1:n

µ(x1:n | a1:n) ln
µ(xk | ax<kak)
ξ(xk | ax<kak)

=
∑
x1:n

µ(x1:n | a1:n)
n∑

k=1

ln
µ(xk | ax<kak)
ξ(xk | ax<kak)

=
∑
x1:n

µ(x1:n | a1:n) ln
µ(x1:n | a1:n)
ξ(x1:n | a1:n)

[Equation (4)]
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=
∑
x1:n

µ(x1:n | a1:n) ln
[
µ(x1:n | a1:n)
ρ(x1:n | a1:n)

ρ(x1:n | a1:n)
ξ(x1:n | a1:n)

]
[arbitrary ρ ∈ M]

=
∑
x1:n

µ(x1:n | a1:n) ln
µ(x1:n | a1:n)
ρ(x1:n | a1:n)

+
∑
x1:n

µ(x1:n | a1:n) ln
ρ(x1:n | a1:n)
ξ(x1:n | a1:n)

≤ D1:n(µ ∥ ρ) +
∑
x1:n

µ(x1:n | a1:n) ln
ρ(x1:n | a1:n)

wρ0ρ(x1:n | a1:n)
[Definition 4]

= D1:n(µ ∥ ρ) − ln wρ0.

Since the inequality holds for arbitrary ρ ∈ M, it holds for the minimising ρ. �

In Theorem 1, take the supremum over n in the r.h.s and then the limit n → ∞ on the l.h.s.
If supn D1:n(µ ∥ ρ) < ∞ for the minimising ρ, the infinite sum on the l.h.s can only be finite if
ξ(xk | ax<kak) converges sufficiently fast to µ(xk | ax<kak) for k → ∞ with probability 1, hence ξ
predicts µ with rapid convergence. As long as D1:n(µ ∥ ρ) = o(n), ξ still converges to µ but in
a weaker Cesàro sense. The contrapositive of the statement tells us that if ξ fails to predict the
environment well, then there is no good model inM.

3.3 AIXI: The Universal Bayesian Agent

Theorem 1 motivates the construction of Bayesian agents that use rich model classes. The AIXI
agent can be seen as the limiting case of this viewpoint, by using the largest model class expressible
on a Turing machine.

Note that AIXI can handle stochastic environments since Equation (1) can be shown to be for-
mally equivalent to

a∗t = arg max
at

∑
otrt

. . .max
at+m

∑
ot+mrt+m

[rt + · · · + rt+m]
∑
ρ∈MU

2−K(ρ)ρ(x1:t+m | a1:t+m), (11)

where ρ(x1:t+m | a1 . . . at+m) is the probability of observing x1x2 . . . xt+m given actions a1a2 . . . at+m,
classMU consists of all enumerable chronological semimeasures (Hutter, 2005), which includes all
computable ρ, and K(ρ) denotes the Kolmogorov complexity (Li & Vitányi, 2008) of ρ with respect
to U. In the case where the environment is a computable function and

ξU(x1:t | a1:t) :=
∑
ρ∈MU

2−K(ρ)ρ(x1:t | a1:t), (12)

Theorem 1 shows for all n ∈ N and for all a1:n,

n∑
k=1

∑
x1:k

µ(x<k | a<k)
(
µ(xk | ax<kak) − ξU(xk | ax<kak)

)2
≤ K(µ) ln 2. (13)

3.4 Direct AIXI Approximation

We are now in a position to describe our approach to AIXI approximation. For prediction, we seek
a computationally efficient mixture environment model ξ as a replacement for ξU . Ideally, ξ will
retain ξU’s bias towards simplicity and some of its generality. This will be achieved by placing a
suitable Ockham prior over a set of candidate environment models.
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For planning, we seek a scalable algorithm that can, given a limited set of resources, compute
an approximation to the expectimax action given by

a∗t+1 = arg max
at+1

Vm
ξU

(ax1:tat+1).

The main difficulties are of course computational. The next two sections introduce two al-
gorithms that can be used to (partially) fulfill these criteria. Their subsequent combination will
constitute our AIXI approximation.

4. Expectimax Approximation with Monte-Carlo Tree Search

Naı̈ve computation of the expectimax operation (Equation 6) takes O(|A × X|m) time, unacceptable
for all but tiny values of m. This section introduces ρUCT, a generalisation of the popular Monte-
Carlo Tree Search algorithm UCT (Kocsis & Szepesvári, 2006), that can be used to approximate
a finite horizon expectimax operation given an environment model ρ. As an environment model
subsumes both MDPs and POMDPs, ρUCT effectively extends the UCT algorithm to a wider class
of problem domains.

4.1 Background

UCT has proven particularly effective in dealing with difficult problems containing large state
spaces. It requires a generative model that when given a state-action pair (s, a) produces a sub-
sequent state-reward pair (s′, r) distributed according to Pr(s′, r | s, a). By successively sampling
trajectories through the state space, the UCT algorithm incrementally constructs a search tree, with
each node containing an estimate of the value of each state. Given enough time, these estimates
converge to their true values.

The ρUCT algorithm can be realised by replacing the notion of state in UCT by an agent history
h (which is always a sufficient statistic) and using an environment model ρ to predict the next
percept. The main subtlety with this extension is that now the history condition of the percept
probability ρ(or | h) needs to be updated during the search. This is to reflect the extra information an
agent will have at a hypothetical future point in time. Furthermore, Proposition 1 allows ρUCT to be
instantiated with a mixture environment model, which directly incorporates the model uncertainty of
the agent into the planning process. This gives (in principle, provided that the model class contains
the true environment and ignoring issues of limited computation) the well known Bayesian solution
to the exploration/exploitation dilemma; namely, if a reduction in model uncertainty would lead to
higher expected future reward, ρUCT would recommend an information gathering action.

4.2 Overview

ρUCT is a best-first Monte-Carlo Tree Search technique that iteratively constructs a search tree in
memory. The tree is composed of two interleaved types of nodes: decision nodes and chance nodes.
These correspond to the alternating max and sum operations in the expectimax operation. Each
node in the tree corresponds to a history h. If h ends with an action, it is a chance node; if h ends
with an observation-reward pair, it is a decision node. Each node contains a statistical estimate of
the future reward.

Initially, the tree starts with a single decision node containing |A| children. Much like existing
MCTS methods (Chaslot, Winands, Uiterwijk, van den Herik, & Bouzy, 2008a), there are four
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a1
a2

a3

o1 o2 o3 o4

future reward estimate

Figure 1: A ρUCT search tree

conceptual phases to a single iteration of ρUCT. The first is the selection phase, where the search
tree is traversed from the root node to an existing leaf chance node n. The second is the expansion
phase, where a new decision node is added as a child to n. The third is the simulation phase, where
a rollout policy in conjunction with the environment model ρ is used to sample a possible future
path from n until a fixed distance from the root is reached. Finally, the backpropagation phase
updates the value estimates for each node on the reverse trajectory leading back to the root. Whilst
time remains, these four conceptual operations are repeated. Once the time limit is reached, an
approximate best action can be selected by looking at the value estimates of the children of the root
node.

During the selection phase, action selection at decision nodes is done using a policy that balances
exploration and exploitation. This policy has two main effects:

• to gradually move the estimates of the future reward towards the maximum attainable future
reward if the agent acted optimally.

• to cause asymmetric growth of the search tree towards areas that have high predicted reward,
implicitly pruning large parts of the search space.

The future reward at leaf nodes is estimated by choosing actions according to a heuristic policy
until a total of m actions have been made by the agent, where m is the search horizon. This heuristic
estimate helps the agent to focus its exploration on useful parts of the search tree, and in practice
allows for a much larger horizon than a brute-force expectimax search.
ρUCT builds a sparse search tree in the sense that observations are only added to chance nodes

once they have been generated along some sample path. A full-width expectimax search tree would
not be sparse; each possible stochastic outcome would be represented by a distinct node in the search
tree. For expectimax, the branching factor at chance nodes is thus |O|, which means that searching
to even moderate sized m is intractable.

Figure 1 shows an example ρUCT tree. Chance nodes are denoted with stars. Decision nodes
are denoted by circles. The dashed lines from a star node indicate that not all of the children have
been expanded. The squiggly line at the base of the leftmost leaf denotes the execution of a rollout
policy. The arrows proceeding up from this node indicate the flow of information back up the tree;
this is defined in more detail below.
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4.3 Action Selection at Decision Nodes

A decision node will always contain |A| distinct children, all of whom are chance nodes. Associated
with each decision node representing a particular history h will be a value function estimate, V̂(h).
During the selection phase, a child will need to be picked for further exploration. Action selection in
MCTS poses a classic exploration/exploitation dilemma. On one hand we need to allocate enough
visits to all children to ensure that we have accurate estimates for them, but on the other hand we
need to allocate enough visits to the maximal action to ensure convergence of the node to the value
of the maximal child node.

Like UCT, ρUCT recursively uses the UCB policy (Auer, 2002) from the n-armed bandit setting
at each decision node to determine which action needs further exploration. Although the uniform
logarithmic regret bound no longer carries across from the bandit setting, the UCB policy has been
shown to work well in practice in complex domains such as computer Go (Gelly & Wang, 2006) and
General Game Playing (Finnsson & Björnsson, 2008). This policy has the advantage of ensuring
that at each decision node, every action eventually gets explored an infinite number of times, with
the best action being selected exponentially more often than actions of lesser utility.

Definition 5. The visit count T (h) of a decision node h is the number of times h has been sampled
by the ρUCT algorithm. The visit count of the chance node found by taking action a at h is defined
similarly, and is denoted by T (ha).

Definition 6. Suppose m is the remaining search horizon and each instantaneous reward is bounded
in the interval [α, β]. Given a node representing a history h in the search tree, the action picked by
the UCB action selection policy is:

aUCB(h) := arg max
a∈A

 1
m(β−α) V̂(ha) +C

√
log(T (h))

T (ha) if T (ha) > 0;

∞ otherwise,
(14)

where C ∈ R is a positive parameter that controls the ratio of exploration to exploitation. If there
are multiple maximal actions, one is chosen uniformly at random.

Note that we need a linear scaling of V̂(ha) in Definition 6 because the UCB policy is only
applicable for rewards confined to the [0, 1] interval.

4.4 Chance Nodes

Chance nodes follow immediately after an action is selected from a decision node. Each chance
node ha following a decision node h contains an estimate of the future utility denoted by V̂(ha).
Also associated with the chance node ha is a density ρ(· | ha) over observation-reward pairs.

After an action a is performed at node h, ρ(· | ha) is sampled once to generate the next
observation-reward pair or. If or has not been seen before, the node haor is added as a child of
ha.

4.5 Estimating Future Reward at Leaf Nodes

If a leaf decision node is encountered at depth k < m in the tree, a means of estimating the future
reward for the remaining m − k time steps is required. MCTS methods use a heuristic rollout policy
Π to estimate the sum of future rewards

∑m
i=k ri. This involves sampling an action a from Π(h),
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sampling a percept or from ρ(· | ha), appending aor to the current history h and then repeating this
process until the horizon is reached. This procedure is described in Algorithm 4. A natural baseline
policy is Πrandom, which chooses an action uniformly at random at each time step.

As the number of simulations tends to infinity, the structure of the ρUCT search tree converges
to the full depth m expectimax tree. Once this occurs, the rollout policy is no longer used by ρUCT.
This implies that the asymptotic value function estimates of ρUCT are invariant to the choice of
Π. In practice, when time is limited, not enough simulations will be performed to grow the full
expectimax tree. Therefore, the choice of rollout policy plays an important role in determining
the overall performance of ρUCT. Methods for learning Π online are discussed as future work in
Section 9. Unless otherwise stated, all of our subsequent results will use Πrandom.

4.6 Reward Backup

After the selection phase is completed, a path of nodes n1n2 . . . nk, k ≤ m, will have been traversed
from the root of the search tree n1 to some leaf nk. For each 1 ≤ j ≤ k, the statistics maintained for
history hn j associated with node n j will be updated as follows:

V̂(hn j)←
T (hn j)

T (hn j) + 1
V̂(hn j) +

1
T (hn j) + 1

m∑
i= j

ri (15)

T (hn j)← T (hn j) + 1 (16)

Equation (15) computes the mean return. Equation (16) increments the visit counter. Note that the
same backup operation is applied to both decision and chance nodes.

4.7 Pseudocode

The pseudocode of the ρUCT algorithm is now given.
After a percept has been received, Algorithm 1 is invoked to determine an approximate best

action. A simulation corresponds to a single call to Sample from Algorithm 1. By performing
a number of simulations, a search tree Ψ whose root corresponds to the current history h is con-
structed. This tree will contain estimates V̂m

ρ (ha) for each a ∈ A. Once the available thinking time
is exceeded, a maximising action â∗h := arg maxa∈A V̂m

ρ (ha) is retrieved by BestAction. Importantly,
Algorithm 1 is anytime, meaning that an approximate best action is always available. This allows
the agent to effectively utilise all available computational resources for each decision.

Algorithm 1 ρUCT(h,m)
Require: A history h
Require: A search horizon m ∈ N

1: Initialise(Ψ)
2: repeat
3: Sample(Ψ, h,m)
4: until out of time
5: return BestAction(Ψ, h)

For simplicity of exposition, Initialise can be understood to simply clear the entire search tree
Ψ. In practice, it is possible to carry across information from one time step to another. If Ψt is the
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search tree obtained at the end of time t, and aor is the agent’s actual action and experience at time
t, then we can keep the subtree rooted at node Ψt(hao) in Ψt and make that the search tree Ψt+1 for
use at the beginning of the next time step. The remainder of the nodes in Ψt can then be deleted.

Algorithm 2 describes the recursive routine used to sample a single future trajectory. It uses
the SelectAction routine to choose moves at decision nodes, and invokes the Rollout routine at
unexplored leaf nodes. The Rollout routine picks actions according to the rollout policy Π until
the (remaining) horizon is reached, returning the accumulated reward. After a complete trajectory
of length m is simulated, the value estimates are updated for each node traversed as per Section 4.6.
Notice that the recursive calls on Lines 6 and 11 append the most recent percept or action to the
history argument.

Algorithm 2 Sample(Ψ, h,m)
Require: A search tree Ψ
Require: A history h
Require: A remaining search horizon m ∈ N

1: if m = 0 then
2: return 0
3: else if Ψ(h) is a chance node then
4: Generate (o, r) from ρ(or | h)
5: Create node Ψ(hor) if T (hor) = 0
6: reward← r + Sample(Ψ, hor,m − 1)
7: else if T (h) = 0 then
8: reward← Rollout(h,m)
9: else

10: a← SelectAction(Ψ, h)
11: reward← Sample(Ψ, ha,m)
12: end if
13: V̂(h)← 1

T (h)+1 [reward + T (h)V̂(h)]
14: T (h)← T (h) + 1
15: return reward

The action chosen by SelectAction is specified by the UCB policy described in Definition 6. If
the selected child has not been explored before, a new node is added to the search tree. The constant
C is a parameter that is used to control the shape of the search tree; lower values of C create deep,
selective search trees, whilst higher values lead to shorter, bushier trees. UCB automatically focuses
attention on the best looking action in such a way that the sample estimate V̂ρ(h) converges to Vρ(h),
whilst still exploring alternate actions sufficiently often to guarantee that the best action will be
eventually found.

4.8 Consistency of ρUCT

Let µ be the true underlying environment. We now establish the link between the expectimax value
Vm
µ (h) and its estimate V̂m

µ (h) computed by the ρUCT algorithm.
Kocsis and Szepesvári (2006) show that with an appropriate choice of C, the UCT algorithm

is consistent in finite horizon MDPs. By interpreting histories as Markov states, our general agent
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Algorithm 3 SelectAction(Ψ, h)
Require: A search tree Ψ
Require: A history h
Require: An exploration/exploitation constant C

1: U = {a ∈ A : T (ha) = 0}
2: if U , {} then
3: Pick a ∈ U uniformly at random
4: Create node Ψ(ha)
5: return a
6: else
7: return arg max

a∈A

{
1

m(β−α) V̂(ha) +C
√

log(T (h))
T (ha)

}
8: end if

Algorithm 4 Rollout(h,m)
Require: A history h
Require: A remaining search horizon m ∈ N
Require: A rollout function Π

1: reward ← 0
2: for i = 1 to m do
3: Generate a from Π(h)
4: Generate (o, r) from ρ(or | ha)
5: reward ← reward + r
6: h← haor
7: end for
8: return reward

problem reduces to a finite horizon MDP. This means that the results of Kocsis and Szepesvári
(2006) are now directly applicable. Restating the main consistency result in our notation, we have

∀ϵ∀h lim
T (h)→∞

Pr
(
|Vm
µ (h) − V̂m

µ (h)| ≤ ϵ
)
= 1, (17)

that is, V̂m
µ (h) → Vm

µ (h) with probability 1. Furthermore, the probability that a suboptimal action
(with respect to Vm

µ (·)) is picked by ρUCT goes to zero in the limit. Details of this analysis can be
found in the work of Kocsis and Szepesvári (2006).

4.9 Parallel Implementation of ρUCT

As a Monte-Carlo Tree Search routine, Algorithm 1 can be easily parallelised. The main idea is
to concurrently invoke the Sample routine whilst providing appropriate locking mechanisms for the
interior nodes of the search tree. A highly scalable parallel implementation is beyond the scope of
the paper, but it is worth noting that ideas applicable to high performance Monte-Carlo Go programs
(Chaslot, Winands, & Herik, 2008b) can be easily transferred to our setting.
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5. Model Class Approximation using Context Tree Weighting

We now turn our attention to the construction of an efficient mixture environment model suitable for
the general reinforcement learning problem. If computation were not an issue, it would be sufficient
to first specify a large model class M, and then use Equations (8) or (3.1) for online prediction.
The problem with this approach is that at least O(|M|) time is required to process each new piece
of experience. This is simply too slow for the enormous model classes required by general agents.
Instead, this section will describe how to predict in O(log log |M|) time, using a mixture environment
model constructed from an adaptation of the Context Tree Weighting algorithm.

5.1 Context Tree Weighting

Context Tree Weighting (CTW) (Willems et al., 1995; Willems, Shtarkov, & Tjalkens, 1997) is
an efficient and theoretically well-studied binary sequence prediction algorithm that works well in
practice (Begleiter, El-Yaniv, & Yona, 2004). It is an online Bayesian model averaging algorithm
that computes, at each time point t, the probability

Pr(y1:t) =
∑
M

Pr(M) Pr(y1:t |M), (18)

where y1:t is the binary sequence seen so far, M is a prediction suffix tree (Rissanen, 1983; Ron,
Singer, & Tishby, 1996), Pr(M) is the prior probability of M, and the summation is over all predic-
tion suffix trees of bounded depth D. This is a huge class, covering all D-order Markov processes. A
naı̈ve computation of (18) takes time O(22D

); using CTW, this computation requires only O(D) time.
In this section, we outline two ways in which CTW can be generalised to compute probabilities of
the form

Pr(x1:t | a1:t) =
∑
M

Pr(M) Pr(x1:t |M, a1:t), (19)

where x1:t is a percept sequence, a1:t is an action sequence, and M is a prediction suffix tree as in
(18). These generalisations will allow CTW to be used as a mixture environment model.

5.2 Krichevsky-Trofimov Estimator

We start with a brief review of the KT estimator (Krichevsky & Trofimov, 1981) for Bernoulli
distributions. Given a binary string y1:t with a zeros and b ones, the KT estimate of the probability
of the next symbol is as follows:

Prkt(Yt+1 = 1 | y1:t) :=
b + 1/2

a + b + 1
(20)

Prkt(Yt+1 = 0 | y1:t) := 1 − Prkt(Yt+1 = 1 | y1:t). (21)

The KT estimator is obtained via a Bayesian analysis by putting an uninformative (Jeffreys
Beta(1/2,1/2)) prior Pr(θ) ∝ θ−1/2(1 − θ)−1/2 on the parameter θ ∈ [0, 1] of the Bernoulli distri-
bution. From (20)-(21), we obtain the following expression for the block probability of a string:

Prkt(y1:t) = Prkt(y1 | ϵ)Prkt(y2 | y1) · · · Prkt(yt | y<t)

=
∫
θb(1 − θ)a Pr(θ) dθ.
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Figure 2: An example prediction suffix tree

Since Prkt(s) depends only on the number of zeros as and ones bs in a string s, if we let 0a1b denote
a string with a zeroes and b ones, then we have

Prkt(s) = Prkt(0as1bs) =
1/2(1 + 1/2) · · · (as − 1/2)1/2(1 + 1/2) · · · (bs − 1/2)

(as + bs)!
. (22)

We write Prkt(a, b) to denote Prkt(0a1b) in the following. The quantity Prkt(a, b) can be updated
incrementally (Willems et al., 1995) as follows:

Prkt(a + 1, b) =
a + 1/2

a + b + 1
Prkt(a, b) (23)

Prkt(a, b + 1) =
b + 1/2

a + b + 1
Prkt(a, b), (24)

with the base case being Prkt(0, 0) = 1.

5.3 Prediction Suffix Trees

We next describe prediction suffix trees, which are a form of variable-order Markov models.
In the following, we work with binary trees where all the left edges are labeled 1 and all the right

edges are labeled 0. Each node in such a binary tree M can be identified by a string in {0, 1}∗ as
follows: ϵ represents the root node of M; and if n ∈ {0, 1}∗ is a node in M, then n1 and n0 represent
the left and right child of node n respectively. The set of M’s leaf nodes L(M) ⊂ {0, 1}∗ form a
complete prefix-free set of strings. Given a binary string y1:t such that t ≥ the depth of M, we define
M(y1:t) := ytyt−1 . . . yt′ , where t′ ≤ t is the (unique) positive integer such that ytyt−1 . . . yt′ ∈ L(M).
In other words, M(y1:t) represents the suffix of y1:t that occurs in tree M.

Definition 7. A prediction suffix tree (PST) is a pair (M,Θ), where M is a binary tree and associated
with each leaf node l in M is a probability distribution over {0, 1} parametrised by θl ∈ Θ. We call
M the model of the PST and Θ the parameter of the PST, in accordance with the terminology of
Willems et al. (1995).

A prediction suffix tree (M,Θ) maps each binary string y1:t, where t ≥ the depth of M, to
the probability distribution θM(y1:t); the intended meaning is that θM(y1:t) is the probability that the
next bit following y1:t is 1. For example, the PST shown in Figure 2 maps the string 1110 to
θM(1110) = θ01 = 0.3, which means the next bit after 1110 is 1 with probability 0.3.

In practice, to use prediction suffix trees for binary sequence prediction, we need to learn both
the model and parameter of a prediction suffix tree from data. We will deal with the model-learning
part later. Assuming the model of a PST is known/given, the parameter of the PST can be learnt
using the KT estimator as follows. We start with θl := Prkt(1 | ϵ) = 1/2 at each leaf node l of M. If
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d is the depth of M, then the first d bits y1:d of the input sequence are set aside for use as an initial
context and the variable h denoting the bit sequence seen so far is set to y1:d. We then repeat the
following steps as long as needed:

1. predict the next bit using the distribution θM(h);
2. observe the next bit y, update θM(h) using Formula (20) by incrementing either a or b according

to the value of y, and then set h := hy.

5.4 Action-Conditional PST

The above describes how a PST is used for binary sequence prediction. In the agent setting, we
reduce the problem of predicting history sequences with general non-binary alphabets to that of
predicting the bit representations of those sequences. Furthermore, we only ever condition on ac-
tions. This is achieved by appending bit representations of actions to the input sequence without a
corresponding update of the KT estimators. These ideas are now formalised.

For convenience, we will assume without loss of generality that |A| = 2lA and |X| = 2lX for
some lA, lX > 0. Given a ∈ A, we denote by ⟦a⟧ = a[1, lA] = a[1]a[2] . . . a[lA] ∈ {0, 1}lA
the bit representation of a. Observation and reward symbols are treated similarly. Further, the bit
representation of a symbol sequence x1:t is denoted by ⟦x1:t⟧ = ⟦x1⟧⟦x2⟧ . . . ⟦xt⟧.

To do action-conditional sequence prediction using a PST with a given model M, we again start
with θl := Prkt(1 | ϵ) = 1/2 at each leaf node l of M. We also set aside a sufficiently long initial
portion of the binary history sequence corresponding to the first few cycles to initialise the variable
h as usual. The following steps are then repeated as long as needed:

1. set h := h⟦a⟧, where a is the current selected action;
2. for i := 1 to lX do

(a) predict the next bit using the distribution θM(h);
(b) observe the next bit x[i], update θM(h) using Formula (20) according to the value of x[i],

and then set h := hx[i].

Let M be the model of a prediction suffix tree, a1:t ∈ At an action sequence, x1:t ∈ Xt an
observation-reward sequence, and h := ⟦ax1:t⟧. For each node n in M, define hM,n by

hM,n := hi1hi2 · · · hik (25)

where 1 ≤ i1 < i2 < · · · < ik ≤ t and, for each i, i ∈ {i1, i2, . . . ik} iff hi is an observation-reward bit
and n is a prefix of M(h1:i−1). In other words, hM,n consists of all the observation-reward bits with
context n. Thus we have the following expression for the probability of x1:t given M and a1:t:

Pr(x1:t |M, a1:t) =
t∏

i=1

Pr(xi |M, ax<iai)

=

t∏
i=1

lX∏
j=1

Pr(xi[ j] |M, ⟦ax<iai⟧xi[1, j − 1])

=
∏

n∈L(M)

Prkt(hM,n). (26)
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The last step follows by grouping the individual probability terms according to the node
n ∈ L(M) in which each bit falls and then observing Equation (22). The above deals with action-
conditional prediction using a single PST. We now show how we can perform efficient action-
conditional prediction using a Bayesian mixture of PSTs. First we specify a prior over PST models.

5.5 A Prior on Models of PSTs

Our prior Pr(M) := 2−ΓD(M) is derived from a natural prefix coding of the tree structure of a PST.
The coding scheme works as follows: given a model of a PST of maximum depth D, a pre-order
traversal of the tree is performed. Each time an internal node is encountered, we write down 1. Each
time a leaf node is encountered, we write a 0 if the depth of the leaf node is less than D; otherwise
we write nothing. For example, if D = 3, the code for the model shown in Figure 2 is 10100; if
D = 2, the code for the same model is 101. The cost ΓD(M) of a model M is the length of its code,
which is given by the number of nodes in M minus the number of leaf nodes in M of depth D. One
can show that ∑

M∈CD

2−ΓD(M) = 1,

where CD is the set of all models of prediction suffix trees with depth at most D; i.e. the prefix code
is complete. We remark that the above is another way of describing the coding scheme in Willems
et al. (1995). Note that this choice of prior imposes an Ockham-like penalty on large PST structures.

5.6 Context Trees

The following data structure is a key ingredient of the Action-Conditional CTW algorithm.

Definition 8. A context tree of depth D is a perfect binary tree of depth D such that attached to each
node (both internal and leaf) is a probability on {0, 1}∗.

The node probabilities in a context tree are estimated from data by using a KT estimator at each
node. The process to update a context tree with a history sequence is similar to a PST, except that:

1. the probabilities at each node in the path from the root to a leaf traversed by an observed bit
are updated; and

2. we maintain block probabilities using Equations (22) to (24) instead of conditional probabil-
ities.

This process can be best understood with an example. Figure 3 (left) shows a context tree of depth
two. For expositional reasons, we show binary sequences at the nodes; the node probabilities are
computed from these. Initially, the binary sequence at each node is empty. Suppose 1001 is the
history sequence. Setting aside the first two bits 10 as an initial context, the tree in the middle of
Figure 3 shows what we have after processing the third bit 0. The tree on the right is the tree we
have after processing the fourth bit 1. In practice, we of course only have to store the counts of
zeros and ones instead of complete subsequences at each node because, as we saw earlier in (22),
Prkt(s) = Prkt(as, bs). Since the node probabilities are completely determined by the input sequence,
we shall henceforth speak unambiguously about the context tree after seeing a sequence.

The context tree of depth D after seeing a sequence h has the following important properties:

1. the model of every PST of depth at most D can be obtained from the context tree by pruning
off appropriate subtrees and treating them as leaf nodes;
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Figure 3: A depth-2 context tree (left); trees after processing two bits (middle and right)

2. the block probability of h as computed by each PST of depth at most D can be obtained from
the node probabilities of the context tree via Equation (26).

These properties, together with an application of the distributive law, form the basis of the highly
efficient Action Conditional CTW algorithm. We now formalise these insights.

5.7 Weighted Probabilities

The weighted probability Pn
w of each node n in the context tree T after seeing h := ⟦ax1:t⟧ is defined

inductively as follows:

Pn
w :=

Prkt(hT,n) if n is a leaf node;
1
2 Prkt(hT,n) + 1

2 Pn0
w × Pn1

w otherwise,
(27)

where hT,n is as defined in (25).

Lemma 2 (Willems et al., 1995). Let T be the depth-D context tree after seeing h := ⟦ax1:t⟧. For
each node n in T at depth d, we have

Pn
w =

∑
M∈CD−d

2−ΓD−d(M)
∏

n′∈L(M)

Prkt(hT,nn′). (28)

Proof. The proof proceeds by induction on d. The statement is clearly true for the leaf nodes at
depth D. Assume now the statement is true for all nodes at depth d + 1, where 0 ≤ d < D. Consider
a node n at depth d. Letting d = D − d, we have

Pn
w =

1
2

Prkt(hT,n) +
1
2

Pn0
w Pn1

w

=
1
2

Prkt(hT,n) +
1
2

 ∑
M∈Cd+1

2−Γd+1(M)
∏

n′∈L(M)

Prkt(hT,n0n′)


 ∑

M∈Cd+1

2−Γd+1(M)
∏

n′∈L(M)

Prkt(hT,n1n′)


=

1
2

Prkt(hT,n) +
∑

M1∈Cd+1

∑
M2∈Cd+1

2−(Γd+1(M1)+Γd+1(M2)+1)

 ∏
n′∈L(M1)

Prkt(hT,n0n′)


 ∏
n′∈L(M2)

Prkt(hT,n1n′)


=

1
2

Prkt(hT,n) +
∑

M̂1 M2∈Cd

2−Γd(M̂1 M2)
∏

n′∈L(M̂1 M2)

Prkt(hT,nn′)

=
∑

M∈CD−d

2−ΓD−d(M)
∏

n′∈L(M)

Prkt(hT,nn′),

where M̂1M2 denotes the tree in Cd whose left and right subtrees are M1 and M2 respectively. �
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5.8 Action Conditional CTW as a Mixture Environment Model

A corollary of Lemma 2 is that at the root node ϵ of the context tree T after seeing h := ⟦ax1:t⟧, we
have

Pϵw =
∑

M∈CD

2−ΓD(M)
∏

l∈L(M)

Prkt(hT,l) (29)

=
∑

M∈CD

2−ΓD(M)
∏

l∈L(M)

Prkt(hM,l) (30)

=
∑

M∈CD

2−ΓD(M) Pr(x1:t |M, a1:t), (31)

where the last step follows from Equation (26). Equation (31) shows that the quantity computed
by the Action-Conditional CTW algorithm is exactly a mixture environment model. Note that the
conditional probability is always defined, as CTW assigns a non-zero probability to any sequence.
To sample from this conditional probability, we simply sample the individual bits of xt one by one.

In summary, to do prediction using Action-Conditional CTW, we set aside a sufficiently long
initial portion of the binary history sequence corresponding to the first few cycles to initialise the
variable h and then repeat the following steps as long as needed:

1. set h := h⟦a⟧, where a is the current selected action;
2. for i := 1 to lX do

(a) predict the next bit using the weighted probability Pϵw;
(b) observe the next bit x[i], update the context tree using h and x[i], calculate the new

weighted probability Pϵw, and then set h := hx[i].

5.9 Incorporating Type Information

One drawback of the Action-Conditional CTW algorithm is the potential loss of type information
when mapping a history string to its binary encoding. This type information may be needed for
predicting well in some domains. Although it is always possible to choose a binary encoding scheme
so that the type information can be inferred by a depth limited context tree, it would be desirable to
remove this restriction so that our agent can work with arbitrary encodings of the percept space.

One option would be to define an action-conditional version of multi-alphabet CTW (Tjalkens,
Shtarkov, & Willems, 1993), with the alphabet consisting of the entire percept space. The downside
of this approach is that we then lose the ability to exploit the structure within each percept. This
can be critical when dealing with large observation spaces, as noted by McCallum (1996). The key
difference between his U-Tree and USM algorithms is that the former could discriminate between
individual components within an observation, whereas the latter worked only at the symbol level.
As we shall see in Section 7, this property can be helpful when dealing with larger problems.

Fortunately, it is possible to get the best of both worlds. We now describe a technique that
incorporates type information whilst still working at the bit level. The trick is to chain together k :=
lX action conditional PSTs, one for each bit of the percept space, with appropriately overlapping
binary contexts. More precisely, given a history h, the context for the ith PST is the most recent
D+ i−1 bits of the bit-level history string ⟦h⟧x[1, i−1]. To ensure that each percept bit is dependent
on the same portion of h, D + i − 1 (instead of only D) bits are used. Thus if we denote the PST
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model for the ith bit in a percept x by Mi, and the joint model by M, we now have:

Pr(x1:t |M, a1:t) =
t∏

i=1

Pr(xi |M, ax<iai)

=

t∏
i=1

k∏
j=1

Pr(xi[ j] |M j, ⟦ax<iai⟧xi[1, j − 1]) (32)

=

k∏
j=1

Pr(x1:t[ j] |M j, x1:t[− j], a1:t)

where x1:t[i] denotes x1[i]x2[i] . . . xt[i], x1:t[−i] denotes x1[−i]x2[−i] . . . xt[−i], with xt[− j] denoting
xt[1] . . . xt[ j − 1]xt[ j + 1] . . . xt[k]. The last step follows by swapping the two products in (32) and
using the above notation to refer to the product of probabilities of the jth bit in each percept xi, for
1 ≤ i ≤ t.

We next place a prior on the space of factored PST models M ∈ CD × · · · ×CD+k−1 by assuming
that each factor is independent, giving

Pr(M) = Pr(M1, . . . ,Mk) =
k∏

i=1

2−ΓDi (Mi) = 2
−

k∑
i=1
ΓDi (Mi)

,

where Di := D + i − 1. This induces the following mixture environment model

ξ(x1:t | a1:t) :=
∑

M∈CD1×···×CDk

2
−

k∑
i=1
ΓDi (Mi)

Pr(x1:t |M, a1:t). (33)

This can now be rearranged into a product of efficiently computable mixtures, since

ξ(x1:t | a1:t) =
∑

M1∈CD1

· · ·
∑

Mk∈CDk

2
−

k∑
i=1
ΓDi (Mi)

k∏
j=1

Pr(x1:t[ j] |M j, x1:t[− j], a1:t)

=

k∏
j=1

 ∑
M j∈CD j

2−ΓD j (M j) Pr(x1:t[ j] |M j, x1:t[− j], a1:t)

 . (34)

Note that for each factor within Equation (34), a result analogous to Lemma 2 can be established by
appropriately modifying Lemma 2’s proof to take into account that now only one bit per percept is
being predicted. This leads to the following scheme for incrementally maintaining Equation (33):

1. Initialise h← ϵ, t ← 1. Create k context trees.
2. Determine action at. Set h← hat.
3. Receive xt. For each bit xt[i] of xt, update the ith context tree with xt[i] using history

hx[1, i − 1] and recompute Pϵw using Equation (27).
4. Set h← hxt, t ← t + 1. Goto 2.

We will refer to this technique as Factored Action-Conditional CTW, or the FAC-CTW algorithm
for short.
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5.10 Convergence to the True Environment

We now show that FAC-CTW performs well in the class of stationary n-Markov environments. Im-
portantly, this includes the class of Markov environments used in state-based reinforcement learning,
where the most recent action/observation pair (at, xt−1) is a sufficient statistic for the prediction of
xt.

Definition 9. Given n ∈ N, an environment µ is said to be n-Markov if for all t > n, for all a1:t ∈ At,
for all x1:t ∈ Xt and for all h ∈ (A×X)t−n−1 ×A

µ(xt | ax<tat) = µ(xt | hxt−naxt−n+1:t−1at). (35)

Furthermore, an n-Markov environment is said to be stationary if for all ax1:nan+1 ∈ (A×X)n ×A,
for all h, h′ ∈ (A×X)∗,

µ(· | hax1:nan+1) = µ(· | h′ax1:nan+1). (36)

It is easy to see that any stationary n-Markov environment can be represented as a product of
sufficiently large, fixed parameter PSTs. Theorem 1 states that the predictions made by a mixture
environment model only converge to those of the true environment when the model class contains
a model sufficiently close to the true environment. However, no stationary n-Markov environment
model is contained within the model class of FAC-CTW, since each model updates the parameters
for its KT-estimators as more data is seen. Fortunately, this is not a problem, since this updating
produces models that are sufficiently close to any stationary n-Markov environment for Theorem 1
to be meaningful.

Lemma 3. IfM is the model class used by FAC-CTW with a context depth D, µ is an environment
expressible as a product of k := lX fixed parameter PSTs (M1,Θ1), . . . , (Mk,Θk) of maximum depth
D and ρ(· | a1:n) ≡ Pr(· | (M1, . . . ,Mk), a1:n) ∈ M then for all n ∈ N, for all a1:n ∈ An,

D1:n(µ || ρ) ≤
k∑

j=1

|L(M j)| γ
(

n
|L(M j)|

)
where

γ(z) :=
{

z for 0 ≤ z < 1
1
2 log z + 1 for z ≥ 1.

Proof. For all n ∈ N, for all a1:n ∈ An,

D1:n(µ || ρ) =
∑
x1:n

µ(x1:n | a1:n) ln
µ(x1:n | a1:n)
ρ(x1:n | a1:n)

=
∑
x1:n

µ(x1:n | a1:n) ln

∏k
j=1 Pr(x1:n[ j] |M j,Θ j, x1:n[− j], a1:n)∏k

j=1 Pr(x1:n[ j] |M j, x1:n[− j], a1:n)

=
∑
x1:n

µ(x1:n | a1:n)
k∑

j=1

ln
Pr(x1:n[ j] |M j,Θ j, x1:n[− j], a1:n)

Pr(x1:n[ j] |M j, x1:n[− j], a1:n)

≤
∑
x1:n

µ(x1:n | a1:n)
k∑

j=1

|L(M j)|γ
(

n
|L(M j)|

)
(37)
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=

k∑
j=1

|L(M j)| γ
(

n
|L(M j)|

)
where Pr(x1:n[ j] |M j,Θ j, x1:n[− j], a1:n) denotes the probability of a fixed parameter PST (M j,Θ j)
generating the sequence x1:n[ j] and the bound introduced in (37) is from the work of Willems et al.
(1995). �

If the unknown environment µ is stationary and n-Markov, Lemma 3 and Theorem 1 can be
applied to the FAC-CTW mixture environment model ξ. Together they imply that the cumulative µ-
expected squared difference between µ and ξ is bounded by O(log n). Also, the per cycle µ-expected
squared difference between µ and ξ goes to zero at the rapid rate of O(log n/n). This allows us to
conclude that FAC-CTW (with a sufficiently large context depth) will perform well on the class of
stationary n-Markov environments.

5.11 Summary

We have described two different ways in which CTW can be extended to define a large and
efficiently computable mixture environment model. The first is a complete derivation of the
Action-Conditional CTW algorithm first presented in the work of Veness, Ng, Hutter, and Silver
(2010). The second is the introduction of the FAC-CTW algorithm, which improves upon Action-
Conditional CTW by automatically exploiting the type information available within the agent set-
ting.

As the rest of the paper will make extensive use of the FAC-CTW algorithm, for clarity we
define

Υ(x1:t | a1:t) :=
∑

M∈CD1×···×CDk

2
−

k∑
i=1
ΓDi (Mi)

Pr(x1:t |M, a1:t). (38)

Also recall that using Υ as a mixture environment model, the conditional probability of xt given
ax<tat is

Υ(xt | ax<tat) =
Υ(x1:t | a1:t)
Υ(x<t | a<t)

,

which follows directly from Equation (3). To generate a percept from this conditional probability
distribution, we simply sample lX bits, one by one, from Υ.

5.12 Relationship to AIXI

Before moving on, we examine the relationship between AIXI and our model class approximation.
Using Υ in place of ρ in Equation (6), the optimal action for an agent at time t, having experienced
ax1:t−1, is given by

a∗t = arg max
at

∑
xt

Υ(x1:t | a1:t)
Υ(x<t | a<t)

· · ·max
at+m

∑
xt+m

Υ(x1:t+m | a1:t+m)
Υ(x<t+m | a<t+m)

t+m∑
i=t

ri


= arg max

at

∑
xt

· · ·max
at+m

∑
xt+m

t+m∑
i=t

ri

 t+m∏
i=t

Υ(x1:i | a1:i)
Υ(x<i | a<i)

= arg max
at

∑
xt

· · ·max
at+m

∑
xt+m

t+m∑
i=t

ri

 Υ(x1:t+m | a1:t+m)
Υ(x<t | a<t)
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= arg max
at

∑
xt

· · ·max
at+m

∑
xt+m

t+m∑
i=t

ri

Υ(x1:t+m | a1:t+m)

= arg max
at

∑
xt

· · ·max
at+m

∑
xt+m

t+m∑
i=t

ri

 ∑
M∈CD1×···×CDk

2
−

k∑
i=1
ΓDi (Mi)

Pr(x1:t+m |M, a1:t+m). (39)

Contrast (39) now with Equation (11) which we reproduce here:

a∗t = arg max
at

∑
xt

. . .max
at+m

∑
xt+m

t+m∑
i=t

ri

 ∑
ρ∈M

2−K(ρ)ρ(x1:t+m | a1:t+m), (40)

where M is the class of all enumerable chronological semimeasures, and K(ρ) denotes the Kol-
mogorov complexity of ρ. The two expressions share a prior that enforces a bias towards simpler
models. The main difference is in the subexpression describing the mixture over the model class.
AIXI uses a mixture over all enumerable chronological semimeasures. This is scaled down to a
(factored) mixture of prediction suffix trees in our setting. Although the model class used in AIXI
is completely general, it is also incomputable. Our approximation has restricted the model class to
gain the desirable computational properties of FAC-CTW.

6. Putting it All Together

Our approximate AIXI agent, MC-AIXI(fac-ctw), is realised by instantiating the ρUCT algorithm
with ρ = Υ. Some additional properties of this combination are now discussed.

6.1 Convergence of Value

We now show that using Υ in place of the true environment µ in the expectimax operation leads to
good behaviour when µ is both stationary and n-Markov. This result combines Lemma 3 with an
adaptation of the work of Hutter (2005, Thm. 5.36). For this analysis, we assume that the instanta-
neous rewards are non-negative (with no loss of generality), FAC-CTW is used with a sufficiently
large context depth, the maximum life of the agent b ∈ N is fixed and that a bounded planning
horizon mt := min(H, b− t+1) is used at each time t, with H ∈ N specifying the maximum planning
horizon.

Theorem 2. Using the FAC-CTW algorithm, for every policy π, if the true environment µ is ex-
pressible as a product of k PSTs (M1,Θ1), . . . , (Mk,Θk), for all b ∈ N, we have

b∑
t=1

Ex<t∼µ

[(
vmt
Υ

(π, ax<t) − vmt
µ (π, ax<t)

)2
]
≤ 2H3r2

max

 k∑
i=1

ΓDi(Mi) +
k∑

j=1

|L(M j)| γ
(

b
|L(M j)|

)
where rmax is the maximum instantaneous reward, γ is as defined in Lemma 3 and vmt

µ (π, ax<t) is the
value of policy π as defined in Definition 3.

Proof. First define ρ(xi: j | a1: j, x<i) := ρ(x1: j | a1: j)/ρ(x<i | a<i) for i < j , for any environment model
ρ and let at:mt be the actions chosen by π at times t to mt. Now

∣∣∣vmt
Υ

(π, ax<t) − vmt
µ (π, ax<t)

∣∣∣ =
∣∣∣∣∣∣∣∣
∑
xt:mt

(rt + · · · + rmt )
[
Υ(xt:mt | a1:mt , x<t) − µ(xt:mt | a1:mt , x<t)

]∣∣∣∣∣∣∣∣
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≤
∑
xt:mt

(rt + · · · + rmt )
∣∣∣Υ(xt:mt | a1:mt , x<t) − µ(xt:mt | a1:mt , x<t)

∣∣∣
≤ mtrmax

∑
xt:mt

∣∣∣Υ(xt:mt | a1:mt , x<t) − µ(xt:mt | a1:mt , x<t)
∣∣∣

=: mtrmaxAt:mt (µ || Υ).

Applying this bound, a property of absolute distance (Hutter, 2005, Lemma 3.11) and the chain rule
for KL-divergence (Cover & Thomas, 1991, p. 24) gives

b∑
t=1

Ex<t∼µ

[(
vmt
Υ

(π, ax<t) − vmt
µ (π, ax<t)

)2
]
≤ m2

t r2
max

b∑
t=1

Ex<t∼µ
[
At:mt (µ || Υ)2

]
≤ 2H2r2

max

b∑
t=1

Ex<t∼µ
[
Dt:mt (µ || Υ)

]
= 2H2r2

max

b∑
t=1

mt∑
i=t

Ex<i∼µ
[
Di:i(µ || Υ)

]
≤ 2H3r2

max

b∑
t=1

Ex<t∼µ
[
Dt:t(µ || Υ)

]
= 2H3r2

maxD1:b(µ || Υ),

where Di: j(µ || Υ) :=
∑

xi: j µ(xi: j | a1: j, x<i) ln(Υ(xi: j | a1: j, x<i)/µ(xi: j | a1: j, x<i)). The final inequality
uses the fact that any particular Di:i(µ || Υ) term appears at most H times in the preceding double
sum. Now define ρM(· | a1:b) := Pr(· | (M1, . . . ,Mk), a1:b) and we have

D1:b(µ || Υ) =
∑
x1:b

µ(x1:b | a1:b) ln
[
µ(x1:b | a1:b)
ρM(x1:b | a1:b)

ρM(x1:b | a1:b)
Υ(x1:b | a1:b)

]
=

∑
x1:b

µ(x1:b | a1:b) ln
µ(x1:b | a1:b)
ρM(x1:b | a1:b)

+
∑
x1:b

µ(x1:b | a1:b) ln
ρM(x1:b | a1:b)
Υ(x1:b | a1:b)

≤ D1:b(µ ∥ ρM) +
∑
x1:b

µ(x1:b | a1:b) ln
ρM(x1:b | a1:b)

wρM
0 ρM(x1:b | a1:b)

= D1:b(µ ∥ ρM) +
k∑

i=1

ΓDi(Mi)

where wρM
0 := 2

−
k∑

i=1
ΓDi (Mi)

and the final inequality follows by dropping all but ρM’s contribution to
Equation (38). Using Lemma 3 to bound D1:b(µ ∥ ρM) now gives the desired result. �

For any fixed H, Theorem 2 shows that the cumulative expected squared difference of the true
and Υ values is bounded by a term that grows at the rate of O(log b). The average expected squared
difference of the two values then goes down to zero at the rate of O( log b

b ). This implies that for
sufficiently large b, the value estimates using Υ in place of µ converge for any fixed policy π.
Importantly, this includes the fixed horizon expectimax policy with respect to Υ.

6.2 Convergence to Optimal Policy

This section presents a result for n-Markov environments that are both ergodic and stationary. In-
tuitively, this class of environments never allow the agent to make a mistake from which it can
no longer recover. Thus in these environments an agent that learns from its mistakes can hope to
achieve a long-term average reward that will approach optimality.
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Definition 10. An n-Markov environment µ is said to be ergodic if there exists a policy π such that
every sub-history s ∈ (A×X)n possible in µ occurs infinitely often (with probability 1) in the history
generated by an agent/environment pair (π, µ).

Definition 11. A sequence of policies {π1, π2, . . . } is said to be self optimising with respect to model
classM if

1
m

vm
ρ (πm, ϵ) −

1
m

Vm
ρ (ϵ)→ 0 as m→ ∞ for all ρ ∈ M. (41)

A self optimising policy has the same long-term average expected future reward as the optimal
policy for any environment in M. In general, such policies cannot exist for all model classes.
We restrict our attention to the set of stationary, ergodic n-Markov environments since these are
what can be modeled effectively by FAC-CTW. The ergodicity property ensures that no possible
percepts are precluded due to earlier actions by the agent. The stationarity property ensures that the
environment is sufficiently well behaved for a PST to learn a fixed set of parameters.

We now prove a lemma in preparation for our main result.

Lemma 4. Any stationary, ergodic n-Markov environment can be modeled by a finite, ergodic MDP.

Proof. Given an ergodic n-Markov environment µ, with associated action spaceA and percept space
X, an equivalent, finite MDP (S , A,T,R) can be constructed from µ by defining the state space as
S := (A×X)n, the action space as A := A, the transition probability as Ta(s, s′) := µ(o′r′ | hsa)
and the reward function as Ra(s, s′) := r′, where s′ is the suffix formed by deleting the leftmost
action/percept pair from sao′r′ and h is an arbitrary history from (A×X)∗. Ta(s, s′) is well defined
for arbitrary h since µ is stationary, therefore Eq. (36) applies. Definition 10 implies that the derived
MDP is ergodic. �

Theorem 3. Given a mixture environment model ξ over a model classM consisting of a countable
set of stationary, ergodic n-Markov environments, the sequence of policies

{
π
ξ
1, π
ξ
2, . . .

}
where

π
ξ
b(ax<t) := arg max

at∈A
Vb−t+1
ξ (ax<tat) (42)

for 1 ≤ t ≤ b, is self-optimising with respect to model classM.

Proof. By applying Lemma 4 to each ρ ∈ M, an equivalent model class N of finite, ergodic MDPs
can be produced. We know from Hutter (2005, Thm. 5.38) that a sequence of policies for N that
is self-optimising exists. This implies the existence of a corresponding sequence of policies forM
that is self-optimising. Using the work of Hutter (2005, Thm. 5.29), this implies that the sequence
of policies

{
π
ξ
1, π
ξ
2, . . .

}
is self optimising. �

Theorem 3 says that by choosing a sufficiently large lifespan b, the average reward for an agent
following policy πξb can be made arbitrarily close to the optimal average reward with respect to the
true environment.

Theorem 3 and the consistency of the ρUCT algorithm (17) give support to the claim that
the MC-AIXI(fac-ctw) agent is self-optimising with respect to the class of stationary, ergodic, n-
Markov environments. The argument isn’t completely rigorous, since the usage of the KT-estimator
implies that the model class of FAC-CTW contains an uncountable number of models. Our con-
clusion is not entirely unreasonable however. The justification is that a countable mixture of PSTs
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behaving similarly to the FAC-CTW mixture can be formed by replacing each PST leaf node KT-
estimator with a finely grained, discrete Bayesian mixture predictor. Under this interpretation, a
floating point implementation of the KT-estimator would correspond to a computationally feasible
approximation of the above.

The results used in the proof of Theorem 3 can be found in the works of Hutter (2002b) and
Legg and Hutter (2004). An interesting area for future research would be to investigate whether a
self-optimising result similar to the work of Hutter (2005, Thm. 5.29) holds for continuous mixtures.

6.3 Computational Properties

The FAC-CTW algorithm grows each context tree data structure dynamically. With a context depth
D, there are at most O(tD log(|O||R|)) nodes in the set of context trees after t cycles. In practice,
this is considerably less than log(|O||R|)2D, which is the number of nodes in a fully grown set of
context trees. The time complexity of FAC-CTW is also impressive; O(Dm log(|O||R|)) to generate
the m percepts needed to perform a single ρUCT simulation and O(D log(|O||R|)) to process each
new piece of experience. Importantly, these quantities are not dependent on t, which means that the
performance of our agent does not degrade with time. Thus it is reasonable to run our agent in an
online setting for millions of cycles. Furthermore, as FAC-CTW is an exact algorithm, we do not
suffer from approximation issues that plague sample based approaches to Bayesian learning.

6.4 Efficient Combination of FAC-CTW with ρUCT

Earlier, we showed how FAC-CTW can be used in an online setting. An additional property however
is needed for efficient use within ρUCT. Before Sample is invoked, FAC-CTW will have computed
a set of context trees for a history of length t. After a complete trajectory is sampled, FAC-CTW
will now contain a set of context trees for a history of length t + m. The original set of context
trees now needs to be restored. Saving and copying the original context trees is unsatisfactory, as is
rebuilding them from scratch in O(tD log(|O||R|)) time. Luckily, the original set of context trees can
be recovered efficiently by traversing the history at time t +m in reverse, and performing an inverse
update operation on each of the D affected nodes in the relevant context tree, for each bit in the
sample trajectory. This takes O(Dm log(|O||R|)) time. Alternatively, a copy on write implementation
can be used to modify the context trees during the simulation phase, with the modified copies of
each context node discarded before Sample is invoked again.

6.5 Exploration/Exploitation in Practice

Bayesian belief updating combines well with expectimax based planning. Agents using this com-
bination, such as AIXI and MC-AIXI(fac-ctw), will automatically perform information gathering
actions if the expected reduction in uncertainty would lead to higher expected future reward. Since
AIXI is a mathematical notion, it can simply take a large initial planning horizon b, e.g. its maximal
lifespan, and then at each cycle t choose greedily with respect to Equation (1) using a remaining
horizon of b − t + 1. Unfortunately in the case of MC-AIXI(fac-ctw), the situation is complicated
by issues of limited computation.

In theory, the MC-AIXI(fac-ctw) agent could always perform the action recommended by
ρUCT. In practice however, performing an expectimax operation with a remaining horizon of b−t+1
is not feasible, even using Monte-Carlo approximation. Instead we use as large a fixed search hori-
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Figure 4: The MC-AIXI agent loop

zon as we can afford computationally, and occasionally force exploration according to some heuris-
tic policy. The intuition behind this choice is that in many domains, good behaviour can be achieved
by using a small amount of planning if the dynamics of the domain are known. Note that it is still
possible for ρUCT to recommend an exploratory action, but only if the benefits of this information
can be realised within its limited planning horizon. Thus, a limited amount of exploration can help
the agent avoid local optima with respect to its present set of beliefs about the underlying environ-
ment. Other online reinforcement learning algorithms such as SARSA(λ) (Sutton & Barto, 1998),
U-Tree (McCallum, 1996) or Active-LZ (Farias, Moallemi, Van Roy, & Weissman, 2010) employ
similar such strategies.

6.6 Top-level Algorithm

At each time step, MC-AIXI(fac-ctw) first invokes the ρUCT routine with a fixed horizon to esti-
mate the value of each candidate action. An action is then chosen according to some policy that
balances exploration with exploitation, such as ϵ-Greedy or Softmax (Sutton & Barto, 1998). This
action is communicated to the environment, which responds with an observation-reward pair. The
agent then incorporates this information intoΥ using the FAC-CTW algorithm and the cycle repeats.
Figure 4 gives an overview of the agent/environment interaction loop.
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Domain |A| |O| Aliasing Noisy O Uninformative O
1d-maze 2 1 yes no yes
Cheese Maze 4 16 yes no no
Tiger 3 3 yes yes no
Extended Tiger 4 3 yes yes no
4 × 4 Grid 4 1 yes no yes
TicTacToe 9 19683 no no no
Biased Rock-Paper-Scissor 3 3 no yes no
Kuhn Poker 2 6 yes yes no
Partially Observable Pacman 4 216 yes no no

Table 1: Domain characteristics

7. Experimental Results

We now measure our agent’s performance across a number of different domains. In particular, we
focused on learning and solving some well-known benchmark problems from the POMDP literature.
Given the full POMDP model, computation of the optimal policy for each of these POMDPs is
not difficult. However, our requirement of having to both learn a model of the environment, as
well as find a good policy online, significantly increases the difficulty of these problems. From the
agent’s perspective, our domains contain perceptual aliasing, noise, partial information, and inherent
stochastic elements.

7.1 Domains

Our test domains are now described. Their characteristics are summarized in Table 1.

1d-maze. The 1d-maze is a simple problem from the work of Cassandra, Kaelbling, and Littman
(1994). The agent begins at a random, non-goal location within a 1 × 4 maze. There is a choice of
two actions: left or right. Each action transfers the agent to the adjacent cell if it exists, otherwise
it has no effect. If the agent reaches the third cell from the left, it receives a reward of 1. Otherwise
it receives a reward of 0. The distinguishing feature of this problem is that the observations are
uninformative; every observation is the same regardless of the agent’s actual location.

Cheese Maze. This well known problem is due to McCallum (1996). The agent is a mouse inside
a two dimensional maze seeking a piece of cheese. The agent has to choose one of four actions:
move up, down, left or right. If the agent bumps into a wall, it receives a penalty of −10. If the
agent finds the cheese, it receives a reward of 10. Each movement into a free cell gives a penalty
of −1. The problem is depicted graphically in Figure 5. The number in each cell represents the
decimal equivalent of the four bit binary observation (0 for a free neighbouring cell, 1 for a wall)
the mouse receives in each cell. The problem exhibits perceptual aliasing in that a single observation
is potentially ambiguous.

Tiger. This is another familiar domain from the work of Kaelbling, Littman, and Cassandra
(1995). The environment dynamics are as follows: a tiger and a pot of gold are hidden behind
one of two doors. Initially the agent starts facing both doors. The agent has a choice of one of three
actions: listen, open the left door, or open the right door. If the agent opens the door hiding the
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Figure 5: The cheese maze

tiger, it suffers a -100 penalty. If it opens the door with the pot of gold, it receives a reward of 10.
If the agent performs the listen action, it receives a penalty of −1 and an observation that correctly
describes where the tiger is with 0.85 probability.

Extended Tiger. The problem setting is similar to Tiger, except that now the agent begins sitting
down on a chair. The actions available to the agent are: stand, listen, open the left door, and open the
right door. Before an agent can successfully open one of the two doors, it must stand up. However,
the listen action only provides information about the tiger’s whereabouts when the agent is sitting
down. Thus it is necessary for the agent to plan a more intricate series of actions before it sees the
optimal solution. The reward structure is slightly modified from the simple Tiger problem, as now
the agent gets a reward of 30 when finding the pot of gold.

4 × 4 Grid. The agent is restricted to a 4 × 4 grid world. It can move either up, down, right or
left. If the agent moves into the bottom right corner, it receives a reward of 1, and it is randomly
teleported to one of the remaining 15 cells. If it moves into any cell other than the bottom right
corner cell, it receives a reward of 0. If the agent attempts to move into a non-existent cell, it
remains in the same location. Like the 1d-maze, this problem is also uninformative but on a much
larger scale. Although this domain is simple, it does require some subtlety on the part of the agent.
The correct action depends on what the agent has tried before at previous time steps. For example,
if the agent has repeatedly moved right and not received a positive reward, then the chances of it
receiving a positive reward by moving down are increased.

TicTacToe. In this domain, the agent plays repeated games of TicTacToe against an opponent who
moves randomly. If the agent wins the game, it receives a reward of 2. If there is a draw, the agent
receives a reward of 1. A loss penalises the agent by −2. If the agent makes an illegal move, by
moving on top of an already filled square, then it receives a reward of −3. A legal move that does
not end the game earns no reward.

Biased Rock-Paper-Scissors. This domain is taken from the work of Farias et al. (2010). The
agent repeatedly plays Rock-Paper-Scissor against an opponent that has a slight, predictable bias in
its strategy. If the opponent has won a round by playing rock on the previous cycle, it will always
play rock at the next cycle; otherwise it will pick an action uniformly at random. The agent’s
observation is the most recently chosen action of the opponent. It receives a reward of 1 for a win,
0 for a draw and −1 for a loss.
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Kuhn Poker. Our next domain involves playing Kuhn Poker (Kuhn, 1950; Hoehn, Southey, Holte,
& Bulitko, 2005) against an opponent playing a Nash strategy. Kuhn Poker is a simplified, zero-
sum, two player poker variant that uses a deck of three cards: a King, Queen and Jack. Whilst
considerably less sophisticated than popular poker variants such as Texas Hold’em, well-known
strategic concepts such as bluffing and slow-playing remain characteristic of strong play.

In our setup, the agent acts second in a series of rounds. Two actions, pass or bet, are available
to each player. A bet action requires the player to put an extra chip into play. At the beginning of
each round, each player puts a chip into play. The opponent then decides whether to pass or bet;
betting will win the round if the agent subsequently passes, otherwise a showdown will occur. In a
showdown, the player with the highest card wins the round. If the opponent passes, the agent can
either bet or pass; passing leads immediately to a showdown, whilst betting requires the opponent to
either bet to force a showdown, or to pass and let the agent win the round uncontested. The winner
of the round gains a reward equal to the total chips in play, the loser receives a penalty equal to the
number of chips they put into play this round. At the end of the round, all chips are removed from
play and another round begins.

Kuhn Poker has a known optimal solution. Against a first player playing a Nash strategy, the
second player can obtain at most an average reward of 1

18 per round.

Partially Observable Pacman. This domain is a partially observable version of the classic Pac-
man game. The agent must navigate a 17 × 17 maze and eat the pills that are distributed across
the maze. Four ghosts roam the maze. They move initially at random, until there is a Manhattan
distance of 5 between them and Pacman, whereupon they will aggressively pursue Pacman for a
short duration. The maze structure and game are the same as the original arcade game, however
the Pacman agent is hampered by partial observability. Pacman is unaware of the maze structure
and only receives a 4-bit observation describing the wall configuration at its current location. It also
does not know the exact location of the ghosts, receiving only 4-bit observations indicating whether
a ghost is visible (via direct line of sight) in each of the four cardinal directions. In addition, the
locations of the food pellets are unknown except for a 3-bit observation that indicates whether food
can be smelt within a Manhattan distance of 2, 3 or 4 from Pacman’s location, and another 4-bit
observation indicating whether there is food in its direct line of sight. A final single bit indicates
whether Pacman is under the effects of a power pill. At the start of each episode, a food pellet is
placed down with probability 0.5 at every empty location on the grid. The agent receives a penalty
of 1 for each movement action, a penalty of 10 for running into a wall, a reward of 10 for each food
pellet eaten, a penalty of 50 if it is caught by a ghost, and a reward of 100 for collecting all the food.
If multiple such events occur, then the total reward is cumulative, i.e. running into a wall and being
caught would give a penalty of 60. The episode resets if the agent is caught or if it collects all the
food.

Figure 6 shows a graphical representation of the partially observable Pacman domain. This
problem is the largest domain we consider, with an unknown optimal policy. The main purpose
of this domain is to show the scaling properties of our agent on a challenging problem. Note that
this domain is fundamentally different to the Pacman domain used in (Silver & Veness, 2010). In
addition to using a different observation space, we also do not assume that the true environment is
known a-priori.
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Figure 6: A screenshot (converted to black and white) of the PacMan domain

7.2 Experimental Setup

We now evaluate the performance of the MC-AIXI(fac-ctw) agent. To help put our results into
perspective, we implemented and directly compared against two competing algorithms from the
model-based general reinforcement learning literature: U-Tree (McCallum, 1996) and Active-LZ
(Farias et al., 2010). The two algorithms are described on page 133 in Section 8. As FAC-CTW
subsumes Action Conditional CTW, we do not evaluate it in this paper; results using Action Condi-
tional CTW can be found in our previous work (Veness et al., 2010). The performance of the agent
using FAC-CTW is no worse and in some cases slightly better than the previous results.

Each agent communicates with the environment over a binary channel. A cycle begins with the
agent sending an action a to the environment, which then responds with a percept x. This cycle is
then repeated. A fixed number of bits are used to encode the action, observation and reward spaces
for each domain. These are specified in Table 2. No constraint is placed on how the agent interprets
the observation component; e.g., this could be done at either the bit or symbol level. The rewards
are encoded naively, i.e. the bits corresponding to the reward are interpreted as unsigned integers.
Negative rewards are handled (without loss of generality) by offsetting all of the rewards so that
they are guaranteed to be non-negative. These offsets are removed from the reported results.

The process of gathering results for each of the three agents is broken into two phases: model
learning and model evaluation. The model learning phase involves running each agent with an
exploratory policy to build a model of the environment. This learnt model is then evaluated at
various points in time by running the agent without exploration for 5000 cycles and reporting the
average reward per cycle. More precisely, at time t the average reward per cycle is defined as

1
5000

∑t+5000
i=t+1 ri, where ri is the reward received at cycle i. Having two separate phases reduces

the influence of the agent’s earlier exploratory actions on the reported performance. All of our
experiments were performed on a dual quad-core Intel 2.53Ghz Xeon with 24 gigabytes of memory.

Table 3 outlines the parameters used by MC-AIXI(fac-ctw) during the model learning phase.
The context depth parameter D specifies the maximal number of recent bits used by FAC-CTW.
The ρUCT search horizon is specified by the parameter m. Larger D and m increase the capa-
bilities of our agent, at the expense of linearly increasing computation time; our values represent
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Domain A bits O bits R bits
1d-maze 1 1 1
Cheese Maze 2 4 5
Tiger 2 2 7
Extended Tiger 2 3 8
4 × 4 Grid 2 1 1
TicTacToe 4 18 3
Biased Rock-Paper-Scissor 2 2 2
Kuhn Poker 1 4 3
Partially Observable Pacman 2 16 8

Table 2: Binary encoding of the domains

Domain D m ϵ γ ρUCT Simulations
1d-maze 32 10 0.9 0.99 500
Cheese Maze 96 8 0.999 0.9999 500
Tiger 96 5 0.99 0.9999 500
Extended Tiger 96 4 0.99 0.99999 500
4 × 4 Grid 96 12 0.9 0.9999 500
TicTacToe 64 9 0.9999 0.999999 500
Biased Rock-Paper-Scissor 32 4 0.999 0.99999 500
Kuhn Poker 42 2 0.99 0.9999 500
Partial Observable Pacman 96 4 0.9999 0.99999 500

Table 3: MC-AIXI(fac-ctw) model learning configuration

an appropriate compromise between these two competing dimensions for each problem domain.
Exploration during the model learning phase is controlled by the ϵ and γ parameters. At time t,
MC-AIXI(fac-ctw) explores a random action with probability γtϵ. During the model evaluation
phase, exploration is disabled, with results being recorded for varying amounts of experience and
search effort.

The Active-LZ algorithm is fully specified in the work of Farias et al. (2010). It contains only
two parameters, a discount rate and a policy that balances between exploration and exploitation.
During the model learning phase, a discount rate of 0.99 and ϵ-Greedy exploration (with ϵ = 0.95)
were used. Smaller exploration values (such as 0.05, 0.2, 0.5) were tried, as well as policies that
decayed ϵ over time, but these surprisingly gave slightly worse performance during testing. As
a sanity check, we confirmed that our implementation could reproduce the experimental results
reported in the work of Farias et al. (2010). During the model evaluation phase, exploration is
disabled.

The situation is somewhat more complicated for U-Tree, as it is more of a general agent frame-
work than a completely specified algorithm. Due to the absence of a publicly available reference
implementation, a number of implementation-specific decisions were made. These included the
choice of splitting criteria, how far back in time these criteria could be applied, the frequency of
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Domain ϵ Test Fringe α

1d-maze 0.05 100 0.05
Cheese Maze 0.2 100 0.05
Tiger 0.1 100 0.05
Extended Tiger 0.05 200 0.01
4 × 4 Grid 0.05 100 0.05
TicTacToe 0.05 1000 0.01
Biased Rock-Paper-Scissor 0.05 100 0.05
Kuhn Poker 0.05 200 0.05

Table 4: U-Tree model learning configuration

fringe tests, the choice of p-value for the Kolmogorov-Smirnov test, the exploration/exploitation
policy and the learning rate. The main design decisions are listed below:

• A split could be made on any action, or on the status of any single bit of an observation.
• The maximum number of steps backwards in time for which a utile distinction could be made

was set to 5.
• The frequency of fringe tests was maximised given realistic resource constraints. Our choices

allowed for 5 × 104 cycles of interaction to be completed on each domain within 2 days of
training time.

• Splits were tried in order from the most temporally recent to the most temporally distant.
• ϵ-Greedy exploration strategy was used, with ϵ tuned separately for each domain.
• The learning rate α was tuned for each domain.

To help make the comparison as fair as possible, an effort was made to tune U-Tree’s parameters for
each domain. The final choices for the model learning phase are summarised in Table 4. During the
model evaluation phase, both exploration and testing of the fringe are disabled.

Source Code. The code for our U-Tree, Active-LZ and MC-AIXI(fac-ctw) implementations can
be found at: http://jveness.info/software/mcaixi_jair_2010.zip.

7.3 Results

Figure 7 presents our main set of results. Each graph shows the performance of each agent as it
accumulates more experience. The performance of MC-AIXI(fac-ctw) matches or exceeds U-Tree
and Active-LZ on all of our test domains. Active-LZ steadily improved with more experience, how-
ever it learnt significantly more slowly than both U-Tree and MC-AIXI(fac-ctw). U-Tree performed
well in most domains, however the overhead of testing for splits limited its ability to be run for long
periods of time. This is the reason why some data points for U-Tree are missing from the graphs
in Figure 7. This highlights the advantage of algorithms that take constant time per cycle, such
as MC-AIXI(fac-ctw) and Active-LZ. Constant time isn’t enough however, especially when large
observation spaces are involved. Active-LZ works at the symbol level, with the algorithm given by
Farias et al. (2010) requiring an exhaustive enumeration of the percept space on each cycle. This is
not possible in reasonable time for the larger TicTacToe domain, which is why no Active-LZ result
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Domain Experience ρUCT Simulations Search Time per Cycle
1d Maze 5 × 103 250 0.1s
Cheese Maze 2.5 × 103 500 0.5s
Tiger 2.5 × 104 25000 10.6s
Extended Tiger 5 × 104 25000 12.6s
4 × 4 Grid 2.5 × 104 500 0.3s
TicTacToe 5 × 105 2500 4.1s
Biased RPS 1 × 104 5000 2.5s
Kuhn Poker 5 × 106 250 0.1s

Table 5: Resources required for (near) optimal performance by MC-AIXI(fac-ctw)

is presented. This illustrates an important advantage of MC-AIXI(fac-ctw) and U-Tree, which have
the ability to exploit structure within a single observation.

Figure 8 shows the performance of MC-AIXI(fac-ctw) as the number of ρUCT simulations
varies. The results for each domain were based on a model learnt from 5×104 cycles of experience,
except in the case of TicTacToe where 5 × 105 cycles were used. So that results could be compared
across domains, the average reward per cycle was normalised to the interval [0, 1]. As expected,
domains that included a significant planning component (such as Tiger or Extended Tiger) required
more search effort. Good performance on most domains was obtained using only 1000 simulations.

Given a sufficient number of ρUCT simulations and cycles of interaction, the performance of
the MC-AIXI(fac-ctw) agent approaches optimality on our test domains. The amount of resources
needed for near optimal performance on each domain during the model evaluation phase is listed
in Table 5. Search times are also reported. This shows that the MC-AIXI(fac-ctw) agent can be
realistically used on a present day workstation.

7.4 Discussion

The small state space induced by U-Tree has the benefit of limiting the number of parameters that
need to be estimated from data. This can dramatically speed up the model-learning process. In
contrast, both Active-LZ and our approach require a number of parameters proportional to the num-
ber of distinct contexts. This is one of the reasons why Active-LZ exhibits slow convergence in
practice. This problem is much less pronounced in our approach for two reasons. First, the Ock-
ham prior in CTW ensures that future predictions are dominated by PST structures that have seen
enough data to be trustworthy. Secondly, value function estimation is decoupled from the process
of context estimation. Thus it is reasonable to expect ρUCT to make good local decisions provided
FAC-CTW can predict well. The downside however is that our approach requires search for action
selection. Although ρUCT is an anytime algorithm, in practice more computation (at least on small
domains) is required per cycle compared to approaches like Active-LZ and U-Tree that act greedily
with respect to an estimated global value function.

The U-Tree algorithm is well motivated, but unlike Active-LZ and our approach, it lacks theoret-
ical performance guarantees. It is possible for U-Tree to prematurely converge to a locally optimal
state representation from which the heuristic splitting criterion can never recover. Furthermore,
the splitting heuristic contains a number of configuration options that can dramatically influence
its performance (McCallum, 1996). This parameter sensitivity somewhat limits the algorithm’s
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Figure 7: Average Reward per Cycle vs Experience
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Figure 8: Performance versus ρUCT search effort

applicability to the general reinforcement learning problem. Still, our results suggest that further
investigation of frameworks motivated along the same lines as U-Tree is warranted.

7.5 Comparison to 1-ply Rollout Planning

We now investigate the performance of ρUCT in comparison to an adaptation of the well-known
1-ply rollout-based planning technique of Bertsekas and Castanon (1999). In our setting, this works
as follows: given a history h, an estimate V̂(ha) is constructed for each action a ∈ A, by averaging
the returns of many length m simulations initiated from ha. The first action of each simulation
is sampled uniformly at random from A, whilst the remaining actions are selected according to
some heuristic rollout policy. Once a sufficient number of simulations have been completed, the
action with the highest estimated value is selected. Unlike ρUCT, this procedure doesn’t build a
tree, nor is it guaranteed to converge to the depth m expectimax solution. In practice however,
especially in noisy and highly stochastic domains, rollout-based planning can significantly improve
the performance of an existing heuristic rollout policy (Bertsekas & Castanon, 1999).

Table 6 shows how the performance (given by average reward per cycle) differs when ρUCT is
replaced by the 1-ply rollout planner. The amount of experience collected by the agent, as well as
the total number of rollout simulations, is the same as in Table 5. Both ρUCT and the 1-ply planner
use the same search horizon, heuristic rollout policy (each action is chosen uniformly at random)
and total number of simulations for each decision. This is reasonable, since although ρUCT has a
slightly higher overhead compared to the 1-ply rollout planner, this difference is negligible when
taking into account the cost of simulating future trajectories using FAC-CTW. Also, similar to
previous experiments, 5000 cycles of greedy action selection were used to evaluate the performance
of the FAC-CTW + 1-ply rollout planning combination.
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Domain MC-AIXI(fac-ctw) FAC-CTW + 1-ply MC
1d Maze 0.50 0.50
Cheese Maze 1.28 1.25
Tiger 1.12 1.11
Extended Tiger 3.97 -0.97
4x4 Grid 0.24 0.24
TicTacToe 0.60 0.59
Biased RPS 0.25 0.20
Kuhn Poker 0.06 0.06

Table 6: Average reward per cycle: ρUCT versus 1-ply rollout planning

Importantly, ρUCT never gives worse performance than the 1-ply rollout planner, and on some
domains (shown in bold) performs better. The ρUCT algorithm provides a way of performing multi-
step planning whilst retaining the considerable computational advantages of rollout based methods.
In particular, ρUCT will be able to construct deep plans in regions of the search space where most
of the probability mass is concentrated on a small set of the possible percepts. When such structure
exists, ρUCT will automatically exploit it. In the worst case where the environment is highly noisy
or stochastic, the performance will be similar to that of rollout based planning. Interestingly, on
many domains the empirical performance of 1-ply rollout planning matched that of ρUCT. We
believe this to be a byproduct of our modest set of test domains, where multi-step planning is less
important than learning an accurate model of the environment.

7.6 Performance on a Challenging Domain

The performance of MC-AIXI(fac-ctw) was also evaluated on the challenging Partially Observable
Pacman domain. This is an enormous problem. Even if the true environment were known, planning
would still be difficult due to the 1060 distinct underlying states.

We first evaluated the performance of MC-AIXI(fac-ctw) online. A discounted ϵ-Greedy pol-
icy, which chose a random action at time t with probability ϵγt was used. These parameters were
instantiated with ϵ := 0.9999 and γ := 0.99999. When not exploring, each action was determined
by ρUCT using 500 simulations. Figure 10 shows both the average reward per cycle and the average
reward across the most recent 5000 cycles.

The performance of this learnt model was then evaluated by performing 5000 steps of greedy
action selection, at various time points, whilst varying the number of simulations used by ρUCT.
Figure 9 shows obtained results. The agent’s performance scales with both the number of cycles of
interaction and the amount of search effort. The results in Figure 9 using 500 simulations are higher
than in Figure 10 since the performance is no longer affected by the exploration policy or earlier
behavior based on an inferior learnt model.

Visual inspection1 of Pacman shows that the agent, whilst not playing perfectly, has already
learnt a number of important concepts. It knows not to run into walls. It knows how to seek out
food from the limited information provided by its sensors. It knows how to run away and avoid
chasing ghosts. The main subtlety that it hasn’t learnt yet is to aggressively chase down ghosts
when it has eaten a red power pill. Also, its behaviour can sometimes become temporarily erratic

1. See http://jveness.info/publications/pacman_jair_2010.wmv for a graphical demonstration
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Figure 9: Scaling properties on a challenging domain

when stuck in a long corridor with no nearby food or visible ghosts. Still, the ability to perform
reasonably on a large domain and exhibit consistent improvements makes us optimistic about the
ability of the MC-AIXI(fac-ctw) agent to scale with extra computational resources.

8. Discussion

We now discuss related work and some limitations of our current approach.

8.1 Related Work

There have been several attempts at studying the computational properties of AIXI. In the work of
Hutter (2002a), an asymptotically optimal algorithm is proposed that, in parallel, picks and runs the
fastest program from an enumeration of provably correct programs for any given well-defined prob-
lem. A similar construction that runs all programs of length less than l and time less than t per cycle
and picks the best output (in the sense of maximising a provable lower bound for the true value)
results in the optimal time bounded AIXItl agent (Hutter, 2005, Chp.7). Like Levin search (Levin,
1973), such algorithms are not practical in general but can in some cases be applied successfully
(e.g., see Schmidhuber, 1997; Schmidhuber, Zhao, & Wiering, 1997; Schmidhuber, 2003, 2004).
In tiny domains, universal learning is computationally feasible with brute-force search. In the work
of Poland and Hutter (2006), the behaviour of AIXI is compared with a universal predicting-with-
expert-advice algorithm (Poland & Hutter, 2005) in repeated 2 × 2 matrix games and is shown to
exhibit different behaviour. A Monte-Carlo algorithm is proposed by Pankov (2008) that samples
programs according to their algorithmic probability as a way of approximating Solomonoff’s uni-
versal prior. A closely related algorithm is that of speed prior sampling (Schmidhuber, 2002).

We now move on to a discussion of the model-based general reinforcement learning literature.
An early and influential work is the Utile Suffix Memory (USM) algorithm described by McCallum
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Figure 10: Online performance on a challenging domain

(1996). USM uses a suffix tree to partition the agent’s history space into distinct states, one for each
leaf in the suffix tree. Associated with each state/leaf is a Q-value, which is updated incrementally
from experience like in Q-learning (Watkins & Dayan, 1992). The history-partitioning suffix tree
is grown in an incremental fashion, starting from a single leaf node in the beginning. A leaf in the
suffix tree is split when the history sequences that fall into the leaf are shown to exhibit statistically
different Q-values. The USM algorithm works well for a number of tasks but could not deal ef-
fectively with noisy environments. Several extensions of USM to deal with noisy environments are
investigated in the work of Shani and Brafman (2004) and Shani (2007).

U-Tree (McCallum, 1996) is an online agent algorithm that attempts to discover a compact
state representation from a raw stream of experience. The main difference between U-Tree and
USM is that U-Tree can discriminate between individual components within an observation. This
allows U-Tree to more effectively handle larger observation spaces and ignore potentially irrelevant
components of the observation vector. Each state is represented as the leaf of a suffix tree that
maps history sequences to states. As more experience is gathered, the state representation is refined
according to a heuristic built around the Kolmogorov-Smirnov test. This heuristic tries to limit the
growth of the suffix tree to places that would allow for better prediction of future reward. Value
Iteration is used at each time step to update the value function for the learnt state representation,
which is then used by the agent for action selection.

Active-LZ (Farias et al., 2010) combines a Lempel-Ziv based prediction scheme with dynamic
programming for control to produce an agent that is provably asymptotically optimal if the environ-
ment is n-Markov. The algorithm builds a context tree (distinct from the context tree built by CTW),
with each node containing accumulated transition statistics and a value function estimate. These es-
timates are refined over time, allowing for the Active-LZ agent to steadily increase its performance.
In Section 7, we showed that our agent compared favourably to Active-LZ.

The BLHT algorithm (Suematsu, Hayashi, & Li, 1997; Suematsu & Hayashi, 1999) uses symbol
level PSTs for learning and an (unspecified) dynamic programming based algorithm for control.
BLHT uses the most probable model for prediction, whereas we use a mixture model, which admits
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a much stronger convergence result. A further distinction is our usage of an Ockham prior instead
of a uniform prior over PST models.

Predictive state representations (PSRs) (Littman, Sutton, & Singh, 2002; Singh, James, &
Rudary, 2004; Rosencrantz, Gordon, & Thrun, 2004) maintain predictions of future experience.
Formally, a PSR is a probability distribution over the agent’s future experience, given its past ex-
perience. A subset of these predictions, the core tests, provide a sufficient statistic for all future
experience. PSRs provide a Markov state representation, can represent and track the agent’s state in
partially observable environments, and provide a complete model of the world’s dynamics. Unfor-
tunately, exact representations of state are impractical in large domains, and some form of approxi-
mation is typically required. Topics such as improved learning or discovery algorithms for PSRs are
currently active areas of research. The recent results of Boots, Siddiqi, and Gordon (2010) appear
particularly promising.

Temporal-difference networks (Sutton & Tanner, 2004) are a form of predictive state represen-
tation in which the agent’s state is approximated by abstract predictions. These can be predictions
about future observations, but also predictions about future predictions. This set of interconnected
predictions is known as the question network. Temporal-difference networks learn an approximate
model of the world’s dynamics: given the current predictions, the agent’s action, and an observation
vector, they provide new predictions for the next time-step. The parameters of the model, known
as the answer network, are updated after each time-step by temporal-difference learning. Some
promising recent results applying TD-Networks for prediction (but not control) to small POMDPs
are given in (Makino, 2009).

In model-based Bayesian Reinforcement Learning (Strens, 2000; Poupart, Vlassis, Hoey, &
Regan, 2006; Ross, Chaib-draa, & Pineau, 2008; Poupart & Vlassis, 2008), a distribution over
(PO)MDP parameters is maintained. In contrast, we maintain an exact Bayesian mixture of PSTs,
which are variable-order Markov models. The ρUCT algorithm shares similarities with Bayesian
Sparse Sampling (Wang, Lizotte, Bowling, & Schuurmans, 2005). The main differences are esti-
mating the leaf node values with a rollout function and using the UCB policy to direct the search.

8.2 Limitations

Our current AIXI approximation has two main limitations.

The first limitation is the restricted model class used for learning and prediction. Our agent will
perform poorly if the underlying environment cannot be predicted well by a PST of bounded depth.
Prohibitive amounts of experience will be required if a large PST model is needed for accurate
prediction. For example, it would be unrealistic to think that our current AIXI approximation could
cope with real-world image or audio data.

The second limitation is that unless the planning horizon is unrealistically small, our full
Bayesian solution (using ρUCT and a mixture environment model) to the exploration/exploitation
dilemma is computationally intractable. This is why our agent needs to be augmented by a heuristic
exploration/exploitation policy in practice. Although this did not prevent our agent from obtaining
optimal performance on our test domains, a better solution may be required for more challenging
problems. In the MDP setting, considerable progress has been made towards resolving the explo-
ration/exploitation issue. In particular, powerful PAC-MDP approaches exist for both model-based
and model-free reinforcement learning agents (Brafman & Tennenholtz, 2003; Strehl, Li, Wiewiora,
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Figure 11: Online performance when using a learnt rollout policy on the Cheese Maze

Langford, & Littman, 2006; Strehl, Li, & Littman, 2009). It remains to be seen whether similar such
principled approaches exist for history-based Bayesian agents.

9. Future Scalability

We now list some ideas that make us optimistic about the future scalability of our approach.

9.1 Online Learning of Rollout Policies for ρUCT

An important parameter to ρUCT is the choice of rollout policy. In MCTS methods for Computer
Go, it is well known that search performance can be improved by using knowledge-based rollout
policies (Gelly, Wang, Munos, & Teytaud, 2006). In the general agent setting, it would thus be
desirable to gain some of the benefits of expert design through online learning.

We have conducted some preliminary experiments in this area. A CTW-based method was
used to predict the high-level actions chosen online by ρUCT. This learnt distribution replaced our
previous uniformly random rollout policy. Figure 11 shows the results of using this learnt rollout
policy on the cheese maze. The other domains we tested exhibited similar behaviour. Although more
work remains, it is clear that even our current simple learning scheme can significantly improve the
performance of ρUCT.

Although our first attempts have been promising, a more thorough investigation is required. It
is likely that rollout policy learning methods for adversarial games, such as those investigated by
Silver and Tesauro (2009), can be adapted to our setting. It would also be interesting to try to apply
some form of search bootstrapping (Veness, Silver, Uther, & Blair, 2009) online. In addition, one
could also look at ways to modify the UCB policy used in ρUCT to automatically take advantage of
learnt rollout knowledge, similar to the heuristic techniques used in computer Go (Gelly & Silver,
2007).
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9.2 Combining Mixture Environment Models

A key property of mixture environment models is that they can be composed. Given two mixture
environment models ξ1 and ξ2, over model classesM1 andM2 respectively, it is easy to show that
the convex combination

ξ(x1:n | a1:n) := αξ1(x1:n | a1:n) + (1 − α)ξ2(x1:n | a1:n)

is a mixture environment model over the union ofM1 andM2. Thus there is a principled way for
expanding the general predictive power of agents that use our kind of direct AIXI approximation.

9.3 Richer Notions of Context for FAC-CTW

Instead of using the most recent D bits of the current history h, the FAC-CTW algorithm can be
generalised to use a set of D boolean functions on h to define the current context. We now formalise
this notion, and give some examples of how this might help in agent applications.

Definition 12. Let P = {p0, p1, . . . , pm} be a set of predicates (boolean functions) on histories
h ∈ (A×X)n, n ≥ 0. A P-model is a binary tree where each internal node is labeled with a predicate
in P and the left and right outgoing edges at the node are labeled True and False respectively. A
P-tree is a pair (MP,Θ) where MP is a P-model and associated with each leaf node l in MP is a
probability distribution over {0, 1} parametrised by θl ∈ Θ.

A P-tree (MP,Θ) represents a function g from histories to probability distributions on {0, 1} in
the usual way. For each history h, g(h) = θlh , where lh is the leaf node reached by pushing h down
the model MP according to whether it satisfies the predicates at the internal nodes and θlh ∈ Θ is
the distribution at lh. The notion of a P-context tree can now be specified, leading to a natural
generalisation of Definition 8.

Both the Action-Conditional CTW and FAC-CTW algorithms can be generalised to work with
P-context trees in a natural way. Importantly, a result analogous to Lemma 2 can be established,
which means that the desirable computational properties of CTW are retained. This provides a
powerful way of extending the notion of context for agent applications. For example, with a suit-
able choice of predicate class P, both prediction suffix trees (Definition 7) and looping suffix trees
(Holmes & Jr, 2006) can be represented as P-trees. It also opens up the possibility of using rich
logical tree models (Blockeel & De Raedt, 1998; Kramer & Widmer, 2001; Lloyd, 2003; Ng, 2005;
Lloyd & Ng, 2007) in place of prediction suffix trees.

9.4 Incorporating CTW Extensions

There are several noteworthy ways the original CTW algorithm can be extended. The finite depth
limit on the context tree can be removed (Willems, 1998), without increasing the asymptotic space
overhead of the algorithm. Although this increases the worst-case time complexity of generating a
symbol from O(D) to linear in the length of the history, the average-case performance may still be
sufficient for good performance in the agent setting. Furthermore, three additional model classes,
each significantly larger than the one used by CTW, are presented in the work of Willems, Shtarkov,
and Tjalkens (1996). These could be made action conditional along the same lines as our FAC-CTW
derivation. Unfortunately, online prediction with these more general classes is now exponential in
the context depth D. Investigating whether these ideas can be applied in a more restricted sense
would be an interesting direction for future research.
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9.5 Parallelization of ρUCT

The performance of our agent is dependent on the amount of thinking time allowed at each time
step. An important property of ρUCT is that it is naturally parallel. We have completed a prototype
parallel implementation of ρUCT with promising scaling results using between 4 and 8 processing
cores. We are confident that further improvements to our implementation will allow us to solve
problems where our agent’s planning ability is the main limitation.

9.6 Predicting at Multiple Levels of Abstraction

The FAC-CTW algorithm reduces the task of predicting a single percept to the prediction of its
binary representation. Whilst this is reasonable for a first attempt at AIXI approximation, it’s worth
emphasising that subsequent attempts need not work exclusively at such a low level.

For example, recall that the FAC-CTW algorithm was obtained by chaining together lX action-
conditional binary predictors. It would be straightforward to apply a similar technique to chain
together multiple k-bit action-conditional predictors, for k > 1. These k bits could be interpreted in
many ways: e.g. integers, floating point numbers, ASCII characters or even pixels. This observa-
tion, along with the convenient property that mixture environment models can be composed, opens
up the possibility of constructing more sophisticated, hierarchical mixture environment models.

10. Conclusion

This paper presents the first computationally feasible general reinforcement learning agent that di-
rectly and scalably approximates the AIXI ideal. Although well established theoretically, it has
previously been unclear whether the AIXI theory could inspire the design of practical agent algo-
rithms. Our work answers this question in the affirmative: empirically, our approximation achieves
strong performance and theoretically, we can characterise the range of environments in which our
agent is expected to perform well.

To develop our approximation, we introduced two new algorithms: ρUCT, a Monte-Carlo ex-
pectimax approximation technique that can be used with any online Bayesian approach to the gen-
eral reinforcement learning problem and FAC-CTW, a generalisation of the powerful CTW algo-
rithm to the agent setting. In addition, we highlighted a number of interesting research directions
that could improve the performance of our current agent; in particular, model class expansion and
the online learning of heuristic rollout policies for ρUCT.

We hope that this work generates further interest from the broader artificial intelligence com-
munity in both the AIXI theory and general reinforcement learning agents.
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