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ABSTRACT

The authors introduce a four-box interhemispheric model of the meridional overturning circulation. A

single box represents high latitudes in each hemisphere, and in contrast to earlier interhemispheric box

models, low latitudes are represented by two boxes—a surface box and a deep box—separated by a ther-

mocline in which a balance is assumed between vertical advection and vertical diffusion. The behavior of the

system is analyzed with two different closure assumptions for how the low-latitude upwelling depends on the

density contrast between the surface and deep low-latitude boxes. The first is based on the conventional

assumption that the diffusivity is a constant, and the second on the assumption that the energy input to the

mixing is constant.

There are three different stable equilibrium states that are closely analogous to the three found by Bryan in

a single-basin interhemispheric ocean general circulation model. One is quasi-symmetric with downwelling in

high latitudes of both hemispheres, and two are asymmetric solutions, with downwelling confined to high

latitudes in one or the other of the two hemispheres. The quasi-symmetric solution becomes linearly unstable

for strong global hydrological forcing, while the two asymmetric solutions do not.

The qualitative nature of the solutions is generally similar for both the closure assumptions, in contrast to

the solutions in hemispheric models. In particular, all the stable states can be destabilized by finite amplitude

perturbations in the salinity or the hydrological forcing, and transitions are possible between any two states.

For example, if the system is in an asymmetric state, and the moisture flux into the high-latitude region of

downwelling is slowly increased, for both closure assumptions the high-latitude downwelling decreases until

a critical forcing is reached where the system switches to the asymmetric state with downwelling in the op-

posite hemisphere. By contrast, in hemispheric models with the energy constraint, the downwelling increases

and there is no loss of stability.

1. Introduction

The ocean circulation transports about 2 PW of heat

poleward in the Northern Hemisphere (Ganachaud and

Wunsch 2003) and thereby has a major effect on global

and regional climate (Seager et al. 2002). The largest

part of this heat transport is associated with the merid-

ional overturning circulation (MOC) in the North At-

lantic Ocean. There is considerable evidence that this

circulation has undergone major changes in past cli-

mates (e.g., Broecker 2003, and references therein)

and studies with a large variety of ocean models have

shown that this circulation can have multiple equilibria

and may be sensitive to the forcing by surface fluxes

of heat and moisture (e.g., Bryan 1986; Marotzke and

Willebrand 1991; Rahmstorf 1995). However, there

is very little quantitative agreement between models

about how sensitive this circulation is to changes in

these surface fluxes (Rahmstorf et al. 2005; Stouffer

et al. 2006).

The great majority of the studies that have investigated

the sensitivity of the MOC has implicitly or explicitly

represented turbulent vertical mixing by a fixed diffusiv-

ity. This mixing is responsible for injecting heat from the

surface into the deep oceans in low latitudes, thereby

creating the deep meridional density gradients that drive

the MOC. The MOC is particularly sensitive to the

diffusivity in the thermocline (Scott and Marotzke 2002;

Bugnion et al. 2006), where it is believed to have as its

primary source surface winds (Munk and Wunsch 1998).

Since surface winds are likely to change when climate

changes, investigations of the sensitivity of the MOC

that fix the diffusivity may not be realistic.
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An alternate approach has been suggested by Huang

(1999) and Nilsson and Walin (2001), namely, that one

could assume that the energy input to the mixing is

constant, rather than the diffusivity. One would expect

that this energy input, like the diffusivity, is susceptible

to climate change, so there is no a priori reason why

either assumption should be more realistic. This un-

certainty is potentially important because the two dif-

ferent approaches lead to strikingly different sensitivities

in hemispheric models. In both cases the MOC exhibits

two different stable equilibria—a thermally dominated

state corresponding to the current climate and a salinity-

dominated state. In the case of constant diffusivity when

the moisture flux into high latitudes increases, the

strength of the thermally dominated state decreases, and

for sufficiently strong forcing it collapses to the salinity-

dominated state. In contrast, when one assumes con-

stant energy input the MOC increases in strength when

the moisture flux into high latitudes increases and there

is no collapse (Huang 1999; Nilsson and Walin 2001;

Nilsson et al. 2003; Mohammad and Nilsson 2004).

However, the circulation and transports in the Atlan-

tic are interhemispheric (e.g., Ganachaud and Wunsch

2003), and thus a realistic comparison of the two con-

straints requires an interhemispheric model. Two stud-

ies have addressed this issue in part, namely those of

Nilsson et al. (2004) and Marzeion et al. (2007). The

former used both an ocean general circulation model

(OGCM) with a single interhemispheric basin and an

analogous box model in their analyses, but their results

were limited by the fact that they examined only solu-

tions that were symmetric about the equator. They

found the same contrast in the responses of the MOC to

increases in the high-latitude moisture fluxes as in the

hemispheric models. They also found that the symmetric

solutions were unstable when the salinity contrasts ex-

ceed a critical value, and that asymmetric perturbations

dominated the instability. However, they did not ex-

amine what kind of asymmetric solutions might exist,

and what their stability properties might be. We know

that stable asymmetric solutions do exist in models of a

single interhemispheric basin with the diffusivity con-

straint. They exist both in box models (Rooth 1982;

Scott et al. 1999) and in OGCMs (Bryan 1986). These

solutions are clearly more realistic than those consid-

ered by Nilsson et al. (2004). We also note that both

Bryan (1986) and Marotzke and Klinger (2000) found

a stable symmetric solution in their single-basin inter-

hemispheric OGCMs.

In the second study, Marzeion et al. (2007) used

a global OGCM with a stratification-dependent diapycnal

diffusivity to examine how the Atlantic MOC responds to

an anomalous flux of freshwater into the North Atlantic.

They found that the response in the case corresponding to

a constant energy input was a decrease in the Atlantic

MOC, in contrast to the Nilsson et al. (2004) result. They

did not identify the cause of this difference, but one ob-

vious possible cause was that Marzeion et al.’s MOC was

asymmetric.

Thus to understand better what kind of states can

exist in an interhemispheric basin and how their be-

havior depends on the representation of the diffusivity,

we introduce a new and more general interhemispheric

box model. The model has four boxes: two separate

high-latitude boxes (one in each hemisphere) and two

low-latitude boxes (one representing near-surface con-

ditions and the other the deep ocean). This makes it

possible to include an explicit representation of the

low-latitude upwelling, which has been omitted in many

classic box models (e.g., Stommel 1961; Rooth 1982). It

also allows an explicit representation of the balance

between vertical advection and vertical diffusion in the

thermocline. Finally, another feature that distinguishes

our analysis from that of Nilsson et al. (2004) is that

they assumed that the depth of the low-latitude surface

layer is small compared to the ocean depth, whereas we

do not.

The paper is organized as follows: the model is de-

scribed in section 2; its equilibrium solutions are derived

and described in section 3; the stability properties of the

solutions are described in section 4; hysteresis loops

describing the model’s response to ‘‘hosing’’ experi-

ments are derived in section 5; and the results are sum-

marized and discussed in section 6.

2. Model description

We consider a two-hemisphere ocean box model. The

geometry of the model is shown in Fig. 1. Boxes 1 and

3 are northern and southern high latitudes with equal

FIG. 1. Schematic of the four-box model.
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volumes. Boxes 2 and 4 are the tropical boxes. The ratio

of the sum of the two equatorial boxes’ volumes to the

high-latitude box volume is defined as V. Box 2 repre-

sents an upper thermocline layer with depth d overlying

an abyssal layer represented by box 4. The total depth of

boxes 1 and 3 is D. The boxes are well mixed. Temper-

ature, salinity, and density of box i are Ti, Si, and ri,

respectively. The fractional volume flux from box 4 to

box 2 is q, and the fractional volume fluxes between the

high- and low-latitude boxes are denoted by q1 and q2,

with positive values corresponding to sinking in high

latitudes. Finally, fN and fS represent virtual salinity

fluxes from high to low latitudes, equivalent to moisture

fluxes from low to high latitudes.

To a first approximation, the effect of the thermoha-

line circulation on the temperature of boxes 1, 2, and 3 is

weak compared to the effect of surface heat fluxes

(Krasovskiy and Stone 1998) and we therefore fix T1, T2,

and T3. Furthermore we will assume that the thermal

forcing is symmetric (i.e., T1 5 T3). Thus, ultimately the

deep low-latitude box must assume the same tempera-

ture as the high-latitude boxes and we need only dis-

tinguish the two temperatures T2 and T4.

We parameterize the volume fluxes from classical

thermocline scaling, as derived by Nilsson and Walin

(2001). This assumes a balance in the thermocline be-

tween vertical advection by upwelling and downward

vertical diffusion. The two cases of constant diffusivity

and constant flux of energy across the interface between

boxes 2 and 4 can be represented simultaneously:

q 5 2k
r

42
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420

� ��n
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h
0
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where

r
ij

5 r
i
� r

j
, i, j 5 1, . . . , 4, (4)

h 5
d

D
. (5)

The subscript ‘‘0’’ refers to reference values, which

we will base on an equilibrium state, to be specified

later, and k is an empirical coefficient that we will use

to tune the model appropriately for this reference

state.

Note that we have assumed that boxes 1 and 3 are

geometrically identical, so that the same coefficient, k, is

used in both hemispheres; and we have made use of the

fact that in equilibrium q 5 q1 1 q2. For a constant

diffusivity n 5 0, while for a constant energy flux n 5 1

(Nilsson and Walin 2001). Assuming a linear equation of

state, we can rewrite Eq. (4) as

r
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j
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i
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j
), (6)

where a and b are, respectively, constant thermal and

haline expansion coefficients. We also define tempera-

ture and salinity contrasts characterizing low latitudes:
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4
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40
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. (7)

The salt conservation equations for the model and the

equation for the depth of the thermocline now assume

the form
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Next we put the equations into nondimensional form.

We define nondimensional variables:

t* 5 2kt, S
i
* 5

S
i

DS
, (17)

f
N,S
* 5

f
N,S

2kDS
; q*, q

1
*, q

2
* 5

1

2k
(q, q

1
, q

2
), (18)

and

Q
n
* 5

Q
n

2kDS
, n 5 1, 2, 3, 4. (19)

Substituting these into Eqs. (8)–(12), and now dropping

the asterisks, we find the following nondimensional

equations:

dS
1

dt
5 Q

1
� f

N
, (20)

dS
2

dt
5

1

hV
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2
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S
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2
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We note that the relations between the Qis, the qs,

and the Sis in nondimensional form are identical to

the dimensional forms given in Eqs. (13)–(16). Also,

Eqs. (1)–(3) can be rewritten in nondimensional form,

using the notation Sij 5 Si 2 Sj, as follows:

q 5
1� rS

24

1� r

� ��n
h

h
0

� ��1

, (25)

q
1

5
1

2

1� rS
21

1� rS
210

� �
h

h
0
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q
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h

h
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where

S
ij

5 S
i
� S

j
, S

ij0
5 S

i0
� S

j0
. (28)

Note that, because of Eq. (7),

S
240

5 1. (29)

3. Equilibrium solutions

The external forcing for the system is given by the

temperatures of the boxes, Ti, and by the virtual salinity

fluxes, fN and fS. Because of our assumed symmetry for

the thermal forcing, the effect of the temperatures can

be characterized by DT, or in nondimensional form, by r

[Eq. (7)]. If we make choices for DT and DS based on

observations of the Atlantic, for example, DT ’ 15 K,

DS’ 0.5 psu, a 5 1.5 3 1024 K21, b 5 8 3 1024 (psu)21,

then r ’ 0.2. Thus we shall use r 5 0.2 for our numerical

calculations. We note that Nilsson et al. (2004) found

that symmetric solutions were stable only if r , 0.5. Also

we will take V 5 2 in all our calculations.

Since the important difference between the diffusivity

and energy constraints is the behavior of the solutions

when the global moisture fluxes into high latitudes in-

crease, we will derive the solutions for arbitrary values

of the total moisture flux. However, in order to limit the

complexity of the analysis, we will only illustrate equi-

librium solutions for two choices for the ratio of the

moisture fluxes in the two hemispheres. One will be

fn 5 fS, in which case all the forcing is symmetric about

the equator, and we anticipate that symmetric solutions

will exist. The second choice will be fN 5 1.5fS, in which

case we do not expect to find purely symmetric solutions.

This second choice is motivated by the observed asym-

metry in the moisture fluxes into the North and South

Atlantic (Broecker et al. 1990).

To obtain steady-state solutions Si, h, we can write

Eqs. (8)–(12) in the form

Q
1
(S

i
) 5 f

N
, (30)

Q
2
(S

i
) 5�(f

n
1 f

S
), (31)

Q
3
(S

i
) 5 f

S
, (32)

Q
4
(S

i
) 5 0, (33)

q 5 q
1
1 q

2
, (34)
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where q, q1, q2, Si are steady-state values of q, q1, q2, Si,

respectively. From Eqs. (30) and (32) we obtain

Q
1
(S)

Q
3
(S)

5 k, (35)

where

k [
f

N

f
S

. (36)

We express the depth of the upper layer in terms of

salinity differences using Eqs. (25)–(27) and (34):

h

h
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5
1� rS

24

1� r

 !n
1

2

1� rS
21

1� rS
210

 !
1

1

2

1� rS
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1� rS
230

 !" #( )�1/3

.

(37)

We introduce a new variable z:

z 5
S

23

S
21

. (38)

We can reduce the system of Eqs. (30)–(34) to two si-

multaneous equations for z and S
24

. To do this we con-

sider the following three cases separately:

Case 1: q
1

. 0, q
2

. 0;

Case 2: q
1

. 0, q
2

, 0;

Case 3: q
1

, 0, q
2

. 0.

There are no equilibrium solutions if q1 , 0, q2 , 0.

a. Case 1

From Eqs. (13) to (15), (30) to (32), (34), (35), and

(38), we can find S21 and S23 in the forms

S
23

5 S
24

kz 1 1

k 1 1
, (39)

S
21

5 S
24

kz 1 1

(k 1 1)z
. (40)

To express S
24

in terms of z, write the ratio q
1
/q

2
using

Eqs. (26) and (27). We obtain

q
1

q
2

5 l
1� rS

21

1� rS
23

, (41)

where

l 5
1� rS

230

1� rS
210

. (42)

Note from Eqs. (13), (15), and (38) that we can write

Eq. (35) in the form

q
1

q
2

5 kz. (43)

Equating the right-hand sides of Eqs. (41) and (43), and

substituting for S21 and S23 from Eqs. (39) and (40), we

obtain

S
24

5
(kz� l)(k 1 1)z

(kz2 � l)(kz 1 1)r
. (44)

We derive the second equation for S24 and z as fol-

lows: rewrite Eq. (31) in the form

qS
24

5 f
N

1 f
S
, (45)

substitute Eq. (37) for h into Eq. (25), and substitute the

resulting equation for q into Eq. (45). We obtain

S
24

5 (f
N

1 f
S
)

1� rS
24

1� r

� �2n/3

3
1

2

(k 1 1)z� rS
24

(kz 1 1)

(k 1 1)z(1� rS
210

)

"( #

1
1

2

k 1 1� rS
24

(kz 1 1)

(k 1 1)(1� rS
230

)

" #)�1/3

. (46)

Equations (44) and (46) can be solved simultaneously

for S24 and z. Equations (39) and (40) then give us S21

and S23, Eq. (37) gives us h, and Eqs. (25)–(27) give us

q, q
1
, and q

2
. Note that h must satisfy

0 , h , 1. (47)

For convenience, we will pick our reference state to

be the symmetric equilibrium solution, which we an-

ticipate in case 1 when k 5 1. Thus, S21 5 S23 5 S210 5

S230, S24 5 1, q1 5 q2, and in fact the equations are now

satisfied trivially by the solution z 5 q 5 fN 1 fS 5 1,

and h 5 h0. One can put this solution in dimensional

form by taking the previously specified DS and picking

k and h0 so as to tune the overturning circulation’s

strength and the thermocline depth to appropriate

values. Appropriate choices would be those from the

symmetric solution found by Marotzke and Klinger

(2000). In their solution, h ’ 0.1, r ’ 0.2, and the total

overturning is 26 Sv. If we take our basin volume to be
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the same as theirs, this yields a value of k 5 8 3 1028 s21.

Finally we note that because we have chosen a sym-

metric state for our reference state, l [ 1.

For the case of symmetric forcing, k 5 1, and constant

diffusivity, n 5 0, Fig. 2 shows the solutions for the

normalized total circulation strength, q, versus the total

normalized salinity flux, F:

F [ f
N

1 f
S
. (48)

Figure 3 shows the corresponding solution for the con-

stant energy case, n 5 1. Because of our normalization,

q 5 1 when F 5 1 in both cases. In both cases there is

a single stable solution branch whose behavior is similar

to that found by Nilsson et al. (2004) in their two-box

model. In particular, q increases when F increases in the

constant energy case, but decreases in the constant dif-

fusivity case; stable solutions do not exist when F ex-

ceeds a critical value, or, equivalently, when the density

contrast, S24, exceeds a critical value. However, in ad-

dition we find a branch of unstable equilibrium solu-

tions, also shown as the dotted curves in the figures. (The

stability analysis will be discussed in the next section.)

Finally, we note that the critical value of F is smaller

in the case of constant diffusivity, as we would expect,

and that q
1

5 q
2

5 1/2q in both cases because of the

symmetric forcing.

Figures 4 and 5 show the equilibrium solutions when

the moisture flux forcing is asymmetric, k 5 1.5, for the

constant diffusivity and energy cases, respectively.

FIG. 2. Constant diffusivity equilibrium solution in case 1 for the

total upwelling in low latitudes, q, vs the total poleward moisture

flux, F, with symmetric forcing, k 5 1. The solid curve indicates

stable solutions; the dotted curve unstable solutions.

FIG. 3. Same as Fig. 2, but for the constant energy constraint.

FIG. 4. Same as Fig. 2, but with k 5 1.5.

FIG. 5. Same as Fig. 3, but with k 5 1.5.
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Qualitatively the behavior is the same as when k 5 1, but

now there is a second unstable branch, and the critical

values of F are smaller. The hemispheric circulations for

the stable solution are no longer identical, as shown in

Figs. 6 and 7 for the constant diffusivity and energy ca-

ses, respectively. In this case, in contrast to the purely

symmetric case, the trends in the two hemispheres as F

increases have different signs, with the circulation in-

creasing in the Southern Hemisphere and decreasing in

the Northern Hemisphere in both cases. We note that

the trends would be reversed if k , 1.

In the constant diffusivity case, the trend in q2—the

circulation in the Southern Hemisphere—as F increases

is reversed for large enough F compared to the case

when k 5 1. When k 5 1.5, fS is relatively weaker and no

longer controls the strength of the circulation in the

Southern Hemisphere when F is large enough. Figure 8

shows how q2 versus F depends on k. For small F the

trend is independent of k, but when k . 1 the trend

eventually reverses as F approaches the critical value

where instability sets in.

Similarly the trend in q1 versus F in the constant en-

ergy case reverses for large enough F when k $ 1.5, as

shown in Fig. 9. Thus in the constant energy case in-

creasing moisture into high latitudes of the Northern

Hemisphere can lead to a decreasing circulation in that

hemisphere, just as in the constant diffusivity case,

provided that the moisture flux into high northern lati-

tudes is sufficiently stronger than that into high southern

latitudes. This is in marked contrast to the behavior in

FIG. 6. Same as Fig. 4, but q1 (asterisks) and q2 (X’s) as well as q

(solid curve) are plotted vs F.

FIG. 7. Same as Fig. 6, but for the constant energy constraint.

FIG. 8. The q2 vs F for case 1 in the constant diffusivity case when

k 5 1, 1.5, and 2.

FIG. 9. The q1 vs F for case 1 in the constant energy case when k 5 1,

1.5, and 2.
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the constant energy case in a hemispheric model or in an

interhemispheric model with symmetric forcing.

The thermocline depth was normalized so that h 5

h0 5 0.1 in case 1, when F 5 k 5 1. In fact, h 5 h0 in case

1 when F 5 1 for any k. When F increases, h increases

slowly for both the constant diffusivity and constant

energy cases, and for either value of k (results not

shown).

b. Case 2

Now as we can see from Eqs. (16) and (33) the salinity

in boxes 1 and 4 must be the same, S14 5 0, and thus

S43 5 S13 and S24 5 S21. Taking into account that S23 5

S21 1 S13, we find from Eqs. (35), (13), (26), (27), and

(42) a quadratic equation for S
13

. The positive root,

S
13

5
1

2

1� rS
21

r

 !
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� rS

21

2r

 !2

1
1

kr
(1� rS

21
)S

21

vuut ,

(49)

is consistent with the assumption q1 . 0, but the negative

root is not. With this result all the salinity differences

and h [from Eq. (37)] can be expressed in terms of S21

from Eqs. (25) and (27), and then combining all these

results with the equilibrium conditions, Eqs. (31) and

(14), we obtain a single equation for S
21

. The solutions

must be checked to see that they satisfy the criteria

q
1

. 0, q
2

, 0, and Eq. (47).

Figure 10 shows the solution for q, q1, and q2 versus F

for k 5 1 and constant diffusivity. Figure 11 shows the

solution for the same case but with the constant energy

constraint. In both cases there is a single stable solution

and the solutions are now stable for large values of F.

These solutions are analogous to the solutions in the

Rooth three-box model (Rooth 1982; see also Rahmstorf

1996), although there by construction q2 [2q1. In fact

for large F Rooth’s assumed constraint is approxi-

mately satisfied by our solutions for both constant dif-

fusivity and constant energy. Indeed in this limit the

density contrasts forcing the circulation are proportional

to the density contrast between the two high-latitude

boxes, as assumed by Rooth (i.e., r13 5 2r12 5 22r32).

However, if F # 0(1) we find in contrast that jq2j � q1

(i.e., there is only weak upwelling in the Southern Hemi-

sphere). We also note that the total upwelling in the

asymmetric solution when F 5 1 is about 20% less than

in the symmetric solution. This may be compared with

Bryan’s (1986) result ‘‘that approximately the same amount

of deep water forms as in the symmetric case.’’

When the moisture flux into high latitudes increases in

case 2, the interaction between the two hemispheres is

quite different from that in case 1. In the case of constant

diffusivity, in isolation the increased moisture flux would

accelerate the upwelling in the Southern Hemisphere,

but decrease the downwelling in the Northern Hemi-

sphere. As shown in Fig. 10 in fact, the downwelling in

the Northern Hemisphere increases. This is because the

Southern Hemisphere circulation is transporting fresh-

water into low latitudes and this counteracts the effect of

freshening in high northern latitudes on the density

gradient. Since the circulation in the Southern Hemi-

sphere increases more rapidly than that in the Northern

Hemisphere as F increases, the tendency in the North-

ern Hemisphere is reversed, and the Southern Hemi-

sphere dominates (i.e., q decreases as F increases). The

Southern Hemisphere also has a dominant effect in

FIG. 10. Solution for q1 (asterisks), q (solid curve), and q2 (X’s) vs F

in case 2 for k 5 1 and constant diffusivity.

FIG. 11. Same as Fig. 10, but for constant energy.
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determining the strength of the northern downwelling in

the Rooth (1982) model.

The solution for the constant energy constraint is very

similar (Fig. 11). Now the tendency in the Northern

Hemisphere is the same as one would expect in isolation,

but in the Southern Hemisphere it is not, again because

the freshwater transport in the Southern Hemisphere

overcomes the tendency due to the surface flux. Again,

as F increases the Southern Hemisphere dominates so

that q now decreases (although very weakly), just the

opposite of the behavior in case 1 and in the hemispheric

models.

The solutions for case 2 when k 5 1.5 are virtually

identical to those when k 5 1 (not shown). In the con-

stant diffusivity case, q and q1 are slightly less than when

k 5 1, and slightly more in the constant energy case.

In case 2 for F 5 1, h 5 0.11 for any k for both the

constant diffusivity and constant energy, and h again

increases slowly as F increases. In all cases, for suffi-

ciently large F the thermocline collapses.

c. Case 3

The solution in this case closely follows that in case 2.

Now S34 5 0, and the analogous quadratic equation for

S
31

has a single root consistent with the assumption

q
1

, 0,

S
31

5
1� rS

23

2r
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� rS

23

2r

 !2

1
k

r
S

23
(1� rS

23

vuut ).

(50)

Again a single equation for S
23

can be derived from the

equilibrium conditions (31) and (14). The solution for

k 5 1 is identical to that in case 2, except that the solutions

for q1 and q2 are reversed. When k 5 1.5 the solutions

are again very similar to those for k 5 1, but now in the

constant diffusivity case q and q1 are slightly less (alge-

braically) when k 5 1.5 than when k 5 1 in both the

constant diffusivity and constant energy cases. The be-

havior of h is like that for case 2.

4. Stability analysis

a. Small perturbations

We first analyze the stability of the equilibrium solu-

tions by considering infinitesimal perturbations. The loss

of stability of the symmetric thermohaline circulation

was explored by Nilsson et al. (2004), who found that it

is always unstable to antisymmetric perturbations if

b(S2 2 S4) . 0.5aDT. We carried out a conventional

analysis of the linearized perturbation equations and

explored the eigenvalues for the asymmetric solutions as

well as the symmetric solutions. Numerical solutions of

the eigenvalue problem showed that the dotted solu-

tions plotted in Figs. 2–5 were unstable equilibria, and

that in general there were no stable solutions in case 1

when F is sufficiently large.

b. Finite perturbations

We next investigate the stability of the equilibrium

solutions to finite perturbations by introducing pertur-

bations to the salinities in boxes 1 and 3. We integrate

the nondimensional Eqs. (20)–(24) using a Runge–Kutta

third-order scheme. We define the critical salinity per-

turbation to be the maximum perturbation (either pos-

itive or negative) for which the system will return to its

original equilibrium state.

1) CASE 1

Figure 12 shows the critical perturbation of S1 for case 1

when k 5 1 for constant diffusivity. The results for con-

stant energy are very similar (not shown). We recall that

the salinities and therefore the salinity perturbations

have been scaled by a typical low-latitude vertical den-

sity difference, DS, and that a realistic choice would be

DS 5 0.5 psu. For sufficiently large positive perturba-

tions the solution with downwelling in high latitudes of

both hemispheres (case 1) switches to a solution with

upwelling in southern high latitudes (case 2). For suffi-

ciently large negative perturbations it switches to one

with upwelling in high northern latitudes (case 3). The

constant energy case is somewhat more stable. When S3

FIG. 12. Critical perturbations of S1 (nondimensional units) that

cause the equilibrium solution in case 1 to switch to another state,

vs F, for the constant diffusivity case when k 5 1. The numbers on

the curves indicate the kind of state it switches to, either case 2 or

case 3.
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is perturbed instead of S1 the critical values are iden-

tical to those found when S1 was perturbed (results

not shown) because the case 1 solution is perfectly

symmetric when k 5 1. However, now large positive

perturbations cause a switch to case 3, and negative

perturbations to case 2.

Figure 13 shows the critical perturbations in S1 for

case 1 with k 5 1.5 for the constant diffusivity assump-

tion. Again the results for the two assumptions are

similar, with the constant energy case being slightly

more stable (results not shown). Only negative pertur-

bations can be unstable, unlike the behavior when k 5 1.

However, when we perturb S3 instead of S1 (results not

shown) the behavior is more like that when k 5 1 (Fig. 12),

but the final states are reversed, because the stronger

moisture flux into high southern latitudes favors a switch

to upwelling there.

2) CASE 2

Figure 14 illustrates the critical S1 perturbations in

case 2 when k 5 1 for the constant diffusivity case. The

results are very similar in the constant energy case, with

the results being marginally more stable (not shown). In

case 2, the equilibrium solutions are unstable only for

negative S1 perturbations. For smaller values of F, the

system passes to states like those in case 1 when the

critical perturbations are exceeded. However, for larger

values of F the supercritical perturbations lead to a col-

lapse of the thermocline (h / 1) and the model breaks

down. This behavior is indicated by the number fours in

the figure.

Figure 15 plots the critical perturbations of S3 versus

F for the constant diffusivity case. In this case only

positive perturbations lead to instability, and the system

passes to a case 1 solution. The stability characteristics

for the two constraints are again very similar, but in this

case the constant energy case is slightly less stable (re-

sults not shown). In both cases, for large enough values

of F, supercritical perturbations lead to a collapse of the

thermocline (not shown).

When k 5 1.5, the stability of the two sets of equi-

librium solutions to perturbations in S1 are very similar

to that when k 5 1, although the solutions are slightly

less stable (results not shown). The stability to pertur-

bations in S3 is also very similar to the k 5 1 case when

k 5 1.5. Again the stability is slightly less when k 5 1.5,

and also now for larger values of F the system passes to

a case 3 state rather than a case 1 state, both in the

constant diffusivity case and the constant energy case.

FIG. 13. Same as Fig. 12, but k 5 1.5. FIG. 14. Critical perturbation of S1 vs F for case 2 for the constant

diffusivity case when k 5 1. The number 4 indicates a transition to

perturbations where h / 1 and the model breaks down.

FIG. 15. Same as Fig. 14, but critical perturbations in S3.
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Again, for sufficiently large F, the supercritical pertur-

bations lead to a collapse of the thermocline.

3) CASE 3

When k 5 1, because of the symmetry of the forcing,

the results for case 3 are identical to those for case 2, if

the perturbations in S1 are replaced by perturbations in

S3, and vice versa. Thus we do not show these results.

When k 5 1.5, the results for perturbations in S3 are very

similar to those for k 5 1, although the k 5 1.5 case is

a little more stable (results not shown). However, when

k 5 1.5 the results for perturbations in S1 are noticeably

different, and are shown in Fig. 16 for the constant dif-

fusivity case. The system is more stable than in case 2.

(These perturbations in S1 should be compared to those

in S3 for case 2 when k 5 1.5; shown in Fig. 15). The

regime changes are similar for small F, with sufficiently

large positive perturbations leading to a change from

a case 3 solution to a case 1 solution, but for larger F the

perturbations lead to a case 2 solution. In addition for

larger F, the critical perturbations now decrease as F

increases. This is caused by the asymmetry in the north/

south moisture fluxes, which favors instability in case 3

for perturbations in S1. For very large F the supercritical

perturbations again lead to a collapse of the thermocline

(results not shown). The results for the constant energy

case are again very similar to those for constant diffu-

sivity, but again this case is slightly more stable.

5. Hysteresis experiments

The above results imply that the model’s equilibrium

states are also unstable with changes in the surface

moisture fluxes. Indeed, paleoclimatic evidence suggests

that there may have been major changes in the Atlan-

tic’s MOC in the past in response to changes in the

moisture flux into the North Atlantic (Broecker 2003).

How the circulation in the current climate changes in

response to changes in the moisture flux has been de-

scribed in models that assume constant diffusivity by

hysteresis experiments (Rahmstorf 1995; Rahmstorf

et al. 2005). In these experiments the moisture flux into

high latitudes is slowly increased until the circulation

collapses, and then the flux is slowly decreased until the

system recovers to its original state.

If such an experiment is performed in a hemispheric

model with the assumption of constant energy, then the

circulation increases indefinitely rather than collapsing

(Nilsson and Walin 2001). However, our results in sec-

tions 3 and 4 suggest that the behavior when one as-

sumes constant energy in our interhemispheric model

will be like that when one assumes constant diffusivity.

To verify this we carried out hysteresis experiments in

which the initial state was one of the equilibrium states

described in section 3. In these experiments we followed

the standard procedure in which the moisture flux into

the northern high-latitude box is enhanced by an

amount Df (Rahmstorf et al. 2005). Thus Eq. (20) is

replaced by

dS
1

dt
5 Q

1
� f

N
� Df, (51)

and the other equations are unchanged.

If Df 6¼ 0, then salinity is no longer conserved, and

there is no true equilibrium. However, for a given,

nonzero value of Df, the circulation does reach an

equilibrium. This can be shown by first defining the

global mean salinity, ST, as

S
T

5
1

2 1 V
S

1
1 hVS

2
1 S

3
1 (1� h)VS

4

� �
, (52)

and then adding Eqs. (20)–(23) together with appro-

priate weightings to derive the conservation equation

for ST. The result is

dS
T

dt
5
�Df

2 1 V
[ s, (53)

which has the simple solution

S
T

5 S
0

1 st. (54)

If we now define Si95 Si 2 ST, i 5 1, 2, 3, 4, then Eqs. (51)

and (21)–(23) become

FIG. 16. Critical perturbation in S1 for case 3 when k 5 1.5 for the

constant diffusivity case.
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dS9
1

dt
5 Q

1
� f

N
� Df� s, (55)

dS9
2

dt
5

1

hV
(Q

2
1 f

N
1 f

S
)� s, (56)

dS9
3

dt
5 Q

3
� f

S
� s, (57)

and

dS9
4

dt
5

1

(1� h)V
Q

4
� s. (58)

These equations conserve the global salinity perturba-

tion, and thus have steady solutions that are identical to

those derived in section 3 when s 5 0, and closely

analogous solutions when s 6¼ 0.

Consequently, in the hysteresis experiments when Df is

changed slowly enough, the circulation evolves through

a series of quasi-equilibrium states, given by Eqs. (55)–(57)

and (24). If at some point the circulation switched to

a different regime, then subsequently Df was slowly

decreased until the circulation returned to its original

regime. Then Df was again slowly increased so as to

complete the hysteresis loop.

Figure 17 shows how q changes in the constant diffu-

sivity case when the initial state is case 2 with asym-

metric forcing, k 5 1.5. Thus, initially F 5 1, fS 5 0.4,

fN 5 0.6, q1 5 0.87, and q2 520.09. We pick this solu-

tion as being the one most like the current climate in the

Atlantic. Strength q is plotted versus the flux into the

northern high-latitude box normalized by its initial

value, that is, versus

fN 5
f

N
1 Df

f
N

. (59)

Figures 18 and 19 show how q1 and q2 change, re-

spectively, in this case as fN first increases and then

decreases. We see that as fN increases q1 and q decrease,

while q2 increases (i.e., bottom water formation is being

reduced in the Northern Hemisphere by the freshening);

this causes the thermocline to deepen, and this in turn

causes an increased circulation in the Southern Hemi-

sphere. The first effect dominates so the total circulation

is decreased. When fN reaches approximately 3.7, the

circulation becomes unstable, and goes over to a new

state corresponding to case 3 (i.e., now all the bottom

water formation is in the Southern Hemisphere). If fN

now starts to decrease, the system remains in the new

FIG. 17. The q vs fN when the initial state is the case 2 equilib-

rium state with k 5 1.5 and constant diffusivity. The numbers at the

transitions indicate the kind of equilibrium state that the system

transits to. The progression is 2 / 3/ 1 / 2.

FIG. 18. Same as Fig. 17, but q1 is plotted instead of q.

FIG. 19. Same as Fig. 18, but q2 is plotted instead of q1.
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regime until fN changes sign and reaches about 20.3.

Now the increased salinity in the Northern Hemisphere

becomes large enough that bottom water formation sets

in once again, and the system changes to a case 1 state,

with bottom water formation in both hemispheres. If fN

continues to decrease, eventually the system returns to

the case 2 regime.

Note that the solution on the case 3 branch when

fN 5 1 (Df 5 0) corresponds to the (true) equilibrium

solution for case 3 when k 5 1.5 and F 5 1. If we started

the hysteresis experiment from this point, then the sys-

tem would trace out the same series of loops, but in

a counterclockwise direction. The behavior for fN . 0

is very similar to that of the Rooth (1982) model and

the more sophisticated models examined by Rahmstorf

et al. (2005).

Figures 20, 21, and 22 show the hysteresis loops for q,

q1, and q2, respectively, for the case of constant energy

when starting from the case 2 equilibrium state with k 5

1.5 and F 5 1. In this case the initial state has q1 5 0.82,

q2 520.07. Comparing with Figs. 17–19, we see that the

behavior is very similar. In particular q1 still decreases

initially, in accord with Marzeion et al.’s (2007) result

with their global OGCM. One quantitative difference

is that the initial decrease in q1 is weaker in the con-

stant energy case (cf. Figs. 18 and 21), and conse-

quently q increases weakly in this case whereas it

decreases weakly in the constant diffusivity case (cf.

Figs. 17 and 20). Nevertheless, the circulation even-

tually collapses in both cases from a circulation with

all bottom water formation in the Northern Hemi-

sphere to one with bottom water formation only in the

Southern Hemisphere, and in both cases this occurs

for fN 5 3.7.

6. Summary and discussion

We have constructed an interhemispheric four-box

model with one high-latitude box in each hemisphere

and two low-latitude boxes—a surface box and a deep

box—separated by a thermocline in which there is

a balance between vertical advection and vertical dif-

fusion. We have assumed fixed thermal forcing and in-

vestigated how the model’s solutions depend on the

hydrological forcing. Our analysis was carried out using

two contrasting assumptions about how the vertical dif-

fusivity changes when the hydrological forcing changes.

In one case we make the conventional assumption that

the diffusivity is constant, and in the other case, following

Huang (1999) and Nilsson and Walin (2001), we assume

that the energy input to the vertical mixing is constant.

The qualitative nature of the solution is mostly the

same for both assumptions. As in Bryan’s (1986) OGCM

with a single interhemispheric basin there are three

stable equilibrium solutions. Two are asymmetric and

FIG. 20. Same as Fig. 17, but for the case of constant energy.

FIG. 21. Same as Fig. 18, but for the case of constant energy.

FIG. 22. Same as Fig. 19, but for the case of constant energy.
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are analogous to the two solutions found by Rooth

(1982) with downwelling in high latitudes of one or the

other of the two hemispheres. In these solutions the

downwelling is maintained by advection of salinity from

low to high latitudes. These solutions are generally sta-

ble to small perturbations and exist for any strength of

the global hydrological cycle, up to the point where the

thermocline reaches the bottom of the ocean. There is

also a stable, thermally dominated, quasi-symmetric so-

lution analogous to the one described by Nilsson et al.

(2004), with downwelling in high latitudes of both hemi-

spheres. (This solution is perfectly symmetric when the

forcing is symmetric.) There is no analog of this state in

the Rooth (1982) model. This state becomes linearly

unstable when the global hydrological forcing becomes

strong. In addition, transitions between the three stable

equilibrium states can be caused by appropriate finite

amplitude salinity perturbations, although the required

perturbations are relatively large unless the hydrological

forcing is weak.

There are significant differences in the quasi-symmetric

solution for the two different closure assumptions. As the

hydrological forcing increases the total upwelling de-

creases for constant diffusivity and increases for con-

stant energy, as in the hemispheric model of Nilsson et al.

(2004). However, if the hydrological forcing is strongly

asymmetric, the bottom water formation in the hemi-

sphere with the weakest hydrological forcing will have

changes opposite in sign to those in the other hemisphere

and in the total upwelling. Also, in spite of the different

trends in the total upwelling for the different assump-

tions, these solutions become unstable at about the same

strength of the hydrological forcing and pass to asymmetric

states. In the case of constant energy this is in marked

contrast to the behavior in hemispheric box models and

OGCMs where there is no such instability (Nilsson and

Walin 2001; Nilsson et al. 2004).

For the asymmetric solutions there are only minor

quantitative differences between the results with the two

different assumptions. In both cases as the global hy-

drological forcing increases the bottom water formation

in the hemisphere with sinking increases as in the Rooth

model, but in contrast with the Rooth model no linear

instability ever sets in. This behavior is similar to that in

the hemispheric model case when constant energy is

assumed, and just the opposite of the behavior when

constant diffusivity is assumed. We note, however, that

for both assumptions about the mixing when the bottom

water formation increases in the sinking hemisphere the

total upwelling in low latitudes nevertheless decreases,

because the upwelling in the opposite hemisphere in-

creases more rapidly. Thus for the asymmetric solutions

the response to the hydrological forcing does not depend

qualitatively on the assumption about the mixing, in

contrast to the quasi-symmetric solution.

However, the asymmetric solutions can be destabi-

lized by sufficiently large salinity perturbations. This

behavior is similar to that in a hemispheric model with

a constant diffusivity assumption, but contrary to the

behavior in the hemispheric model with constant en-

ergy. This difference between the interhemispheric and

hemispheric models is reflected in the hysteresis loops

we calculated. For either assumption an asymmetric

solution with sinking in one hemisphere can be switched

to an asymmetric solution with sinking in the other

hemisphere, or to a quasi-symmetric solution, depend-

ing on the perturbation in the hydrological forcing. By

contrast, in the hemispheric model with the constant

energy assumption, there are no such transitions and no

hysteresis loop.

Perhaps our most interesting result is that the stability

properties of the solutions in the interhemispheric

model are qualitatively similar for the two different

assumptions—constant diffusivity and constant energy.

This is in marked contrast to the hemispheric case where

there is stability for the constant energy assumption, but

not for the constant diffusivity assumption.

Of course our model is very simple. Aside from the

assumption of fixed temperatures, the boxes are as-

sumed to be well mixed, there is no wind stress forcing,

and there is a single basin. However, with respect to the

first three of these simplifications, there are numerous

studies that show that they do not affect the number of

equilibrium solutions or the qualitative effect of changes

in the hydrological forcing. These studies include ocean

box models with interactive temperatures, coupled to

atmospheric energy balance models (Nakamura et al.

1994; Marotzke 1996; Krasovskiy and Stone 1998; Scott

et al. 1999), and OGCMs that in addition to having in-

teractive temperatures are also forced by wind stresses

and have interactive stratifications (Bryan 1986; Schiller

et al. 1997; Wang et al. 1999a,b; Marzeion et al. 2007).

Indeed, our results offer an explanation for the decrease

of the Atlantic MOC in the global geometry experiment

of Marzeion et al. with a constant energy constraint (i.e.,

it is because of the interhemispheric nature of the At-

lantic MOC).

However, if the basin is not isolated, then signifi-

cant differences do arise. For example, Marotzke and

Willebrand (1991) used an OGCM to find the equilibrium

states for an ocean consisting of two interhemispheric

basins joined by a circumpolar current in one hemisphere.

They used a fixed diffusivity and did find two asym-

metric states similar to the two in our model; but in

addition, they found two ‘‘conveyor belt’’ states that of

course cannot exist in a single basin like ours. However,
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like the behavior in our model, the strength of the me-

ridional overturning in their model increases as the global

hydrological cycle increases; a sufficiently large increase

in moisture input to a single high-latitude sinking region

causes the sinking to collapse and the circulation to

change to a different state (Wang et al. 1999a).

The only study so far to look at the behavior of

a multibasin model with the energy constraint is that of

Marzeion et al. (2007). They used a realistic global geo-

metry and also found that adding freshwater to down-

welling in high latitudes of the North Atlantic caused a

decrease of the circulation for either constraint. How-

ever, they did not look for multiple equilibria, and as yet,

there has been no analysis of the behavior of all the

possible states in a multibasin model when the energy

constraint is used.
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