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ABSTRACT 

 
Even experts cannot be fully aware of all the promising developments in broad and 

complex fields of technology, such as renewable energy. Fortunately, there exist many diverse 
sources of information that report new technological developments, such as journal publications, 
news stories, and blogs. However, the volume of data contained in these sources is enormous; it 
would be difficult for a human to read and digest all of this information – especially in a timely 
manner. 

 
This paper describes a novel application of technology mining techniques to these diverse 

information sources to study, visualize, and identify the evolution of promising new technologies 
– a challenge we call “early growth technology analysis”. For the work reported herein, we use 
as inputs information about millions of published documents contained in sources such as 
SCIRCUS, Inspec, and Compendex. 

 
We accomplish this analysis through the use of bibliometric analysis, consisting of three 

key steps: 
1. Extract related keywords (from keywords in articles) 
2. Determine the annual occurrence frequencies of these keywords 
3. Identify those exhibiting rapid growth, particularly if starting from a low base 
 

To provide a focus for the experiments and subsequent discussions, a pilot study was 
conducted in the area of “renewable energy,” though the techniques and methods developed are 
neutral to the domain of study. Preliminary results and conclusions from the case study are 
presented and are discussed in the context of the effectiveness of the proposed methodology. 
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1. Introduction to the concept of Early Growth Technology Analysis 
 
The goal of this project is to identify, using automated processes, potentially important technologies that 
have yet to become mainstream, referred to in this paper as “early growth” technologies. One way to view 
the growth of such technologies is in the form of plot of a technology’s “prevalence” over time. We are 
interested in those technologies that are in the early, low-prevalence tail of such a plot as depicted in 
Figure 1. This “early” phase is characterized by low prevalence, but a high rate of growth, such that the 
first and second derivatives of prevalence are both positive.  
 

 
 

Figure 1. Prevalence of Early Stage Growth over Time 
 
An immediate issue is the definition of “prevalence,” and more importantly, how to measure it. As 
publications in the academic literature are the primary channel for the dissemination of research results 
and ideas, we utilize the occurrence frequency of related keywords in these publications as an indicator of 
a prevalence of a technology over time. This approach falls under the broader category of “bibliometric 
analysis” [Kostoff et al, 2001][Losiewicz et al, 2000], a term used to describe techniques which are based 
on the statistics of text documents or publications, rather than the actual contents of these documents. 
 
The analysis of technological trends and developments using such approaches has been attempted in a 
number of previous publications [Bengisu and Nekhili, 2006][Small, 06]. In fact, bibliometric techniques 
have already been used to analyze the renewable energy and other closely related domains [Vidican et al, 
2008],[Kajikawa et al, 2008],[Woon et al, 2009], so its effectiveness in similar applications is already 
well established. Nevertheless, extracting information from large data sets, and converting this into 
actionable knowledge remains a challenging problem that is far from a comprehensive solution. The 
approach presented in this paper addresses a number of shortcomings in conventional approaches, such as 
the inability to identify promising growth areas (addressed with the early growth metrics, described in 
section 2.3), as well as effective procedures for extracting relevant terms from publication databases 
(addressed with the eigenvector centrality and “back-pointing” techniques, which is discussed in section 
4). 
 
Finally, while the proposed techniques are intended to be neutral to the domain of analysis, a suitable 
example is still required on which to conduct our experiments and to anchor our discussions. To address 
this need, a pilot study was conducted in the field of renewable energy, which offers a rich and 
challenging problem domain on which our methods can be aptly tested. Besides high-profile topics like 
solar cells and nuclear energy, renewable energy related research is also being conducted in fields like 
molecular genetics and nanotechnology. 
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2. Basic Methodology 
 

Our approach consists of three main steps. First, we collect and store large numbers of related terms. 
Next, we record the changes over time of term occurrence frequencies or “hit counts” by querying online 
publication databases for each of the collected terms. Third, by analyzing the growth pattern of these hit 
counts, we produce a list of technologies that appear to be in the early stages of  growth. For future work, 
we plan to perform a second pass on this list with more rigorous, computationally intensive analysis to 
further reduce our list to a smaller number of important terms. Figure 2 below gives a high-level 
representation of the methodology and these three steps.  

 
Figure 2. Three steps used in Methodology 

 
2.1 Step 1 - Collection of relevant terms 

 
To begin the search for these early growth technologies, we construct a long list of terms related to our 
topic of interest, renewable energy. At this stage, the focus is on gathering a large collection of topically 
relevant terms rather than on screening these terms for their growth potential. For the purpose of  initial 
experimentation, we choose to use a few thousand terms.  
 
The key sources that we use are online publication databases (see Appendix 1 for descriptions and 
discussions on some of these sources). Examples include Compendex, Inspec, Scirus, and Google 
Scholar.  It is important to note that these are web-based services, and as such we do not have direct 
access to the contents of these databases. Instead, our approach has been designed to utilize the results of 
two commonly supported search operations: “what papers do you know off which are related to topic X”, 
and “how many papers related to topic X were published in year Y”.  
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 Figure 3.  Illustration of Retrieving “hit count” from Scirus 
 
As indicated previously, the aim is to construct this list of terms using completely automated processes. 
Specifically, we have developed a suite of software tools that can access these online databases to identify 
and extract relevant terms. The specific procedure for this automated term collection varies depending on 
the database being used; the collection procedures for three particularly useful sources - Compendex, 
Inspec and Scirus1  - are presented in this paper as an example of how this extraction process may be 
efficiently automated. Customization of the software for alternative sources of keywords is left as a topic 
for future work. 
 
  2.1.1 Term collection using Compendex and Inspec 
 
Compendex and Inspec both fall under the umbrella website Engineering Village. We can use them to 
collect terms in the following way:  

1. The Engineering Village search engine is queried to obtain articles about the topic of interest. 
A list of these articles are returned sorted by order of relevance (the precise definition of 
“relevance” is not provided but an informal survey of a the query results indicates that the 
sorting appears to match intuitive notions of relevance.)  

2. For each article identified, a link is provided to its abstract along with a list of related 
keywords.  

3. These keywords were provided by the respective authors and come in two varieties, namely 
controlled and uncontrolled. Controlled keywords were selected from a list of pre-defined 
terms determined by Engineering Village. Uncontrolled keywords, on the other hand, are 
entered by the author and are not restricted to the pre-defined list. We currently do not place 
different values on either set of keywords; instead, the controlled and uncontrolled terms are 
combined into a single list. 

                                                            
1    See the Appendix 1 for more detailed information about these systems. 
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To use Compendex or Inspec to collect keywords, our system first queries the database for the topic, 
“renewable energy,” visits the abstracts of the most relevant articles, and collects all the keywords listed 
with each of these abstracts, removing duplicate terms. In keeping with the stated goal of collecting a few 
thousand terms, currently the 70 most relevant articles are used (the number of articles is a tunable 
parameter.) When using 70 articles, Compendex returns approximately 1,600 unique terms, while Inspec 
returns about 1,400. 
 
  2.1.2 Term collection using Scirus 
 
Scirus is the third data source that is used for the purpose of collecting terms. Due to the nature of Scirus, 
the collection method is entirely different from that which used for Compendex and Inspec. Scirus does 
not provide keywords associated with the articles it returns. Instead, it provides a “Refine your search” 
feature for a given query, which displays a list of 80 related terms; as shown in Figure 4. In some cases, 
especially where the query is for a very peculiar keyword, the list may contain fewer than 80 terms. 
However, the list never contains more than 80 terms. Broadly, these terms appear to be sorted in the order 
of decreasing relevance or generality. 
 
 

 
 
Figure 4. Example of “Refine your search” results provided by Scirus 
 
We can extract these terms in an automated way using our software, but 80 
terms is far short of our desired number of terms. To use Scirus to collect more 
terms, we go through several steps as follows. 

1. We perform follow-up searches on some or all of the returned terms, 
and extract the terms related to those follow-up terms.  

2. This process forms a tree of terms with “renewable energy” at the 
root, its related terms at the second level, and so on. If all 80 
returned terms were expanded, the tree would grow in width very 
quickly before getting very deep.  

3. Since our goal is to discover terms that are highly specific and not 
necessarily well-known, we would like our term tree to be deeper 
than it is wide. The depth/width tradeoff is left as an adjustable 
parameter in our software. We specify this parameter as a list whose length is the number of 
levels in the tree, and whose elements represent the branching factor at each particular level of 
the tree. So for example, if our list were [20, 10, 5], we would expand the 20 most relevant 
terms at the first level in our search, the 10 most relevant terms to each term in the second 
level of our search, and the 5 most relevant terms in the third level of our search. We are 
currently using the pattern [15, 5], which, after removing duplicates, returns approximately 
3,000 terms. We have used this pattern because it seems to provide a good balance between 
relevance and specificity, while also returning approximately the number of terms we are 
looking for. We have also experimented with three-level patterns, but have found that terms at 
the third level are often irrelevant. Section 4.1 of this report describes a proposed solution to 
this issue. 

4. Note: Even when a term is not expanded for a follow-up search, it is still added to the list of 
terms being collected. So in our example, each of the 15 follow-up terms at the first level 
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returns not 5, but 80 terms of its own, all of which are added to the list. However, only the top 
5 of these terms are further expanded to return 80 of their own. 

 
Finally, we merge the terms collected from Compendex, Inspec, and Scirus into one list. After removing 
duplicates, our 1,600 Compendex terms, 1,400 Inspec terms, and 3,000 Scirus terms become 
approximately 5,600 terms in total. It is notable that the three databases give us only approximately 400 
duplicates, compared to 5,600 unique terms. It is due to this uniqueness of the three databases that 
motivated us to collect and combine terms from all of them. An open area of investigation involves 
deciding on the relative value of each database and the best number of terms to collect from each 
database. A tradeoff must be managed between the need to collect as many useful terms as possible, and 
the need, as far as is possible, to avoid contaminating the term list with irrelevant terms. 
 
 2.2 Step 2 - Determination of growth trends 
 
In this step, we determine the prevalence trends, over time, of each of the terms collected in the previous 
step. As explained in the Section 1, it was decided that the “hit count”, i.e. the number of relevant articles 
returned by a publication database when queried with the terms, would be used to represent the 
prevalence of a technology. 
 
To determine the trends in hit counts, searches are restricted to only count the articles published in a given 
year. This is then repeated for each year which we are interested in, resulting in a record of how the 
number of articles published about the given topic has changed over time. 
 
  2.2.1 Maintaining relevance 
 
In determining the hit counts for a particular term, it is important that only relevant uses of the particular 
term are taken into consideration. One way of doing this is by constraining the basic search by appending 
a term which specifies the desired context. As an example, the term ‘corn’ is relevant to energy 
technologies for its role in ethanol production. A Scirus search for ‘corn’ returns approximately 2.1 
million hits. A search for ‘corn’ + ‘renewable energy,’ on the other hand, returns only about 90,000 hits. 
The discrepancy is largely due to the vast number of articles about corn that have nothing to do with 
energy. For our purposes, 90,000 is the more accurate count.  
 
However, there are two potential downsides to requiring that the seed term be included in our queries.  
The first issue is that a term may represent an important component of the field, but is rarely mentioned in 
articles that also mention the seed term.  Examples include technologies that have a wide range of 
applications, each of which can be indirectly related to our seed term.  Genetic engineering is an example 
when renewable energy is the seed.  Genetic engineering is an important component of biofuel 
development, so new genetic engineering research can indirectly affect the renewable energy field, often 
in ways which are unforeseen a priori.  We would therefore be interested in articles about genetic 
engineering research even if they make no explicit mention of renewable energy. Only considering 
articles that contain both terms genetic engineering and renewable energy would result in a lower hit 
count, which understates the actual number of relevant articles. 
 
There is a second downside to including the seed term in our query.  In some cases, a term may appear in 
an article that is indeed related to the seed term, but that never explicitly mentions the seed term because 
it is implicit from the context.  An article about windmills, for example, is clearly relevant to renewable 
energy, but may never actually use the expression renewable energy.  We would like this article to be 
included in the publication count for windmills, but requiring renewable energy to be included in the 
search query would prevent that from happening. 
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IRequiring the seed term in our search queries prevents artificially high hit counts that result from articles 
that use a term in an irrelevant context (e.g. corn). Unfortunately, requiring the seed term can produce an 
artificially low hit count by not including relevant articles that discuss the term, without discussing 
applications (e.g. genetic engineering) or by not including articles that do not mention the seed term 
because its relevance is obvious from context (e.g. windmills).  
 
So an open question being investigated is whether or not to require that ‘renewable energy’ be included in 
our hit count queries. 
 
 
  2.2.2 Use of multiple sources 
 
Just as we can use one or more sources to produce the list of potentially interesting keywords, we can use 
one or more databases in determining the hit count trends of a topic. It is also important to note that the 
source(s) that we use for trend analysis need not be the same as those used to produce the list terms in the 
previous step. These are two independent processes; we can collect terms with whatever sources we 
choose, and we can analyze their prevalence trends using whatever sources we choose. 
 
In deciding what databases to use for hit count trends, we need to consider the size and focus of the 
database, as well as the feasibility of using it for automated hit count collection. In general, the larger the 
database’s collection of articles on renewable energy, the more statistically significant the hit count trends 
will be. Regarding feasibility, the database must allow thousands of queries to be submitted in a relatively 
short span of time, and must display the resulting hit counts in a manner that is extractable with software. 
With these considerations in mind, we are currently using Compendex and Scirus to gather hit count, as 
they tend to give relatively large hit counts even for obscure energy-related terms. In contrast, it was 
decided that Inspec, the third database used in the term collection step, is too small of a database to be 
effective in this hit count collection step. 
 
With both Compendex and Scirus, collecting hit counts for each term is a slow process. For example, 
finding hit counts for 5,000 terms over three years, which requires 15,000 queries to the 
databases, takes about 5 hours to complete. However, these numbers tend to remain relatively unchanged 
from trial to trial. We therefore cache (store) the results from one trial in a local database for 
instantaneous lookup later. This can prove useful if, for example, we choose to modify our trend analysis 
methods (section 2.3 of this report), and do not wish to spend time re-gathering terms and hit counts prior 
to the analysis.  
 
Because we are most interested in modern, upcoming technologies, we have focused on the years 2006, 
2007, and 2008. For future work, we might extend these dates further into the past to get a better picture 
of the longer-term trends of these technologies, and to perform retrospective analyses to test the efficacy 
of the system. 
 

2.3 Step 3 - Identification of potentially interesting terms by rate of growth 
 
Using the hit count trends recorded in the previous step, we now seek to choose from that large initial list 
a subset of terms that seem to fit the early growth description. There are several possible ways to identify 
an early growth technology in terms of its hit count trend. We choose to rank each term according to the 
ratio of its final to its initial hit count. The approximately 100 top-ranked terms will then be used in the 
final step of our methodology, which is to perform more in-depth analysis on those terms. With this 
ranking method, we choose to ignore intermediate year (i.e., 2007) hit counts. In future developments, we 
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may use that information in our trend analysis as well2. The use of intermediate years’ hit counts may be 
particularly important if we use a longer timeline than 2006-2008. 
 
By ranking terms according to the ratio of final hit count to initial hit count, terms with low initial hit 
counts will be strongly favored. For example, a term whose hit counts increased from 1 to 3 will be 
ranked higher than a term whose hit counts increased from 100,000 to 200,000 over the same time period. 
This is in line with our interest in identifying technologies that are not yet well-known, but are on the 
steepest part of their growth curve. 
 
One problem encountered was what to do when the initial hit count is zero, which would result in 
division-by-zero errors. There are a few possible workarounds to this problem. One possibility is to 
replace the zero with the lowest nonzero hit count acquired in subsequent years. If the hit count remains 
zero until the final year, then we accept that its ratio is infinite, and rank it against other infinite-ratio 
terms based solely on the final year’s hit count. A second possibility is to define zero as some small 
number, say 0.1. The choice of this number is unfortunately somewhat arbitrary, but the smaller it is 
defined to be, the higher the ranking zero-hit count terms will receive. We are currently using the second 
method, but exploring various options is an important topic of upcoming work. 
 
We have experimented with a method in which we first calculate the average hit count across all terms for 
2006 and 2008. Then we look for terms whose 2006 hit count is much smaller than the 2006 average and 
whose 2008 hit count is much higher than the 2008 average. We have called this method “total growth” 
analysis (as opposed to “early growth.”) While this method is interesting and potentially informative, it is 
heavily biased against very small hit counts (that is, it emphasizes large growth over small size), which 
undermines the search for the “early growth” that we seek.  Another seemingly viable possibility for 
identifying interesting terms would be to rank them according to the slope of their growth, i.e. the change 
in hit counts divided by the change in time. Since all terms have the same time range, this reduces to 
ranking them with respect to absolute changes in hit counts which again, favors terms whose hit counts 
were large to begin with. 
 
There may be other metrics besides those described above that could produce the desired results. For 
example, the use of intermediate years in our analysis will give us a more granular and accurate 
assessment of changes in growth. Defining precisely what is meant by “early growth” is an important part 
of this ongoing research. 
 
 2.4 Implementation of Initial Software and Performance Characteristics 
 
The initial implementation of the our method is in the Python programming language. It contains three 
modules, each corresponding to one of the three steps of our methodology: term collection, hit count 
collection, and trend analysis.  
 

1. The term collection module takes three parameters as input: a list of seed terms (which is often 
just a single term), the number of articles from which to collect terms in Compendex and Inspec, and the 
breadth/depth pattern to use for hierarchically collecting terms from Scirus. The software outputs the 
collected terms to a text file.  

 
2. The hit count collection module takes as input the term file generated in the previous step, as well 

as a list of publication databases and the range of years from which to collect hit counts. The output of 
                                                            
2  In particular, we will use the second derivative of prevalence as a weighted measurement to determine, in 
part, the “growth.” 
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this module is a local database which contains, for each term, the hit counts for each year and for each 
publication database used. 

 
3. The final module performs the hit count trend analysis to identify the early-growth terms, taking 

as input the local database produced in the previous step. The trend analysis is performed for each 
database used and outputs a list of the best early-growth candidate terms, sorted by decreasing ratio of 
final hit count to initial hit count. 
 
The first module runs in time proportional to the number of terms we are collecting. For example, it takes 
approximately 5 minutes to collect 5,000 terms on a typical modern computer with a broadband Internet 
connection. The largest source of variance in the runtime of this module is the speed of the connection 
used by the online databases being queried. Heavy traffic or slow local connections significantly increase 
the module's run time. 
 
The second step runs in time proportional to the product of the number of terms being analyzed, the 
number of years over which to collect hit counts, and the number of online databases from which to 
collect this information. But again, the speed of the connection with the online databases is a key factor in 
the runtime of this module. Under typical conditions, if for each of 5,000 terms we wish to collect three 
years’ worth of hit counts from two different publication databases, runtimes reach approximately five 
hours. The reason for the large increase in the time needed to complete the first step is that for each term 
we must visit and scan six HTML pages to collect that term’s hit counts. In contrast, in the term collection 
step, a scan of a single HTML page gives us many terms.  
 
The third module runs in time proportional to the number of terms being analyzed. But as it does not 
involve accessing information on the web, analyzing 5,000 terms  takes less than a second. 
 
Thus, the bottleneck in our software is clearly the second step. We have performed some optimizations to 
make it more efficient, such as scanning only the section of a search results page that we know to contains 
the hit count, but this step is inherently time consuming. 
 

3. Preliminary Results  
 
Preliminary results for these first three steps are shown here.  

1. As described above, we used Compendex, Inspec, and Scirus to gather approximately 5,600 terms 
on renewable energy. 

2. Next, we used both Compendex and Scirus to identify hit count trends on each of the terms, 
appending each query with ‘renewable energy’ to keep the hit counts in the proper context.  

3. Finally, for both our Compendex hit counts and Scirus hit counts, we ranked the terms according 
to the ratio of their 2008 hit count to their 2006 hit count.  

 
The top 20 terms for both Compendex growth and Scirus growth are shown below. 
 
Top Compendex growth: 
energy, engineering, technology, wind, fuel, time, development, efficiency, cells, experimental, policy, oil, 
industry, economic, concentration (process), electric power systems, speed, economics, emission, wind 
energy 
 
Top Scirus growth: 
biopower, concentrating solar power (csp), genome sequence, biochemical pathways, equitable 
distribution, sustainable resources, homer, food prices, wind power prediction, plant sciences, small 
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hydroelectric plants, sustainable communities, assortment, wind load, fischer-tropsch diesel, graph 
theory, mesoscale model, electric loads, european union energy policy, investment strategy 
 
The results show many promising terms though some less suitable ones were also produced. For example, 
‘biopower,’ ‘concentrating solar power (csp),’ ‘biochemical pathways,’ and ‘fischer-tropsch diesel’ may 
be the kind of early growth technologies we are looking for. However, terms such as ‘energy,’ 
‘engineering,’ and ‘technology’ are far too general, while terms such as ‘time’ and ‘homer’ are largely 
irrelevant.  
 
We will continue to revise our term collection process, as well as our term ranking process, to ultimately 
increase the proportion of quality terms identified with our methods. 
 
4. Improvements to original Methodology 
 
The methodology described above provided some interesting results and indicated that this approach was 
promising, but it also highlighted a number of problem areas.  This led to several improvements to our 
original methodology, which will now be described. 

 
4.1 Filtering Scirus terms for relevance 

 
As described in section 2.1.2 of this paper, a Scirus search for a given seed term will only return at most 
80 related terms. This requires us to perform follow-up searches on the returned terms, and proceed in a 
hierarchical manner. (In contrast, when we use Compendex or Inspec to gather terms, a search for a single 
seed term can provide as many related terms as we would like, so no follow-up searches are needed.) A 
downside to using Scirus to collect terms in this hierarchical manner is that as the depth of the term tree 
grows, the terms we find can quickly become very general and irrelevant to our goal. For example, if we 
search for ‘renewable energy,’ three of the 80 terms that come back are ‘stand-alone,’ ‘harnessing,’ and 
‘national security.’ If we deepen our tree by extending these terms, grossly irrelevant terms are returned. 
A sampling of the terms returned from ‘stand-alone’ includes ‘command line,’ ‘adjustable,’ ‘decision-
making,’ ‘high availability,’ and ‘default value.’ The results from ‘harnessing’ include ‘humans,’ 
‘animals,’ ‘publishing group,’ and ‘right arrow.’ And the results from ‘national security’ include ‘freedom 
of information,’ ‘law school,’ ‘facial recognition,’ and ‘donate.’ 
 
Even if we extend some of the more relevant terms returned from a ‘renewable energy’ search, we still 
find several irrelevant terms at the next level in the hierarchy. For example, ‘energy systems’ is a good, 
relevant term returned from ‘renewable energy.’ But extending this further, we get results that include 
‘sealed,’ ‘fiscal year,’ ‘non-stop,’ and ‘proton.’ And clearly, if we were to extend these terms to the next 
level after that, we would continue to be out of the realm of renewable energy entirely. 
 
This results in a conflict.  We do want to gather terms that are specific and not immediately obvious given 
the seed term ‘renewable energy.’However, looking only two or three levels deep into the Scirus term 
hierarchy, we find that the majority of terms are entirely irrelevant to our original topic. We propose to 
combat this issue by collecting terms deep in the hierarchy, but then screening them for relevance. We 
can test for relevance by seeing if the term in question points back  to our seed term or to some term close 
to it in the hierarchy. In other words, for a term in question, we can look at the 80 terms returned from 
Scirus when searching for that term. If one of those returned terms is ‘renewable energy’ (or possibly 
some term that itself points to ‘renewable energy’), then we can deem the term relevant. Further, if the 
term were found several levels down from our seed term, but then points back up to it, we can presume 
that it is both relevant and specific, which is exactly the class of term that we are looking for.  
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As an example, if we use ‘sustainable energy’ as our seed term, ‘fuel cells’ is among the terms returned at 
the first level of the hierarchy. When a search on ‘fuel cells’ is performed, some useful terms such as 
‘hydrogen fuel’ are returned, as are terms such as 'laptop' and 'proton'.  ‘Hydrogen fuel’ can be identified 
as relevant because Scirus lists ‘sustainable energy’ as one of the terms that it in turn points to. In 
contrast, ‘laptops’ and ‘proton’ do not point back to ‘sustainable energy’ and are hence excluded from the 
subsequent analysis.  
 
Figure 5 illustrates this process. It shows a representation of the Scirus term hierarchy with ‘Sustainable 
energy’ at the root. ‘Hydrogen fuel’ links back up the hierarchy to ‘Sustainable energy,’ so we declare it 
to be relevant. Note that in reality this network is highly interconnected; this simple representation ignores 
many links. In fact, ‘Bioenergy’ and ‘Fuel cells’, terms that we find at the second level of the hierarchy, 
both point back to ‘Sustainable energy,’ but the arrows are not included in the diagram for simplicity. 
These two terms, due to their hierarchical proximity to the seed term, do not require testing by return link. 
‘Hydrogen fuel’ on the other hand, the illustrative term in this example, points back to ‘Sustainable 
energy’ and is at the third level, so it is both relevant and specific. 
 

 
Figure 5. Representation of Scirus term hierarchy with ‘Sustainable energy’ at the root. 

 
Here we present results  derived from this method of relevance filtering. We collected terms that were 
found in the first three levels of the term hierarchy from the seed term ‘renewable energy’, and that also 
pointed back  to ‘renewable energy.’ In other words, for each term collected, ‘renewable energy’ was 
listed among the 80 terms Scirus listed as relevant to that term. We then gathered hit counts over time for 
each of these terms, and applied our trend analysis to identify the top early growth candidates. The top 20 
terms are listed here, in ranked order according to growth of Scirus hit counts: 
 
pakistan, solar water, wind turbines, turkey, renewable energies, hydropower, stromerzeugung, mppt, 
solar thermal, solar water heating systems, photovoltaic systems, linear test bed, biodiesel production, 
ocean wave power, renewable, energy technologies, turbines, hydroelectric energy, electrification, 
megawatts 
 
It can be seen that these terms are more relevant to the topic of renewable energy than are the terms found 
in our previous results. We can make further improvements if we relax the requirement that any term in 
our list points directly back to ‘renewable energy.’ In the results presented below, we instead allow any 
term that points back to either ‘renewable energy,’ ‘sustainable energy,’ or ‘alternative energy.’ 
Following this adjustment, the top 20 terms in Scirus growth are: 
 
electric cars, hydrogen vehicles, solar house, pakistan, gas engine, solar water, climate policy, solar 
energy systems, wind energy, tidal power, offshore drilling, renewables, solar energy applications, 
turbine noise, global warming, solar power, solar electricity, nanotechnology, alternative fuels, 
alternative energy 
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In this list, we observe positive results. Many of the terms listed, including the top-ranked ‘electric cars’ 
and ‘hydrogen vehicles,’ describe energy-related technologies that are growing in popularity. In addition, 
we see some terms which describe energy issues rather than technologies, such as ‘climate policy,’ 
‘offshore drilling,’ and ‘global warming.’ And while terms such as these are not precisely what we are 
looking for, they do represent current events which are becoming more important issues over time. The 
primary problem with the terms on this list is that they tend to be quite general. For example, while 
electric cars are indeed quickly growing in popularity, we would like this list to contain specific 
technologies behind electric car design. 
 
 4.2 Filtering Scirus terms using eigenvector centrality metric 
 
The approach described in the previous section is relatively straightforward. But filtering for relevance 
can be made more robust with a more complex approach. For example, as we have seen, requiring a term 
to point directly back to the single seed term may be too restrictive a requirement. Instead, it may be 
enough to point to a term that is close to our seed, or to another term that has already been declared 
relevant. This intuition, where relevance is a quality that is derived from association with other relevant 
nodes, motivates the approach that will be described next.  
 
In the previous section, we discussed a tree-like structure of terms identified by Scirus. Searching for a 
particular term in Scirus results in 80 new terms being identified, so each term may be considered as a 
node in a tree with 80 outgoing directed edges.  
 
This tree-like, hierarchical view was useful for the relevance checking described in the previous section, 
but a more accurate view is not of a tree, but of a densely connected network of terms (the difference 
being that a tree is by definition acyclic and has exactly one parent node for each non-root node). As an 
example of the structure of a Scirus term network, consider the small set of terms [‘renewable energy’, 
‘renewable energy technologies’, ‘wind power’, and ‘geothermal’]. A search for ‘renewable energy’ 
returns each of the other three as related terms, so we represent this in our network with edges pointing 
from ‘renewable energy’ to each of the other three terms. A search for ‘renewable energy technologies’ 
returns both ‘wind power’ and ‘geothermal,’ so we add such edges to our network. A ‘Wind power’ 
search returns ‘renewable energy technologies’ and ‘geothermal,’ so again we add the appropriate edges. 
Finally, a search for ‘geothermal’ does not return any of the other three terms, so ‘geothermal’ has no 
outgoing edges in our network. This network contains many cycles (e.g. ‘wind power’ -> ‘renewable 
energy technologies’ -> ‘wind power’), and has many nodes with more than one parent node (e.g. 
‘geothermal’ is linked to by all three other terms), so it has a network or web-like structure rather than a 
tree structure. 
 
As a measure of importance or relevance, we can then calculate the so-called eigenvector centrality of 
each node in the network. This is defined such that the centrality of any node X is equal to the sum of the 
centralities of the nodes with edges pointing to X, divided by a constant. Intuitively, if X has many 
incoming edges, and particularly if those edges originate from nodes with large centralities, then X will 
also have a large value of centrality. 
 
In order to use the eigenvector centrality metric for the purpose of relevance checking, we first create a 
representation of the underlying term network induced by the Scirus “related searches” feature. As has 
been described previously, this network is created by first querying Scirus with the seed term, in this case 
‘renewable energy,’ and exploring Scirus’s underlying term network in a breadth-first manner, storing the 
nodes and edges we discover in a local database to be used for the eigenvector centrality analysis. We 
continue expanding and storing these nodes until the resulting network is large enough to avoid missing 
many important terms. As implied by its name, the eigenvector centrality values for each node are then 
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found by calculating the first eigenvector of the network's connection matrix, where eigenvector 
coefficients corresponding to the network nodes yield the centrality measures. 
 
It is important to note that the eigenvector centrality metric does not explicitly test a given term for 
relevance with the seed term. It merely tests the term’s centrality, i.e. importance, with respect to a 
network centered on the seed term. The intuition behind the use of this metric is that terms that are 
relevant to the seed term will be more closely associated to other terms in this network, and conversely, 
terms that are irrelevant to the seed term will only be sparsely connected with the network as a whole. 
 
As an example, we collected 1,000 terms from Scirus centered on the term ‘geothermal’ (i.e., we explored 
Scirus’s underlying term network in a breadth-first manner, starting at ‘geothermal,’ until we had 
collected 1,000 terms.) We then calculated the eigenvector centrality of each term and ranked them in 
decreasing order of centrality. The top 20 most central terms, in ranked order, are: 
 
geothermal development, geothermal energy, geothermal resources, geothermal, geothermal power, 
geothermal fields, geothermal reservoir, geothermal system, geothermal sources, geothermal district 
heating, geothermal fluids, geothermics, geothermal water, geothermal steam, geothermal field, 
geothermal fluid, geothermal systems, geothermal wells, geothermal areas, kizildere 
 
The 20 least central terms, again in decreasing order of centrality, are: 
 
labor force, wavelet, veto power, heart rate, nucleic acid, cardiovascular diseases, sequence analysis, 
consumer behaviour, interpretation of results, financial services, green tea, court of appeal, gathering 
information, risk factors, cylindrical, animals, mental health, brittle-ductile transition, owner-occupied 
housing, cognition 
 
The results are quite convincing and demonstrate the effectiveness of  eigenvector centrality as a metric 
for relevance. The first 20 terms are very closely related to ‘geothermal’ (‘Kizildere’, the 20th term, is a 
geothermal power plant.) It is interesting to note that ‘geothermal’ itself is only the 4th most central term, 
but considering that the network contains 1,000 terms, it might be more of a surprise if it were ranked 
first. The 20 least central terms are either completely irrelevant (‘cardiovascular diseases,’ ‘green tea’) or 
are partially relevant but in an entirely incidental way (‘labor force,’ ‘gathering information’). 
 
Although eigenvector centrality appears to be a good metric for term relevance, the highest-ranked terms 
are still too general. We would like to see specific technologies important to geothermal development, but 
instead what we see tend to be very broad areas of interest within the field. It seems that eigenvector 
centrality has its place in the term filtering process, but should perhaps be used in conjunction with some 
other filtering method that first removes these overly general, high-level terms. 
 
5. Early Growth Technology Analysis Tool 

As was described above, we have developed a software tool for identifying early growth emerging 
technologies by going through the steps of:  (1) collect a large number of terms related to the field we are 
interested in, (2) record the change over time of hit counts from online publication databases for each of 
our collected terms, (3) use these hit count trends to reduce the size of our list to a shorter list of 
potentially interesting technologies. Although effective in producing the results described above, this 
software was not designed to be especially “user friendly.”  As a result, we have created the Early Growth 
Technology Analysis Tool with desktop and web versions to perform those steps automatically. Here we 
will briefly explain it. 
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5.1 Introduction 
 

The Early Growth Analysis (EGA) tool collects the required inputs from the user through a visual 
interface, extracts data from web sites on the fly, performs an analysis on the collected data, and displays 
the results. The user can interact with the tool either through web-based (Figure 6) or desktop application 
interfaces (Figure 10.)  

 

 
Figure 6. EGA tool web version 

 
The user enters a seed term, selects one or more term generation sources, a desired term list size 
parameter, and hits the “Get Terms” button, upon which related terms collected from the specified 
sources are shown in the term list box (Step 1, Figure 7).  
 

 
Figure 7: Data to run the first step (term collection) of EGA is entered 

 
When the user selects a single hit count source, specifies an interval in years, and hits the “Get Hitcounts” 
button, the hit count of each term from the term list box and for each year that falls in the time interval are 
displayed inside the hit counts box. The maximum number of threads limits the number of outgoing 
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parallel connections, and the registry field allows spec files from external sources to be used.(Step 2, 
Figure 8).  

 
 

Figure 8: Data to run the second and third step (hit counts and ranking) of EGA is entered 
 
Finally, by hitting the “Get Top Terms” button, terms are listed in the top terms box in descending order 
of importance defined by the analysis method.  
 
In addition, the user can add new sources, save results, refine the results in the term box by keeping only 
those that “point back” to the original seed term. Also, there is the option of appending the seed term 
itself to the automatically generated queries. Finally, all the above steps can be executed sequentially and 
automatically by clicking the “Get All” button. (Figure 9)  
 

 
 

Figure 9: Collected terms, hit counts and top terms will be show in the term list, hit count and top term text 
boxes. 

 
The desktop version is almost identical to the web version in terms of the interface. A notable difference 
is that it includes a progress bar at the bottom, displaying the progress as the tool runs. Also the registry 
can be either a local or web directory while the results are stored locally.   
 
Although the interfaces of the web and desktop versions are nearly identical, the applications have 
different uses. The web-based interface can be accessed from anywhere over an Internet connection. The 
desktop application, however, offers more control on the resource use and can be run in a non-shared 
medium.  
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Figure 10. EGA tool desktop version 
 
In the rest of this section we describe the architecture of the system and provide installation and 
implementation details. The interested reader may find the details about the code in Appendix 2. 
 
 5.2 System Design 
 
We used the Model-View-Controller (MVC) design pattern3 in developing the EGA tool. MVC decouples 
the user interface (view) from the core code (model) by minimizing the dependencies between them using 
a controller. This process is illustrated in Figure 11 below. Using an MVC design pattern allows us to 
easily implement different interfaces without touching the model; thus preventing maintenance 
nightmares along the way.   
 
                                                            
3    In software engineering, a design pattern is a general reusable solution to a commonly occurring problem 
in software design. (Wikipedia) 
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In both systems the model part of the code is identical and organized as shown in Figure 12. We used 
several sub design patterns within the MVC such as the observer pattern that allows subscribed listeners 
to be notified of errors and progress updates.   
 

The user interacts with the 
interface and the actions go 
to the controller 

CONTROLLER 

MODEL 

Controller asks the 
model to perform the 
necessary action 

 

VIEW 

 

The view display 
is updated for 

the user 

The model notifies 
the view of a 

change in state 

The model contains all the state, data, 
and application logic needed to maintain 

and execute early growth analysis. 

Figure 11. The MVC design pattern – 
MVC allows us to exchange one view with another without touching the core model. 
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Both the Controller and the View consists of one class, which are different for the desktop and web 
applications.  
 

5.3 Implementation 
 
Both applications were implemented in C# using the freely available Visual Studio Express (C# and Web) 
integrated development environment (IDE). The system runs in the ASP .Net 3.5 framework. The 
applications also run under Unix environments with the help of Mono project. We will discuss below 
some of the implementation issues. 
 
Local vs Remote Cameleon Access: Cameleon is a web extraction tool we utilize in our applications. 
Currently, we use a Cameleon instance running locally (as a dll) to access remote sources, except in the 
cases of sources that can only be accessed through MIT. For those sources our applications use the 
Cameleon server that is running on interchange.mit.edu.  
 
Concurrency in Web Source Access: Originally both POE (parallel version of Cameleon) and Cameleon 
were used to access the web sources. However, because of the unreliability of POE and the desire to hide 
implementation details from the user, we currently use only Cameleon with a default thread size of 10, 
though this can be changed from the interface. 
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Figure 12. The Model Classes 
The Model currently consists of 19 classes. 
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Formulas for Top Term Calculation: We currently use the following formulas for the calculation of top 
term ranks. 
Early Growth = Log(hits in End Year) / Log(hits in Beginning Year) 
Total Growth = (hits in End Year – hits in Beginning Year)/hits in Beginning Year) 
 
Progress Bar in Web Application: Although we have a progress bar in the desktop application, we do not 
have an equivalent one in the web application. Because of the difficulty of asynchronous web 
programming, using a progress bar is not very straightforward. We found one potential solution through 
the implementation of a web service that will read progress from a text file in the server, but we are still 
trying to find a way to call that web service asynchronously while waiting the server to respond.  
 
Adding New Sources: New sources can be added by uploading spec files to the registry directory. This 
can be done locally in the desktop application, or remotely for the desktop application. The specFiles.txt 
and specFilesHit.txt files (found under the registry directory in the desktop application, and the root folder 
in the web application) keep track of existing spec files in the system. When the user adds new sources 
through the interfaces these files are updated. Note, however, that in the desktop application we rely on 
the user putting the appropriate files in the registry directory after doing the add operation. 
 
  5.3.1 Installation instructions 

 
Instructions for setting up the Desktop Application 

1. Download the zip file from http://www.aykutfirat.com/LongTailDeskTopApp.zip 
2. Unzip the files 
3. Go to \LongTailApp\bin\Debug directory 
4. Click on LongTailApp.exe (note that if file extensions are hidden in your folder you should see 

that this file has Application extension, and has 40KB size. Do not mix it with the similarly 
named XML configuration and Application Manifest files) 

5. The default registry directory is \LongTailApp\bin\Debug\Cameleon# 
6. The default Results directory where the result files are stored is LongTailApp\bin\Debug\Results 

 
Instructions for setting up the Web Application 

1. Download the zip file from http://www.aykutfirat.com/LongTailWebProject.zip 
2. Unzip the files 
3. Upload all of the files and directory structure to your web server’s appropriate directory 
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Appendix 1: Information about Data Source 

INTRODUCTION 
Generating the most relevant related keywords for a given 'term' is an important preliminary step. The 
relevance of the terms collected is highly correlated with the quality of the database from which the data 
is gathered. This appendix describes several databases from which to collect terms from for the purposes 
of early growth and taxonomy generation. This memo analyzes these sources individually and gives 
recommendations.4 
 
The sources analyzed in this paper are Compendex, CSA Ilumina, ENGnetBASE, Google, Google 
Scholar, Inspec, Science Direct, SciFinder, Scirus, Scopus, Springerlink, Web of Science, and Wilson 
Web.   
 
1. DESCRIPTION OF SOURCES 
 
Compendex 
Scope of coverage:  Compendex contains a compilation of comprehensive engineering literature 
databases available for engineers. It currently has 11.3 million records, with over 650,000 new ones added 
annually, across 190 engineering disciplines gathered from 1970 to the present. 98% of the top 50 U.S. 
engineering schools currently subscribe to Compendex. New information is gathered weekly from 
engineering conferences, journals and trade magazines from over 55 countries. Every entry is indexed 
according to the Engineering Index Thesaurus and indexed according to the precise engineering 
discipline. 
Compendex covers topics from several engineering disciplines, including:  

Chemical Engineering (15% of Compendex content) 
Civil Engineering (15% of Compendex content): Bioengineering, Building Materials Properties, 
Construction Materials, Geology, Ocean and Underwater Technology, Pollution and Wastes, 
Sanitary Engineering, Transportation, Water and Waterworks. 

Mining Engineering (12% of Compendex content): Fuel Technology, Metal Groups, 
Metallurgical Engineering, Petroleum Engineering 

Mechanical Engineering (12% of Compendex content):Aerospace, Automotive, Fluid 
Flow, Heat and Thermodynamics, Materials Handling, Naval Architecture and Marine, Nuclear 
Technology, Plant and Power, Railroad 

Electrical Engineering (35% of Compendex content): Computers and Data Processing, 
Control Engineering, Electronics and Communication, Light and Optical Technology, Sound and 
Acoustical Technology, Electricity and Magnetism, Electric Components and Equipment, 
Electronic and Thermionic Materials, Electronic Components and Tubes 
General Engineering (12% of Compendex content)5 

 
Keyword/indexing system:   
o Controlled terms: keywords related to the article coming from a list of controlled vocabulary 
composed of agreed-upon technical terms made by the compilers of the database.  
• Uncontrolled terms: uncontrolled vocabulary indexing containing terms not in the controlled 
vocabulary list 

 
Search Customization Options: 
• Document type: journal articles, conference articles/proceedings, monograph chapters/reviews, 
                                                            
4  Information contained in this memo builds on a preceding analysis conducted by Clare Li and the source 
analysis google doc found in http://spreadsheets.google.com/ccc?key=rCwjpOIS9D6kv8jw5w_oVug 
5  Source: http://www.ei.org/compendex 
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report chapters/reviews, and dissertations.  
• Treatment type: application, biographical, economic, experimental, general review, historical, 
literature review, management aspects, numerical, or theoretical 
• Language 
• Publication Year 
 
CSA Ilumina 
Scope of coverage:   
CSA Ilumina covers topics on Physical Sciences and Engineering, Life Sciences, Health Sciences and 
Humanities from books and scholarly journals. It provides access to over 100 databases published by 
CSA and its publishing partners. 
 
Keyword/indexing system:   
Author's Keywords and Publisher's Index 
 
Search Customization Options: 
• Database 
• Subject Area 
• Data Range 
 
ENGnetBASE 
Scope of coverage: ENGnetBase contains engineering topics using book sources only 
 
Keyword/indexing system:  
None 

 
Search Customization Options:  
 None 
 
Google 
Scope of coverage:  Google covers all topics from news, articles, blogs, papers, journals, and every kind 
of website. 
 
Keyword/indexing system: Google full-text algorithm 
The ‘keywords’ are in the form of 'related searches' terms produced by google after the user searches for a 
specific term. Currently we do not know exactly how these 'related terms' are generated. 
 
Search Customization Options:  
Language 
 
Google Scholar 
Scope of coverage:  Google Scholar provides peer-reviewed papers, theses, books, abstracts and articles, 
from academic publishers, professional societies, preprint repositories, universities and other scholarly 
organizations. Note however that Google Scholar is specifically focused on scholarly documents, and 
everything covered by Google Scholar is also covered by Google. 
 
Keyword/indexing system: Google full-text algorithm 
 
Search Customization Options: 
• Author 
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• Publication Field 
• Date of Publication 
• Subject Area 
 
Inspec 
Scope of coverage:  
Inspec is an abstracting and indexing database for physics, electrical engineering, electronics and 
computer science information. Updated weekly, it currently has 11 million specially-selected records 
gathered from 1969 to the present that are precise, targeted and relevant, with over 600,000 new records 
added annually. Inspec is used by scientists, engineers, librarians, patents specialists, academia and 
researchers all over the world. Content is available for: 

Physics (47% of Inspec content) 
Electronics & Electrical Engineering (26% of Inspec content) 
Computing & Control (20% of Inspec content) 
Manufacturing & Production Engineering (5% of Inspec content) 
Information Technology, Networking and Security (2% of Inspec content)6 
 

Keyword/indexing system:  
o Controlled terms: keywords related to the article coming from a list of controlled vocabulary 
composed of agreed-upon technical terms made by the compilers of the database.  
o Uncontrolled terms: uncontrolled vocabulary indexing containing terms not in the controlled 
vocabulary list 
 
Search Customization Options: 
• Document type: journal articles, conference articles/proceedings, monograph chapters/reviews, 
report chapters/reviews, and dissertations.  
• Treatment type: application, biographical, economic, experimental, general review, historical, 
literature review, management aspects, numerical, or theoretical 
• Language 
• Publication Year 
 
Science Direct 
Scope of coverage:  Science Direct contains over 25% of the world's science, technology, and medicine 
full-text and bibliographic book and journal information. Information in Science Direct comes from: 
o Journals: Over 2,500 authoritative titles and more than nine million full-text articles are available 
dating back as far as 1823. 
o Online Books: Over 10,500 books - including backfiles - in the following categories: eBooks, 
Major Reference Works, Book Series and Handbooks. 7 
 
Keyword/indexing system:  Author's Keywords and Publisher's Index 
 
Search Customization Options: 

• Subject 
• Date Published 

 
SciFinder 
Scope of coverage:   

                                                            
6  Source: http://www.ei.org/inspec_inspecarchive 
7  Source: http://www.info.sciencedirect.com/content/ 
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SciFinder contains chemistry-realated topics and is only for chemists. SciFinder includes journal and 
patent information from 10,000 currently published journals and patents from more than 59 patent 
authorities, containing important scientific discoveries from the present to the mid-1800s.  
 
Keyword/indexing system:  None 
 
Search Customization Options: None 
 
Scirus 
Scope of coverage:  Scirus contains scientific topics found in web sites, news, journals, web articles and 
academic papers. It searches over 485 million science-specific web pages, filtering out non-scientific 
sites, and finds peer-reviewed articles such as pdf and postscript files. Scirus searches the most 
comprehensive combination of web information, preprint servers, digital archives, repositories and patent 
and journal databases.  
 
Scirus currently covers over web pages including156 million .edu sites, 54 million .org sites, 9 million 
.ac.uk sites, 52 million .com sites, 36 million .gov sites, and over 143 million other relevant STM and 
University sites from around the world. 
 
Scirus also indexes these sources (the numbers are approximate): 

447,000 articles from American Physical Society 
536,000 e-prints from ArXiv.org 
42,000 full-text articles from BioMed Central 
19,000 documents from Caltech Coda 
3,300 e-prints from Cogprints 
81,800 full-text articles from Crystallography Journals Online 
24,000 documents from CURATOR 
2.1 million documents from Digital Archives 
24,000 documents from DiVa 
98,500 full-text articles from Project Euclid 
3,200 documents from HKUST Institutional Repository 
56,000 documents from The University of Hong Kong 
12,700 full-text documents available from IISc 
11,000 full-text documents available from Humboldt Universität 
284,000 full-text articles from Institute of Physics Publishing 
23.1 million patent data from LexisNexis 
16,000 full-text articles from Maney Publishing 
40,000 full-text documents from MD Consult 
585,000 full-text documents from Nature Publishing Group 
18.1 million Medline citations via PubMed 
72,000 documents from MIT OpenCourseWare 
24,700 technical reports from NASA 
792,000 full-text theses and dissertations via NDLTD 
8,900 documents from Organic Eprints 
1,690 documents from PsyDok 
1.5 million articles from PubMed Central 
738,000 documents from RePEc 
63,000 full-text articles from Royal Society Publishing 
619,000 full-text articles from SAGE Publications 
8.0 million full-text articles from ScienceDirect 
463,000 full-text journal articles from Scitation 
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9,100 articles from SIAM 
16,600 documents from University of Toronto T-Space 
21,800 full-text documents from WaY8  

 
 
Keyword/indexing system:  
 ‘Keywords’ can be seen in the ‘refine your search’ box in the lower left side of the website. 
Scirus uses an automated extraction algorithm to calculate ranking by relevance. This ranking is 
determined by two basic values: 
• Words - the location and frequency of a search term within a result account for one half of the 
algorithm. This is known as static ranking.  
• Links - the number of links to a page account for the second half of the algorithm - the more often 
a page is referred to by other pages, the higher it is ranked. This is known as dynamic ranking. Overall 
ranking is the weighted sum of the static and dynamic rank values. Scirus does not use metatags, as these 
are subject to ranking-tweaking by users. 
 
Search Customization Options: 
• Information Types: abstracts, articles, books, company homepages, conferences, patents, 
preprints, scientist homepages, theses/dissertations 
• Content Sources 
• Subject Areas 
 
Scopus 
Scope of coverage:   
Scopus covers articles from web sites, news, journals, web articles and academic papers including nearly 
18,000 titles from more than 5,000 international publishers, covering 16,500 peer-reviewed journals 
(including more than 1,200 Open Access journals), 600 trade publications, 350 book series, and extensive 
conference coverage (3.6 million conference papers). It contains has 38 million records, of which 19 
million include references going back to 1996 (78% include references), and 9 million pre-1996 records 
go back as far as 1823. Scopus also covers 435 million quality web sources, including 23 million patents. 
Web sources are searched via Scirus, and include author homepages, university sites and resources such 
as the preprint servers CogPrints and ArXiv.org, and OAI compliant resources. Scopus contains broad 
coverage of Scientific, Technical, Medical and Social Sciences, and Literature (including Arts & 
Humanities), with more than half of Scopus content originating from Europe, Latin America and the Asia 
Pacific region. It contains over 4,300 Life Sciences titles, over 6,800 Health Sciences titles, over 7,200 
Physical Sciences titles, and over 5,300 Social Sciences titles.9  
 
Keyword/indexing system:  Automated extraction and author assignment 
 
Search Customization Options: 
• Date Published 
• Subject Area 
• Authors 
• Title, Abstract, Keywords 
• Affiliation 
• Language 
• ISSN / CODEN / DOI 

                                                            
8  Source: http://www.scirus.com/srsapp/aboutus/ 
9  Source: http://info.scopus.com/detail/what/ 
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• References 
• Conference 
 
Springerlink 
Scope of coverage:   
Springerlink covers topics in Architecture, Life Science, Behavior Science, Business/Econ, 
Chemistry/Materials, Computer Science, Environmental Science, Engineering, Humanities, Social 
Science, Law, Math/Statistics, Medicine, Physics, Astronomy, Applied Computing from journals, books, 
reference works, protocols, academic publications. It contains over 1,750 peer reviewed journals and 
27,000 eBooks online. 3,500 eBooks, eReference Works and eBook Series titles are scheduled to be 
added each year.10  
 
Keyword/indexing system:  Keywords pulled from publishers; some articles have none. Search uses 
frequency analysis as well as keywords. 
 
Search Customization Options: 
• Title 
• Author 
• Editor 
• ISSN / ISBN / DOI 
• Date of Publication 
 
Web of Science 
Scope of coverage:  Web of Science has authoritative, multidisciplinary content that covers over 10,000 
of the highest impact journals worldwide, including Open Access journals and over 110,000 conference 
proceedings. Topics in  agriculture, biological sciences, engineering, medical and life sciences, physical 
and chemical sciences, anthropology, law, library sciences, architecture, dance, music, film, and theater 
with coverage available to 1900. Contains articles, proceedings, papers, reviews, editorials, news. 
 
Web of Science offers access to six comprehensive citation databases:  

Science Citation Index Expanded: Over 7,100 major journals across 150 disciplines, to 1900.  
Social Sciences Citation Index: Over 2,474 journals across 50 social science disciplines, as well 

as 3,500 of the world's leading scientific and technical journals, to 1956.  
Arts & Humanities Citation Index: Over 1,395 arts and humanities journals, as well as selected 

items from over 6,000 scientific and social sciences journals.  
Conference Proceedings Citation Index: Over 110,000 journals and book-based proceedings in 

two editions: Science and Social Science and Humanities, across 256 disciplines.  
Index Chemicus: Over 2.6 million compounds, to 1993.  
Current Chemical Reactions: Over one million reactions, to 1986, plus INPI archives from 1840 

to 1985.11  
 
Keyword/indexing system:  
 Author-Chosen keywords, and KeyWords plus ™ keywords 

KeyWords Plus are words or phrases that frequently appear in the titles of an article's 
references, but do not necessarily appear in the title of the article itself. KeyWords Plus may 

                                                            
10  Source: http://www.springer.com/e‐content?SGWID=0‐113‐12‐286799‐0 
11  Source: 
http://thomsonreuters.com/products_services/science/science_products/scholarly_research_analysis/research_di
scovery/web_of_science 
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be present for articles that have no author keywords, or may include important terms not 
listed among the title, abstract, or author keywords.12 

 
Search Customization Options: 
• Topic 
• Title 
• Author 
• Publication Name 
• Year Published 
• Address 
• Time past since publication 
 
 
WilsonWeb 
Scope of coverage: Wilson Web contains many databases on a wide range of subjects. Three significant 
ones are OmniFile Full Text Mega, Education Full Text, and Business Full Text. Other WilsonWeb 
databases include Applied Science and Technology Full Text, Biological & Agricultural Index Plus, Book 
Review Digest Plus, Book Review Digest Retrospective, Education Index Retrospective, Essay and 
General Literature, General Science Full Text, Humanities & Social Sciences Retrospective, Humanities 
Full Text; Index to Legal Periodicals and Books, Library Literature & Information Science Full Text, 
Readers Guide Full Text, Readers' Guide Retrospective, Short Story Index, and Social Sciences Full Text.  
 
Keyword/indexing system: None 
 
Search Customization Options:  
Database 
 
 
 
2. SAMPLE SEARCH RESULTS 
 
 To illustrate the volume of items found in each source, we used the Scirus, Web of Science, 
Inspec, Compendex, Science Direct, Springerlink and Google Scholar databases, and searched for terms 
'renewable energy', 'geothermal', 'cybersecurity', and 'cyber security'. The results are summarized below 
(accurate as of July 23, 2009) 
 

                                                            
12  Source: http://wos.isitrial.com/help/helpdefs.html 
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Source Name “renewable energy” “geothermal” “cybersecurity” “cyber security” 
Compendex 22,644 16,704 230 340 
CSA Ilumina -no MIT access- -no MIT access- -no MIT access- -no MIT access- 
ENGnetBASE 425 272 4 12 
Google 18,900,000 8,140,000 3,290,000 1,780,000 
Google Scholar 241,000 313,000 9,400 6,810 
Inspec 12,810 5,814 169 282 
Science Direct 32,192 34,038 258 491 
SciFinder 0 6 0 0 
Scirus (all) 1,170,060 330,341 60,871 93,276 
Scirus  
(academic databases) 27,831 26,352 138 267 
Scopus -no MIT access- -no MIT access- -no MIT access- -no MIT access- 
Springerlink 12,773 4,315 98 233 
Web of Science 7,407 9,705 103 180 
Wilson Web 1,768 1,089 33 78 

Table 1: Summary of hit counts for all databases analyzed in this paper 
 
General Observations from Table 1 above: 
• The number of hit counts produced by Google, Google Scholar and Scirus stand out compared to 
the rest of the databases.  
• The number of hit counts produced by Compendex, Inspec, Science Direct, Scirus (academic 
databases), Springerlink, and Web of Science may be small compared to Google and Google Scholar, 
however the results are by no means negligible. 
• The number of hit counts produced by ENGnetBASE, SciFinder and Wilson Web are very small, to 
the point that they can not really offer a wide array of information. 
• CSA Ilumina and Scopus currently are not accessible through MIT, hence no hit count values could 
be generated for these databases. 

 
 
3. SOME CONSIDERATIONS ABOUT EACH SOURCE 

 
3.1 Sources Currently Used 
 

 This subsection contains some thoughts about the sources wherein we currently have working 
software that can extract data from the databases.  
 
Inspec / Compendex 
 Inspec and Compendex are very similar since they are both under the Engineering Village 
umbrella. Both are good sources of data for the purposes of this project. They have a good amount of hit 
counts and the scope of their search results is very much related to our research. 
 
Scirus 
 Scirus is an excellent source of information and the number of hits generated for each search term 
is huge, however ‘related keywords’ are generated using what seems like a man-made list that appears in 
the 'refine your search' portion of the website. Hence, for the purposes where the aim is to generate a set 
of new, novel, and not-so-commonplace yet relevant terms, Scirus may not be the best source of data.  
However, for the purposes where the aim is to generate a taxonomy of relevant concepts, the Scirus terms 
could be a good place to start. 
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Web of Science 
 Web of Science contains articles only from top-notch journals, which is a limitation because its 
database isn't as expansive as the other sources. As such, we are less likely to discover a new term, or 
generate a large collection of related keywords by looking through the articles in web of science. 
 

3.2 Sources that Could Potentially be Used 
 

 This subsection contains thoughts about the sources wherein we don't currently have working 
software that can extract information from the databases, however we believe that it may be value in 
using these databases. 
 
Science Direct 
 There are a few problems with this database: first, there are some articles where only the abstract 
is available, and not the full article. For these articles, no keywords are provided. Second, at first glance, 
the scope of the database does not seem to relate well with the scope of our current projects. However, a 
large number of 'hits' were found for the terms 'renewable energy', 'geothermal', and 'cybersecurity', which 
is a good sign.  
 
CSA Ilumina 
 MIT has no access to this database, hence we could not determine how useful the database could 
be. 
 
Google 
 Using Google as a source gives us a scope that may be too wide for the purposes of projects 
where the goal was only to use scholarly sources. However, Google's “wonder wheel” and “timeline” 
view are interesting features that may be worth investigating. We can extract information from Google's 
“related searches” and treat those similar to Scirus'”'refine your search” keywords 
 
Scopus 
 MIT has no access to this database, hence we could not determine how useful the database could 
be. However, we know that this database is being used fruitfully by other colleagues. 
 
Springerlink 
 The biggest problem with Springerlink is that there are some articles where no keywords are 
provided. It might be worth experimenting with it. 
 

3.3 Sources that Probably Cannot/Should Not Be Used 
 

 This subsection contains thoughts about the sources wherein we both don't currently have 
working software for data extraction and we do not believe it is worth it to create such software. 
 
ENGnetBASE 
 ENGnetBASE contains topics from book sources only, which are of no use to us, in terms of 
generating new terms. Additionally, no keywords can be scraped from the website and the number of hit 
counts is extremely small. 
 
Google Scholar 
 Google scholar contains no extractable lists of keywords, and the “number of results” parameter 
that it provides is an estimate, which varies widely per search.  
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SciFinder 
 The scope of SciFinder is only chemistry topics for chemists, which has no relation to our current 
projects. In addition, the number of hit counts produced for all terms searched is extremely low. 
 
WilsonWeb 
 WilsonWeb is similar to MIT's online Barton catalogue. There are no keywords provided. 
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Appendix 2: Specification (spec) files used to extract information from sources 

We use Cameleon # in the Early Growth Analysis Tool. Cameleon# is a generic web wrapper developed 
by the MIT Context Interchange (COIN) group. Web wrappers in the COIN group are used to treat semi-
structured web data as ordinary relational data sources that can be processed using the standard SQL 
query language. The common element of all of the COIN wrapper development toolkits is that they 
separate the extraction knowledge from the code by expressing the former in a separate specification file 
(spec file).  The code remains untouched and web sources are wrapped by creating a simple text file 
expressing extraction rules such as what URL(s) to visit, and what patterns to apply, and so on.  

A sample spec file is shown below in XML format. In this spec file, the Web address of Scirus is 
indicated in the SOURCE tag. The input attributes (searchTerm, bYear, and eYear) are enclosed within # 
signs, and are expected from the user. The BEGIN and END tags specify (in regular expressions) 
landmarks preceding and following the data of interest. Finally the pattern specifies the regular expression 
for the data to be extracted. 

 
scirus.xml 

 
 
 

 
 

scirushits.xml 
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engineeringVillage.xml 
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SQL Queries Used 
 
Sample Queries: 

1. select relatedTerms from scirus where searchTerm= “biotechnology”  
UNION 
select relatedTerms from engineeringvillage where searchTerm= “biotechnology” 

 
2. select hits from scirus where searchterm= “agricultural biotechnology” and  byear= “2006”and 

eyear= “2007” 
UNION 
select hits from scirus where searchterm= “animal biotechnology” and  byear= “2006”and eyear= 
“2007” 
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