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Abstract

We present a unifying framework in which object-independent modes of variation
are learned from continuous-time data such as video sequences. These modes of
variation can be used as generators to produce a manifold of images of a new object
from a single example of that object.

We develop the framework in the context of a well-known example: analyzing the
modes of spatial deformations of a scene under camera movement. Our method
learns a close approximation to the standard affine deformations that are expected
from the geometry of the situation, and does so in a completely unsupervised (i.e. ig-
norant of the geometry of the situation) fashion. We stress that it is learning a
parameterization, not just the parameter values, of the data. We then demonstrate
how we have used the same framework to derive a novel data-driven model of joint
color change in images due to common lighting variations. The model is superior
to previous models of color change in describing non-linear color changes due to
lighting.
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1 Introduction

Human beings have the remarkable ability, given a single image of an object, to
understand1 how it will appear under changes in current viewing parameters such
as (camera) position and lighting. How is it possible for us to have such good
models of so many different types of objects? One could adopt the view that we
must learn a model of variation for each type of object in the world. However, this
is contradicted by the fact that people are able to understand how an object will
change appearance even if they have seen only a single example of that object.

Another possibility is that we have highly generic models of images that apply to
all objects. For example, some general inference can be done for the images of a
new object by considering the statistics of “natural images”. However, such generic
class-independent models of image data tend to be very weak in their predictive
power since images are so highly variable.

To address this problem, we propose developing object-independent models of image
change, rather than models of images themselves. Although images of different
objects may vary greatly, by using the right representation, we can represent changes
in those images equivalently. In addition, we can develop a probabilistic model of
these changes in the common representation. Subsequently, to create an image
model for a new object (from, say, a single example), we can use a single image and
the global model of change to estimate a manifold of possible images of the object.
A primary goal of this paper is to unify under one mathematical framework the
modeling of feature changes for very different types of features.

We should also point out that while a single “mode of variation” often will not serve
to describe changes over an entire image, a combination of several such modes often
will do the job. In fact, if we segment an image according to the change structure,
we have good reason to believe that this segmentation will be meaningfully related
to the physical composition of the scene. These issues will be discussed near the
end of the memo.

In Section 2, we define the feature flow field, a vector field which maps one image
into another by mapping the value of the feature at each pixel in the source image to
a new feature value. The new image is then constructed from the new feature values.
In Section 3, we focus on one well-known type of feature flow fields: optical flow
fields. We describe how image deformation fields commonly used for modeling image
variability (that is, affine optical flow fields) can be recovered by performing simple
clustering algorithms or dimensionality reduction techniques on noisy observations
of empirical optical flow fields. In Section 4, we show the generality of feature flow
methods by developing a novel model of joint color change in images due to common
lighting changes. We demonstrate how to generate a manifold of images of an object
given a basis of principal flows and a single example of the object. In Section 5, we
propose that while a single flow field may not describe changes well for a complex
object, we can adopt more complex models such as mixtures of feature flow fields
based on the same principles. In fact, we will describe how variations in feature
flow fields can in principle be used to discover structure in scenes.

1We take as evidence of this “understanding” the ability of humans to recognize an
object under lighting condition A when they have seen the object only under lighting
condition B.
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2 The feature flow field

In the following, let f(p) ∈ R
D be the vector valued feature of a pixel p in an

image. Further assume that each component of f(p) takes values from a set S. Let
F = {s ∈ SD} be the set of all possible feature vector values. We will consider
two types of features in this paper. In the first application, we will use coordinate
features, in which f(p) will represent the coordinates of some object in the image.
In the second application, the features will be color features, in which f(p) will
represent the integer RGB color values of the pixel p.

Suppose we are given two N -pixel images I1 and I2 of the same scene taken under
two different parameter settings, represented by θ1 and θ2. We assume the images
are consecutive images from a video sequence, and that the parameter values vary
smoothly through time. We assume that we have a method of putting the images
in correspondence2. Each pair of corresponding image pixels pk

1 and pk
2 , 1 ≤ k ≤ N ,

in the two images can be interpreted as a mapping f(pk
1) 7→ f(pk

2). That is, it tells
us how a particular pixel’s feature changed from image I1 to image I2. This single
feature mapping is conveniently represented simply by the vector difference between
the two pixel features:

d(pk
1 , pk

2) = f(pk
2) − f(pk

1). (1)

By computing N of these vector differences (one for each pair of pixels) and placing
each vector difference at the point f(pk

1) in the feature space F , we have created a
vector field that is defined at all points in F for which there are feature values in
image I1.

That is, we are defining a vector field Φ′ over F via

Φ′(f(pk
1)) = d(pk

1 , pk
2), 1 ≤ k ≤ N. (2)

This can be visualized as a collection of N arrows in feature space, each arrow
going from a source feature to a destination feature based on the parameter change
θ1 7→ θ2. We call this vector field Φ′ a partially observed feature flow. The “partially
observed” indicates that the vector field is only defined at the particular feature
points that happen to be observed in image I1.

To obtain a full feature flow, i.e. a vector field Φ defined at all points in F , from a
partially observed feature flow Φ′, we must address two issues. First, there may be
points in F at which no vector difference is defined. Second, there may be multiple
pixels of a particular feature value in image I1 that correspond to different feature
values in image I2. We propose the following radial basis function interpolation
scheme, which defines the flow at a feature point f ∗ by computing a weighted
proximity-based average of observed “flow vectors”:

Φ(f∗) =

∑N
k=1 e−‖f(pk

1
)−f

∗‖2/2σ2

Φ′(f(pk
1))

∑N
k=1 e−‖f(pk

1
)−f∗‖2/2σ2

. (3)

This defines a feature flow vector at every point in F . Note that the Euclidean
distance function used is defined in feature space, not necessarily in the space defined
by the [x,y] coordinates of the image. σ2 is a variance term which controls the
mixing of observed flow vectors to form the interpolated flow vector. As σ2 → 0,
the interpolation scheme degenerates to a nearest-neighbor scheme, and as σ2 → ∞,
all flow vectors get set to the average observed flow vector. The value of σ may
need to be adjusted for the type of feature used. Note that feature flows are defined

2Since the image sequences are assumed to be continuous in time, this will usually be
fairly easy to do.
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so that a feature point with only a single nearby neighbor will inherit a flow vector
that is nearly parallel to its neighbor.

We have thus outlined a procedure for using a pair of corresponding images I =
(I1, I2) to generate a full feature flow field. We will write for brevity Φ = Φ(I) to
designate the flow generated from the image pair I. We now apply this framework
to real learning problems by using position and color features.

3 Optical flow fields

To apply the method to variations in images due to deformations, we need to define
a position feature. Note that we will not explicitly favor any type of deformations
over any others, except that our interpolation routine introduces a small amount of
smoothing. In particular, the deformations are not parameterized except by their
coordinate values.

For a pair of consecutive images I1, I2, we define the feature value of pixel p under
image I as follows. Let O(p) be the “object” that occurs at pixel p in image I .
Let f(p) be the coordinate of that object O as depicted in image I1. Under this
definition, f(pk

2)− f(pk
1) will be the image translation necessary to bring the object

O in image I1 in correspondence the same object in image I2. Thus, adopting this
type of coordinate feature, a feature flow field is just an optical flow field that puts
the two images in correspondence.

3.1 Structure in optical flow fields

Several authors have used structure in optical flow both to analyze specific classes
of images[9] and to study the generic structure of motion images[4]. We include a
discussion of optical flow here as an illustration of the generality of the technique
rather than as a novel application.

Optical flow can be caused by either scene motion or camera motion. Noting that
the motion of a human being is more common than the motion of the scenes they
would typically look at, then we might expect certain strong patterns in the optical
flow fields. If the distribution of optical flow fields is concentrated enough, we can
adopt them as a model of image variation for certain types of images.

3.1.1 Acquiring data for an optical flow model

To test these ideas, we recorded video footage of a static scene as we moved about
the scene, panning, tilting, and rotating the camera as we moved. The scene was a
typical office lounge scene, with the range of objects varying between about 3 feet
and 30 feet from the camera. The camera was moved at a speed so that the video
was easily interpretable by people at all points in the video, but otherwise the speed
of movement of the camera was not controlled carefully.

After the video was taken, optical flow fields were generated between every two
successive frames. A simple template matching optical flow algorithm was used.
Since similar movements of the camera produce similar motion fields, by clustering
the optical flow fields, we hoped to capture the dominant modes of variation in the
image, and hence to automatically capture a useful parameterization for images of
objects under camera movement.

A simple variant of the K-means clustering algorithm was used to cluster the op-
tical flow fields. The results are shown in Figure 1. There are clusters clearly
corresponding to horizontal translation, vertical translation, rotation, scaling, and
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Figure 1: Means of flow field clusters derived from video sequences.

to other combinations of affine flows3. Using these flows as a basis, we can generate
a manifold of images by applying small amounts of each of these transforms to a
particular image. Such techniques have been used to augment data sets as in [6, 8].

Alternatively, such an analysis could be used to develop a model of optical flows
under special conditions, such as for analyzing traffic data from a static camera, or
in a vehicle-mounted camera, where the common optical flows would likely be very
different. In the next section, we discuss a more novel application of the feature
flow models.

4 Joint color change

In this section, we adopt as our feature f(p) the RGB color triple of a pixel. Our
feature flow field is now a color flow field, the purpose of which is to describe a map
from an image I1 to another image I2 by describing how each color changes from
image to image. Thus, a color flow field is a vector field defined on the 3-D color
space. Since it is learned from data, it will be independent of the parameterization of
the color space (except for the interpolation procedure). We reported our statistical
model of joint color change in previous work[7], but we review the key points here.

4.1 Structure in the joint color change space

Certainly an image feature appearing as one color, say blue, in one image could
appear as almost any other color in another image due to a lighting change. Thus
the marginal distribution of mappings for a particular color, over all possible photic4

3Similar results, albeit with fewer distinct affine flows, were obtained from a principal
components analysis.

4By photic, we mean any parameter that affects the brightness or color of a pixel, such
as lighting or gain control, but not parameters that affect the position in which an object
appears (geometric parameters).
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a b c d e f

Figure 2: Image b is the result of applying a non-linear operator to the colors in
image a. c-f are attempts to match b using a and four different algorithms. Our
algorithm (image f) was the only one to capture the non-linearity.

parameter changes, is very broadly distributed. However, when color mappings are
considered jointly, i.e. as color flows, we hypothesize that the space of possible
mappings is much more compact. We test this hypothesis by statistically modeling
the space of joint color maps, i.e. the space of color flows.

In learning color flows from real data, many common color flows can be anticipated.
To name a few examples, flows which make most colors a little darker, lighter, or
redder would certainly be expected. These types of flows can be well modeled with
simple global linear operators acting on each color vector[1, 2, 5]. That is, we can
define a 3x3 matrix A that maps a color c1 in the image I1 to a color c2 in the
image I2 via

c2 = Ac1. (4)

Such linear maps work well for many types of common photic parameter changes.
However, there are many effects which these simple maps cannot model. Perhaps
the most significant is the combination of a large brightness change coupled with
a non-linear gain-control adjustment or brightness re-normalization by the camera.
Such photic changes will tend to leave the bright and dim parts of the image alone,
while spreading the central colors of color space toward the margins. These types
of changes cannot be captured well by the simple linear operator described above,
but can be captured by modeling the space of color flows.

A pair of images exhibiting a non-linear color flow is shown in Figures 2a and b.
Figure 2a shows the original image and b shows the same image after a non-linear
color change (the contrast has been enhanced). Notice that the brighter areas of the
original image get brighter and the darker portions get darker. This effect cannot
be modeled using a scheme such as that given in Equation 4. The non-linear color
flow allows us to recognize that images a and b may be of the same object, i.e. to
“match” the images.

4.2 Color flow PCA

Our aim was to capture the structure in color flow space by observing real-world
data in an unsupervised fashion. To do this, we gathered data by observing a large
colored poster under standard office lighting conditions. It is important to note
that a variety of non-linear normalization mechanisms built into the camera were
operating during this process.

Our goal was to capture as many common lighting conditions as possible. We did
not use unusual lighting conditions such as specially colored lights. Although a
few images that were captured probably contained strong shadows, most of the
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captured images were shadow-free. Smooth lighting gradients across the poster
were not explicitly avoided or created in our acquisition process. A total of 1646
raw images of the poster were obtained in this manner. We then chose a set of 800
image pairs Ij = (Ij

1 , I
j
2), 1 ≤ j ≤ 800, by randomly5 and independently selecting

individual images from the set of raw images. Each image pair was then used to
estimate a full color flow Φ(Ij) as described in Equation 3.

Note that since a color flow Φ can be represented as a collection of 3P coordinates,
it can be thought of as a point in R

3P . Here P is the number of distinct RGB colors
at which we compute a flow vector, and each flow vector requires 3 coordinates: dr,
dg, and db, to represent the change in each color component. In our experiments
we used P = 163 = 4096 distinct RGB colors (equally spaced in RGB space), so a
full color flow was represented by a vector of 3 ∗ 4096 = 12288 components.

Given a large number of color flows (or points in R
3P ), there are many possible

choices for modeling their distribution. We chose to use Principal Components
Analysis since 1) the flows are well represented (in the mean-squared-error sense)
by a small number of principal components (see [7] for details), and 2) finding the
optimal description of a difference image in terms of color flows was computationally
efficient using this representation.

4.3 Synthesizing novel images

There are many potential applications of these color flow models described in [7],
but perhaps the most fundamental is in generating synthetic images of a new object.
Figure 3 shows the result of the application of various amounts of the first three
principal color flows to a novel image. Recall that the color flow model was based on
the observation of an entirely different image, and thus, we have effectively created
a simple model of the manifold of the new object from a single example.

5 Mixtures of feature flow fields

Until now we have discussed modeling change over an image with a single flow field,
be it an optical flow field or color flow field. However, it is clear that in many
instances the change in a scene might be some combination of several flow fields.
For example, if several objects are moving in a scene simultaneously, then a single
statistically common optical flow field will not tend to describe the change in the
scene. We must describe the scene as a combination or mixture of flows. This type
of work has been done for optical flow fields by Jepson and Black, for example [3].

The same need for mixtures of flows occurs in modeling color changes in images. If
a scene consists of a single flat object with distant lighting, then single color flows
may be able to explain common lighting changes for that scene. However, for a
scene with nearby lighting, a scene composed of many surfaces, or a scene with
curved surfaces, we can only expect color flows to be locally consistent.

In [7], we show how multiple lighting changes in a single scene can be modeled
by performing patchwise color flows between two images, enforcing consistent flows
only over small regions (see figure 4). This type of approach allows explanation of
complex lighting affects while maintaining a limited capacity for the model, since
the model is still limited in the joint color mappings it can select.

5Non-adjacent pairs of images were used since most adjacent pairs of images exhibit
extremely small color flows. While it is possible if we had enough data to capture many
lighting changes by using adjacent pairs of images, by using distal pairs of images, we can
study common lighting changes with a much small amount of data.
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Figure 3: Effects of the first 3 principal color flows.

For curved surfaces, we can expect the color flow to change from point to point, but
as long as the surface is smooth, then we would expect the color flows to change
smoothly as well. Also, for flat surfaces, if a light source is nearby, then the angle of
incidence at each point on the surface may vary. Thus, if the light changes position,
the effect on the angle of incidence will be different at each point, and thus we could
expect the color flow to be different at each point as well. However, we still expect
smooth changes in the color flow coefficients. And we should still expect that two
images of the same scene can be “flowed” to each other using locally constant flows,
or at least slowly varying flows (linear or quadratic).

Sharp changes in the color flow coefficients would tend to be an indication of sharp
changes in object gradient, or perhaps an occlusion or discontinuity, either in the
lighting (i.e. a shadow) or due to the overlap of various surfaces from the point of
view of the camera. Hence the non-constancy of flows, in principle, can actually tell
us a lot about scene composition. We are currently investigating these ideas.

6 Conclusions

We have presented a framework in which the difference in continuously observable
feature values across an image can be used to model the changes in those images.
This method is applicable whenever feature values can be observed continuously.
In particular, we are currently evaluating whether this technique can be applied to
understanding common mappings in spectrograms to model allowable variations in
speech and other auditory data.
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