




Digitized by the Internet Archive

in 2011 with funding from

IVIIT Libraries

http://www.archive.org/details/bayesempiricalba277dumo





working paper

department

of economics

Bayes and Empirical Bayes Methods
for Combining Cancer Experiments

in Man and Other Species

William H. DuMouchel*
and

Jeffrey E. Harris**

Number 277 February 1981

massachusetts

institute of

technology

50 memorial drive

Cambridge, mass. 02139





Bayes and Empirical Bayes Methods
for Combining Cancer Experiments

in Man and Other Species

William H. DuMouchel*
and

Jeffrey E. Harris**

Number 277 February 1981

A Department of Mathematics, Massachusetts Institute of Technology.
Research supported by National Science Foundation Grant No. MCS-80-05483.

** Department of Economics, Massachusetts Institute of Technology.
Research supported by Public Health Service Research Grant No.

DA-02620 and Research Career Development Award No. DA-00072.

This paper is also issued as Technical Report No. 24, Department
of Mathematics, Massachusetts Institute of Technology.





BAYES AND EMPIRICAL BAYES METHODS FOR COMBINING

CANCER EXPERIMENTS IN MAN AND OTHER SPECIES

by

William H. DuMouchel*

and

Jeffrey E. Harris**

Massachusetts Institute of Technology

ABSTRACT

This paper offers a method for combining the
results of diverse experiments when there is uncertainty
about the relevance of some experiments to others. Within
a Bayesian framework motivated by Lindley and Smith (1972) ,

the method is used to assess human cancer risks from
heterogeneous toxicological and epidemiological data. A
distinction is drawn between the sampling error of each
experiment and an error of relevance among experiments.
The latter error reflects the uncertainty of interspecies
extrapolations. It is shown how the experimental data,
along with prior information on the credibility of such
extrapolations, permits estimation of the human carcino-
genic effects of various environmental emissions. A cross-
validation method is proposed for selecting the most
relevant subset among an array of experiments by eliminat-
ing those species or environmental agents which contribute
most to the extrapolative error. Finally, other types of
prior information on the relationships between experiments
are incorporated into the analysis.
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1. INTRODUCTION

This paper offers a statistical method for combining the results of

diverse experiments when there is uncertainty about the relevance of some

experimental results to others. Our analysis is motivated by the increasing

prominence of public policy problems in which decision makers call on multiple

disciplines for advice. We seek an "enlargement of statistical techniques to

encompass research programs rather than one at a time studies..."

(Schneiderman, 1966)

.

We apply our method to the specific problon of assessing human cancer

risk from an environmental agent when epidemiological data are imprecise or

absent, but when precise toxicological studies in various species are

available. This problem is more complicated than that posed by Cochran

(1980) , in which experiments of very similar design differed primarily in

their date anci location. In our problem, sane experiments may be performed in

vivo , while others are conducted in cell culture or in subcellular systems.

Frequently, the experiments involve different conpouncte or mixtures of

conpounds. Interspecies conparisons are invariably required. Ideally, the

exact relations among these experiitents should be determined fron fundamental

advances in understanding the etiology of cancer. Our more modest goal here

is to provide a statistical framework that permits scientists to ccmbine the

experimental results with their own prior judgments to reach quantitative

conclusions. l!his objective is similar in spirit to those of Freireich et al.

(1966) , who compared the toxicity of anti-cancer agents in mouse, rat,

hamster, dog, monkey, and man; Meselson and Russell (1977) , who compared the

mutagenic and carcinogenic potency of 14 compounds; and Crouch and Wilson

(1979,1980), who examined the relative potencies of several chemical

carcinogens in various pairs of species, most extensively in rats and mice.
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The main idea behind our approach is to characterize precisely the

different sources of variation among experiments. In our method, the results

of each experiment are summarized by a single number, such as the slope of a

dose-response relation. Each slope has an approximate standard error. These

errors of measurement are assumed to be independent. The actual slopes, we

hypothesize, lie near the response surface of an underlying regression model.

Since same environmental agents may have distinctive effects in some species,

this regression model necessarily entails some error. The critical factor

linking the experiments is the scientist's 2. priori information on the

exchangeability of these errors of interspecies extrapolation.

These ideas are formalized within a Bayesian framework similar to that of

Lindley and Ehiith (1972) . We assign prior distributions for the

"hyperparameters" of the underlying regression model. Given these prior

distributions and the experimental data, we compute the posterior

distributions of the dose-response slopes. Eknpirical Bayes versions of our

procedures are also presented.

In the next section, we pose a problem in the assessment of human lung

cancer risk from a number of environmental emissions that contain polyarontatic

hydrocarbons. Section 3 formally develops our approach. Sections 4 and 5

then apply our method to the data. In Section 6, we offer a siitple

cross-validation procedure to assist in deciding which experiments are worth

including. In Section 7, we discuss the case where a scientist has prior

information on the relationships between experiments. The final section

critically reviews our approach and suggests further lines of investigation.

Our calculations in this paper are illustrative. We do not propose here

to draw conclusions about the public health significance of various ambient

concentrations of pollutants. This would require a more thorough discussion
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than space permits. Nor do we attach special significance to the

dose-response models of carcinogenesis from which our data were derived.

Harris (1981) has discussed the limitations of the use of such dose-response

estimates in predicting excess cancer incidence from ambient population

exposures.

2. THE PROBLEM

Table 1 displays the results of two types of carcinogenesis studies of

two related environmental emissions, arranged in a 2«2 table. For each of the

four experiments, three numbers are given; the observed slope of the

dose-response relation; its ODefficient of variation (i.e.^ the ratio of the

standard error of the observed slope to its mean) ; and the natural logarithm

of the observed slope. The first row of experiments represents the results of

epidemiological studies of occupational exposures to coke oven anissions

(Lloyd, 1971; Mazumdar et al., 1975; U.S. Environmental Protection Agency,

1979) and to roofing tar anissions (Hammond et al., 1976). The second row

represents the results of skin tumor initiation experiments on the

dichloranethane extracts of these emissions. 'The latter experiments were

performed under identical conditions in the same laboratory, as part of the

U.S. Environmental Protection Agency diesel onission research program (Nesnow

et al., 1979; Huisingh et al., 1979). The slopes and their standard errors

were estimated by maximum likelihood methods, as described in Harris (1981)

.

Our goal is to improve the precision of the estimated dose-response

slopes for the human studies. The main question is how to use all of the data

in Table 1 to achieve this objective.

One difficulty is immediately apparent. The dose-response slopes in man

and mice are measured in different units. We might attempt to convert all the
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TABLE 1.

2x2 Experimental Data Matrix

Roofing
Tar
Emissions

Coke
Oven
Emissions

Lung Cancer (Man)*

Skin Tumor Initiation
(Senear Mice) **

1.64
1.41
0.49

0.54
0.04

-0.63

4.40
0.34
1.48

2.10
0.04
0.74

(slope)
(coef .var.

)

(log slope)

increment in relative risk per 10 y^g/m extractable organics
X years.
**Papillomas/mouse per mg extract at 27 weeks.
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experiments into canmon units, e.g.? the incremental lifetime incidence of

tumor per mgAg body weight per day, or the age-specific probability of tumor

per cumulative lifetime dose per unit body surface area. The choice of

conversion factor, however, is hardly clear.

One way to circumvent this problem is to consider the relative potencies

of the two environmental emissions in each species. Since the dose-response

slopes in each row in Table 1 are measured in the same units, the ratios of

the slopes are comparable unitless quantities. In fact, a natural hypothesis

for cait)ining these data is that the relative potency of the two emissions is

preserved across the two biological systems.

The extent to which these data adhere to such an hypothesis can be

ascertained in Figure 1, which depicts the means and standard errors of the

dose-response slopes on a logarithmic scale. (The error bars correspond to

the standard errors of the log slopes, which have been approximated by the

coefficients of variation in Table 1.) On a log scale, the difference between

coke oven slope and roofing tar slope in man is close to the corresponding

difference in mice. To show this, we have also drawn the (weighted) least

squares parallel lines on Figure 1, and the fit is good.

This result could be purely fortuitous. Ihe standard errors of the

epidemiological data, especially for roofing tar, are relatively large. But

there is a deeper objection. The hypothesis that the relative carcinogenic

potency of these two emissions is preserved across species ignores possible

interspecies or interorgan differences in the distribution of particulates,

the extractability of particulate-bound polyarcmatic hydrocarbons, their

clearance, metabolism, and genetic and other repair mechanisms. To claim that

the totality of data in Table 1 provides more information about the human lung

cancer risks from, say, roofing tar exposure than the roofing tar
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epidemiological study alone is to maintain sane degree of prior belief that

these interspecies differences are not too large. The uncertainty inherent in

such interspecies extrapolations clearly differs fron the conventional

sampling error of each experiment. If we are to use all of the data in Table

1 to estimate any one slope, then we must devise some measure of the extent of

this extrapolative uncertainty.

Finally, there is the objection that the hypothesis of preserved relative

potencies will not withstand other empirical canparisons. It is possible that

such an hypothesis applies accurately only to the comparisons in Table 1, but

not to other bioassays or to other environmental otiissions* However, if we

had no prior belief that the hypothesis should hold any rtore exactly for

roofing tar and coke oven emissions than, say, for autcniotive particulate

anissions or cigarette smoke, then any enpirical canparisons that contradict

the hypothesis would raise our uncertainty in the current extrapolation.

3. STATISTICAL MDDEL

3»1 Notation and Assumptions.

Let y . be the logarithm of the estimated dose-response slope for the

experiment in species k on enviromiental agent J , In the problem above,

k=l,2 correspond to epidemiological studies in man and skin tumor initiation

experiments in mice, respectively, while 1=1,2 correspond to roofing tar

enissions and coke oven emissions, respectively. The variables y « are

presumed to be approximately normally distributed with mean B^^ and known

standard error c . The assumptions of normality and known standard errors

are not unreasonable, since each y^^ was a maximum likelihood estimate based

on a relatively large experiment. The quantities 0^ are the true log

dose-response slopes, the primary parameters of interest.
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We assume that each Q^ has a symmetric prior distribution with nean

value of the form

(3.1) E[e^l|A,ec^,V^] =^ ^X^^ij^,

where the hyperparameters { M- r ^^ i ^j> } represent the overall mean effect

,

species-specific effects, and onission-specific effects, respectively. In our

Bayesian framework, these hyperparameters in turn have prior distributions.

Equation (3.1) embodies the hypothesis that the relative potency of the two

emissions is on average preserved across species. Moreover, the relative

potencies are a. priori just as likely to be larger for one species than for

the other. The various Q^^^ are measured in different units, since they are

the logs of dose-response slopes for quite different dose-response

experiments. The additive model (3.1) is meaningful, however, so long as

(0„ -9,2^) -
^^ti~®,,^ is a dimensionless quantity, a condition satisfied in

our problem above. In that case, the units of measurement for f^ f ^k. / snd

Vb can be chosen so that the quantities

^Ki = % -^-^-'^l

are similarly dimensionless. Each S g is a species-emission interaction

effect, measuring the amount (on a log scale) by which the experiment in

species k on emission Ji deviates fron the constant relative potency

hypothesis.

Conditional on the value of another hyperparameter CT , we further assume

that the 5^^ are independently distributed a. piiori as N(0,<r ). Under this

critical assumption, the interaction effects 5^ are a priori exchangeable
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(de Finetti, 1964). That is, we have no prior information that a deviation of

a given magnitude fran the constant relative potency model is more likely in

one experiment than in any other.

We take care here to elucidate the precise meaning of this form of prior

information. We recognize that the mechanisms of carcinogenesis may vary

considerably among agents or species. Quite different metabolic pathways may

be involved. The number of stages in expression of tumor may differ. Any

variation that is distinctive to a particular agent in a particular species

could result in a marked deviation fron our additive model. The

exchangeability hypothesis does not exclude the possibility of such

deviations. It merely states that we cannot identify a. priori which entry in

our two-way table of experiments is likely to have the largest deviation.

The hyperparameter «" measures our belief in the degree of accuracy of

the equal relative potency model. A value of ff'=0.05, for example, implies

that within one normal standard deviation, i.e., with probability 0.68, the

additive model is accurate to within an absolute error of 0.05? or

equivalently, each dose-response slope conforms to the underlying equal

relative potency model to a multiplicative factor of exp(0,05)si,05. A prior

belief that C is of this magnitude thus implies a relatively high degree of

confidence in the underlying model. On the other hand, a value of ^=5

implies that with probability 0,68, each dose-response slope conforms to the

underlying model to a multiplicative factor of exp(5)=150, A belief that ^

is of this magnitude implies much less faith that the experiments can be

profitably ccinbined.

We now generalize beyond the 2x2 case considered above, letting { y . ±

c^j ? k=l,...,K ;5=1,...,L } be a set of experimental observations on the

log dose-response slopes for K species and L environmental agents. We also
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admit the possibility that some y^ are missing from a set of conteroplated

experiments. Except where otherwise noted below, we assume that the set of

available experiments is connected, in the sense that any available experiment

(k,J^) can be reached fron any other available experiment (k',^') by a series

of rtsDves frem one available experiment to another in which each move is along

a single row or column. Conditional on 6° , the observed y . are generated

by the linear model

(3.2) y^^ =ix ^^'^'^^li ^^a'

where the three sets of variables ^i^'^^/^s ^' ^ ^tfi ^' ^^^^ ^ ^kJL^ ^^^

t ^
independent a priori , with the o^ i.i.d. N(0,(r) and the £ . independent

z
N(0,c q). Following the usual general linear model formulation, we further

replace the expressions p. +'^(t.
+ ^s in (3.2) by X^ , where ^ is a column

vector of hyperparameters and X is an appropriately chosen design matrix.

Of the K+L+1 hyperparameters in
^P-^'^ji'^i,'^ ' ^^ niost K+L-1 are

independently estimable in the classical sense. So long as we use an

informative full rank prior distribution on all K+L+1 hyperparameters, no

restrictions on these hyperparameters are necessary in our Bayesian framework.

In other cases, however, particularly when a diffuse prior distribution is

anployed, we shall assume that ^ corresponds only to the independently

estimable canponents of ^^^r^^r^j^'i and that X is the corresponding full

rank design matrix.

Finally, we assume that ^ is a priori multivariate normal with mean

vector b and covariance matrix V , and that O" has a prior distribution

IT with density 'n'(<7) . Now let i = l,...,n index the experiments,

replacing the paired indices (k,i.) . Let m be the rank of X , that is, the
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number of independently estimable elements of ^ '^ '
"^i^'
^ ^ * ^^ Yr&r^r and

£, be nxl column vectors replacing ^y^p^ ' ^^<i? ' ^^*<^^ * ^^*^
^^\iS} '

respectively. Let I be the nxn identity matrix, and let C be

diag(c^ ,...,c* ) . Our model can be formulated generally as

y = X(l + S + £ , where = Xfl + ^, and

(3.3a) CT ~ TT
,

(3.3b) (i ~ N(b,V),

(3.3c) (eip,cr) ~ N(xp,cr*l),

(3.3d) (Yie) ~ N(©,C).

This model possesses a hierarchical structure similar to that formulated

by Lindley and Smith (1972) . The experimental data Y and C , as well as

b , V , and the distribution ft , are assumed be to known. The choice of a

prior distribution TT is left unspecified until Section 4. We note here

that there is no advantage or compelling reason to choose the inverse

chi-squared prior distribution for G~ g as proposed by Snith (1973a) . The

choice of b and V is more conplicated, and will be considered in detail

below. (Readers who are less interested in the mathematical details of

estimation may wish to skim the remainder of Section 3 and resume in earnest at

Section 4.

3.2 Bayes Estimates. Informative Prior on ^

.

Let us suppose that a scientist has prior information on ^ , which he

expresses through his choice of b and V . Such choices could be made

directly, as we shall illustrate in Section 7, or by indirect elicitation, as

in the method of Kadane et al. (1980)

.
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Estimation of the parameters now proceeds by straightforward Bayesian

methodology. First, we conpute the marginal distribution of the data given

the hyperparameter G*. From (3.3),

(3.4) (YlC) ~ N(Xb,C+<rVxVX').

In our Bayesian framework, (3.4) can be regarded as the likelihood of c for

S priori given values of b and V . The posterior distribution of <T is

therefore

(3.5) Tf (tflY) ec Tr(<y) lC+<r*I+XVX' r'^*exp{-A(Y-Xb) ' [C+(x'l+XVX' ]~ * (Y-Xb)

}

where lAl is the determinant of A. For future reference, we define the

posterior expectation of cT as

G-^^ = fo-*Tr(cr|Y)dc>

which can be interpreted as the approximate risk in estimating a particular

6 by XB under squared error loss.

Now consider the posterior distribution of fi . Denoting the posterior

density by f (piY) , we have fron (3.3)

00

(3.6) f(piY) = ff(piY,«r)Tr«riY)d<y,

where f(^lY,cr) is the multivariate normal density N(|i,V) , and

(3.7) p = V[X' (C+<3"*i)" Y + v" b].
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V = [X'(C+<r*ir'x + V"']"'.

The posterior distribution of (i is a mixture of multivariate normal

distributions with mixing probabilities given by (3.5), the posterior density

of C . Equations (3.7) are derived by the familiar rule for computing

posterior distributions for the normal data, normal prior, known variance

case. (See, e.g., Raiffa and Schlaifer (1968).) With W= (C+c" I)~ known,

the least squares estimator |l = (X'WX) X'WY has mean ^ and precision

matrix (X'WX) (v^ere, for the sake of this intuitive argument, X here is

necessarily of full rank) . Moreover, the prior distribution of ^ has mean

b and precision V . The rule for computing the posterior distribution of

|B is to weight the least squares estimate and the prior mean by their

precisions, with the precision of the result equal to the sum of these

precisions. In the analysis below, we shall be interested in the fitted

values Xft fron the underlying constant relative potency hypothesis. The

posterior density of XA is the corresponding mixture of multivariate normal

densities N(xp,XVX') , where the mixing probabilities are still Tr(c"lY) and

^ and V are defined in (3.7).

Consider, finally, the estimation of 0. If gOlY) is the posterior

density of 6 , we have

90

(3.8) g(eiY) = rg(6lY/r)ir(0'lY)d<r,

where g(9lY,0") is the multivariate normal density N(©,C) , and

(3.9) © = c[c''y + (xyx'+o-^D-'xh],

C = [C"' + (XVX'+A)"']"' .
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The posterior distribution of is similarly a mixture of normal

distributions. The means and covariances of these normal distributions, given

by (3.9), are derived in a manner analogous to (3.7), where, by (3.3) ,^\&,^~

N(6,C) and Q\<r ~ N(Xb,XVX'+o- I) . Each 9 is a weighted average of the

original data Y and the corresponding prior prediction Xb from the

underlying constant relative potency model, where the weights are the

corresponding precisions.

3.3 Bayes Estimates. Diffuse Prior on /3 .

Calculation of the posterior distributions (3.5), (3.6), and (3.8)

requires us to specify the mean b and the covariance matrix V of the prior

distribution of |S. In many situations, however, information about the

hyperparameters p will be extremely vague. That is, the prior covariance

iratrix V will be large. To investigate such cases in detail, we first need

the following lemma.

Lemma ; Let U be an nxm matrix of rank m<n , I be the nxn identity

matrix, and t be a scalar. Then as t » ©» ,

(3.10) d+tUU')"* = I - U(U'U)''u' + t~'(UU')* +0(t"*),

(3.11) ll+tUU'l = t'^IU'Ul [l+t''tr(UU')*-K)(t'*)],

where A"*" is the Moore-Penrose pseudo-inverse of A.

Proof: The nxn matrix UU' , which has rank m, can be represented as

UU' = 21 ^iU.uJ ,
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where iXi) are the strictly positive characteristic roots of UU' and

{u'} are the corresponding characteristic vectors. The n«n identity

matrix can be represented as

where the unit vectors {v- } are all orthogonal to the characteristic vectors

{u:}. Combining these two expressions^ we have
3

+ tUU' = 2 (l+t>;)u.uj + 21 V;v! .

New

d+tUU')" = 2 ^l"''t\)'"'u.u'. + 2^ v.v! .

As t-»0o,

^2 (l+t>-)"'u,u', = t"'^ X"'u u' + 0(t"^).

Equation (3.10) now follows fron our recognition that 2 v.v'- is the

orthogonal projection operator which maps R onto the subspace of R

orthogonal to the columns of U (namely I-U(U'U)~ U'), while ^ ^^^ u u'

defines the pseudo-inverse. Similarly

*! Jl ^
,

ll+tUU'l = jT(l+tV) = t'^Tl\(l+t'"*^>;,+0(t"*)).
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Equation (3.11) follows fron our recognition that lU'Ul = TTA' and tr(tlU')

J'
. )

We now have the following result.

Proposition ; If the nonsingular covariance matrix V is replaced by tV,

where t is a scalar, then as t -^ oo :

(a) The posterior density of cT approaches

(3.12) "IT(criY) oC TT(o-)IW|'^X'WXr''*exp{-iY'SY} ,

where W = (C+/l)~' and S = W-WX(X'WX)"'x'W.

(b) The posterior density of (3 approaches f(fllY) =

f (pi Y,(y)"7r (<yiY)d<r, where f(piY^) is multivariate normal N(|5,V) and

(3.13) p = ^^'(C+c^*I)"'Y

V = [X'(C+(r*I)"'x]'' .

(c) The posterior density of & approaches g(0lY)

j
g(9lY,a)7r (cylY)dC, where g(©lY,<T) is multivariate normal N(e,C) and

(3.14) © = &''y = (I+CR)"'y

C = (C"'+R)'*',

where R = <f [i-X(X'X)"'x']

.

Proof: (a) Note that the quadratic form Y'SY in (3.12) is the sum of
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squared residuals of the weighted least squares regression of Y on the

columns of X r where the weights are the diagonal elements of W . That the

quadratic form (Y-Xb) ' [C+cr*l+XVX']~' (Y-Xb) in (3.5) reduces to Y'SY in

'A. '/»,

(3.12) is a result of expansion formula (3.10), where we set U = W XV and

S = w''''(I-U(U"U)"' U')w'''*: That the determinant |C+<r''l+XVX'r ''• in (3.5)

becomes proportional to )wl IX'WXl in (3.12) is a result of expansion

formula (3.11) under the same definition of U. (As noted in Section 3.1, we

assume here a parametrization in which X is of full rank.)

(b) Expressions (3.13) follow from our setting V = in expressions

(3.7).

(c) That expression (3.9) reduces to (3.14) is a result of the expansion

formula (3,10), where we set U = XV *• in order to evaluate the terms

(XVX' + e-i) in (3.9). We note also that equation (3.14) is a special case

of equation (Al) of Snith (1973a). ^

3.4. Empirical Bayes Estimates.

In the analysis below, we shall also consider empirical Bayes approaches

to estimating 8 . In these alternative methods, we retain the prior

distribution 9ip,«^ ~ N(X^,o- I) as specified in (3.3c), but use the data Y

itself to construct the prior distributions on cr and |5 .

Several options are available. (As Dempster (1980) notes, "there is no

such thing as ibe empirical Bayes estimator.") First, we could estimate both

<r and p frcm the data Y , by maximum likelihood or other methods, and

then assume that the entire prior density for cr is concentrated at the

estimate <r and the entire prior density of ^ is concentrated at the

A
estimate ^ . For a given cr , the maximum likelihood estimate of

fi
is the

least squares estimate
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^ (<r) = (x'(C+<r'l)"'x)"'x'(C+ff^r'Y .

As a function of cr , the concentrated likelihood, evaluated at & = J3^, - , is

proportional to

L(o-) = lwr'''exp{-iY'(W-WX(X'WX)~'x'W)Y}

a. -

1

A
where, again, W = (C+o" I) . If we denote cr„, g. as the value of cr

maximizing this likelihood function, then the resulting empirical Bayes

posterior distribution of Q is N(© /C^, -) r where'^
MCE. '^

c = tc-' + &-"• u-'.
lAtS. Mt£

This estimate treats b as if it were fixed and known s. priori , even though

the estimate
Ptf^ie ^^ used.

Alternatively, we could assume a diffuse prior on fi and estimate only

c7 from the data Y. In this case, the appropriate likelihood function for

(f is equation (3.12) with the prior density ITCo") onitted, that is,

L*(C) = IWl '^'•IX'WXl'^^expC-^Y'SY}.

Let ^„ be the value of C that maximizes L*(cr) . The corresponding
Co

empirical Bayes posterior distribution treats (T = or^^ as if it were known

with certainty, and so, by equation (3.14), is NO ,Cg-) , where
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(3.16) e^^ = [I+crggC(l-X(K'xr'x')]-'Y

It is interesting to note that in the case where cr is known. Smith

(1973b) shows liaat i^;„y?^\j«pJlta,Qj^.jPj^^i a^^d, .c^g by^.a , then 6^^ = 6^^. It is

A A A
clear fron comparison of (3.15) with (3.16) that if CT = cr , then C ^

C (in the sense that C^^e ~
"^eb

"""^ non-negative definite). Moreover, if

A
since they maxiinize Lds-) and L*(cr) , respectively, and since the ratio

L(c7)/L*(cr) = IX' (C+a I) XI can be shown to be a decreasing function of

/>

cr . Since L* is the product of L and an increasing function of cr , its

maximum will occur later than that of L . The assumption that |3 = p^Lg,

with certainty leads to a smaller posterior variance for B than the diffuse

prior for p . "Hierefore, to the extent that /3 is a priori uncertain, the

A
variance C is inappropriately small. In the results below, we shall

therefore report the Empirical Bayes estimate (3.16).

Finally, if we wish to avoid the corputational burden in determining

' „ , we could begin with 1^ .. (&» ' WiLE.^MLE. 0^^ ^&s ' ^^ could begin with P^.JO) = (X'C''x)~'x'C"'y . The

residual sum of squares for this estimate, RSS = ^I (y^-x^M /c^ , has
r» *• = '

' -^^ -2-
.

-"'.. /•,i(-.-l-v\-l vir* ~
'expectation E[RSS] = n-m + a[ Zl, c^ - tr C X(X'C" X)"' X'C"'] , which

suggests the estimate

t = .
I

(3.17) o-^ = [RSS - (n^)]/C^c:^- tr C~'x(X'C~'X)-' X'C"']

where we take cr^^^ = if RSS < n-m . (The exact value of E[RSS] was

derived for us by H. Chernoff, whose proof is emitted.) In the results below,

we shall also report the empirical Bayes estimate of 9 when cr is
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substituted for C in (3,16),

4, TOE 2X2 CASE

In the next three sections of this paper, we shall assume a diffuse prior

on the vector of hyperparameters /2> . To be sure, a scientist may have prior

information on the composition of each emission, the carcinogenic activities

of its constituents, their possible synergistic interactions, their

bioavailability, etc. Similarly, a scientist may have prior information on

the sensitivity of the mouse skin tumor initiation model in comparison to the

human respiratory tract. Our impression, however, is that this type of

information is not yet sufficiently refined to offer much help in specifying a

precise prior on ^ . We recognize that the use of improper priors may

involve certain marginalization paradoxes. Discussion of these potential

difficulties is deferred to Section 7. At this point, we note that the

analysis of the next three sections was repeated under the assumption of a

4
proper prior for p with V = 10 I. The results of all reported quantities

were unchanged up to the number of decimals presented.

Devising a prior distribution for the critical hyperparameter cr is

another matter. Perfect extrapolation fron mouse to man or from one

environmental agent to another is clearly quite unlikely. To claim that the

various experiments in Table 1 are totally irrelevant to each other is

likewise too strong. The answer lies somewhere in between.

It seems reasonable to suspect that within a range of one normal standard

deviation, i.e., with probability 0.68, the underlying constant relative

potency model could be accurate within a multiplicative factor of exp(5) =

150, or even exp(0.5) = 1.6. To suspect that, with probability 0.68, the

model could be accurate within a factor of exp(0.05) = 1.05 is more
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cx»ntroversial. One of us, in fact, found the possibility of significant

interspecies differences in particulate distribution, extraction, clearance,

metabolism, etc. so compelling that an a. priori error factor of 1.05 seemed

unimaginable. On the other hand, we both felt that it would be inappropriate

to attach a uniform distribution to cr , since there is uncertainty even in

the order of magnitude of error. To articulate our differences, and '

agreements, we formulated two prior distributions on cr .

Prior A: log cr uniformly distributed on the interval

0.05l<r 15; and

Prior B: log <j uniformly distributed on the interval

0.5i.fr:15.

Itiese distributions somewhat artificially attach zero probability mass outside

the specified intervals [0.05,5] and [0.5,5], As we shall see shortly,

however, this restriction does not significantly affect our main conclusions.

Giri (1970) has employed a uniform distribution on log cr for 0< cr < oo in

his Bayesian model for two-way ANOVA, However, we prefer the use of a proper

prior distribution because it conpels us to face the task of assessing our

beliefs. Priors A and B retain the feature that, within the relevant

intervals, the posterior density of log <r will be proportional to the

likelihood function.

In order to simplify the computations, we shall evaluate these prior

distributions^ and therefore the posterior distribution ttCctIy) , only at

discrete points in the relevant intervals, equally spaced on the log scale.

This means that the posterior distributions of Xj5 and © will be finite

mixtures of normal distributions.
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Figure 2 displays the posterior densities iTCcrlY) calculated from (3.12)

for our two distinct priors. For the 2X2 data matrix in Table 1, the form

of the posterior distribution of cr is clearly sensitive to the prior

distribution that is assumed. In the interval 0.051 <7 <.0.5, in particular,

the likelihood function is relatively flat. Yet the maximum likelihood

estimate of cr is zero.

This finding is reflected in Table 2, which shows selected statistics of

the posterior distributions of Xj3 and 6 for the epidemiological studies,

based upon the two prior distributions of cr . Also shown are the results for

the empirical Bayes estimate corresponding to (3.16). (Both o"__ and cr ^^

were zero in this case.)

Although the posterior distribution of is a mixture of multivariate

normals (recall (3.8)), the resulting marginal distributions did not in fact

deviate substantially from normality. If Q* = E[©JY] and if c* is the

standard deviation of 9JY , then the tail probabilities

PrCe-^ef + 2.326c* I Y},

Pr{e < e?^ - 2.326c*lY},

do not deviate substantially from the value of 0.01 predicted for the normal

density. Hence, the mean and standard deviation adequately characterize the

marginals of the posterior distribution of 6 .

Because the original coke oven data were relatively precise, the means

and standard deviations of the posterior distributions of the coke oven log

slope do not differ much from the original values of y and c. For the

roofing tar log slope, however, the precision of the posterior distribution

depends critically on the estimate used. Since prior A admits the possibility
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TABLE 2.

Bayes and Empirical Bayes Estimates of Log Slopes
For Lung Cancer Risk in Man

2x2 Data Matrix

Environmental Stand. Poster. Lower Uppe r

Emission Mean Dev. Mean X^ Tail Tail

Roofing Tar

Original Data 0.495 1.415
e|Y (Prior B) 0.365 1.152 0.304 0.011 0.013
elY (Prior A) 0.229 0.788 0.205 0.015 0.025
e|Y (Empirical 0.135 0.337 0.135

Bayes)

Coke Oven

Original Data 1.482 0.341
e|Y (Prior B) 1.489 0.338 1,550 0.010 0.010
eiY (Prior A) 1.497 0.334 1.522 0.010 0.010
&\Y (Empirical 1.502 0.331 1.502

Bayes)

©|Y (Empirical Bayes)
diffuse prior on (3

assumes 'nr(cr) concentrated at
A
cr,EB

= 0, and

Lower Tail
Upper Tail
where
of

0>

= Pr{e;l(9* - 2.326cf| Y} ,

= Pr{e,2e;*+ 2.326c.;
I

Y} ,

and cf are the posterior mean and standard deviation
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of lower values of cr , the corresponding posterior distribution has a smaller

standard deviation. For the empirical Bayes estiinate, which in this case

assumes that the underlying constant relative potency model holds exactly, the

only sources of variance in the posterior distribution of 6 are the original

sampling errors.

The posterior mean values of 6 are very close to the corresponding

posterior mean values of xp> . That is, the posterior expectations of the

model residuals 5 are small. The posterior variances of these residuals,

however, are not so small. Although the variance of each posterior residual

5- lY depends in part on the precision of the original data, that conponent

of the variance due purely to the underlying model is

(4,1) Cj*"^ = EEcr'^lY],

which for prior A in this case is 1.088. In effect, if we were to use these

data to predict S for another experiment yet to be performed, the standard

deviation of S , under Prior A, would be 1.04. Under Prior B, the standard

deviation of S would be lo76, despite the fact that the empirical Bayes

A
estimate of cr is C^^ =0. (It is straightforward to show that SlY is

likewise a mixture of normals, each of which has covariance matrix of the form

cr^I + D , where D vanishes as C" approaches 0,)

Little credence, we conclude, can be attached to the apparently close fit

of the data in Table 1 to the underlying constant relative potency model. Any

scientist who objects that the data are just "too good to be true" makes a

legitimate claim based on his prior belief that such extrapolative models are

unlikely to be so accurate. The extent to which the totality of data in Table

1 refines the precision of the estimated human lung cancer risk is, in effect.
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a matter of prior opinion.

The problon with the 2x2 case, it appears, is that we don't have enough

precise experiments. The sampling errors for the skin tumor initiation data

in mice are so small that the model is fitted, in effect, to the mouse data.

The predicted relative potencies for the human lung cancer risks merely adjust

to the more precise non-human results. If we are to learn any more about the

extent to which these experiments can be conbined, then we need additional

precise experiments. We now proceed in this direction.

5. -fflE 3X3 CASE

Table 3 is an augmented version of Table 2. In addition to human lung

cancer epidaniological studies and skin tumor initiation experiments in mice,

we have included experiments on the enhancement of viral oncogenic

transformation in Syrian hamster embyro (SHE) cells (Casto et al. , 1979) . In

addition to studies on roofing tar and coke oven emissions, we have included

experiments on the dichloromethane extracts of particulate onissions fron one

light duty diesel engine.

Except for the epidemiological studies, experiments appearing in the same

row were, as above, performed under identical conditions in the same

laboratory. Ihe new slopes and standard errors were, as above, estimated by

maximum likelihood methods, as described in Harris (1981) . No epidemiological

study of the human lung cancer risks from exposure to light duty diesel engine

exhaust was available. Although the corresponding cell is left anpty, we note

that the set of available experiments is connected, as defined in Section 3.1

above.

The results in Table 3 clearly reveal inconsistencies in the constant
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TABLE 3.

3x3 Experimental Data Matrix

Roofing Coke Diesel
Tar Oven Engine
Emissions Emissions Emissions

Lung Cancer (Man) 1.64 4.40 slope
1.41 0.34 coef .var

.

0.49 1.48 log slope

Skin Tumor Initiation 0.54 2.10 0.53
(Senear Mice) 0.04 0.04 0.04

-0.63 0.74 -0.64

Enhancement of Viral 2.07 0.86 0.65
Transformation 0.18 0.10 0.15
(SHE Cells)* 0.73 -0.15 -0.44

*Transformations/2xl0 cells per Mg/ml extract .

Units for other rows as in Table 1,
There are no data for lung cancer risk of diesel engine emissions
in man.
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relative potency hypothesis. In the skin tumor initiation experiments, for

example, roofing tar emission extracts were less potent than coke oven

emission extracts. In the viral transformation studies, roofing tar onission

extracts were more potent than coke oven emissions extracts.

Figure 3 shows the posterior densities ITCctiy) corresponding to this

3x3 experimental data matrix. The results for both prior distributions A

and B, described in Section 4 above, are shewn. We continue to assume a

diffuse prior on jff\ In contrast to the 2x2 case, the posterior

distribution of <r is considerably less sensitive to the prior distribution

that is assumed. The likelihood function is now more concentrated around

<^£^ = 0,726. In the range cr <0.2, the posterior density of cr is

virtually zero.

These findings are reflected in Figure 4. Like Figure 1, this figure

shows the means and standard errors of the original data on a logarithmic

scale. Superimposed on these data are the posterior mean values of X^,

derived from Prior A. Within each species, consecutive pairs of these

posterior mean data points have been connected by dashed lines. Since the

data points for each emission are equally spaced along the horizontal, and

since the three logarithmic vertical axes are drawn to the same scale, the

underlying constant relative potency hypothesis requires that the dashed lines

connecting each pair of estimates be parallel. As Figure 4 shows, the

underlying model predictions X^* in effect strike a balance between the

contradictory elements in the original data.

I^ble 4 shows selected statistics of the posterior distributions of X(J

and 6 for the human lung cancer slopes, based on Priors A and B. Also shown

are the empirical Bayes estimates corresponding to (3.16), where empirical

Bayes estimate 1 uses <r and empirical Bayes estimate 2 substitutes cr^^^
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TABLE 4.

Bayes and Empirical Bayes Estimates of Log Slopes
For Lung Cancer Risk in Man

3x3 Data Matrix

Environmental Stand. Poster. Lower Upper
Emission Mean Dev. Mean Xp Tail Tail

Roofing Tar

Original Data 0.495 1.415
6|Y (Prior B) 0.818 1.058 0.945 0.014 0.010
elY (Prior A) 0.832 1.036 0.952 0.015 0.010
0|Y (E. Bayes 1) 0.884 0.960 0.987
GlY (E. Bayes 2) 0.861 0.995 0.972

Coke Oven

Original Data 1.482 0.341
e|Y (Prior B) 1.463 0.337 1.336 0.010 0.010
elY (Prior A) 1.462 0.336 1.341 0.010 0.010
e|Y (E. Bayes 1) 1.459 0.336 1,356
elY (E. Bayes 2) 1.460 0.336 1.348

Diesel Engine

e|Y (Prior B) 0.434 1.875 0.434 0.017 0.015
6\Y (Prior A) 0.442 1.818 0.442 0.017 0.016
elY (E. Bayes 1) 0.466 1,217 0.466
e|Y (E. Bayes 2) 0.454 1.300 0.455

©|Y (Empirical Bayes 1) assumes prior "Tr(cr) concentrated at Cgg
= 0.726, and diffuse prior on /? .

©lY (Empirical Bayes 2) assumes prior ir(o') concentrated at cc
= 0.782, and diffuse prior on /S

RSS
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for cr^^ .

In cxmparison to the results for the 2>c2 case (Table 2) , the standard

deviations of the posterior distributions for the roofing tar log slope were

considerably less sensitive to the estination method used. For both roofing

tar and coke oven emissions, the posterior mean values of 6 now deviate from

the corresponding posterior mean values of xp

.

In the diesel engine case, however, the contrast between the Bayes and

empirical Bayes estimates is more striking. Because there were no original

epidemiological data in this case, the posterior precision of 9 depends

solely on our assumptions about the hyperparameter a" . Whereas c^^ = 0.726

A
and ^-^s ~ 0«'782 for these data, the Bayes estimates are a* = 1.150, based

on Prior A, and <j* = 1.189, based on Prior B.

The scientist who voices skepticism at the close fit of the data in

Figure 1 has, it appears, been vindicated. If we take cr to he its maximum

likelihood estimate cr^ = 0.726, then extrapolations between species or

environmental agents, we conclude, will be accurate only to a multiplicative

factor of 2 with 68 percent probability and only to a multiplicative factor of

4 with 95 percent probability. If we take cr to be the Bayes estimate cr* =

1,150 (based on Prior A), then such extrapolations, we conclude, can be

accurate only to a multiplicative factor of exp(1.15)=3 with 68 percent

probability and only to a multiplicative factor of exp (2x1.15)210 with 95

percent probability.

We are now in a position to contrast our statistical approach with others

in the literature. Our equation (3.2) partitions the sources of variation

among experiments into several components. We thus follow Cochran's (1980)

suggestion that "the summary of a series of experients calls mainly for

experience in the analysis of variance." In our decomposition of these
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sources of variation, however, we do not assume that the true values of the

log slopes exactly obey an additive model. We assume only that the true

values lie within ±(r of such a model with probability 0.68. Further, when

confronted with the problem of estimating the slope for a particular

experiment, we have no belief that the slope in question is at all unusual in

its deviation fron the underlying equal relative potency model. For us, the

set of all such deviations is exchangeable. The distinction between the Bayes

and the empirical Bayes approaches depends on our willingness either to assign

a prior distribution to (T (then integrating with respect to c- ) or to use a

point estimate for cr as if it were known. We prefer the full Bayesian

procedure, especially when there are relatively few experiments, since the

uncertainty in cr is real and should contribute to our uncertainty about B .

This point is illustrated by the Bayes and empirical Bayes standard deviations

of 6 for diesel engine emissions in Table 4. On the other hand, v^en many

experiments are combined, we expect that the choice of prior distribution and

the choice between Bayes and empirical Bayes estimates will be less important.

(See, e.g., Tiao and Zellner (1964).)

(Dne procedure suggested by Lindley and Smith (1972) and Smith (1973a)

,

'ML£

A
which they describe as "modal Bayesian," amounts to the use of cr in our

A
formula (3.16) for C . We would describe this approach as yet another

version of anpirical Bayes. Smith (1973a) shows that if cr is known, then

the Bayesian confidence intervals will be shorter than the classical

confidence intervals for . Our allowing for uncertainty in <T will tend

to lengthen the confidence intervals, but they will still be shorter than the

classical intervals for 6: based solely on the sampling errors c- from

each experiment.

The fully Bayesian analysis of Smith (1973a) differs from ours in several
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respects. Since he concentrates on the two-^way table with no replications,

the components of error that we call C and cr I are combined in that paper

as if C were equal to zero. Moreover, we explicitly calculate the posterior

distribution of cr in order to: (a) show the range of uncertainty ranaining

for cr ; (b) calculate the value cr for use in our empirical Bayes

procedure; and (c) determine c^ = E[c7- |y] , which can be interpreted as a

Bayesian risk of interspecies extrapolation if loss is proportional to S =

(O-X^) . The statistic cr* will also play a critical role in the diagnostic

procedure of the next section.

Put there are still two serious problems with our analysis of the data of

Tfeble 3. First, we note that the more precise data cone from non-human

experiments. One may legitimately protest that we have merely learned how

accurately we can extrapolate from mouse skin to hamster onbryo cells. At the

very least, some test of the assumption of exchangeable extrapolation errors

seems appropriate. Ideally, we should include the results of more precise

human experiments in our analysis.

Second, we have so far said nothing about the choice of experiments to be

included in the analysis. Harris (1981) selected these laboratory bioassays

because they were considered to be valuable quantitative measures of

carcinogenicity, and because tests of several related onissions were performed

in the same laboratory. The U.S. Enviroimental Protection Agency had chosen

these specific emissions as part of its diesel emission research program

(Huisingh et al., 1979). Although we have presented only a few experiments

initially for expository purposes, it is hardly clear what would happen if we

were to include many more experiments. What is more, there is no obvious

means of deciding which experiments are most appropriate to include.
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6. SELECTING AND REJECTING EXPERIMENTS

6.1 The 5x9 Case

Table 5 further augments the experimental data in Table 3. In addition

to lung cancer epidemiological studies in man, skin tumor initiation

experiments in mice, and viral transformation studies in SHE cells, we have

included mutagenesis experiments in L5178Y mouse lymjiiana cells performed

under two types of conditions (Mitchell et al. , 1979) . In the rcw denoted

Mutagenesis-MA, no metabolic activator was added. In the row denoted

Mutagenesis+MA, metabolic activator was included in the experiiiental

preparation. Thus, both direct and indirect mutagenicity were measured.

In addition to the three emissions given in T&ble 3, we have included

three other diesel engine emission samples; a sample of particulate emissions

fron a gasoline-powered automobile engine; the polyarcmatic hydrocarbon

benzo(a)pyrene; and cigarette smoke condensate fron the Kentucky lAl

experimental cigarette, which was designed to be typical of cigarettes smoked

during the 1950s. The diesel engine extract appearing in Table 3 has been

relabeled Diesel I, while the remaining diesel emission samples have been

numbered from II to IV. Diesel emissions II and III were, like Diesel I,

obtained frcm light duty diesel engines. Diesel emission IV was obtained from

a heavy duty diesel engine. The conditions of collection of these samples are

described in Huisingh et al. (1979). With the exception of the results for

cigarette smoke condensate, all do^-response slopes and the standard errors

are taken fron Harris (1981)

.

Although Harris (1981) did not report the corresponding dose-response

slopes for cigarette smoke condensate, experiments on this agent were reported

in the source studies (Casto et al., 1979; Mitchell et al., 1979; Nesnow et

al,, 1979). We were therefore able to estimate these slopes by the same
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maximum likelihood methods used by Harris (1981) . For the human lung cancer

results r we applied Harris's estimation procedure to the U.S. veterans study-

data for men aged 35 to 84 observed during 1954 to 1962 (Kahn, 1966, ;^>pendix

Tables A to D) . If hCd^t) is the incidence of lung cancer among men of age t

with accumulated dose dy we obtained a maximum likelihood estimate of the

parameter ^ for the relative risk model

h(t,d) = h(trO) (1 +^d).

(The estimation algorithm is described in DuMouchel (1981).) With accumulated

&)se measured in cigarettes per day x years, our maximum likelihood estimate

for C was 1.085 x 10"^ units of incremental relative risk per cigarettes/day

>^ years (standard error, 0.103 x 10 ). This estimate was then converted into

units of incranental relative risk per 10~'*'|jig/m cigarette snoke condensate x

years under the assumption that the typical cigarette smoked by a subject

delivered 38 ± 2 mg cigarette smoke condensate, and that the total c^ily

3
delivery of condensate was diluted in a total (felly ventilation of 11 ± 2 m .

(We used the methods described by Harris to incorporate the uncertainty about

these dosage conversion units into the slope and coefficient of variation

reported in Table 5.)

Except for the last two columns, the additional experiments in Table 5

were performed, as above, on the dichlororethane extracts of the various

anissions. For the benzo(a)pyrene results, this agent was applied in

concentrated form as a positive control in sane experiments. For the last

column, whole EJtioke condensate was used. The resulting dose-response units,

we note, are still compatible with, the constant relative potency model. For

any two pairs (k,l) and (k',i') , the quantity 9^£ - ^k'I ~
^k4'

"*"

^k'Z'
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remains diitiensionless.

Table 6 reports the Bayes estimates of the log slopes for human lung

cancer risk. The first two columns (denoted 2x2 and 3x3) sunmarize the

results of the previous two sections. Ihe third column provides the

corresponding results for the 5x9 experimental data matrix in Table 5. ihe

right-most column shows the original data. The remaining columns will be

described monentarily. Only the results for roofing tar, coke oven, and

diesel engine I onissions are given. The original slope for the human lung

cancer risk from cigarette smoke was so precise that its posterior density did

not change substantially. Hence, it is not reported.

The eiis)iricia4..3ayes . jestimate of cT for the 5x9 data matrix was 1.041.

Because the posterior density -rr(<5'lY) was highly concentrated around <r ,

the corresponding value of cr* was nearly equal to cr^g . in comparison to

the 3x3 case, the standard deviation of the posterior density of the roofing

tar log slope has increased slightly. By contrast, the corresponding standard

deviation for diesel engine I has declined. These results reflect a balance

between two sources of uncertainty about 8 . On the one hand, a large

posterior value of <r implies uncertainty in the deviation S • On the other

hand, the larger number of experiments permits us to estimate X^ more

precisely.

Figure 5 depicts the deviations in these data from the underlying

constant relative potency model. For each of the five species, the Figure

shows the posterior mean values of the residuals S = 6 - xp> for each

Qtaresion. When there are no data y for a particular species-emission pair,

the posterior mean of S is necessarily zero. Such cases are therefore

omitted fron the Figure.

The posterior mean residuals for cigarette smoke. Figure 5 shc^vs, are in
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TABLE 6.

Bayes Estimates of Log Slopes For Lung Cancer Risk in Man
Based on Alternative Data Matrices

2x2 3x3 5x9 4x9 4x8 3x8 3x7 Data

C:„ 0.0 0.726 1.041 0.872 0.674 0.389 0.316e&

1.043 1.150 1.080 0.933 0.730 0.480 0.395

Roofing
Tar

e* 0.229
0.788

0.832
1.036

0.123
1.108

0.306
0.957

0.959
0.915

1.526
0.742

0.497
1.414

0.495
1.415

Coke
Oven

1.497
0.334

1.462
0.336

1.375
0.335

1,366
0.334

1.455
0.335

1.422
0.334

1.482
0.341

Diesel
Engine I

0.442
1.818

-0.458
1.451

-0,706
1.304

0.207
1.160

0.330
0.867

-0.836
1.582

Prior A for -rrCc) and diffuse prior for (S assumed for all
calculations.

a-* = Elcr^lY]'/*-.
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four of five cases relatively large in absolute value. Cigarette smoke is

apparently a weaker human lung carcinogen, a weaker mouse skin tumor

initiator, a more potent transforming agent, and a more potent direct mutagen

than would be predicted in this case fron the constant relative potency model.

Further, the range of the mean residuals is largest for the mutagenesis

experiments in the absence of metabolic activator. Tests for indirect

mutagenicity are apparently least compatible with the underlying model. By

contrast, the residuals for mutagenesis with activator are more concentrated

around the origin. A similar finding applies to the viral transformation

results when cigarette smoke is eliminated.

6.2 A Diagnostic Procedure.

We seek a method to determine which subset of experiments is most

relevant for predicting lung cancer risks in man. TWo basic characteristics,

we suggest, are critical to such a procedure.

First, the method ought to be sensitive to the underlying tradeoff

between predictive bias and predictive precision. Suppose that we are

interested in a particular 6^ for which there is little or no data (i.e.,

c^ is large). The inclusion of irrelevant experiments in the data matrix

could result in a biased estimate of B^ , the size of this bias being in the

order of +(7. However, if we eliminated all but the most relevant

experiments, the remaining experiments could contribute little if anything to

the accuracy of our estimate of ©^ , as measured by c^. This difficulty

applies especially to the case where we have no original data y- on 6^

(e.g., the human lung cancer risks for diesel engine enissions in Table 5).

If we eliminated every conceivably irrelevant experiment, then we would end up

with exactly what we had at the start— no information on ©j at all.
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Second, we should not eliminate experiments individually. One could

exclude those species-eraission pairs with large posterior mean values of S .

Since these interactions are what determines the relatedness of the various

species and onissions/ such a procedure would defeat the purpose of our

analysis. It would be more appropriate to assess whether a specific species

or a specific environmental agent is more or less relevant to the others. We

therefore adopt a cross-validation procedure based on the elimination of

entire rows or columns frati the matrix of experiments.

Let Y^_ be the vector of log slopes formed by exclusion of all

experiments involving species k. For each species k, we evaluate the

posterior density "Tr((rlY^_) , and denote <7* = E[cr lYj^_]
''*

. We shall say

that species k is "less relevant" if <T* <<7* , where cr* = El <^ \Y]^*- as in

(4.1). Analogous definitions apply to Y - and cr* for each environmental

agent Z . The species or agent for which cr* or crj^ is lowest will be

termed the "least relevant". The least relevant species or onission is the

one whose elimination most iirproves the relevance of the ranaining experiments

to each other. In anticipation of Section 7, we note that the terms less

relevant and least relevant are & posteriori concepts.

Given an initial set of experiments Y , a prior density TTCo-) , and a

particular 9{ of interest, we consider the following data analytic

procedure.

(i) Calculate cr* and c* for each k and X , and determine the least

relevant species or emission.

(ii) Calculate the posterior distribution of Q- before and after the

least relevant species or emission is removed.

(iii) Eliminate the least relevant species or emission and repeat steps

(i) and (ii) on the reduced set of experiments so long as: (a) there exists a
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less relevant experiment; (b) the least relevant species or emission does not

correspond to &^ ; and (c) the elimination of the least relevant species or

emission reduces c* , the posterior standard deviation of 6^ ,

(iv) If conditions (a), (b) , and (c) , are not satisfied^ the procedure

terminates. The remaining experiments are considered most relevant for

predicting B^ .

We applied this procedure to the 5x9 data matrix in Table 5. Prior A on

cr was assumed. We focused on predicting the human lung cancer slopes for

roofing tar emissions and diesel I emissions.

Steps (i) , (ii) , and (iii) were repeated four times. Figure 6 depicts

the distrifcwtion of values of <r* and <7* for each iteration, where

successive iterations are displayed fron left to right. To assist

interpretation, a few species and agents are specifically identified.

For the original 5X9 data matrix, cr* = 1.08. Mutagenesis without

metabolic activation was least relevant. Removal of this row resulted in a

4X9 matrix with a new cr* = 0.933. Repeating this procedure, we found

cigarette snxDke to be least relevant. Removal of this column resulted in a

4X8 matrix with a new cr* = 0.730. Again repeating this procedure, we found

skin tumor initiation in mice to be least relevant. Removal of this row

resulted in a 3x8 matrix with a new c* = 0.480. In the final iteration, coke

oven emissions were found to be least relevant, with o"*^^ = 0.395.

Elimination of coke oven emissions fron the 3x8 matrix violated condition (c)

in step (iii) above. Hence, the procedure was terminated and the 3x8 array

was deemed most relevant.

The results of this procedure are summarized in those columns of Table 6

labelled 5X9, 4x9, 4x8, 3x8, and 3x7. As we successively eliminate

mutagenesis without activator, cigarette smoke, and skin tumor initiation, the
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posterior standard deviations of roofing tar and diesel I emissions decline.

Elimination of coke oven emissions, the least relevant in the 3x8 array,

resulted in a marked increase in the posterior standard deviations of the

roofing tar and diesel emissions parameters. In the case of roofing tar, the

estimates 0* and c* were almost identical to the original values of y

and c.

The resulting tradeoff between predictive bias (c*) and predictive

efficiency (c*. ) is depicted graphically in Figure 7. By successive

elimination of least relevant experiments, we are able to reduce a* to 0.48.

Any further reduction in o* is at the cost of a marked loss of precision.

Unless we are willing to specify a particular loss function, we cannot

unequivocally conclude that the predictions resulting frcm the 3x8 matrix are

most preferred. For many public health and environmental policy applications,

however, a reduction in the extent of uncertainty about human risks is

desired. To seek to eliminate less relevant experiments, so long as

predictive efficiency is reduced, appears to be appropriate for such

situations. (Our procedure depends somewhat upon the choice of prior

distribution icier) , but when many experiments are in\7olved, this dependence

should be minimal.)

The human lung cancer experiments, we note fron Figure 6, are less

relevant (i.e.
^t^,na.n-

*^ ^* ^ so long as cigarette smoke is included in the

data matrix. This conclusion does not apply to the 4^8 or 3>«8 arrays, with

cigarette sirioke removed. Cigarette smoke contains numerous carcinogenic and

mutagenic compounds other than polyaromatic hydrocarbons, e.g., nitrosamines

and various heterocyclics. The apparent deviations of the cigarette smoke

data from the constant relative potency model may reflect these differences in

chemical composition. Peto (1977) has similarly remarked that the mutagenic
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potency of cigarette smoke appears to be greater than would be expected from

its systemic carcinogenicity. Whatever its interpretation, our procedure

leads us to eliminate the most precise human experiment. As a consequence,

our estimate of C is constructed primarily fron the non-human data. We see

no completely satisfactory response to this limitation other than to suggest,

where possible, the inclusion of other precise human data.

Nevertheless, we find the results of our diagnostic procedure

intriguiyjg Assays for indirect mutagenicity and tumor initiation have been

excluded as less relevant. The retaining laboratory bioassays are designed to

guage an agent's interference with gene replication and cell differentiation.

For the polyaromatic-containing emissions ronaining in the 3x8 table, these

biological processes could be critical to human lung carcinogenesis.

We recognize that the above cross-validation procedure is purely data

analytic. Adapting the methods in Efron and Morris (1973) to the current

problen, we could replace our assumption that V(5-) = cr^ (for all i) with a

more general specification. Biat is, we might assume V(S.) = T^ for seme

subset of experiments and then enploy a joint prior distribution for (cr,T )

to derive the posterior distribution of . Unless the "suspicious subset"

can be identified a priori y our present method appears to be much simpler in

practice.

7. HKFECTLY REPLICATED, IMPERFECTLY REPLICATED,
AND STRdOLY RELATED EXPERIMENTS.

7.1 Definitions.

In seme situations, we may have additional prior information on the

relationships between experiments. In Table 5, for example, it is not

unreasonable to posit that diesel engine emissions I through IV ought to be

more related to each other than to the remaining environnental agents. An
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analogous assumption might apply if experimental data were available in two

closely related species, or two strains of the same species, or even males and

females of the same species.

We now investigate how one might take advantage of this form of prior

information. For this purpose, we need to characterize precisely how

experiments can be related a priori in terms of our statistical model. A

rather different classification of degrees of relatedness is given by Smith

(1973c)

.

Consider the results y- of a particular experiment. Its mean 6 can

be separated into two conponents, x-ft and S- , with 0- = x,ft + S"^- . We

shall call two experiments i and i' "perfectly replicated" if x S = x.,e> and

^l =
^i* ^ priori . Under this definition, the only source of variation in

(y. -y-/) is the sampling error associated with each experimental

observation.

We shall call two experiments i and i' "imperfectly replicated" if x-fi =

X/B a priori , but, conditional on C" , the hyperparameters S"- and S/ are

a priori independent N(0,o'), If x-j3 is highly correlated a priori with

x-/^ , we shall say that the corresponding experiments are "strongly

related." The term "highly correlated" is tonporarily left vague. Finally,

all pairs of experiments that are neither perfectly replicated, imperfectly

replicated, or strongly related will be defined as "weakly related."

The case of perfectly replicated experiments presents no special problans

for the present paper. If y.±c. and y.,±c-/ are the sufficient statistics

for the two experiments, we merely replace than by the single statistic

y^„ ±c-„ , where

y... = (c^,y. + c^y., )/(c^^ + c*/).



DuMouchel-Harris -36- Feb 81

2- _-2•^- '/2.
c.„ = (c' + c., )

We might apply this procedure if two different experiments were independently

performed in the same species with the same agent but, say, in different

laboratories. This case will not be considered further.

When two experiments are imperfectly replicated, we admit the possibility

of independent deviations frcm the underlying regression model, as well as

independent sampling errors. When the hyperparameter ^ has prior

distribution N(b,V) , imperfect replication implies that (conditional on <r)

the slopes 6^ and 9^, have &. pcieiLL identical prior means xb , identical

variances xVx' + cr^, and correlation coefficient

(7.1) xVx'/(xVx' +0-^)
,

where x. = x., = x are row vectors.

When a diffuse prior is assumed for A , we must apply the definition of

imperfect replication with care. If V is replaced by tV and t->«> , the

& pEifiia correlation coefficient (7«1) approaches unity. Since d^ and 0j/

are normally distributed with identical means and variances, a correlation

coefficient of 1 would imply that 6- = 0^/ & priori . But this would imply

that 0- = ©/ a posterioici, even if (y- -y-/ )/(c^j +C(^ )'''^ is large. The

assumption of a diffuse prior on ^ apparently reduces the notion of

irrperfect replication to that of perfect replication, even though 5"- and

S^t are assumed to differ on the order of cr.

This difficulty appears to be related to the class of marginalization

paradoxes discussed by Dawid, Stone, and Zidek (1973) , which are known to

occur sometimes when improper prior distributions are employed. We note from
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formula (3.14) in Section 3.3, however, that when & takes on a diffuse

prior, E[eiY,o-] = (l+CR)"'y , where R = cr"^(I-X(X'X)"'x') . It is

straightforward to shew that for this formula, E[6^- ©/lY,o-] is zero only

when y- = y^ , even if X|^ = x^/. The paradox that &{ and 0^^ are

perfectly correlated a priori is avoided so long as we use (3.14) to evaluate

the posterior means and variances of Q .

The case where two experiments are strongly related is even more general.

The correlation between x-S and X/R is a priori

(7,2) r = X -Vx ?/ / [ (x -Vx .'
) (x .,Vx \, ) ]

'''^

,

while (conditional on <r ) the correlation between Q- and 6-/ is a priori

(7.3) x.Vx.'/ /[(x.Vx! +£^) (x.^Vx?,+«/)] '/2-
,

which reduces to (7.1) when x^ = x-/ (i.e., imperfect replication). Note

that the correlation between d- and &, in (7.3) is always less than r

in absolute value.

We do not wish to draw a sharp boundary between the terms strongly

related and weakly related. If the correlation r in (7.2) exceeds 0.9 in

absolute value, we would certainly call the corresponding experiments strongly

related. If Irl < 0.7, or r* < 0.5 (i.e., the "between x^ " variance

falls below the "within x^" variance), then we would use the term weakly

related. When x- ^ x/ a priori and a diffuse prior is assumed for /S ,

i.e., the assumptions used in Sections 4, 5, and 6, we regard the

corresponding experiments as weakly related.
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7.2 Informative Priors on /3 For the 3>t8 Case.

Figure 8 diagrams a 3x8 array of experiments similar to that derived from

the diagnostic procedure in Section 6. As a result of our elimination of the

skin tumor data, the remaining single experiment on benzo(a)pYrene could not

affect the posterior distributions of the other slopes. Hence, it was

removed. In its place, however, we have added the results of an

epidemiological study of men exposed in their occupations to a fifth type of

diesel engine, a heavy duty diesel different from the other diesels. This

additional slope was taken from Harris's (1981) analysis of lung cancer

incidence among London Transport Authority diesel bus workers. (The slope

estimate was originally reported in units of incremental relative risk per

3
Mg/m particulates x years. It was converted to units of incronental relative

risk per 10 fug/m extractable organics x years under the assumption that the

dichloromethane extractable fraction constitutes 18 percent of particulates by

weight.) Ito bioassay studies of the latter type of diesel engine onission

were available.

We wish to introduce our prior knowledge that the experiments in diesel

columns I through V are more related to each other than to the remaining

experiments. Just what degree of interrelatedness should be assumed is not

clear. It is implausible that the diesel experiments in each row should be

perfectly replicated. To assume that they are imperfectly replicated

requires, in effect, that the diesel emissions are virtually identical in

conposition, but that different diesel engine samples, through variations in

engine design or operating conditions, may result in idiosyncratic effects in

some species. If we were interested primarily in the possible risks of

exposure to light duty diesel emissions, the assumption that all light duty

and heavy duty diesel experiments were imperfect replicates could be too
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restrictive. The assumption of strongly related experiments may therefore be

more useful.

Of course we could fall back on the assumptions of unequal x's and a

diffuse prior on ^ . In that case, however, there is no point in including

the observed slope for diesel V. Its value of y would always be perfectly

fit to the underlying regression model by the additional column effect that

must be estimated, and it would not contribute toward estimation of the other

Q 's. Only a proper prior on ^ would reflect our belief that the data on

the human occupational exposure to diesel engine V are relevant to the

estimation of lung cancer fron exposure to the other diesel engines.

We now examine in detail the choice of a proper prior for /B- . Return to

equation (3.2) in Section 3.1, that is.

'kI
= ^ +^^+ ^i-' ^^ + ^^5'

where k=l,2,3 correspond to the three species and 1=1,..., 8 correspond to

the eight environmental agents in Figure 8. The hyperparameters {^j,... ,'2''^}

refer specifically to the various diesel effects. A natural model for the

relationship between these hyperparameters is

(7.4) »V = ^„ +-»!,, i=3,.,.,7.

where ^^ is a conponent common to all diesel engines and {"^j.^,.., ,'*]rj}

represent deviations of each diesel fron the common component. Each >jn has

prior mean zero and is independent of the other >j« and of Y^ .

Now denote the prior variance of 1^ by v^ and the prior variance of

71 « by v . If v^ = a priori . then the hyperparameters { ^} are
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uncorrelated. The quantities {M+<V+''i} f i.e., the quantities {x-6} , will

be correlated only through the ccmmon hyperparameters {^,<^k) - Provided that

V- is not anall conpared to the prior variances of {1*+*^} , the diesel

cx)luiTins are weakly related.

On the other hand, if v = a priori r then the hyperparameters {!(,}

are perfectly correlated, that is, the diesel columns are iirperfect replicates.

Finally, if v^ is large and v >0 is small, then the diesel columns are

strongly related.

Since there are K+L+1 = 3+8+1 = 12 components in the hyperparameter set

{jx,aCj^,/£} , we must specify a 12^1 vector b of prior means as well as a

12x12 prior covariance matrix V . Ttiis covariance matrix contains a 5x5

submatrix of covariances among the diesel column effects i^^,,.. ,'^y} . We

now make the following numerical assumptions.

(i) For every component of the prior mean of (f^y'tj;^,"?!^} , we choose b =

0.

(ii) For all (j,j') that are not part of the 5«5 submatrix of diesel

column effects, we choose V- •, = lOOl .j. .

(iii) To exemplify weakly related experiments, we choose v^ = and v^

= 100 . In this case, V = lOOl , where I is the 12x12 identity matrix, and

for any pair of diesel experiments in the same species, the correlation r,

defined in (7.2), is 0.67.

(iv) To exemplify imperfectly replicated experiments, we replace (iii)

with the assumption that v^ = 100 and v = , In this case, the number of

column effects L is reduced to 4, and the hyperparameter set i^,°'-Kf^i^

could be reduced to only 8 components. The corputations are equivalent to a

3x4 analysis, where the design matrix X has several identical rows for each

diesel engine, and V=100I , where I is the 8x8 identity matrix.
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(v) To exemplify strongly related experiments, we replace (ii) and (iii)

with the asumption that v^ = 99 and v^ = 1. For any pair of diesel

experiments in the same species, the correlation r, defined in (7.2), is

0.997. Hhe prior covariance matrix V takes the form

V =

100
100

100
_„ , ,., .

100 99 .

99 100
. 99

•

•

99 . .

99
99 100

., ..... . . ...

100

where the upper left submatrix is the covariance of {M-,*icf^if^a,} t the

submatrix in the center is the covariance of {'^3,...,^7} , and the lower

right element is the variance of Vy .

We chose a value of 100 for the prior variance of the hyperparameters

^Hf'^K.'Xt^ to reflect our near complete state of ignorance about these

effects. (It is possible, as Smith (1973a) shows in a sonewhat simpler

situation, to let these variances go to infinity and still retain our concept

of strongly related experiments for fixed V„ . Our choice of a large finite

value for v^ is more convenient here.) Under this prior assumption, every

log slope 0j has variance 300+ cr% and therefore we are uncertain about the

magnitude of each slope to a multiplicative factor of about exp(20) = 5x10 .

Since these variances are so large, the somewhat arbitrary choice of b=0 does

not materially affect the calculations, since all values of y^ are within
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±5 of Xb = . Our choice of v = 1 in (v) reflects our sense of the

likely magnitude of the difference between any two diesel log slopes in the

saiae species (e.g., ©jj^-^tr). The a priori standard deviation of this

difference is /2(v_ +c) conditionally on C . Even if cr=0, our choice of

v~ =1 means the ratio of the two slopes is exp(zv/2) , v^ere z is

N(0,1) . (Note that it is essential to choose h9^a~"--ht f°^ this to be
f B it

true.) Since exp(zy2) = 10 for z=1.6, our prior choice of v = 1 allows

for more than a 10 percent chance that one of the two diesels is 10 times as

potent as the other. No greater uncertainty seons justified. At the other

extreme, to assume that v « o" would be nearly equivalent to imperfect

replication.

Table 7 shows the resulting estimates of c and of the 0's for roofing

tar, coke oven, diesel I and diesel V emissions. Since the assumption that

the diesel columns are weakly related approximates complete ignorance about

j6 , the results in that column are quite close to those obtained in the

diffuse prior case in Table 6 (see the column labelled Sj^S) . itie log slope

for the diesel V epidemiological study contributes to the estimation of cr

and to the remaining 9's only through the vague prior on /3 . Its own value

of y is nearly perfectly fit to the underlying model.

The assumption of imperfect replication, however, results in a dramatic

increase in the estimate of C . Any variation in the diesel d ' s that is in

fact due to the 1^'s is forced to be fitted to the corresponding 5's.

Hence, the posterior variance of 5 increases. Although this prior

assumption reduces the posterior standard deviation for Diesel V, the

precision of the other estimates deteriorates. The assumption of imperfect

replication, we conclude, is inappropriate in the present illustration.

Ihe assumption of strongly related experiments does not have this
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TABLE 7

.

Bayes Estimates of Log Slopes For Lung Cancer Risk in Man
Alternative Assumptions on the Relation Between Diesel Columns

3x8 Data Matrix

Weakly Imperfect Strongly Original
Related Replicates Related Data
(0,100) (100,0) (99,1)(^o r ^>, )

h. 0.388

0.478

1.100

1.221

0o416

0.515

Roofing Tar

6* 1.533 1.393 1.724 0.495
0.739 1.124 0.743 1.415

Coke Oven

e* 1.424 1.504 1.495 1.482
0,333 0.336 0.330 0.341

Diesel Engine I

e*
c*

0.339
0.862

-0.401
1.594

0.442
0.868

Diesel Engine V

e*
c*

1.877
1.497

0.443
1.165

0.241
1.029

1.921
1.512
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limitation. Our conservative use of prior information about the relatedness

of the diesel experiments does not increase (j* much beyond 0.5. The

posterior standard deviations of the roofing tar, coke oven and diesel I

emissions are increased only slightly in conparison to the first column of the

table. But the precision of the estimate for diesel V is improved. T^ie

incorporation of epidsniological data on occupational exposures to diesel

engine V has led us to revise upward our estimate of the slope for diesel I.

Moreover, the results of the viral transformation and mutagenesis experiments

on diesels I through IV have led us to revise downward our estimate of the

potency of diesel V. Father than being more potent than roofing tar or coke

oven emissions, as originally suggested by the data, diesel V is likely to be

3 or 4 times less potent, although not conclusively so.

8. DISOJSSICN AND OOSICLUSICNS

We have constructed a general framework for combining the results of

diverse experiments when there is uncertainty about the relevance of some

experiments to others. Within this framework, we have attacked the specific

problCTi of assessing human cancer risks fran heterogeneous toxicological and

epidemiological data.

We distinguish between the conventional sampling error inherent in each

experiment and a novel error of imperfect relevance among experiments. "The

latter type of error formalizes our notion of the credibility of interspecies

and interagent extrapolations. We shew how the available experimental data,

in canbination with the scientist's prior information on the credibility of

such extrapolations, can be used to estimate the effects of various

environmental agents in man and other species.

For a relatively simple example involving two species and two
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environmental agents, we shew hew the scientist's prior information can

overric3e the data in predicting human cancer risks. When we add more

experiments on a third agent and in a third species, the data are predominant.

At the same time, a scientist's vague prior notion of the magnitude of these

extrapolative errors is made more precise.

We then propose a data analytic method for selecting the most relevant

subset among a multitude of experiments. The main idea behind this method is

to determine which species or which envirormental agent contributes most to

our estimate of extrapolative error. Such species or agents are successively

eliminated from the data base so long as the precision of a particular

estimate, say, a particular human cancer risk, is improved.

We apply this diagnostic method to a relatively large 5x9 array,

containing 36 observed dose-response slopes. This example demonstrates the

tradeoff between prediction bias due to potentially irrelevant experiments and

prediction efficiency resulting frem cesnbining diverse experiments. The

analysis tentatively suggests that for a particular class of environmental

emissions containing polyarcmatic hydrocarbons, the results of mammalian cell

transformation experiments and mammalian mutagenesis experiments with

metabolic activator are more relevant to human lung cancer risks than

mammalian skin tumor initiation experiments or tests of indirect mutagenicity.

Although this finding may not ultimately withstand scrutiny, it was derived,

we stress, frcm our adoption of an attitude of exploratory analysis.

Finally, we demonstrate how prior information on the relationship between

experiments can be incorporated into the analysis. This situation is likely

to occur when experiments have been performed in the same species or in

different strains of the same species, or when tests have been performed on

multiple samples of the same environmental mixture.
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The main limitation of the present analysis, we feel, is our inability to

verify that the assumption of exchangeable errors of interspecies

extrapolation applies to humans. The reader could legitimately object that we

have merely assessed hew well one can extrapolate fran mouse skin to hamster

einbryo cells to mouse lymphoma cells. To confirm that the error of

extrapolation is exchangeable among species, we need precise human

carcinogenesis data.

Our analysis in Section 6 revealed that cigarette smoke is a more potent

direct mutagen and a more potent transforming agent in cell culture than would

be expected from its observed carcinogenic potency in man. When we excluded

experiments involving cigarette smoke, the estimate of cr for the remaining

data declined. We do not regard this finding as strong evidence against

exchangeability of extrapolation errors across all species. However, the

conclusion that the ronaining data fit the underlying model more exactly, we

acknowledge, is based primarily on the more precise non-human experimental

data.

We should note, however, that the assumption of spherical errors

(equation (3.3c)) is only a special case. The covariance matrix tr I for the

extrapolative errors S could be replaced by a more general matrix. For

example, the deviations S corresponding to experiments in a particular

species or agent could have a variance that is different a. priori from c .

We have not explored these possibilities in this initial paper because the

naive exchangeability assumption seems to be a reasonable starting point.

Moreover, we do not regard the basic normal data, normal prior structure

of our model as particularly objectionable. Deviations from the underlying

constant relative potency model may arise from biological processes that are

non-gaussian. Since the normal distribution has smaller tails than other
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likely candidates, any outliers fran the underlying normal model will have a

stronger contribution to the overall estimate of the hyperparameter a. Our

use of the normal model is thus more conservative in this respect. In any

case, it gives analytical formulas that permit others to reproduce our

results.

Nor do we take the underlying constant relative potency model to be an

important limitation. Our framework could easily acconmodate a constant

additive potency model or, for that matter r any regression model of the form

Q = X^+i , where X is a known design matrix. The appeal of the constant

relative potency concept is its avoidance of potentially complex or

implausible conversions of dosage units between species.

Nor do we attach any special limitation to our apparent reliance en the

slope of a linear dose-response relationship. Although we recognize that

there is considerable support for such a dose-response rrodel,, it should be

clear that alternative methods of sunmarizing the results of an experiment are

possible. For example, the TD^^ (dose at which 50 percent of subjects develop

clinical toxicity) or the MTD (maximum tolerated dose) could be used for each

human experiment, as in Freireich et al. (1966). For the non-human species, at

least, the LD^^ could be used, as in Meselson and Russell (1977) . In fact,

our model could be generalized to the multivariate case where each experiment

is summarized by a vector of numbers. In this way, one could incorporate the

effect of such additional factors as the effects of duration and fraction of

exposure, or possible synergistic effects with other tumor initiators or

prcmotors.

The model described in this paper appears to provide the theoretical

underpinning for the other previous attempts to combine carcinogenesis

experiments. Meselson and Russell's (1977) comparison of mutagenic potency in
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Salmonella with carcinogenic potency in rodents constitutes a special 2xl case

in our framework. In fact, the present methodology can be used to resolve the

criticism that the favorable results of these authors were merely fortuitous.

Similarly, our approach resolves the difficulties encountered by Crouch

and Wilson (1979,1980) in having to perform separate canparisons of

carcinogenic potency in different pairs of sf^cies. It also satisfies these

authors' desire for a systematic approach to the identification of potential

exceptions to the underlying extrapolative model. Moreover, the use of

informative priors on the hyperparameters of the model, as illustrated in

Section 7, permits us to include multiple experiments on the same agent in the

same species. We therefore avoid the problem, encountered by these authors,

of deciding which of several experiments to incorporate in the analysis. By

the use of informative priors, we could also incorporate information about the

faulty design or execution of an experiment. Furthermore, in a multivariate

generalization of our model, we could incorporate the incidences of tumors of

different sites. This would avoid the additional difficulty, encountered by

these authors, of deciding which of several endpoints to choose.

Finally, this paper considers only the estimation of carcinogenic

potency. We do not discuss the use of these estimates, in cotibination with

data on the extent of exposure to an environmental agent, to predict possible

excess cancer incidence. Such an application entails additional but important

uncertainties that are beyond the scope of this study.
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