
Type-omega DPLs

Konstantine Arkoudas

AI Memo 2001-027 October 2001

© 2 0 0 1 m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 2 1 3 9 u s a — w w w. a i . m i t . e d u

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y — a r t i f i c i a l i n t e l l i g e n c e l a b o r a t o r y

@ MIT

Abstract

Type-ω DPLs (Denotational Proof Languages) are languages for proof presentation and search that offer strong
soundness guarantees. LCF-type systems such as HOL offer similar guarantees, but their soundness relies
heavily on static type systems. By contrast, DPLs ensure soundness dynamically, through their evaluation
semantics; no type system is necessary. This is possible owing to a novel two-tier syntax that separates
deductions from computations, and to the abstraction of assumption bases, which is factored into the semantics
of the language and allows for sound evaluation.

Every type-ω DPL properly contains a type-α DPL, which can be used to present proofs in a lucid and
detailed form, exclusively in terms of primitive inference rules. Derived inference rules are expressed as
user-defined methods, which are “proof recipes” that take arguments and dynamically perform appropriate
deductions. Methods arise naturally via parametric abstraction over type-α proofs. In that light, the eval-
uation of a method call can be viewed as a computation that carries out a type-α deduction. The type-α
proof “unwound” by such a method call is called the certificate of the call. Certificates can be checked by
exceptionally simple type-α interpreters, and thus they are useful whenever we wish to minimize our trusted
base.

Methods are statically closed over lexical environments, but dynamically scoped over assumption bases.
They can take other methods as arguments, they can iterate, and they can branch conditionally. These capa-
bilities, in tandem with the bifurcated syntax of type-ω DPLs and their dynamic assumption-base semantics,
allow the user to define methods in a style that is disciplined enough to ensure soundness yet fluid enough to
permit succinct and perspicuous expression of arbitrarily sophisticated derived inference rules.

We demonstrate every major feature of type-ω DPLs by defining and studying NDLω
0 , a higher-order,

lexically scoped, call-by-value type-ω DPL for classical zero-order natural deduction—a simple choice that

allows us to focus on type-ω syntax and semantics rather than on the subtleties of the underlying logic. We

start by illustrating how type-α DPLs naturally lead to type-ω DPLs by way of abstraction; present the formal

syntax and semantics of NDLω
0 ; prove several results about it, including soundness; give numerous examples

of methods; point out connections to the λφ-calculus, a very general framework for type-ω DPLs; introduce a

notion of computational and deductive cost; define several instrumented interpreters for computing such costs

and for generating certificates; explore the use of type-ω DPLs as general programming languages; show that

DPLs do not have to be type-less by formulating a static Hindley-Milner polymorphic type system for NDLω
0 ;

discuss some idiosyncrasies of type-ω DPLs such as the potential divergence of proof checking; and compare

type-ω DPLs to other approaches to proof presentation and discovery. Finally, a complete implementation

of NDLω
0 in SML-NJ is given for users who want to run the examples and experiment with the language.

(Note: accompanying software for this paper can be found at www.ai.mit.edu/projects/dynlangs/

dpls/omega.)

“A notation is good for what it leaves out.”

J. Stoy

1.1 Introduction

Extending type-α DPLs

Type-α DPLs were introduced in an earlier paper [5] and were shown to be simple and efficient. These
advantages do not come for free. Perhaps the most serious limitation of type-α DPLs is the lack of an
abstraction mechanism. In particular, there is no parametric abstraction: there is no way to abstract
a given proof over one or more concrete objects in order to formulate a “proof recipe” that can be
reused in many different situations by supplying different values for the parameters. This ability is
very important in proof engineering for the same reasons that procedural abstraction is important

1

Prim-Rule ::= claim (reiteration)

| modus-ponens (⇒-introduction)

| modus-tollens (¬-introduction)

| double-negation (¬-elimination)

| both (∧-introduction)

| left-and (∧-elimination)

| right-and (∧-elimination)

| left-either (∨ -introduction)

| right-either (∨ -introduction)

| constructive-dilemma (∨ -elimination)

| equivalence (⇔ -introduction)

| left-iff (⇔ -elimination)

| right-iff (⇔ -elimination)

| true-intro (true-introduction)

| absurd (false-introduction)

| false-elim (false-elimimation)

Figure 1.1: Primitive inference rules

in programming: task decomposition and complexity management. It is particularly important for
expressing so-called derived inference rules.

Consider, for example, the type-α DPL NDL0 [5], for classical natural deduction:

D ::= Prim-Rule P1, . . . , Pn | D1; D2 | assume P in D (1.1)

where propositions P, Q, . . . are generated by the following abstract grammar:

P ::= A | true | false | ¬P | P ∧Q | P ∨Q | P ⇒Q | P ⇔Q

with A, B, C, . . . ranging over some unspecified collection of atoms and Prim-Rule as specified in
Figure 1.1. Now consider a proof of the tautology A⇒¬¬A, for some atom A:1

assume A in
suppose-absurd ¬A in

absurd A,¬A

It is clear here that the identity of A is immaterial. The deduction will succeed even if we replace the
atom A by an arbitrary proposition P . Accordingly, we should be able to abstract this deduction over
A in order to obtain a derived inference rule, call it foo, that can be applied to any given proposition.
For instance, applying foo to A ∨B would derive the proposition (A ∨B)⇒¬¬(A ∨B).

We might thus proceed to introduce an abstraction operator, call it φ, which we can use to define
foo as follows:

foo = φ P . assume P in
suppose-absurd ¬P in

absurd P,¬P
1Recall the desugaring of suppose-absurd in terms of assume, primitive rules, and deduction composition [5].

2

The letter P is used here as a parameter; it does not designate any one specific proposition. In
general, we can use φ with any number of parameters P1, . . . , Pn, arriving at methods2 of the form
φP1, . . . , Pn . D, where P1, . . . , Pn are the parameters and D is the body of the method. For now
the term “method” can be understood simply as a shorthand for “derived inference rule”, although
later we will see that methods are more general and powerful than what are commonly understood
as derived inference rules.

Once we have a method we can apply it to appropriate arguments. That will simply evaluate
the body of the method with the formal parameters replaced by the actual arguments. For instance,
applying foo to the argument A ∨B will evaluate the body of foo with A ∨B in place of P , thereby
deriving the conclusion (A ∨B)⇒¬¬(A ∨B).

This all sounds fairly innocuous and reasonable, but in fact a slew of difficult questions are im-
mediately raised. The setting of type-α DPLs was very simple: we only had one syntactic category,
deductions, and it was very clear what deductions were meant to do: derive propositions. Now we
propose to have methods as well. But a method by itself is not a deduction; it’s a deduction recipe.
A deduction is what one gives in order to establish a proposition. A method does not establish any
one proposition. It is the application of a method that derives a proposition, and indeed we will
see that method applications will be regarded as deductions. Method themselves, however, are not
deductions. But if they are not deductions, what are they? Alternatively, what do methods denote?
In type-α DPLs we know what the denotable values are: propositions. Every deduction denotes a
proposition. But here things are not so simple. In the presence of naming, specifying clearly what the
denotable values are is very important because it affects a whole range of issues. For instance, can a
method take another method as a parameter? Can a method return a method? Also, can a method
call itself? Does it make sense to admit recursive methods?

Note that if we treat methods simply as functions that return propositions, then we will need
a static type system to weed out unsound methods. That approach—essentially the approach of
LCF-type systems—is fundamentally incompatible with the dynamic character of assumption bases,
which enforce soundness at evaluation time. If we want a smooth generalization of type-α DPLs that
allows for abstraction and proof search while conservatively extending the assumption-base semantics
of type-α DPLs, we must look beyond type systems.

There are many more questions. Consider, for example, a method M of the following form:

M = φ P, Q . assume P ∨Q in · · ·

that takes two propositions P and Q and performs some hypothetical deduction with the disjunction
P ∨Q as the hypothesis. How do we apply M to two arguments, say to A and ¬B? Proceeding
as usual by way of substitution, we have to evaluate the body of M with A and ¬B substituted in
place of P and Q, respectively. The body of M is a hypothetical deduction, so the first thing we
need to do is add the hypothesis to the assumption base. But the hypothesis is not quite there yet!
We have to form it, by applying the disjunction operator ∨ to A and ¬B. But in what sense are we
“applying” ∨? Certainly not in the same sense in which we apply methods, such as modus-ponens.
The disjunction operator ∨ is not a method; it does not perform any kind of inference; it does not at
all interact with the assumption base. But if ∨ is not a method, what is it?

The answer is that ∨ is a function. It is not a particularly interesting function—it is just a
constructor that takes two already formed propositions P1 and P2 and builds their disjunction P1 ∨ P2.
But it is a function nevertheless—it performs computation rather than inference. It constructs both
valid and invalid propositions, such as false ∨ false, without caring in the least about consistency

2We are not using the term “method” in any sense related to object-oriented programming.

3

with the assumption base. Indeed, as far as a function such as ∨ is concerned, the assumption base
might as well not be there at all.

In fact, if we are to have even a remotely sophisticated proof language then we have to incorporate
computation into our framework. Many times in informal proofs an author might say

assume f(· · ·) in D

where f(· · ·) is a computation, potentially of arbitrary complexity and duration, that will eventually
produce some proposition P . It is only after f(· · ·) returns P that we proceed in the usual manner
by adding P to the assumption base and continuing with the evaluation of the body D. Likewise, it
is common to express inference rule applications in the form

modus-ponens X, Y

where X and Y are descriptions of computational processes that run and eventually produce propo-
sitions of the form P ⇒Q and P , at which point we again proceed as usual by checking that both of
these propositions are in the assumption base and, if so, returning Q.

So at this point we seem compelled to admit a different kind of evaluation into the picture;
not deductive evaluation of the type-α sort, but rather conventional, algorithmic computation. The
question now is how to formally distinguish these two notions, computation and deduction, while also
integrating them in a sound and practical manner. What are their respective semantics, and how do
they interact?

Other approaches such as that of LCF [16] or HOL [17], or of Boyer-Moore [7], do not explicitly
distinguish between deduction and computation. In HOL, for instance, everything that a user writes
down is ML code. The distinction is implicit, insofar it is only reflected in the type system, which
puts deductions apart as special kinds of computations, namely, computations that return values
of some type “theorem”. DPLs, as we will shortly see, drive a much deeper wedge between the
two notions. To begin with, computations and deductions are teased apart at the syntactic level.
There are two distinct syntax layers, expressions for computation and deductions for inference. This
syntactic separation is central to the approach of type-ω DPLS. Once we have sequestered the syntax
of computations and deductions, their dynamic semantics can be formally distinguished in terms of
how their evaluation interacts with the assumption base.

To make things concrete we will illustrate with NDLω
0 , a type-ω DPL that extends NDL0. In

the next three sections we will define the syntax and discuss the informal semantics of this language;
present its formal semantics and prove some elementary results about its proof theory; and finally we
will introduce an interpreter for it. We will subsequently extendNDLω

0 by introducing some additional
syntax forms, thereby arriving at a larger language, NDLω

0 . The new forms will be theoretically
superfluous, in the sense that they could in principle be defined as syntax sugar in terms of core
NDLω

0 constructs. Nevertheless, they are very useful in practice and it is worthwhile to consider
them as primitives—especially constructs such as pattern matching, whose desugarings are not trivial.
Later on when we speak of “NDLω

0 ” we will not bother to specify whether we are referring to the
kernel language of Section 1.2 or to the extended language of Section 1.6, since in most cases the
distinction will be immaterial. When we have to differentiate the two, we will refer to the former as
“core NDLω

0 ” and to the latter as “full NDLω
0 ”, or as NDLω

0 .

Notation

We will write 〈a, b〉 for the ordered pair having a and b as its first and second elements, respectively;
and [a1, . . . , an] for the list of a1, . . . , an. For any given list L and element a, we write a::L for the list
obtained by prepending (“consing”) a onto L;

←−
L for the reverse of L; and ⊕ for the list concatenation

operator. For any set S, the expression P∞(S) will denote the set of all finite subsets of S.

4

In the sequel we will define several interpreters using functional pseudo-code, mostly in the style
of SML [27]. As a notational convention made in the interest of brevity, we will sometimes write

let P = f(· · ·) in · · ·

to mean that the result of the call f(· · ·) should be a proposition P . In general, whenever we bind
the result of a function call f(· · ·) to a variable x that has been designated to range over a certain set
S, the binding should be understood to mean “If f(· · ·) produces an element of S, let that element
be x; otherwise generate an error.” Similarly, we will write let [V1, . . . , Vn] = f(· · ·) in · · · to mean
that the result of the function call f(· · ·) should be a list of n values, to be named V1, . . . , Vn within
the body of the let ; an error should occur if f(· · ·) produces anything other than a list of n values.
Occasionally, when it is more convenient to do so, our pseudocode will use the where construct (e.g.,
as found in Caml [13]) instead of let.

1.2 Syntax and informal semantics

We now assume that we are given a primitive syntactic domain of identifiers I. Further, we have a
collection of constants c that are distinct from the identifiers. The language has two main syntactic
categories: deductions D and expressions E. A phrase F is simply either a deduction or an expression.
These domains are specified by the following grammar:

D ::= !E F1 · · ·Fn | assume E in D

E ::= c | I | φ I1, . . . , In . D | λ I1, . . . , In . E | E F1 · · ·Fn

F ::= E | D

As constants c we will take all the propositional atoms A along with true and false, the five propo-
sitional connectives, the propositional equality function ≡, and the primitive methods shown in Fig-
ure 1.1. Accordingly,

c ::= A | true | false | ¬ | ∧ | ∨ | ⇒ | ⇔ | ≡ | claim |modus-ponens | · · ·

We will often write mp, dn, and cd as abbreviations for modus-ponens, double-negation, and
constructive-dilemma, respectively.

Expressions of the form λ I1, . . . , In . E and φ I1, . . . , In . D are called functions and methods, re-
spectively. The identifiers I1, . . . , In are the formal parameters of the respective function or method;
they must all be distinct, i.e., Ij1
= Ij2 whenever 1 ≤ j1 < j2 ≤ n. We could have n = 0 formal
parameters, and in that case, for readability purposes, the corresponding function or method will be
written as λ () . E or φ () . D, instead of λ . E or φ . D.

Deductions of the form !E F1 · · ·Fn are called method applications, or method calls. The excla-
mation mark is used simply to distinguish method applications from function applications, which are
written as E F1, . . . , Fn. (Of course this is abstract syntax; if we try to use it as concrete syntax, to
write down phrases as linear strings of symbols, then we will need some form of parenthesization to
resolve parsing ambiguities. In what follows we will use parentheses liberally for that purpose.) The
expression E is the method and the phrases F1, . . . , Fn are the arguments of the application. Note
that even though method applications are deductions, methods themselves are expressions.

Expressions and deductions are syntactically distinct, and this is a key feature of type-ω DPLs. It is
immediately evident by simple inspection whether a given phrase F is an expression or a deduction. If

5

we look at F as a parse tree, then all we have to do is check the root node: if it is either the exclamation
mark or the keyword assume, then we have a deduction; otherwise F is an expression. Intuitively,
expressions are intended to represent computations, while deductions represent logical demonstrations.
In particular, a deduction D will always produce a proposition, if it produces anything at all. We thus
preserve the viewpoint of type-α DPLs: deductions return propositions; and the proposition returned
by some D will be viewed as the conclusion of D. To ensure soundness, we must also preserve the
type-α guarantee that if D produces a conclusion P in some assumption base β, then P will in fact
be a logical consequence of β. In symbols, if β �D � P then β |= P . We will prove that this holds
soon.

By contrast, an expression can return anything—a proposition, a function, a method, etc. Fur-
thermore, we will see that there are no constraints between the result of an expression E and the
contents of the assumption base β. Evaluating E in a given β might well produce a proposition P that
is inconsistent with β. But precisely because P is obtained from an expression, we make no guarantees
about its soundness. We only make such guarantees about the results of deductions. Thus, loosely
speaking, expressions are given free rein to compute in any way they see fit; they can ride roughshod
over the assumption base. Deductions, on the other hand, are much more restricted; they have to
play inside the sandbox of the assumption base.

Some additional noteworthy points:

• Methods are abstractions of logical derivations, and therefore the body of a method must be a
deduction D, not an expression E. Thus something like φ g, x . g x is nonsense at the syntactic
level. It is not a well-formed phrase because the body g x is an expression, when it should
instead be a deduction. By contrast, functions are abstractions of computations, and therefore
the body of a function must be an expression E, not a deduction D. Hence, symmetrically,
something like λM,P . !M P is syntactically ill-formed.

• There is no special form for deduction composition. In NDL0, we had the form D1; D2, which
was used to compose deductions so that the result of D1 became available as a lemma within D2.
Here there is no need to posit such a mechanism as primitive. We can achieve the same effect
by nesting method applications. For now we simply observe from the syntactic form of method
calls, !E F1 · · ·Fn, that the arguments Fi of a method call are phrases , which means that they
can be either expressions or deductions. If an argument Fi is a deduction, then the conclusion
we obtain from it will be added to the assumption base before we apply the method E to the
values of F1, . . . , Fn. This provision will be captured in the formal semantics by the so-called
“cut rule”, and will be used to implement inference composition. Consider, for instance, the
unary method application

!double-negation (!right-and A ∧ ¬¬B) (1.2)

whose only argument is itself a deduction, namely an application of right-and to A ∧ ¬¬B.
Suppose we are to evaluate 1.2 in the assumption base β = {A ∧ ¬¬B}. First we evaluate the ar-
gument (!right-and A ∧ ¬¬B), obtaining the conclusion ¬¬B. Then we add this conclusion to
β and proceed to apply double-negation to ¬¬B. Thus, the application of double-negation
will take place in the assumption base {A ∧ ¬¬B,¬¬B} and will successfully produce the final
conclusion B. Therefore, 1.2 is essentially equivalent to the NDL0 deduction

right-and A ∧ ¬¬B;double-negation ¬¬B.

• Functions and methods take multiple arguments rather than being curried. This is quite im-
portant for methods because a method application, being a deduction, is always expected to

6

return a proposition; it cannot return another method. As we have already emphasized, this
viewpoint of a deduction D as something that produces a proposition is central in DPLs. Of
course this viewpoint could be preserved even if methods were unary, by packaging up all the
necessary arguments of a method into a single list. However, methods would still have to return
propositions, and hence currying would still not be possible in any meaningful sense.

• The fact that the arguments of a method application can be arbitrary phrases suggests that
a method can take any type of value as input, including another method. So even though
methods have to return propositions, they are higher-order in the sense that they can be given
other methods as arguments.

• Expressions and deductions are generated by mutually recursive grammars. Accordingly,

1. Expressions can appear within deductions. This was motivated in the introduction, where
it was pointed out that oftentimes it is necessary to intersperse proof evaluation with
conventional algorithmic computation. Observe, for instance, the syntax of hypothetical
deductions: assume E in D. The hypothesis is an expression E, which can thus be an
arbitrary computation that eventually produces a proposition; while the body is a deduction
D comprising the scope of the hypothesis E. Note that this is an entirely different notion
of scope from the lexical scope of identifiers induced by λ and φ.

2. Deductions can appear within expressions. In particular, the arguments of a function
call E F1, . . . , Fn can be arbitrary phrases, thus possibly deductions. The reason is that
deductions produce propositions, and a proposition can clearly be given as an argument to
a function, regardless of whether it was logically derived or simply computed. Thus it is
sensible to say, for instance, “apply the negation constructor to the result of the deduction
D”, i.e., ¬ D, where ¬ takes an arbitrary proposition P and outputs ¬P . Since deductions
that appear as arguments to function calls are used for computational rather than deductive
purposes, we will refer to them as “phantom” deductions.

Nevertheless, the interweaving of expressions and deductions is completely orthogonal. If an
expression E does not contain any deductions, then it looks and behaves exactly like a conven-
tional lambda-calculus expression. In addition, the evaluation of such an expression will incur
zero run-time penalty because the assumption base β will never be touched: nothing will be
looked up in β and nothing will be inserted in it. Conversely, if our deductions contain only
trivial expressions in them, such as constants, then we are essentially barring computation and
evaluation will proceed almost exclusively by applying primitive methods and manipulating the
assumption base; we will then be reverting to type-α deductions. This will be clarified further
when we come to discuss pure deductions and pure expressions.

Finally, free and bound occurrences of identifiers are defined as one would expect: in a method
φ I1, . . . , In . D, the abstraction operator φ binds I1, . . . , In within D, just as λ binds I1, . . . , In within
E in a function λ I1, . . . , In . E. Specifically, the set of identifiers that have free occurrences in a phrase
F , denoted FV (F), is defined as follows:

FV (!E F1 · · ·Fn) = FV (E) ∪ FV (F1) ∪ · · · ∪ FV (Fn)

FV (assume E in D) = FV (E) ∪ FV (D)

FV (c) = ∅
FV (I) = {I}

FV (φ I1, . . . , In . D) = FV (D)− {I1, . . . , In}
FV (λ I1, . . . , In . E) = FV (E)− {I1, . . . , In}
FV (E F1, . . . , Fn) = FV (E) ∪ FV (F1) ∪ · · · ∪ FV (Fn)

7

Phrases which differ only in their bound identifiers are called alphabetic variants, and will be identified.
That is, we will consider two phrases to be identical iff they are alphabetically convertible. For distinct
identifiers I1, . . . , Ik, we write F [F1/I1, . . . , Fk/Ik] for the phrase obtained from F by simultaneously
replacing every free occurrence of Ij by Fj , i = 1, . . . , k. In general this replacement can result in an
ill-formed phrase (consider for instance, λx . y[!both A B/y]), but in our discussion all replacements
will be of the form [E/I], which substitutes an expression (E) for another expression (I) and is thus
always valid. Also, substitutions can result in variable capture, but since alphabetic variants are
considered identical we can always preclude that outcome by renaming the bound identifiers of F .

1.3 Formal semantics

First we single out certain expressions as propositions:

P ::= A | true | false | ¬P | ∧ P1 P2 | ∨ P1 P2 | ⇒ P1 P2 | ⇔ P1 P2 (1.3)

Thus every proposition is an expression: either a constant (an atom A, or true, or false), or an
application (of one of the five constructors to the appropriate number of propositions). We write
Prop[NDLω

0] for the set of all such propositions. By an assumption base we will mean a finite
set of such propositions. As a convention, we will often write propositions in infix notation, e.g.
writing A ∧ (B⇒C) instead of ∧ A (⇒ B C). We will also use infix syntax for the equality function
≡, writing P ≡Q instead of ≡ P Q. We will continue to use the letters P and Q to designate
propositions, and A, B and C for atoms.

Next we single out a larger set of expressions as values. Intuitively, a value V represents an
expression which, for our purposes, cannot be simplified any further and may thus be regarded as
atomic and indivisible. The process of evaluation that will be induced by our semantics can be viewed
as one of mapping phrases to values.

V ::= c | P | λ I1, . . . , In . E | φ I1, . . . , In . D

Thus an expression is a value iff it is either a constant, or a proposition, or a function, or a method.
We will use the letter V to range over the set of values.

The semantics are given by rules that establish judgments of the form β �NDLω
0

F � V , which can
be read as “With respect to the assumption base β, phrase F evaluates to V ”, or “In β, F produces
the value V ”, etc. (We will drop the subscript NDLω

0 from the symbol �NDLω
0

whenever it is easily
deducible from the context or irrelevant.) The rules are divided into two groups, the core rules, shown
in Figure 1.2, and the rules for the constants, shown in Figure 1.3. The latter depicts only a few
sample rules for some of the primitive methods; the rules for the remaining primitive methods can be
found elsewhere [5].

Most of the core rules are straightforward. Rule [R1] specifies the semantics of primitive method
applications, i.e., those method applications !E F1 · · ·Fn in which E produces a primitive method
c (recall that primitive methods are represented as constants). This rule is meant to be used in
combination with the constant rules that specify the semantics of the primitive methods. In particular,
the last premise of [R1], namely β � !c V1 · · ·Vn � P , will have to be established by a rule such as [C3]
or [C4]. Rule [R2] specifies the semantics of non-primitive method applications, when the expression
E in !E F1 · · ·Fn produces a method of the form φ I1, . . . , In . D rather than a primitive. Although
this appears to be completely standard (evaluate the operator, evaluate the arguments, replace the
formals by the actuals and evaluate the body), applications of this rule will usually be preceded by
applications of [R7], which postulates that when an argument Fi is a deduction then its conclusion can

8

β � E � c β � Fi � Vi β � !c V1 · · ·Vn � P [R1]
β � !E F1 · · ·Fn � P

β � E � φ I1, . . . , In . D β � Fi � Vi β � D[Vj/Ij] � P [R2]
β � !E F1 · · ·Fn � P

β � E � P β ∪ {P} � D � Q [R3]
β � assume E in D � P ⇒Q

[R4]
β � V � V

β � E � c β � Fi � Vi β � c V1 · · · Vn � V [R5]
β � E F1 · · ·Fn � V

β � E � λ I1, . . . , In . E′ β � Fi � Vi β � E′[Vj/Ij] � V [R6]
β � E F1 · · ·Fn � V

β � D � P β ∪ {P} � !E · · ·P · · · � Q [R7]
β � !E · · ·D · · · � Q

Figure 1.2: Core semantic rules.

be added to the assumption base before we proceed with the body D of the method. The examples
will make this clear shortly. [R3] specifies the semantics of hypothetical deductions in the usual
manner. Rule [R4] says that values are self-evaluating. Rules [R5] and [R6] are the analogues of [R1]
and [R2] for primitive and non-primitive functions, respectively. These four rules together impose a
call-by-value discipline: the arguments of method calls and function calls are fully evaluated before
any substitution occurs. The most novel rule is the cut rule [R7], which is the one that allows for
inference composition, whereby the conclusion of one deduction is added to the assumption base and
serves as a premise for a subsequent deduction. This captures the transitivity of the deducibility
relation.
As an example, let D be the deduction

assume A ∧B in
!both (!right-and A ∧B)

(!left-and A ∧B)

The derivation below establishes the judgment ∅ �D � A ∧B⇒B ∧A:

1. {A ∧B, A} � !right-and A ∧B � B [C6]
2. {A ∧B, A, B} � !both B A � B ∧A [C4]
3. {A ∧B, A} � !both (!right-and A ∧B) A � B ∧A 1, 2, [R7]
4. {A ∧B} � !left-and A ∧B � A [C5]
5. {A ∧B} � !both (!right-and A ∧B) (!left-and A ∧B) � B ∧A 4, 3, [R7]

9

[C1]
β � P ≡ P � true

[C2]
β � P ≡Q � false

whenever P 	= Q

[C3]
β ∪ {P} � !claim P � P

[C4]
β ∪ {P, Q} � !both P Q � P ∧Q

[C5]
β ∪ {P ∧Q} � !left-and P ∧Q � P

[C6]
β ∪ {P ∧Q} � !right-and P ∧Q � Q

[C7]
β ∪ {¬¬P} � !double-negation ¬¬P � P

...

Figure 1.3: The semantics of constants.

6. ∅ �A ∧B � A ∧B [R4]
7. ∅ �D � A ∧B⇒B ∧A 6, 5, [R3]

As another example, consider the deduction

D = !(φM . !M ¬¬A) double-negation.

We establish the judgment {¬¬A} �D � A as follows:

1. {¬¬A} � φM . !M ¬¬A � φM . !M ¬¬A [R4]
2. {¬¬A} � double-negation � double-negation [R4]
3. {¬¬A} � !double-negation ¬¬A � A [C7]
4. {¬¬A} �D � A 1, 2, 3, [R2]

The next result can be proved directly on the basis of the formal semantics, or taken as a corollary
of the existence of a deterministic interpreter I such that β � F � V iff I(F, β) = V (we will define
such an interpreter in Section 1.8.1).

Theorem 1.1 A phrase F evaluates to at most one value. That is, for all β, if β � F � V1 and
β � F � V2 then V1 = V2.

1.4 Proof theory and a first embedding of NDL0

The following lemma expresses a so-called “dilution” property: if a deduction D yields a conclusion
P in some β, then it will continue to do so even if we “dilute” β with additional propositions.

Lemma 1.2 (Dilution Lemma) If β �D � P then β ∪ β′ �D � P .

Proof: By strong induction on the length of the derivation of the judgment β �D � P .

Let � ⊆ P∞(Prop[NDLω
0])× Prop[NDLω

0] be an arbitrary binary relation. We will say that �
is Tarskian iff it is:

10

• reflexive, i.e., β � P whenever P ∈ β;

• monotonic, i.e., β1 ∪ β2 � P whenever β1 � P ; and

• transitive, i.e., β � P2 whenever β � P1 and β ∪ {P1}� P2.

Furthermore, we will say that:

• � respects a primitive method M iff β � P whenever β � !M V1, . . . , Vn � P ; and that

• � is closed under hypothetical reasoning iff β � P ⇒Q whenever β ∪ {P}� Q.

The judgments β �D � P single out a derivability relation

�NDLω
0
⊆ P∞(Prop[NDLω

0])×Prop[NDLω
0]

as follows:
β �NDLω

0
P iff (∃D) [β �NDLω

0
D � P].

(When it is clear that we are talking about NDLω
0 we will simply write � instead of �NDLω

0
.)

Lemma 1.3 The relation �NDLω
0

is Tarskian.

Proof: Reflexivity follows by virtue of claim: if P ∈ β then β � !claim P � P and therefore
β � P . Monotonicity will follow if we can show that β ∪ β′ �D � P whenever β �D � P . This was
established by the dilution lemma. For transitivity, suppose that β � P1 and β ∪ {P1} � P2, so that

β �D1 � P1 (1.4)

and
β ∪ {P1} �D2 � P2 (1.5)

for some D1, D2. Setting
D = !(φ I .D2) D1

for some I that does not occur in D2, the following derivation establishes the judgment β �D � P2:

1. β ∪ {P1} � φ I .D2 � φ I .D2 [R4]
2. β ∪ {P1} � P1 � P1 [R4]
3. β ∪ {P1} �D2[P1/I] � P2 Assumption 1.5, since D2[P1/I] = D2

4. β ∪ {P1} � !(φ I .D2) P1 � P2 1, 2, 3, [R2]
5. β � !(φ I .D2) D1 � P2 Assumption 1.4, 4, [R7]

It follows from β �D � P2 that β � P2.

Theorem 1.4 �NDLω
0

is the least Tarskian relation that respects the primitive methods of NDLω
0

and is closed under hypothetical reasoning.

Proof: That � is Tarskian was shown by the preceding lemma. It is also straightforward to prove
that � respects the primitive methods of NDLω

0 and is closed under hypothetical reasoning. Thus
here we only need to show that if β � P then β � P , for an arbitrary relation � that respects the

11

primitive methods of NDLω
0 and is closed under hypothetical reasoning. Now the assumption β � P

means that there is a D such that
β �D � P (1.6)

and hence we may proceed by strong induction on the length n of the derivation of this judgment.
When n = 1, 1.6 must be an instance of a primitive-method axiom (e.g., [C3]), and in that case the
result follows from the assumption that � respects every primitive method. For the inductive step,
let n > 1 and assume that the result holds for all derivations of length less than n. We proceed by a
case analysis of the rule that is used in the last line of the derivation of 1.6. There are five possibilities
for what that rule can be: it is one of the primitive-method axioms; or else it is [R1]; or [R2]; or [R3];
or [R7]. No other rule could possibly be used to derive 1.6 for syntactic reasons: the judgment 1.6
relates a deduction D to a proposition P , whereas every rule other than the aforementioned relates
an expression to a value. We consider each of the five cases in turn. In the first case the result again
follows from the supposition that � respects all primitive methods. In the cases of [R1] and [R2] the
result follows immediately from the inductive hypothesis. In the case of [R3] the inductive hypothesis
yields β ∪ {P}� Q, and therefore β � P ⇒Q follows from the assumption that � is closed under
hypothetical reasoning. In the case of the cut rule, [R7], the inductive hypotheses entail β � P and
β ∪ {P}� Q, so now the desired judgment β � Q follows from the transitivity of � . This completes
the case analysis and the inductive argument.

The soundness of NDLω
0 follows as a direct corollary of this theorem. Specifically, define |= as the

usual relation of logical implication, so that β |= P holds iff every interpretation that satisfies each
element of β also satisfies P . It is straightforward to show that |= is Tarskian; that it respects the
primitive methods of NDLω

0 ; and that it is closed under hypothetical reasoning. Hence Theorem 1.4
entails that β |= P whenever β � P .

Corollary 1.5 (Soundness) If β �NDLω
0

P then β |= P .

For completeness, we need only show how to embed NDL0 into NDLω
0 . Since the former has al-

ready been shown to be complete, the completeness of the latter will follow by virtue of the embedding.
We define a translation mapping T from NDL0 deductions to NDLω

0 deductions as follows:

T [[Prim-Rule P1, . . . , Pn]] = !Prim-Rule P1, . . . , Pn (1.7)

T [[assume P in D]] = assume P in T [[D]] (1.8)

T [[D1; D2]] = ! (φ I . T [[D2]]) T [[D1]] (1.9)

where the identifier I in 1.9 must not occur in D2. Note that since propositions have the exact same
abstract syntax in both languages, we may identify Prop[NDL0] with Prop[NDLω

0]. Thus we do
not bother to distinguish between a NDL0 proposition and its NDLω

0 counterpart, and this is why
the variables P1, . . . , Pn appear in the same capacity on both sides of the equation 1.7 (and likewise
for the hypothesis P in 1.8). By extension, we will not distinguish between a NDL0 assumption base
and its NDLω

0 counterpart. The following result proves the correctness of this desugaring:

Theorem 1.6 If β �NDL0 D � P then β �NDLω
0
T [[D]] � P .

Proof: A straightforward induction on the length of the NDL0 derivation of β �D � P .

Completeness is now immediate:

Corollary 1.7 (Completeness) If β |= P then β �NDLω
0

P .

12

Proof: If β |= P then there is a NDL0 deduction D such that β �NDL0 D � P . By Theorem 1.6,
β �NDLω

0
T [[D]] � P , which is to say β �NDLω

0
P .

1.5 An interpreter

In this section we informally describe a substitution-based interpreter for evaluating a NDLω
0 phrase

F in an assumption base β. This interpreter will be rigorously expressed in ML-pseudocode in
Section 1.8.1, where it will also be extended to handle some new syntax forms to be introduced in
Section 1.6. We will assume that we have an algorithm at our disposal for applying any primitive
method or function to an arbitrary sequence of values in an arbitrary assumption base. The interpreter
is syntax-driven; it proceeds in accordance with the syntactic structure of the input phrase F :

• If F is a method application !E F1 · · ·Fn, evaluate E in β to obtain some value V . Then
initialize a set of lemmas β′ to be the empty set ∅, and start evaluating each argument Fi in
β, for i = 1, . . . , n, to obtain values V1, V2, . . . , Vn. If Fi is a deduction, so that the value Vi

produced by it is some proposition P , then add P to the lemma set β′. We stress that this is
only done for those arguments Fi that are, syntactically speaking, deductions. When we have
evaluated every argument Fi, we proceed by a case analysis of the value V that we obtained
from E:

1. If V is a primitive method M , such as modus-ponens, then apply M to the values
V1, . . . , Vn in β ∪ β′.

2. If V is a method of the form φ I1, . . . , In . D, then evaluate D[V1/I1, . . . , Vn/In] in β ∪ β′.

3. Otherwise report an error, since in that case E does not denote a method.

• If F is a deduction of the form assume E in D, evaluate E in β. If that eventually produces
a proposition P , evaluate D in β ∪ {P} to obtain some conclusion Q and return the condi-
tional P ⇒Q as the final result. If the evaluation of E in β produces something other than a
proposition, generate an error.

• If F is a constant expression c, a function λ I1, . . . , In . E, or a method φ I1, . . . , In . D, return
F .

• If F is a function application E F1, . . . , Fn, evaluate E in β to get a value V from it. Then
start evaluating each argument Fi in β, for i = 1, . . . , n. Once every Fi has produced a value
Vi, proceed by analyzing V :

– If V is a primitive function f , then apply f to the arguments V1, . . . , Vn in β.

– If V is a function λ I1, . . . , In . E, evaluate E[V1/I1, . . . , Vn/In] in β.

– Otherwise report an error, since in that case E does not represent a function.

The most noteworthy part of the interpreter involves the handling of the cut rule [R7]. The cut
rule is non-deterministic in that a method call !E F1 · · ·Fn may have several deductive arguments,
and in general we may have to “guess” which of those deductions are necessary in order for the
application of E to succeed. For interpretation purposes, however, we would like to have a fixed
evaluation strategy in order to avoid the need for backtracking. The simplest way to remove the
nondeterminism associated with [R7] is to incorporate the conclusions of all arguments Fi that are

13

deductions. This eliminates the need to backtrack and is sound owing to the dilution lemma, for if
the application goes through with the help of some of the deductions from F1, . . . , Fn, then it will
certainly go though with the help of all of them. Moreover, this scheme incurs zero cost because with
a call-by-value strategy every argument Fi needs to be evaluated anyway before the application takes
place, so the only additional work we have to do is trivial: keep track of the values (conclusions) of
those arguments that are deductions, in order to later incorporate them in the assumption base in
which the call is taking place.3

1.6 Additional syntax forms

As it stands, NDLω
0 is powerful but not quite usable. In that respect it is analogous to the λ-calculus,

which is powerful but too austere to be useful for practical purposes. To remedy this, we need to
introduce additional syntax forms that enrich the expressiveness of the language. There are two ways
to do that. One is to introduce the desired new idioms as syntax sugar. The main advantage of
this approach is that it facilitates the study of the language. For instance, if we need to prove that
every expression has a certain nice property then we only need to consider core expressions, since
every other type of expression is just an abbreviation—albeit a potentially long one—for some core
expression. The other approach, which is the one we will take in this paper, is to introduce the new
constructs as bona fide new primitives, with their own special semantics. This approach is a better
reflection of practice, since languages are rarely implemented by desugaring all possible constructs
into a very small core. Nevertheless, we stress that each of the constructs introduced below could
be desugared in terms of core NDLω

0 . For details we refer the reader to Chapter 8 of “Denotational
Proof Languages” [4].

We obtain the extended language NDLω
0 by augmenting the grammar of NDLω

0 as follows:

D ::= !E F1 · · ·Fn | assume E in D | dlet I = F in D | dmatch E (π1? D1) · · · (πn? Dn) |
suppose-absurd E in D | E by D | begin D1; · · · ; Dn end

E ::= c | I | φ I1, . . . , In . D | λ I1, . . . , In . E | E F1, . . . , Fn | fix I . E | let I = F in E |
match E (π1? E1) · · · (πn? En) | begin E1; · · · ; En end

F ::= E | D
Note the bifurcated syntax: most of the new constructs have computational and deductive counter-
parts. Moreover, note that the body of a let is an expression, while the body of a dlet is a deduction.
Similarly, in an expression of the form

match E (π1? E1) · · · (πn? En)

the alternatives E1, . . . , En are themselves expressions, while in a deduction of the form

dmatch E (π1? D1) · · · (πn? Dn)

the alternatives are deductions D1, . . . , Dn This maintains the original design invariant of the language,
whereby expressions perform computation and can return anything whereas deductions perform in-
ference and must return propositions that are entailed by the assumption base. This principle would
clearly be violated if we admitted a deduction form such as dlet I = F in E. We explain each new
construct below.

3Observe that in practice we usually have to incorporate the conclusions of all deductive arguments anyway, because
if the conclusion of some D in a method call !E · · ·D · · · is not necessary for the call to go through, then D is
extraneous. Such deductions are unlikely to occur in practice.

14

Sequencing

The let I = F in E construct is used for sequencing and naming: it prescribes that the phrase F
should be evaluated before the body E, and furthermore, that E should be able to refer to the result
of F by the name I. Note that F , being a phrase, could be either an expression or a deduction. In
the latter case, of course, every free occurrence of I within E will denote a proposition.

In a similar fashion, the construct dlet I = F in D precedes a deduction D by a phrase F , which
can either be a computation E0 or some other deduction D0. As with let, the identifier I can be
used within the body D to refer to the result of F . But, in addition, if F is a deduction D0, then the
conclusion of D0 becomes available as a lemma within the body D. More precisely, the body D will
be evaluated in the assumption base of the entire dlet augmented with the conclusion of D0. These
semantics are formally captured by the three rules below. Note that two distinct rules are needed for
dlet I = F in D, one covering the case when F is an expression and one for when F is a deduction,
as explained above.

β � F � V0 β � E[V0/I] � V [R8]
β � let I = F in E � V

β � E0 � V0 β � D[V0/I] � P [R9]
β � dlet I = E0 in D � P

β � D0 � P β ∪ {P} � D[P/I] � Q [R10]
β � dlet I = D0 in D � Q

The difference between let and dlet is essentially the same difference between function calls and
method calls that we mentioned earlier: when we evaluate the arguments of a method call, we keep
track of whether an argument is a deduction; if so, its conclusion will be incorporated in the assumption
base once all the arguments have been evaluated and we are ready to apply the given method. In fact,
the phrases let I = F in E and dlet I = F in D could be taken as syntax sugar for the function
call (λ I .E) F and method call !(φ I .D) F , respectively. It is readily verified that, owing to the
cut rule, this desugaring results in the exact same semantics as those given by the rules [R8]—[R10]
above.

We will allow for cascading let and dlet phrases by introducing let I1 = F1 · · · In = Fn in E as
an abbreviation for let I1 = F1 in (· · · (let In = Fn in E) · · ·), and likewise for dlet I1 = F1 · · · In =
Fn in D.

Finally, two related constructs are semicolon-separated sequences of deductions and expressions,
enclosed with begin-end pairs. Their respective semantics are given by the following rules:

β � D1 � P1 β ∪ {P1} � D2 � P2 · · · β ∪ {P1, P2, . . . , Pn−1} � Dn � Pn [R11]
β � begin D1; · · · ; Dn end � Pn

β � E1 � V1 · · · β � En � Vn [R12]
β � begin E1; · · · ; En end � Vn

Deductions of the form begin D1; · · · ; Dn end are useful whenever we wish to compose a number of
deductions without bothering to name their respective conclusions. Nameless sequences of expressions
are not particularly useful in the absence of side effects, but were included here for symmetry.

15

[M1]
∅ � c � c

when c is an atom A or c ∈ {true, false}

[M2]
∅ � P � �

[M3]
〈I, P 〉 � I � P

σ � P � π [M4]
σ � ¬P � ¬π

σ1 � P1 � π1 σ2 � P2 � π2 [M5]
σ1, σ2 � P1 	 P2 � π1 	 π2

for 	 ∈ {∧,∨,⇒,⇔}

Figure 1.4: Inference rules for pattern matching.

Pattern matching

We define a language of patterns by means of the following abstract grammar:

π ::= I | A | true | false | � | ¬π | π1 ∧ π2 | π1 ∨ π2 | π1⇒π2 | π1⇔π2.

For any pattern π that contains all and only the identifiers in the set {I1, . . . , In}, we write PI (π)
for an arbitrary listing [I1, . . . , In] of these identifiers (say, in the order in which they appear in the
pattern, from left to right). Next we introduce a deduction system for pattern matching, with rules
that establish judgments of the form σ � P � π, to be read “With respect to the set of bindings σ,
proposition P matches the pattern π”. By a “set of bindings” σ we will mean a finite set of ordered
pairs 〈I, P 〉, consisting of an identifier I and a proposition P , that is a function, meaning that for all
〈I1, P1〉 and 〈I2, P2〉 in σ, if I1 = I2 then P1 = P2. Given two such sets σ1 and σ2, we write σ1, σ2

for their set-theoretic union, provided that the said union respects the aforementioned functional
provision; if not, σ1, σ2 is undefined.

The rules for pattern matching are shown in Figure 1.4. As an example of using these rules, the
proof below shows that the conjunction A ∧ (B ∨ C) matches the pattern P ∧Q under the bindings
〈P, A〉 and 〈Q, B ∨ C〉. More formally, the proof establishes the judgment

{〈P, A〉, 〈Q, B ∨C〉} � A ∧ (B ∨ C)� P ∧Q :

1. {〈P, A〉} � A� P [M3]

2. {〈Q, B ∨ C〉} �B ∨C �Q [M3]

3. {〈P, A〉, 〈Q, B ∨ C〉} �A ∧ (B ∨C)� P ∧Q 1, 2, [M5]

It is straightforward to give an algorithm that takes any proposition P and pattern π and produces a
set of bindings σ such that σ � P � π, if such a σ exists at all; and fails if no such σ exists. Moreover,
this algorithm is efficient, taking time linear in the size of the pattern.
We can now specify the semantics of match and dmatch with the following rules:

β � E � P β � Ej [P1/I1, . . . , Pk/Ik] � V [R13]
β � match E (π1? E1) · · · (πn? En) � V

provided that {〈I1, P1〉, . . . , 〈Ik, Pk〉} � P � πj

and, for all i < j, there is no σ such that σ � P � πi.

And similarly,

16

β � E � P β � Dj [P1/I1, . . . , Pk/Ik] � Q [R14]
β � dmatch E (π1? D1) · · · (πn? Dn) � Q

provided that {〈I1, P1〉, . . . , 〈Ik, Pk〉} � P � πj

and, for all i < j, there is no σ such that σ � P � πi.

The algorithmic interpretation of these rules is as follows: to evaluate an expression of the form
match E (π1? E1) · · · (πn? En) in an assumption base β, start by evaluating the discriminant E
in β. If and when that produces a proposition P , try to match P against the first pattern π1. If
that succeeds under some set of bindings {〈I1, P1〉,. . . ,〈Ik, Pk〉}, evaluate E1[P1/I1, . . . , Pk/Ik] in β;
otherwise try the next pattern, π2. If P matches π2 under some σ = {(I1, P1), . . . , (Ik, Pk)}, evaluate
E2[P1/I1, . . . , Pk/Ik] in β; otherwise continue with the next pattern. This process continues until
we either find a pattern πj that matches P , in which case we evaluate Ej in β after performing on
it the substitution determined by the matching set of bindings; or until we exhaust all the given
patterns without discovering a match, in which case we report a “No match found” error. It is also an
error if the discriminant produces a value other than a proposition. The evaluation of a dmatch is
entirely analogous, only now the end alternatives are deductions D1, . . . , Dn rather than expressions
E1, . . . , En.

Proofs by contradiction

Deductions of the form suppose-absurd E in D perform reasoning by contradiction. Their seman-
tics are given by the following rule:

β � E � P β ∪ {P} � D � false [R15]
β � suppose-absurd E in D � ¬P

The idea here is that we want to establish ¬P , where P is the proposition denoted by the expression
E, and we are going about it by way of contradiction: we are saying, in effect, “Suppose that P
holds; then here is a deduction D that derives the contradiction false from that supposition.” So,
intuitively, the operational reading of [R15] is this:

To evaluate suppose-absurd E in D in an assumption base β, first evaluate E in β to
obtain some proposition P—the hypothesis to be refuted. Then add P to β and evaluate
the body D. If the evaluation of D in β∪{P} produces the proposition false, then return
¬P . Report an error if E fails to produce a proposition P or if D fails to produce the
constant false.

Thus, in natural deduction terminology, this construct can be viewed as a mechanism for “negation
introduction”.

Conclusion-annotated form

Deductions of the form
E by D (1.10)

are said to be written in “conclusion-annotated” style. Their formal semantics are given by the
following rule:

β � E � P β � D � P [R16]
β � E by D � P

17

Thus the conclusion of 1.10 is simply the conclusion of D. However, 1.10 says something over and
above D: it explicitly specifies that the conclusion of D will be the proposition described by E.
Accordingly, E can be viewed as an annotation to D.4 The annotation serves as a promise that the
conclusion of D will be as prescribed by E. A typical use is a

B ∨ C by !modus-ponens A⇒B ∨ C (!dn ¬¬A)

It is an error if the conclusion produced by D is not identical to the value of E, since this amounts
to breaking the promise made by the annotation. Therefore, operationally, to evaluate a deduction of
the form 1.10 in an assumption base β, we first evaluate D in β to obtain a conclusion P and then we
evaluate E in β to obtain a proposition Q (it is an error if E does not yield a proposition). If P = Q,
we return P ; otherwise we generate an error.

Recursion

The fix construct allows for recursive definitions. Intuitively, the expression fix I . E should be un-
derstood to denote the least fixed point of the function λ I .E. Thus fix I . E is essentially equivalent
to Y (λ I .E), where Y is a fixed-point lambda-calculus combinator. As an example, consider a func-
tion that takes an arbitrarily long conjunction of atoms A1 ∧A2 ∧ · · · ∧An and turns in into the
disjunction A1 ∨A2 ∨ · · · ∨An. This can be expressed as

fix convert . λ P .match P

(Q ∧R ? Q ∨ (convert R))
(Q? Q)

(1.11)

The formal semantics of fix are given by the following rule:

β � E[fix I . E/I] � V [R17]
β � fix I . E � V

Reading the rule backwards, we see that one application of [R17] to an expression of the form fix I . E
uncovers the body E, which will typically be a function or a method, and hence a value, but with
every free occurrence of I in it replaced by fix I . E, which sets up the recursion for the next unrolling.
Also note that the assumption base is simply carried over unchanged during the application of this
rule.

The definitions of free and bound identifier occurrences has to be modified in order to account
for the new syntax forms. For instance, an expression of the form let I = F in E or a deduction of
the form dlet I = F in D binds I within E and D respectively; a pattern-expression pair (Q? E) or
pattern-deduction pair (Q? D) binds all the identifiers that occur in Q within E and D, respectively;
an expression of the form fix I . E binds I within E; and so on. Of course the definition of the
substitution operation F [F1/I1, . . . , Fk/Ik] needs to be modified accordingly as well; the details are
straightforward and we omit them. Other simple syntactic notions such as that of phantom deductions
also need to be properly extended.

4If we view E as the “type” of D, then this is similar to explicitly inserting type declarations in a language that
does not normally require them, such as ML, for documentation and readability purposes. Note, however, that in most
such languages types are statically fixed constants that do not get dynamically evaluated, whereas in our case E will
be evaluated at run-time and might even lead to an infinite loop. Thus, if we wish to push the type analogy, it is
more appropriate to view E as a dependent type in an undecidable type system—but then it should be noted that
type annotations in such systems are usually mandatory rather than optional, in order to ensure that type checking is
decidable.

18

As an example of using [R17] and some of the other new rules, let E1 be the expression

fix g . λP.match P

(Q ∧R ? Q ∨ (g R))
(Q? Q)

and let E2 be the body of the above fix, namely, the expression

λP.match P (Q ∧R? Q ∨ (g R)) (Q? Q).

To save space, we will use �· · · � as an “anti-quotation” operator, writing, for instance,

fix g . �E2�

for the expression E1 given above. The derivation below establishes the judgment

β � let convert = �E1� in convert A ∧ (B ∧ C) � A ∨ (B ∨ C)

for some arbitrary assumption base β:

1. β � λ P .match P (Q ∧R ? Q ∨ (
E1� R)) (Q? Q) �

λ P .match P (Q ∧R ? Q ∨ (
E1� R)) (Q? Q) [R4]

2. β �
E1�� λ P .match P (Q ∧R ? Q ∨ (
E1� R)) (Q? Q) 1, [R17]

3. β �C � C [R4]

4. β �match C (Q ∧R ? Q ∨ (
E1� R)) (Q? Q) � C 3, 2, [R13]

5. β �
E1� C � C 2, 3, 4, [R6]

6. β �B � B [R4]

7. β � ∨� ∨ [R4]

8. β �B ∨C � B ∨ C [R4]

9. β �B ∨ (
E1� C) � B ∨C 7, 6, 5, 8 [R5]

10. β �B ∧C � B ∧ C [R4]

11. β �match B ∧ C
(Q ∧ R ? Q ∨ (
E1� R))

(Q? Q) � B ∨ C 10, 9, [R13]

12. β � (
E1� B ∧ C) � B ∨C 2, 10, 11, [R6]

13. β �A � A [R4]

14. β �A ∨ (B ∨ C) � A ∨ (B ∨ C) [R4]

15. β �A ∨ (
E1� B ∧C) � A ∨ (B ∨C) 7, 13, 12, 14, [R5]

16. β �A ∧ (B ∧ C) � A ∧ (B ∧ C) [R4]

17. β �match A ∧ (B ∧C)
(Q ∧ R ? Q ∨ (
E1� R))

(Q? Q) � A ∨ (B ∨ C) 16, 15, [R13]

18. β � (λ P . match P

(Q ∧ R ? Q ∨ (
E1� R))

(Q? Q)) A ∧ (B ∧ C) � A ∨ (B ∨ C) 1, 16, 17, [R6]

19. β � let convert =
E1� in convert A ∧ (B ∧C) � A ∨ (B ∨C) 2, 18, [R8]

What is more interesting for our purposes is that, because methods are expressions, fix can also
be used to formulate recursive methods. A recursive method will typically be given in the form

fix M . φ I1, . . . , In . · · · !M · · · (1.12)

Because methods are self-evaluating (rule [R4]), one application of [R17] to 1.12 will result in the
method

φ I1, . . . , In . · · · !M · · · [(fix M . φ I1, . . . , In . · · · !M · · ·)/M]

19

thereby “uncovering” the method body of the fix and also setting up the next unrolling by replacing
every free occurrence of M in the body of the method by the entire fix expression. We will give
several examples of recursive methods in the sequel.

It is straightforward to show that the extended language NDLω
0 remains sound. We now have a

derivability relation �NDLω
0

that properly extends the relation �NDLω
0

defined in Section 1.4. The
proof that �NDLω

0
is Tarskian is identical to the proof of Lemma 1.3. We can also show that �NDLω

0

is the least Tarskian relation that respects the primitive methods of NDLω
0 and is closed under

hypothetical reasoning5 with essentially the same argument that was given in the proof of Theorem 1.4;
we only need to consider some additional cases in the inductive step, namely, rules [R9], [R10], [R11],
[R14], [R15], and [R16]. All of these are readily handled by the appropriate inductive hypotheses,
along with the transitivity of �NDLω

0
.

1.7 Examples

Schematic abstraction

Consider the following inference rule:

� P1⇒ (P2⇒P3) [un-curry]
� (P1 ∧ P2)⇒P3

The name “uncurry” derives from identifying the connectives ∧ and ⇒ with the type constructors ×
and →, respectively. In that light the uncurrying rule is viewed as transforming a curried functional
type T1→ T2→ T3 to the “uncurried” (T1 × T2)→ T3. (We will also shortly consider a dual rule for
“currying” that proceeds in the reverse direction.) We would like a NDLω

0 method un-curry that
takes a premise of the form P1⇒ (P2⇒P3) (we say that a proposition P is a “premise” of a method
M if P is expected to be in the assumption base when M is invoked) and produces the conclusion
(P1 ∧ P2)⇒P3. For instance, we should have

β ∪ {A⇒ (¬B⇒C)} � !un-curry A⇒ (¬B⇒C) � (A ∧ ¬B)⇒C (1.13)

for any assumption base β. The language itself does not provide any primitive method for that
purpose. What we can do instead is define our own method that implements un-curry in terms of
the existing primitive methods and syntactic forms. The following definition achieves this:

un-curry = φ premise .dmatch premise
P1⇒ (P2⇒P3)? assume P1 ∧ P2 in

begin
P1 by !left-and P1 ∧ P2;
P2⇒P3 by !modus-ponens premise P1;
P2 by !right-and P1 ∧ P2;
P3 by !modus-ponens P2⇒P3 P2

end

5Of course since the primitive methods of the extended language are the same as those of the core, this means that

�NDLω
0

= �NDLω
0

which shows that the extension is conservative.

20

We can now apply un-curry just as if it were a primitive method. Indeed, the clients of un-curry
should think of the method as primitive, since the details of its implementation are irrelevant to their
purposes. All that matters to a client is how the method behaves as a black box. That behavior is
spelled out in the method’s specification, which serves as a contract between client and implementor.
In this case, the contract only demands that whenever un-curry is applied to an argument, that
argument should be a proposition of the form P1⇒ (P2⇒P3) and should be in the assumption base.
If a client honors these terms, then un-curry must behave as advertised: it must derive the conclusion
(P1 ∧ P2)⇒P3. Exactly how that conclusion is derived is of little concern to the client, as long as
the derivation does not require an inordinate amount of time or resources.

In terms of style, those who find the foregoing definition of un-curry verbose could opt for a
more succinct alternative by removing the conclusion annotations, or even the dlet too, resulting for
example in:

un-curry = φ premise .dmatch premise
P1⇒ (P2⇒P3)? assume P1 ∧ P2 in

!mp (!mp premise (!left-and P1 ∧ P2))
(!right-and P1 ∧ P2)

where the body of the assume is one single nested method call. It is instructive to observe how the
assumption base is implicitly manipulated during the evaluation of this method call. Proceeding from
inside to outside, the left-and method call will produce the conclusion P1, which will be incorporated
in the assumption base when we come to apply the innermost mp. That application will yield the
conclusion P2⇒P3, and that will in turn be incorporated in the assumption base when we come to
apply the outer modus ponens, along with P2, the conclusion of the right-and application—and these
two additions will make sure that the outer modus ponens correctly produces the desired conclusion,
P3. In terms of the formal semantics, the evaluation of this nested method call will employ the cut
rule three times, once for each nested method application, and will result in three assumption base
augmentations. All this work will be done automatically by the NDLω

0 interpreter. The user is thus
free to concentrate on the essential steps of the proof rather than the tedious aspects of managing
premises and intermediate conclusions. It is largely this streamlining of the assumption base that
makes DPL proofs and proof methods readable and writable.6

Let us now define a method curry that takes a premise of the form (P1 ∧ P2)⇒P3 and derives
P1⇒ (P2⇒P3):

curry = φ premise .dmatch premise
(P1 ∧ P2)⇒P3? assume P1 in

assume P2 in

6One might suggest that the utility of a new abstraction can be measured by the amount of extra work done by an
interpreter for the new language (the one that has the new abstraction) compared to interpreters for similar languages
that lack the abstraction. Consider the dynamic binding afforded by inheritance in some object-oriented language LO,
and let LNO be some conventional, non-object-oriented language. When an interpreter for LO evaluates a function
call, there is something going on behind the curtains that goes over and above what happens in a function call in
LNO: dynamic binding. In a non-object-oriented language, function applications are easier to evaluate: we evaluate the
function, evaluate the arguments, and then we perform β-reduction: we replace the formal parameters by the actual
arguments. But in LO there is something going on in addition to that: method dispatch. The interpreter has to
work harder, because it needs to do everything that needs to be done in a conventional language as well as determine
the most appropriate function to call. Intuitively, it is this extra work that is the payoff of the new abstraction. In
non-object-oriented languages this work would have to be done explicitly by the user, via long and convoluted case or
switch statements. The semantics of inheritance and dynamic binding hide all that by shifting the burden of method
dispatch from the user to the language. Likewise, DPLs alleviate the tedium of hypothesis management by pushing as
much of the burden as possible from the user to the language.

21

!mp premise (!both P1 P2)

The reader will verify that

β ∪ {(P1 ∧ P2)⇒P3} � !curry (P1 ∧ P2)⇒P3 � P1⇒ (P2⇒P3)

in any β, and that curry and un-curry are inverses in the sense that

β ∪ {P} � !curry (!un-curry P) � P

and
β ∪ {P} � !un-curry (!curry P) � P

for all β and every P of the right form.
The two foregoing methods can be viewed as “derived inference rules”. Every logic comes with a

fixed collection of primitive inference rules, where an inference rule R is usually depicted graphically
as

� P1 · · · � Pn [R]
� P

and can be understood as an algorithm that is given theorems of the form P1, . . . , Pn and produces P .
Since it is usually impractical to write down proofs using nothing but primitive rules, it is useful to be
able to introduce additional inference rules as needed. To ensure that such extensions are conservative,
we must be able to guarantee that a new rule does not allow us to prove anything that we could not
already prove with the primitive inference rules alone. This is usually achieved by presenting an
algorithm that can “eliminate” or “expand” any particular use of the derived rule. That is, suppose
we have a proof which, at a certain step, applies a derived rule DR to certain premises P1, . . . , Pn and
produces some conclusion P . Then our algorithm should be able to eliminate that step and replace
it with a “primitive proof”, i.e., a proof that does not use DR but has the same effect, namely, the
deduction of P from P1, . . . , Pn. Hence the term “derived inference rule”: the new rule DR is derived
from—or expressed in terms of—the primitive rules. As Manna [21] puts is:

In order to be able to write shorter deductions for wwfs in practice, it is most convenient
to have a library of derived inference rules. Each such rule can be given an effective proof
in the sense that we can show effectively how to replace any derived rule of inference
whenever it is used in a deduction by an appropriate sequence of wffs using only the
“primitive” rules of inference and axioms.

In the case of NDLω
0 methods such as curry, the “elimination algorithm” is given by the very

definition of the method. The body of the method, interpreted operationally in accordance with the
evaluation semantics of the language, specifies precisely how to “expand out” any application of the
method into a proof that uses only primitive methods (or previously defined methods, which will in
turn be expanded to primitives). The expansion will occur dynamically at evaluation time and will
be performed by the interpreter. In fact it is straightforward to instrument the interpeter so that
it produces not only the conclusion (denotation) of a given deduction D, but also, as a side effect,
a primitive proof D′, that is, one that uses nothing but the primitive inference rules of NDLω

0 and
its primitive deductive forms (assume, etc.). The two deductions D and D′ will be observationally
equivalent, but one of them, D′, will be much simpler than the other because most of the computation
embedded in D will have been discarded. In fact, D′ will be a type-α proof—it will contain virtually
no expressions E in it and will be guaranteed to terminate in linear time. As we will argue later,

22

both D and D′ should be viewed as bona fide proofs; the only difference is that D′ is a simpler proof
because it has much less computational content. To emphasize this distinction, we refer to D′ as a
certificate. The process of constructing a certificate as a side effect of evaluating a type-ω proof is
known as proof expansion, or certificate generation. We will discuss this subject further in Section 1.9.

Let us formulate some more interesting methods. Consider De Morgan’s laws:

¬(P ∨ Q) [dm-1]
¬P ∧ ¬Q

¬P ∧ ¬Q [dm-2]
¬(P ∨ Q)

¬(P ∧ Q) [dm-3]
¬P ∨ ¬Q

¬P ∨ ¬Q [dm-4]
¬(P ∧ Q)

We would like to have four such methods, each of which takes a premise of the appropriate form and
produces the corresponding conclusion. For instance, we would like to have a method dm-1 such that

β ∪ {¬(A ∨ (B⇒C))} � !dm-1 ¬(A ∨ (B⇒C)) � ¬A ∧ ¬(B⇒C)

in any β. Since the language does not provide any primitive methods for De Morgan’s laws, we have
to define such methods ourselves. We begin with dm-1:

dm-1 = φ premise .dmatch premise
¬(P ∨Q)? dlet not-P = suppose-absurd P in

!absurd (!left-either P Q) ¬(P ∨Q)
not-Q = suppose-absurd Q in

!absurd (!right-either P Q) ¬(P ∨Q)
in

!both not-P not-Q

The reader will verify that β ∪{¬(P ∨Q)} � !dm-1 ¬(P ∨Q) � ¬P ∧ ¬Q in any assumption base β.
We continue with the remaining three laws:

dm-2 = φ premise .dmatch premise
¬P ∧ ¬Q? dlet imp-1 = (P ⇒ false) by assume P in

!absurd P (!left-and premise)
imp-2 = (Q⇒ false) by assume Q in

!absurd P (!left-and premise)
in
¬(P ∨Q) by suppose-absurd P ∨Q in

!cd P ∨Q imp-1 imp-2

dm-3 = φ premise .dmatch premise
¬(P ∧Q)? dlet L = ¬¬(¬P ∨ ¬Q) by

suppose-absurd ¬(¬P ∨ ¬Q) in
dlet L1 = ¬¬P ∧ ¬¬Q by !dm-1 ¬(¬P ∨ ¬Q)

L2 = P by !dn (!left-and L1)
L3 = Q by !dn (!right-and L1)
L4 = P ∧Q by !both L2 L3

in
!absurd L4 premise

in
¬P ∨ ¬Q by !dn L

23

Here we have already begun to witness the benefits of abstraction: lemma L1 above is derived by
applying the previously defined method dm-1 to the hypothesis ¬(¬P ∨ ¬Q). We conclude with dm-4:

dm-4 = φ premise .dmatch premise
¬P ∨ ¬Q? ¬(P ∧Q) by

suppose-absurd P ∧Q in
dlet imp-1 = (¬P ⇒ false) by

assume ¬P in
!absurd (!left-and P ∧Q) ¬P

imp-2 = (¬Q⇒ false) by
assume ¬Q in

!absurd (!right-and P ∧Q) ¬Q
in

!cd premise imp-1 imp-2

We can now write a generic De Morgan method dm that dispatches the appropriate method in
accordance with the form of the input proposition:

dm = φ premise .dmatch premise
¬(P ∨Q)? !dm-1 premise
¬P ∧ ¬Q? !dm-2 premise
¬(P ∧Q)? !dm-3 premise
¬P ∨ ¬Q? !dm-4 premise

The next method derives P ∨ ¬P for any given P :

excl-middle = φP . !dn suppose-absurd ¬(P ∨ ¬P) in
dlet contradiction = ¬P ∧ ¬¬P by !dm ¬(P ∨ ¬P)
in

!absurd (!left-and contradiction) (!right-and contradiction)

It is now straightforward to define a method that does reasoning by cases. Graphically, we want a
binary method cases with the following behavior:

� P ⇒Q � ¬P ⇒Q [cases]
�Q

This can be achieved by using the primitive method cd (“constructive dilemma”) in tandem with
excl-middle:

cases = φP1, P2 .dmatch P1 ∧ P2

(P ⇒Q) ∧ (¬P ⇒Q)? !cd (!excl-middle P) P1 P2

Recursive methods

All of the methods we have written so far are obtainable from concrete deductions through simple
schematic abstraction. For instance, we observe that the deduction

assume ¬A in
!claim ¬A

24

will work properly even if we substitute an arbitrary proposition P in place of ¬A, and thus we arrive
at the method

foo = φ P .assume P in
!claim P

The body of this method is the deduction “schema” assume P in !claim P , from which we can
obtain infinitely many concrete deductions by replacing the parameter P by some particular propo-
sition.

Most derived inference rules are usually obtained from concrete proofs through schematic abstrac-
tion. However, owing to the power of recursion and conditional branching, NDLω

0 methods go well
beyond schematic abstraction. As a simple example, consider a method dn∗ that takes a premise
of the form ¬ · · · ¬P and removes as many pairs of negation signs from the front as possible. For
instance, we should have

β ∪ {¬¬¬¬A} � !dn∗ ¬¬¬¬A � A

while β ∪ {¬¬¬B} � !dn∗ ¬¬¬B � ¬B, and β ∪ {A ∨ C} � !dn∗ A ∨C � A ∨ C. If we were to
specify dn∗ in traditional graphical notation it would look as follows, where we write (¬¬)n for n ≥ 0
consequtive occurences of ¬¬:

� (¬¬)nP [dn∗]
� P

And to justify this as a derived inference rule, we would have to give an “expansion algorithm” capable
of replacing any application of dn∗ to a premise of the form (¬¬)nP by a proof D that does not use
dn∗. This algorithm would most likely proceed by induction on n:

When n = 0 the desired proof D consists simply of claiming P , which is sound because
presumably (¬¬)0P = P is a theorem. For the inductive step of n + 1, the premise can
be written as ¬¬(¬¬)nP , for n ≥ 0. In that case let D1 be the one-line proof we get by
applying the primitive rule of double negation to the premise ¬¬(¬¬)nP . Accordingly, D1

deduces (¬¬)nP from the premise ¬¬(¬¬)nP . Next, apply the transformation algorithm
recursively to (¬¬)nP to obtain a deduction D2 of P from (¬¬)nP . The concatenation of
D1 with D2 then constitutes the desired deduction D of P from ¬¬(¬¬)nP .

In NDLω
0 we can readily express dn∗ as follows:

dn∗ = fixM . φ premise .dmatch premise
¬¬P? begin

P by !dn premise;
!M P

end
� ? !claim premise

This definition is an almost verbatim transcription of the inductive “expansion algorithm” described
above. It essentially tells us how to put together a primitive deduction of P from (¬¬)nP for any
given n ≥ 0. For instance, if we apply dn∗ to ¬¬¬¬A, in an assumption base that contains ¬¬¬¬A,
then the expanded proof (the “certificate”, as we will call such expanded proofs in Section 1.9) will
be:

25

!dn ¬¬¬¬A;
!dn ¬¬A;
!claim A

The interesting point here is that dn∗ is not obtained through simple schematic abstraction from
any particular proof. The time complexity of this method is asymptotically proportional to the size
of the input premise as measured by the number of negation signs prepended to it; whereas the com-
plexity of a method that is obtained by schematic abstraction does not vary with the size of its inputs.
Thus we see that recursion and conditional branching—achieved here via pattern matching—allow us
to express powerful derived inference rules with arbitrarily sophisticated “expansion algorithms”. The
semantics of the language, owing to the abstraction of assumption bases, guarantee that no matter
how complicated the method is, the final conclusion will always be sound.

As a more useful example, consider an inference rule equiv-cong that takes a premise of the form
P1⇔P2 and derives the equivalence P ⇔P [P2/P1], for some arbitrary proposition P , where we write
P [P2/P1] to denote the proposition obtained from P by replacing every occurrence of P1 by P2.
Therefore, graphically, the rule may be depicted as

� P1⇔P2 [equiv-cong]
� P ⇔P [P2/P1]

We can formulate this as a binary method equiv-cong that takes the arbitrary proposition P as its first
argument and the premise P1⇔P2 as its second argument and attempts to deduce the conclusion
P ⇔P [P2/P1]. The “expansion algorithm” proceeds inductively as follows. The first thing we do is
check whether P is equal to P1. If so, the desired conclusion P ⇔P [P2/P1] is identical to the given
premise P1⇔P2, so we simply claim that premise. Otherwise we analyze the structure of P . If P is
a negation ¬Q1, we call the algorithm recursively on Q1 and P1⇔P2. This will presumably result
in a theorem of the form Q1⇔Q1[P2/P1]. But from this it is sound to conclude ¬Q1⇔¬Q1[P2/P1],
which is to say P ⇔P [P2/P1], since, in general, the following rule is sound:

� P1⇔P ′1 [not-cong]
� ¬P1⇔¬P ′1

The remaining propositional cases are handled similarly, using analogous “congruence” rules such as

� P1⇔P ′1 � P2⇔P ′2 [and-cong]
� P1 ∧ P2⇔P ′1 ∧ P ′2

� P1⇔P ′1 � P2⇔P ′2 [or-cong]
� P1 ∨ P2⇔P ′1 ∨ P ′2

and likewise for if-cong and iff-cong. Finally, if P is neither identical to P1 nor a compound proposition,
then it must be an atom distinct from P1, in which case P [P2/P1] = P and the desired conclusion is
the trivial equivalence P ⇔P , which is easily deduced for an arbitrary P by the following method:

reflex-equiv = φP .dlet imp = assume P in !claim P
in

!equiv imp imp

The definitions of not-cong, and-cong , etc., are also straightforward. We illustrate with and-cong and
leave the remaining cases as straightforward exercises:

and-cong = φ eq1, eq2 .

dmatch eq1 ∧ eq2

26

(P1⇔P ′1) ∧ (P2⇔P ′2)? dlet imp1 = assume P1 ∧ P2 in
begin

P ′1 by !mp (!left-iff eq1) (!left-and P1 ∧ P2);
P ′2 by !mp (!left-iff eq2) (!right-and P1 ∧ P2);
P ′1 ∧ P ′2 by !both P ′1P ′2

end
imp2 = assume P ′1 ∧ P ′2 in

begin
P1 by !mp (!right-iff eq1) (!left-and P ′1 ∧ P ′2);
P2 by !mp (!right-iff eq2) (!right-and P ′1 ∧ P ′2);
P1 ∧ P2 by !both P ′1P

′
2

end
in

(P1 ∧ P2)⇔P ′1 ∧ P ′2 by !equiv imp1 imp2

We can now define equiv-cong as shown below. Note that we avoid having to pass the equivalence
P1⇔P2 as a second argument to each recursive call, since it remains constant throughout, by formu-
lating an inner recursive method of one argument that lexically references P1 and P2:

equiv-cong = φP, eq .

dmatch eq
P1⇔P2? dlet recurse = fixM . φ Q .

dmatch Q ≡ P1

true? !claim P1⇔P2

false? dmatch Q

¬Q1? !not-cong (!M Q1)
Q1 ∧Q2? !and-cong (!M Q1) (!M Q2)
Q1 ∨Q2? !or-cong (!M Q1) (!M Q2)
Q1⇒Q2? !if-cong (!M Q1) (!M Q2)
Q1⇔Q2? !iff-cong (!M Q1) (!M Q2)
� ? !reflex-equiv Q

in
!recurse P

We can now readily define a powerful binary method replace that takes an arbitrary premise P and
a premise of the form P1⇔P2 and derives the conclusion P [P2/P1]:

replace = φP, eq . !mp (!left-iff (!equiv-cong P eq)) P

For instance, suppose that P is the proposition A ∧ [C⇒ (¬¬B ∨D)] and that we want to replace
the occurence of ¬¬B by B, where both P and the equivalence ¬¬B⇔B are in the assumption base.
Then applying replace to P and the said equivalence would derive the conclusion A ∧ [C⇒ (B ∨D)].

1.8 Evaluation and cost measures

1.8.1 An interpreter

In this section we present an interpreter I for NDLω
0 that takes any closed phrase F and assumption

base β and either produces a value V that represents the result of F in β; or else it diverges or

27

generates an error. (We assume the availability of a nullary function error that aborts computation.)
The definition of I appears in Figure 1.5, in ML pseudocode; a complete implementation in SML-NJ
using environments rather than substitutions can be found in Section 1.16.

The interpreter uses two auxiliary functions eval-fun-args and eval-meth-args that evaluate the
arguments F1, . . . , Fn of a method and function call, respectively, in a given assumption base. The
eval-fun-args function simply evaluates each argument Fi in the given assumption base, producing
its value Vi, and when all arguments are evaluated it returns the results in a list [V1, . . . , Vn]. In
addition, eval-meth-args keeps track of those arguments Fi that are deductions and stores their con-
clusions in a “lemma set” β′ that is finally passed out along with the values of the arguments in a
pair 〈[V1, . . . , Vn], β′〉. (As we discussed in Section 1.5, this implements the cut rule.) For generality,
both functions take an arbitrary interpreter as an additional, third argument. We thus have:
eval-fun-args(phrases, β,I) = let f([], vals) =

←−−
vals

f(F ::L, vals) = f(L, I(F, β)::vals)
in

f(phrases, [])

and
eval-meth-args(phrases, β,I) = let f([], vals, β′) = 〈←−−vals, β′〉

f(E::L, vals, β′) = f(L, I(E, β)::vals, β′)
f(D::L, vals, β′) = let P = I(D, β)

in
f(L, P ::vals, β′ ∪ {P})

in
f(phrases, [],∅)

For pattern matching, we need a function match that takes a proposition P , a pattern π, and a set of
bindings σ, and either produces a set of bindings σ′ ⊇ σ with respect to which P matches π or else it
returns false, indicating a match failure. In the seventh clause below, we use the symbol � to range
over the binary propositional connectives ∧,∨,⇒,⇔.
match(A, A, σ) = σ
match(true, true, σ) = σ
match(false, false, σ) = σ
match(P, �, σ) = σ
match(P, I, σ) = if σ contains a binding (I, Q) then

(if P = Q then σ else false) else σ ∪ {〈I, P 〉}
match(¬P,¬π, σ) = match(P, π, σ)
match(P1 � P2, π1 � π2, σ) = let σ′ = match(P1, π1, σ)

in
if σ′ = false then false else match(P2, π2, σ′)

match(, ,) = false

It is straightforward to prove that match(P, π, ∅) = σ iff σ � P � π. The interpreter also uses a
function check that takes a proposition P and a list of “cases” [〈π1, F1〉, . . . , 〈π1, F1〉], finds the first
pattern πi that matches P with respect to some set of bindings σ, and returns the pair 〈σ, Fi〉. If no
pattern matches P , an error is reported:
check(P, cases) = let f([]) = error()

f(〈π, F 〉::L) = let σ = match(P, π, ∅)
in

if σ = false then f(L) else 〈σ, F 〉
in

f(cases)

Finally, there are two ternary functions apply-prim-meth and apply-prim-fun which take a primitive
method M (or primitive function f) along with a list of values [V1, . . . , Vn] and an assumption base

28

I(!E F1 · · ·Fn,β) = let V = I(E, β)

〈[V1, . . . , Vn], β′〉 = eval-meth-args([F1, . . . , Fn], β, I)
in

Is V a primitive method M?

Yes: apply-prim-meth(M, [V1, . . . , Vn], β ∪ β′)
No: Is V a method of the form φ I1, . . . , In . D?

Yes: I(D[V1/I1, . . . , Vn/In], β ∪ β′)
No: error()

I(assume E in D) = let P = I(E, β)
Q = I(D, β ∪ {P})

in
P ⇒Q

I(suppose-absurd E in D) = let P = I(E, β)
in

if I(D, β ∪ {P}) = false then ¬P else error()

I(dlet I = E in D) = let VE = I(E, β) in I(D[VE/I], β)

I(dlet I = D′ in D) = let P = I(D′, β) in I(D[P/I], β ∪ {P})
I(E by D) = let 〈P, Q〉 = 〈I(D, β), I(E, β)〉 in (if P = Q then P else error())

I(begin D1; . . . ; Dn end, β) = let f([D], β′) = I(D, β′)
f(D1::D2::L, β′) = (let P = I(D1, β′) in f(D2::L, β′ ∪ {P}))

in
f([D1, . . . , Dn], β)

I(dmatch E (π1? D1) · · · (πn? Dn), β) = let P = I(E, β)
〈{〈I1, P1〉, . . . , 〈Ik, Pk〉}, D〉 = check(P, [〈π1, D1〉, . . . , 〈πn, Dn〉])

in
I(D[P1/I1, . . . , Pk/Ik], β)

I(c, β) = c
I(I, β) = error()
I(φ I1, . . . , In . D, β) = φ I1, . . . , In . D
I(λ I1, . . . , In . E, β) = λ I1, . . . , In . E
I(E F1, . . . , Fn, β) = let V = I(E, β)

[V1, . . . , Vn] = eval-fun-args([F1, . . . , Fn], β, I)
in

Is V a primitive function f?

Yes: apply-prim-fun(f, [V1, . . . , Vn], β)

No: Is V a function of the form λ I1, . . . , In . E′?
Yes: I(E′[V1/I1, . . . , Vn/In], β)
No: error()

I(let I = F in E, β) = let VF = I(F, β) in I(E[VF /I], β)

I(fix I . E, β) = I(E[fix I . E/I], β)

I(begin E1; . . . ; En end, β) = let f([E]) = I(E, β)
f(E1::E2::L) = (let = I(E1, β) in f(E2::L))

in
f([E1, . . . , En])

I(match E (π1 E1) · · · (πn En), β) = let P = I(E, β)

〈{〈I1, P1〉, . . . , 〈Ik, Pk〉}, E〉 = check(P, [〈π1, E1〉, . . . , 〈πn, En〉])
in
I(E[P1/I1, . . . , Pk/Ik], β)

Figure 1.5: An interpreter for NDLω
0 .

β and apply M (or f) to [V1, . . . , Vn] in β. These functions are defined by a case analysis of M and
f . We illustrate apply-prim-meth with a couple of cases; the rest are straightforward exercises:
apply-prim-meth(claim, [P], β) = if P ∈ β then P else error()
apply-prim-meth(both, [P1, P2], β) = if {P1, P2} ⊆ β then P1 ∧ P2 else error()
apply-prim-meth(left-and, [P1 ∧ P2], β) = if P1 ∧ P2 ∈ β then P1 else error()
apply-prim-meth(modus-ponens, [P1⇒P2, P1], β) = if {P1⇒P2, P1} ⊆ β then P2 else error()
...
apply-prim-meth(, ,) = error()

29

The definition of apply-prim-fun is even simpler, since there are only five propositional connectives
and the equality function:
apply-prim-fun(≡, [P1, P2],) = if P1 = P2 then true else false
apply-prim-fun(¬, [P],) = ¬P
apply-prim-fun(�, [P1, P2],) = P1 � P2

for � ∈ {∧,∨,⇒,⇔}. Observe that the assumption base is not used at all in the application of the
primitive functions. Such primitive functions are called “context-independent” [4].

The following theorem expresses the correctness of I with respect to the formal semantics of the
language. In particular, if the computation of I(F, β) terminates successfully with some output value
V , then the theorem assures us that the judgment β � F � V is derivable. On the other hand, if the
computation of I(F, β) halts in error or gets into an infinite loop, the theorem then entails that there
is no value V such that β � F � V . For if such a value exists, the interpreter will eventually find
it. (Note that Theorem 1.1 now follows immediately: since I is deterministic there can be at most
one value V such that I(F, β) = V ; hence, from Theorem 1.8, there can be at most one V such that
β �D � V .)

Theorem 1.8 β � F � V iff I(F, β) = V .

Proof: By induction on the structure of F .

We will say that a phrase F converges in an assumption base β iff the computation of I(F, β) termi-
nates; and we will say that F fails or diverges in β iff the computation of I(F, β) generates an error
or continues ad infinitum, respectively. For a phrase F that converges in β, we define V(F, β), the
value of F in β, as the result V produced by I(F, β). By the foregoing theorem, this result will be
none other than the unique value V such that β � F � V . If F is a deduction then V(F, β) will be
a proposition, and we will refer to it as the conclusion of F in β. If F fails or diverges in β, then
V(F, β) is undefined.

Finally, we will say that two phrases F1 and F2 are observationally equivalent with respect to some
β, written F1 ≈β F2, iff I(F1, β) = I(F2, β), where this equation is understood to hold iff I(F1, β)
and I(F2, β) produce the same value V ; or both of them fail; or both of them diverge. And we will
say that F1 and F2 are observationally equivalent iff F1 ≈β F2 for all β.

1.8.2 Evaluation complexity

In this section we will define IC, an instrumented version of the interpreter I which returns not just
the value of a given phrase F in some β, but also an integer c ≥ 0 representing the “cost” of evaluating
F in β. More precisely, whenever IC(F, β) terminates successfully it produces a pair 〈V, c〉, where V
is the value of F in β and c is its “cost”. We will denote this latter quantity by C(F, β). Of course
when IC fails or diverges, C(F, β) is undefined. The definition of IC appears in Figures 1.6 and 1.7.

The auxiliary functions cost-eval-fun-args , cost-eval-meth-args , cost-match, and cost-check are
obtained by simple modifications of their previous corresponding definitions. In particular, the first
two functions need to return an integer reflecting the total cost of evaluating the given arguments;
cost-match needs to return an integer indicating the cost of matching a proposition to a pattern (even
if the matching was unsuccessful); and cost-check needs to sum up the cost of all the matching that
took place in examining the various cases. The new definitions are shown in Figure 1.8.

For every primitive function f and primitive method M we introduce quantities prim-fun-cost(f)
and prim-meth-cost(M) that represent the cost of one single application of f and M , respectively.
For a constructor � ∈ {¬,∧,∨,⇒,⇔}, we set prim-fun-cost(�) = 0. In other words, we consider
constructor applications to be “free”. In tandem with the fact that all constants have zero evaluation

30

IC(!E F1 · · ·Fn,β) = let 〈V, c〉 = IC(E, β)

〈[V1, . . . , Vn], β′, c′〉 = cost-eval-meth-args([F1, . . . , Fn], β, IC)
in

Is V a primitive method M?

Yes: 〈apply-prim-meth(M, [V1, . . . , Vn], β ∪ β′), prim-meth-cost(M) + c + c′〉
No: Is V a method of the form φ I1, . . . , In . D?

Yes: let 〈VD , cD〉 = IC(D[V1/I1, . . . , Vn/In], β ∪ β′)
in
〈VD , c + c′ + cD + 1〉

No: error()

IC(assume E in D) = let 〈P, cE〉 = IC(E, β)
〈Q, cD〉 = IC(D, β ∪ {P})

in
〈P ⇒Q, cE + cD + 1〉

IC(suppose-absurd E in D) = let 〈P, cE〉 = IC(E, β)
〈Q, cD〉 = IC(D, β ∪ {P})

in
if Q = false then 〈¬P, cE + cD + 1〉 else error()

IC(dlet I = E in D) = let 〈VE , cE〉 = IC(E, β)
〈P, cD〉 = IC(D[VE/I], β)

in
〈P, cE + cD + 1〉

IC(dlet I = D′ in D) = let 〈P, c〉 = IC(D′, β)
〈Q, cD〉 = IC(D[P/I], β ∪ {P})

in
〈Q, c + cD + 1〉

IC(E by D) = let 〈P, cD〉 = IC(D, β)
〈Q, cE〉 = IC(E, β)

in
If P = Q then 〈P, cE + cD + 1〉 else error()

IC(begin D1; . . . ; Dn end, β) = let f([D], β′, c′) = (let 〈P, c〉 = IC(D, β′) in 〈P, c + c′〉)
f(D1::D2::L, β′, c′) = (let 〈P, c〉 = IC(D1, β′) in f(D2::L, β′ ∪ {P}, c + c′))

in
f([D1, . . . , Dn], β, 0)

IC(dmatch E (π1? D1) · · · (πn? Dn), β) =

let 〈P, cE〉 = IC(E, β)
〈{〈I1, P1〉, . . . , 〈Ik, Pk〉}, D, cm〉 = cost-check(P, [〈π1, D1〉, . . . , 〈πn, Dn〉])
〈Q, c〉 = IC(D[P1/I1, . . . , Pk/Ik], β)

in
〈Q, cE + cm + c + 1〉

Figure 1.6: Cost-instrumented interpreter, deductive part.

cost, this entails that the cost of building a proposition is zero. For the equality function we set
prim-fun-cost(≡) = 1, so that checking whether two propositions are identical takes one “unit” of
work. Finally, we define prim-meth-cost(M) = 1 for every primitive method M . Thus one application
of modus-ponens, for example, takes one unit of work. More refined cost measures for the primitives
could be given without affecting the sequel.

The cost of a method application
!E F1 · · ·Fn (1.14)

in which E produces a primitive method M equals the sum of the cost of evaluating E, plus the total
cost of producing the values V1, . . . , Vn of the arguments F1, . . . , Fn, plus 1 (the cost of applying M to
the resulting values); while if E produces a method φ I1, . . . , In . D, the cost of 1.14 is the sum of the
cost of E, plus the cost of the arguments, plus the cost of evaluating D[V1/I1, . . . , Vn/In], plus 1 for the
substitution. Likewise, the cost of dlet I = F in D is the sum of the cost of F plus the cost of D plus
1 for the substitution cost of replacing every free occurrence of I within D by the value of F . The rest

31

IC(c, β) = 〈c, 0〉
IC(I, β) = error()
IC(φ I1, . . . , In . D, β) = 〈φ I1, . . . , In . D, 0〉
IC(λ I1, . . . , In . E, β) = 〈λ I1, . . . , In . E, 0〉
IC(E F1, . . . , Fn, β) = let 〈V, c〉 = IC(E, β)

〈[V1, . . . , Vn], c′〉 = cost-eval-fun-args([F1, . . . , Fn], β, IC)
in

Is V a primitive function f?

Yes: 〈apply-prim-fun(f, [V1, . . . , Vn], β), prim-fun-cost(f) + c + c′〉
No: Is V a function of the form λ I1, . . . , In . E′?

Yes: let 〈V ′
E , c′E〉 = IC(E′[V1/I1, . . . , Vn/In], β)

in
〈V ′

E , c + c′ + c′E + 1〉
No: error()

IC(let I = F in E, β) = let 〈VF , cF 〉 = IC(F, β)
〈VE , cE〉 = IC(E[VF /I], β)

in
〈VE , cE + cF + 1〉

IC(fix I . E, β) = let 〈V, c〉 = IC(E[fix I . E/I], β) in 〈V, c + 1〉
IC(begin E1; . . . ; En end, β) = let f([E], c′) = (let 〈V, c〉 = IC(E, β) in 〈V, c + c′〉)

f(E1::E2::L, c′) = (let 〈V, c〉 = IC(E1, β) in f(E2::L, c + c′))
in

f([E1, . . . , En], 0)

IC(match E (π1? E1) · · · (πn? En), β) = let 〈P, cE〉 = IC(E, β)

〈{〈I1, P1〉, . . . , 〈Ik, Pk〉}, E′, cm〉 = cost-check(P, [〈π1, E1〉, . . . , 〈πn, En〉])
〈V, c′〉 = IC(E′[P1/I1, . . . , Pk/Ik], β)

in
〈V, cE + cm + c′ + 1〉

Figure 1.7: Cost-instrumented interpreter, computational part.

of the clauses can be similarly understood. As an example, let P be (¬¬A⇒B ∨ ¬¬A) ∧ (B⇔C),
let β contain the equivalence ¬¬A⇔A, and let D be the deduction

!replace �P � ¬¬A⇔A

(where replace is the method defined in page 27). In our implementation of IC, we find the cost of
evaluating D in an appropriate β to be 281.

We also define two instrumented interpreters ICd and ICe for computing the “deductive” and
“computational” cost of a phrase F in some β, respectively, shown in Figures 1.9 and 1.10. Intuitively,
the deductive cost of a proof D is the cost of every primitive method call that is made during the
evaluation of D, as well as the cost of every hypothetical deduction and proof by contradiction that
is performed during that evaluation. We do not “count” anything else, such as the cost of pattern
matching or the cost of substitutions. Thus, loosely speaking, the deductive cost of D accounts for
the strictly logical work done by D that is deductively necessary for the derivation of the conclusion,
and for nothing else. By fiat, the deductive cost of an expression E is zero, since an expression does
not deduce anything. This entails that phantom deductions are not considered to have any deductive
cost, which is appropriate since such deductions do not make any logical contributions to enclosing
deductions. When the computation of ICd(F, β) produces a pair 〈V, c〉, we write Cd(F, β) to denote
the integer c; otherwise Cd(F, β) is undefined.

The computational cost of a phrase F is in some sense the inverse of its deductive cost. Intuitively,
it accounts for whatever work F does for computational rather than for deductive purposes. We thus
have ICe(E, β) = IC(E, β) for all expressions E. That is, the computational cost of an expression E
is equal to the entire cost of E. The interesting case is the definition of the computational cost of a

32

cost-eval-fun-args(phrases, β, IC) = let f([], vals, c) = 〈←−−vals, c〉
f(F ::L, vals, c) = let 〈VF , cF 〉 = IC(F, β)

in
f(L, VF ::vals, c + cF)

in
f(phrases, [], 0)

cost-eval-meth-args(phrases, β, IC) = let f([], vals, β′, c) = 〈←−−vals, β′, c〉
f(E::L, vals, β′, c) = let 〈VE , cE〉 = IC(E, β)

in
f(L, VE ::vals, β′, c + cE)

f(D::L, vals, β′, c) = let 〈P, cD〉 = IC(D, β)
in

f(L, P ::vals, β′ ∪ {P}, c + cD)
in

f(phrases, [], ∅, 0)
cost-match(P, π, σ) = let f(A, A, σ, c) = (σ, c + 1)

f(true, true, σ, c) = (σ, c + 1)
f(false, false, σ, c) = (σ, c + 1)
f(P, �, σ, c) = (σ, c + 1)
f(P, I, σ, c) = if σ contains a binding (I, Q) then

(if P = Q then 〈σ, c + 2〉 else 〈false, c + 2〉) else 〈false, c + 1〉
f(P1
 P2, π1
 π2, σ, c) = let 〈σ1, c1〉 = f(P1, π1, σ, c)

in
if σ1 = false then 〈σ1, c1〉 else f(P2, π2, σ1, c1)

f(, , , c) = 〈false, c〉
in

f(P, π, σ, 0)
cost-check(P, cases) = let f([], c) = error()

f(〈π, F 〉::L, c) = let 〈σ, c′〉 = cost-match(P, π)
in

if σ = fail then f(L, c + c′) else 〈σ, F, c + c′〉
in

f(cases, 0)

Figure 1.8: Auxiliary definitions.

deduction D, which measures essentially the “search” performed by D. That is, the computational
cost of D represents the interpreter work done during the evaluation of D that could be eliminated
by a more focused proof that nevertheless uses the same basic reasoning. Indeed, we will see that
this is precisely the work that is eliminated when we generate a certificate for the original proof. The
computational cost of F in β will be denoted by Ce(F, β). That is, Ce(F, β) denotes the integer part of
the result produced by ICd(F, β), when the latter terminates successfully. When it does not, Ce(F, β)
is undefined.

We now have one “standard” interpreter I and three instrumented versions thereof: IC, ICd, and
ICe. It is somewhat tedious but not difficult to prove that every one of these interpreters converges
(respectively, fails or diverges) on a given F and β iff all three of the other interpreters also converge
(respectively, fail or diverge) on F and β; and that if one of them does terminate on some F and β,
then the value V it produces is identical to the value produced by the other three interpreters for F
and β. Accordingly, when convergence is taken for granted we will speak of the value V of a phrase F
in an assumption base β without bothering to specify whether V is obtained by I, IC, ICe, or ICd.

Theorem 1.9 C(F, β) = Ce(F, β) + Cd(F, β) whenever F converges in β.

Proof: When F is an expression E the equality is immediate since Cd(E, β) = 0 and Ce(E, β) =
C(E, β). For a deduction D we proceed by strong induction on the quantity C(D, β). We illustrate

33

ICd(!E F1 · · ·Fn,β) = let V = I(E, β)

〈[V1, . . . , Vn], β′, c〉 = cost-eval-meth-args([F1, . . . , Fn], β, ICd)
in

Is V a primitive method M?

Yes: 〈apply-prim-meth(M, [V1, . . . , Vn], β ∪ β′), prim-meth-cost(M) + c〉
No: Is V a method of the form φ I1, . . . , In . D?

Yes: let 〈VD , cD〉 = ICd(D[V1/I1, . . . , Vn/In], β ∪ β′)
in
〈VD , c + cD〉

No: error()

ICd(assume E in D) = let P = I(E, β)
〈Q, c〉 = ICd(D, β ∪ {P})

in
〈P ⇒Q, c + 1〉

ICd(suppose-absurd E in D) = let P = I(E, β)
〈Q, c〉 = ICd(D, β ∪ {P})

in
if Q = false then 〈¬P, c + 1〉 else error()

ICd(dlet I = E in D) = ICd(D[I(E, β)/I], β)

ICd(dlet I = D′ in D) = let 〈P, c′〉 = ICd(D′, β)
〈Q, c〉 = ICd(D[P/I], β ∪ {P})

in
〈Q, c′ + c〉

ICd(E by D) = let 〈P, c〉 = ICd(D, β)
Q = I(E, β)

in
If P = Q then 〈P, c〉 else error()

ICd(begin D1; . . . ; Dn end, β) = let f([D], β′, c′) = (let 〈P, c〉 = ICd(D, β′) in 〈P, c + c′〉)
f(D1::D2::L, β′, c′) = (let 〈P, c〉 = ICd(D1, β′) in f(D2::L, β′ ∪ {P}, c + c′))

in
f([D1, . . . , Dn], β, 0)

ICd(dmatch E (π1? D1) · · · (πn? Dn), β) = let P = I(E, β)

〈{〈I1, P1〉, . . . , 〈Ik, Pk〉}, D〉 = check(P, [〈π1, D1〉, . . . , 〈πn, Dn〉])
in
ICd(D[P1/I1, . . . , Pk/Ik], β)

ICd(E, β) = 〈I(E, β), 0〉

Figure 1.9: Instrumented interpreter for computing the deductive cost of a phrase.

with method calls !E F1 · · ·Fn. When IC(E, β) results in a primitive method M , we have

C(F, β) = C(E, β) +
n∑

i=1

C(Fi, β) + 1. (1.15)

Moreover,

Ce(F, β) = C(E, β) +
n∑

i=1

Ce(Fi, β) (1.16)

and

Cd(F, β) =
n∑

i=1

Cd(Fi, β) + 1. (1.17)

Inductively, we have
n∑

i=1

C(Fi, β) =
n∑

i=1

[Ce(Fi, β) + Cd(Fi, β)]

34

ICe(!E F1 · · ·Fn,β) = let 〈V, c〉 = IC(E, β)

〈[V1, . . . , Vn], β′, c′〉 = cost-eval-meth-args([F1, . . . , Fn], β, ICe)
in

Is V a primitive method M?

Yes: 〈apply-prim-meth(M, [V1, . . . , Vn], β ∪ β′), c + c′〉
No: Is V a method of the form φ I1, . . . , In . D?

Yes: let 〈P, cD〉 = ICe(D[V1/I1, . . . , Vn/In], β ∪ β′)
in
〈P, c + c′ + cD + 1〉

No: error()

ICe(assume E in D) = let 〈P, c〉 = ICe(E, β)
〈Q, c′〉 = ICe(D, β ∪ {P})

in
〈P ⇒Q, c + c′〉

ICe(suppose-absurd E in D) = let 〈P, c〉 = ICe(E, β)
〈Q, c′〉 = ICe(D, β ∪ {P})

in
if Q = false then 〈¬P, c + c′〉 else error()

ICe(dlet I = E in D) = let 〈V, c〉 = ICe(E, β)
〈P, c′〉 = ICe(D[V/I], β)

in
〈P, c + c′ + 1〉

ICe(dlet I = D in D′) = let 〈P, c〉 = ICe(D, β)
〈Q, c′〉 = ICe(D′[P/I], β ∪ {P})

in
〈Q, c + c′ + 1〉

ICe(E by D) = let 〈P, c〉 = ICe(D, β)
〈Q, c′〉 = ICe(E, β)

in
If P = Q then 〈P, c + c′ + 1〉 else error()

ICe(begin D1; . . . ; Dn end, β) = let f([D], β′, c′) = (let 〈P, c〉 = ICe(D, β′) in 〈P, c + c′〉)
f(D1::D2::L, β′, c′) = (let 〈P, c〉 = ICe(D1, β′) in f(D2::L, β′ ∪ {P}, c + c′))

in
f([D1, . . . , Dn], β, 0)

ICe(dmatch E (π1? D1) · · · (πn? Dn), β) =
let 〈P, c〉 = ICe(E, β)

〈{〈I1, P1〉, . . . , 〈Ik, Pk〉}, D, c′〉 = cost-check(P, [〈π1, D1〉, . . . , 〈πn, Dn〉])
〈Q, c′′〉 = ICe(D[P1/I1, . . . , Pk/Ik], β)

in
〈Q, c + c′ + c′′ + 1〉

ICe(E, β) = IC(E, β)

Figure 1.10: Instrumented interpreter for obtaining the computational cost of a phrase.

and therefore

C(E, β) +
n∑

i=1

C(Fi, β) + 1 = C(E, β) +
n∑

i=1

[Ce(Fi, β) + Cd(Fi, β)] + 1

which by virtue of 1.15—1.17 means that

C(F, β) = Ce(F, β) + Cd(F, β).

When IC(E, β) results in a method φ I1, . . . , In . D we have

C(F, β) = C(E, β) +
n∑

i=1

C(Fi, β) + C(D[V1/I1, . . . , Vn/In], β ∪ β′) + 1 (1.18)

35

where V1, . . . , Vn are the values of F1, . . . , Fn in β and β′ is the lemma set obtained by evaluating
those phrases amongst F1, . . . , Fn that are deductions. Furthermore,

Ce(F, β) = C(E, β) +
n∑

i=1

Ce(Fi, β) + Ce(D[V1/I1, . . . , Vn/In], β ∪ β′) + 1 (1.19)

and

Cd(F, β) =
n∑

i=1

Cd(Fi, β) + Cd(D[V1/I1, . . . , Vn/In], β ∪ β′). (1.20)

Again the inductive hypothesis entails

n∑
i=1

C(Fi, β) =
n∑

i=1

[Ce(Fi, β) + Cd(Fi, β)]

and

C(D[V1/I1, . . . , Vn/In], β ∪ β′) = Ce(D[V1/I1, . . . , Vn/In], β ∪ β′) + Cd(D[V1/I1, . . . , Vn/In], β ∪ β′)

and hence the desired equality C(F, β) = Ce(F, β) + Cd(F, β) follows from 1.18—1.20.

1.9 Relationship to type-α DPLs and certificates

Every type-ω DPL properly contains a type-α DPL in a sense that will be illustrated in this section
with NDLω

0 . It is for this reason that type-ω DPLs are superior; they can achieve everything that
type-α DPLs achieve, namely, perspicuous proof presentation and efficient checking, plus a good deal
more. Specifically, one could use a type-ω DPL L exclusively for proof presentation and checking, if
so desired, simply by restricting attention to the type-α subset of L. But, in addition, as we have
already seen, one could also use methods and the type-ω features of L to formulate powerful derived
inference rules and theorem provers with a strong soundness guarantee. In practice this ability is
widely exercised and greatly facilitates the derivation of non-trivial theorems.

In short, the only advantages of type-α DPLs are: (a) they are very easy to implement; and (b)
they are easy to study and understand because their behavior is so straightforward. These advantages
could be critical, e.g., if we desire an exceptionally small and simple proof checker in order to minimize
our trusted base, or if a DPL is being introduced to students in an elementary logic course. When these
considerations are not particularly important, type-ω DPLs are to be preferred for the aforementioned
reasons.

In fact when it comes to minimizing our trusted base, we will shortly show that type-ω DPLs
allow us to have our cake and eat it too: it is straightforward to make a terminating type-ω proof D
automatically generate an equivalent type-α proof D—a so-called certificate. While we need a type-ω
interpreter I in order to generate the certificate D, we need not trust I, for once we have D we can
check it with a type-α interpreter I ′, obtaining the same conclusion that is produced by D. Thus in
the end the only component that we have to trust is I ′, which, being a type-α interpreter, is eminently
simple. We will discuss this in more detail shortly.

We begin by observing that the following subset of NDLω
0 is essentially identical to NDL0:

D ::= !c P1 · · ·Pn | assume P in D | suppose-absurd P in D | begin D1; . . . ; Dn end (1.21)

36

where the constant c ranges over the primitive methods of Figure 1.1.7 NDLω
0 deductions generated

by the above grammar will be called pure. We write PD for the set of all pure NDLω
0 deductions

and use the letters D,D1,D′, . . . to range over PD .
The claim that NDL0 and PD are “essentially identical” can be formalized by giving a meaning-

preserving isomorphism T between the two sets of deductions. We define T as a simple desugaring
that maps any NDL0 deduction into a pure NDLω

0 deduction as follows:

T [[Prim-Rule P1, . . . , Pn]] = !Prim-Rule P1, . . . , Pn (1.22)

T [[assume P in D]] = assume P in T [[D]] (1.23)

T [[suppose-absurd P in D]] = suppose-absurd P in T [[D]] (1.24)

T [[D1; D2]] = begin T [[D1]]; T [[D2]] end (1.25)

Under this mapping, for instance, the NDL0 proof

assume A ∧B in
begin

right-and A ∧B;
left-and A ∧B;
both B, A

end

corresponds to the pure NDLω
0 proof

assume A ∧B in
begin

!right-and A ∧B;
!left-and A ∧B;
!both B A

end

The two proofs look virtually identical and behave in the exact same way. In general, if we restrict
ourselves to pure NDLω

0 deductions we are essentially using NDL0. The proofs will be perspicuous—
albeit potentially long and tedious—and proof checking will be guaranteed to terminate in linear time
on average. The following lemma asserts the correctness of T ; it can be proved by a straightforward
induction on D:

Lemma 1.10 (Pure deduction isomorphism) β �NDL0 D � P iff β �NDLω
0
T [[D]] � P .

The notion of size for NDL0 deductions carries over directly to pure NDLω
0 deductions:

SZ(!c P1 · · ·Pn) = n

SZ(assume P in D) = 1 + SZ(D)
SZ(suppose-absurd P in D) = 1 + SZ(D)

SZ(begin D1; . . . ;Dn end) = SZ(D1) + · · ·+ SZ(Dn)

The next lemma shows that a pure deduction D has zero computational cost; and that its deductive
cost is Θ(SZ(D)). Accordingly, checking a pure deduction requires exactly as much effort as the size
of the deduction.

7In what follows it will be convenient to treat suppose-absurd as a primitive construct of NDL0; this does not
affect our discussion in any substantial way.

37

Lemma 1.11 We have Ce(D, β) = 0 for every pure D. Accordingly, C(D, β) = Cd(D, β). In addition,
Cd(D, β) = Θ(SZ(D)), and therefore C(D, β) = Θ(SZ(D)) for all β.

We now turn our attention to the subject of certificates:

Lemma 1.12 (Certificate Lemma) For every convergent deduction D there is an equivalent pure
deduction D. More precisely, for all D, if β �D � P then there is a pure D such that β �D � P .
We say that D is a certificate for D.

The lemma itself is not surprising at all. It is a direct corollary of the completeness of NDL0 in
tandem with the soundness of NDLω

0 : if β �NDLω
0

D � P then, by the soundness of NDLω
0 , we have

β |= P ; but then, by the completeness ofNDL0, there is aNDL0 proof D′ such that β �NDL0 D′� P ,
and therefore T [[D′]] is the desired pureNDLω

0 deduction. What is more interesting for our purposes is
that certificates can be mechanically constructed for arbitrary deductions. Specifically, in Figure 1.11
we instrument the interpreter I of Section 1.8.1 to arrive at a new interpreter IX that produces not
only the conclusion of a deduction D in a given β, but also a pure deduction D that is observationally
equivalent to D in β. The definition of IX requires the following modified version of eval-meth-args :
cert-eval-meth-args(phrases, β,IX) = let f([], vals, β′, DL) = 〈←−−vals, β′,

←−
DL〉

f(E::L, vals, β′,DL) = f(L, I(E, β)::vals, β′,DL)
f(D::L, vals, β′, DL) = let 〈P,D〉 = IX (D, β)

in
f(L, P ::vals, β′ ∪ {P},D::DL)

in
f(phrases, [],∅, [])

It is a straightforward induction on D to prove that I converges (respectively, fails or diverges)
on given D and β iff IX converges (respectively, fails or diverges) on D and β; and furthermore, that
I(D, β) = P iff (∃D) IX (D, β) = 〈P,D〉. We will thus continue to speak of a deduction D converging
on some β without specifying whether we are referring to the convergence of IX or of I (or, for that
matter, of IC, ICd, or ICe). And likewise, we will speak of “the value” of a D in some β without
bothering to specify whether the value is obtained from IX or from I.

For any D that converges on β we define X (D, β) as the pure deduction produced by running IX
on D and β. More precisely,

X (D, β) = D iff (∃P) IX (D, β) = 〈P,D〉.

We call X (D, β) the “certificate” or the expansion of D in β. Accordingly, the observational equiva-
lence of D and the pure deduction produced by IX (D, β) is expressed by the following equation:

I(X (D, β), β) = I(D, β).

The certificate X (D, β) can be seen as the “trace” or “yield” produced by evaluating D in β. In
a sense, it is the justification that the instrumented interpreter IX produces in order to back up its
conclusion. It consists of every primitive-method application as well as every hypothetical deduction
and proof by contradiction in non-phantom positions performed during the evaluation of D in β,
stringed together in temporal order.

It is of interest to consider the complexity relationship between a deduction D and its certificate
X (D, β) in some β. It is clear that evaluating D in β must be at least as expensive as evaluating the
certificate X (D, β) in β, since every step made by the certificate must also be made by the original
D. But how much cheaper X (D, β) will be depends largely on how focused D is. In general, when we
produce a certificate for some D we “throw away” all the computation performed by D and keep only

38

IX (!E F1 · · ·Fn,β) = let V = I(E, β)

〈[V1, . . . , Vn], β′, [D1, . . . , Dk]〉 = cert-eval-meth-args([F1, . . . , Fn], β, IX)
in

Is V a primitive method M?

Yes: 〈apply-prim-meth(M, [V1, . . . , Vn], β ∪ β′), begin D1; . . . , Dk; !M V1, . . . , Vk end〉
No: Is V a method of the form φ I1, . . . , In . D?

Yes: let 〈VD , D〉 = IX (D[V1/I1, . . . , Vn/In], β ∪ β′)
in
〈VD , begin D1; . . . , Dk; D; end〉

No: error()

IX (assume E in D) = let P = I(E, β)
〈Q, D〉 = IX (D, β ∪ {P})

in
〈P ⇒Q, assume P in D〉

IX (suppose-absurd E in D) = let P = I(E, β)
〈false, D〉 = IX (D, β ∪ {P})

in
〈¬P, suppose-absurd P in D〉

IX (dlet I = E in D) = let VE = I(E, β)
〈P, D〉 = IX (D[VE/I], β)

in
〈P, D〉

IX (dlet I = D′ in D) = let 〈P, D′〉 = IX (D′, β)
〈Q, D〉 = IX (D[P/I], β ∪ {P})

in
〈Q, begin D′; D end〉

IX (E by D) = let 〈P,D〉 = IX (D, β)
Q = I(E, β)

in
If P = Q then 〈P, D〉 else error()

IX (begin D1; . . . ; Dn end, β) = let f([D], β′, [D1, . . . , Dk]) = let 〈P, D〉 = IX (D, β′)
in
〈P, begin Dk; . . . ;D1;D end〉

f(D1::D2::L, β′, DL) = let 〈P, D1〉 = IX (D1, β′)
in

f(D2::L, β′ ∪ {P}, D1::DL))
in

f([D1, . . . , Dn], β, [])

IX (dmatch E (π1? D1) · · · (πn? Dn), β) = let P = I(E, β)
〈{〈I1, P1〉, . . . , 〈Ik, Pk〉}, D〉 = check(P, [〈π1, D1〉, . . . , 〈πn, Dn〉])

in
IX (D[P1/I1, . . . , Pk/Ik], β)

Figure 1.11: Certificate-generating interpreter for NDLω
0 .

those primitive inferences that are essential for the derivation of the final conclusion.8 If D performs
a lot of computation, e.g., a lot of pattern matching, then the savings will be substantial because all
that computation will be discarded. But if D is fairly focused and does not perform many gratuitous
calculations then the savings will be minimal. Indeed, in the extreme case D might be pure to begin
with, in which case it performs zero computation (Lemma 1.11) and can serve as its own certificate;
in that case we will have X (D, β) = D and the savings will be zero.

Lemma 1.13 Cd(D, β) = C(X (D, β), β).

8This is not to say that the resulting certificate will be an optimal deduction in any sense. Far from it, it will
likely have several sources of redundancy naively created by the expansion algorithm, although most of these can be
mechanically removed by a small number of simple optimizing transformations; see Chapter 5 of “Denotational Proof
Languages” [4].

39

Type-ω proof D

Untrusted instrumented
type-ω interpreter �

��� P

�
���

Certificate D �

Trusted
type-α interpreter

P

Figure 1.12: The generation and validation of certificates.

The above intuitions can be made precise as follows. For any D that is convergent in a given β, let
us define the speed-up of D in β, denoted SU (D, β), as

SU (D, β) = C(D, β)− C(X (D, β), β).

This simply says that the speed-up achieved by the certificate is equal to its cost difference from the
original D (this quantity will always be non-negative). Now the statement that “certificates throw
away computation” is formally captured by the following result:

Theorem 1.14 SU (D, β) = Ce(D, β). In words, the speed-up achieved by “purifying” D is precisely
equal to the computational cost of D.

Proof: By definition,
SU (D, β) = C(D, β)− C(X (D, β), β). (1.26)

By Lemma 1.13, C(X (D, β), β) = Cd(D, β), hence 1.26 gives

SU (D, β) = C(D, β)− Cd(D, β). (1.27)

But by Theorem 1.9, C(D, β) = Ce(D, β) + Cd(D, β), and thus 1.27 yields SU (D, β) = Ce(D, β).

Besides increased efficiency, certificates have the advantage of being pure deductions, and hence
very simple and easy to trust. This means that a certificate-generating type-ω interpreter such as IX
allows us to have the best of both worlds—the expressive power of type-ω DPLs and the simplicity of
type-α DPLs. That is, we can write a deduction D in a type-ω DPL, making full use of the convenience
of methods, recursion, etc., and once D is functional and correctly produces the desired conclusion P ,
we can run it through the certificate-generating interpreter and obtain an equivalent pure deduction
D. Then if we have to convince a skeptical agent S about P , we simply submit the certificate D as
our evidence. S can check D with a type-α interpreter for pure deductions, which can be implemented
in about one page of code. That one page of code is ultimately the only component that S needs to
trust. This process, depicted in Figure 1.12, is the main idea behind the DPL approach to certified
computation [3].

1.10 A hierarchy of DPLs

NDLω
0 deductions can be ordered along a continuum on the basis of how much computation they

perform. On one end of the spectrum we have pure deductions, which have zero computational cost.

40

Pure deductions are focused, proceed in very small steps, and can be checked in linear time. On the
other end we have full-blown type-ω proofs, which use unrestricted iteration and conditional branching
and can thus incur arbitrarily large computational cost. Such proofs can expend a lot of effort on
searching, can take large steps via derived inference rules (defined methods), and cannot in general
be checked efficiently. In between these two extremes lies a hierarchy of classes of proofs, readily
identifiable by syntactic criteria and characterized by the amount of computation that each allows.
Three classes of proofs appear particularly interesting and useful:

1.10.1 Type-β proofs

We define a propositional form H as follows:

H ::= I | A | true | false | ¬H | H1 ∧H2 | H1 ∨H2 | H1⇒H2 | H1⇔H2.

Hence, as abstract syntax trees, propositional forms have the same structure as propositions, except
that identifiers are also allowed at the leaves along with atoms and the constants true and false.
Now a type-β proof Dβ is defined as follows:

Dβ ::= !c H1 · · ·Hk | assume H in Dβ | suppose-absurd H in Dβ

| dlet I1 = K1 · · · In = Kn in Dβ

Ki ::= H | Dβ

As their syntax manifests, type-β proofs are very similar to pure deductions. The only difference is
that dlet deductions are used instead of begin D1; · · · ; Dn end blocks, which, in combination with
propositional forms, allows for the ability to refer to propositions by name. This can reduce the size
of pure deductions by replacing multiple occurrences of the same proposition by a name. As a simple
example consider the following pure type-α deduction of A ∧B⇒B ∧A:

assume A ∧B in
!both (!right-and A ∧B)

(!left-and A ∧B)

This can be expressed as a type-β deduction as follows:

dlet P = A ∧B in
assume P in

!both (!right-and P) (!left-and P)

The space savings become more substantial of course as the size and number of occurences of the same
proposition increase. The following can be proved by a straightforward induction on the structure of
Dβ:

Theorem 1.15 A type-β deduction Dβ can be checked in linear time on average.

In situtations where one wants the simplest proofs possible in order to minimize the trust placed upon
the proof checker but also wants to reduce the size of proofs as much as possible (perhaps because the
proofs are to be shipped over a network), type-β proofs will be a better alternative than type-α proofs,
because they are essentially just as simple as type-α proofs; they can be checked just as efficiently,
according to the preceding result; and they achieve better compactness thanks to naming.

41

1.10.2 Type-γ proofs

Let I = {I1, . . . , Im} be a set of identifiers. A type-γ proof parameterized over I is defined by the
following abstract grammar:

Dγ [I] ::= !M H1 · · ·Hk | assume H in Dγ [I] | suppose-absurd H in Dγ [I]
| dlet I1 = K1 · · · In = Kn in Dγ [I] | dmatch H (π1 D1

γ [I]) · · · (πn Dn
γ [I])

Ki ::= H | Dγ [I]
M ::= c | I1 | · · · | Im

where H is a propositional form as defined previously. There are two notable differences from type-β
proofs. First, method applications are of the form !M H1 · · ·Hk where the expression M no longer
has to be a constant; it can also be an identifier drawn from I. Second, matching is allowed. A type-γ
proof is now defined as a proof of the form

dlet M1 = φ I1
1 , . . . , I1

k1
. D1

γ [∅]
M2 = φ I2

1 , . . . , I1
k2

. D2
γ [{M1}]

...
Mn = φ In

1 , . . . , I1
kn

. Dn
γ [{M1, . . . , Mn−1}]

in
Dγ [{M1, . . . , Mn−1, Mn}]

Thus a type-γ proof introduces a series of methods M1, . . . , Mn, each of which can freely use any of
the methods previously introduced. The body of M1, in particular, may only use primitive methods.
Because no form of iteration is allowed, evaluation still only needs to scan the proof tree once from top
to bottom, which means that the proof can be checked in linear time (assuming O(1) assumption-base
queries). However, proofs now are not quite as simple as their type-α or type-β counterparts, since
substitution and pattern matching are allowed.

Most methods that are obtainable via schematic abstraction can be expressed within type-γ proofs.
For instance, here is a type-γ proof that formulates and applies modus tollens:

dlet mt = φ prem-1, prem-2 . dmatch prem-1 ∧ prem-2
(P ⇒Q) ∧ ¬Q ? suppose-absurd P in

!absurd (!mp prem-1 P) prem-2
in

assume A⇒B in
assume ¬B in

!mt A⇒B ¬B

In fact all of the methods we defined by schematic abstraction in Section 1.7 can be assembled and
used in a type-γ proof:

dlet un-curry = · · ·
curry = · · ·
dm-1 = · · ·
dm-2 = · · ·
dm-3 = · · ·
dm-4 = · · ·
dm = · · ·

42

excl-middle = · · ·
cases = · · ·
reflex-equiv = · · ·
and-cong = · · ·
...

in
· · ·

Thus type-γ proofs give us non-trivial abstraction capability while preserving efficiency—proofs can
be written in a fluid style but can still be checked expeditiously. However, we are still unable to
formulate recursive methods.

1.10.3 Type-δ or primitive recursive proofs

Type-δ proofs are similar to type-γ proofs, except that each method Mj is of the form

fixMj . φ Ij . Dγ [M1, . . . , Mj−1, Mj]

where Mj may or may not have free occurences within Dγ [M1, . . . , Mj−1, Mj] (if it does not, then it
is a regular type-γ method, by the semantics of fix). If Mj is recursive then we require that every
recursive call to it appears within a dmatch deduction in one of the following three forms:

1. dmatch Ij · · · (¬Q ? · · · !Mj Q · · ·); or

2. dmatch Ij · · · (Q1 �Q2) ? · · · !Mj Q1 · · ·); or

3. dmatch Ij · · · (Q1 �Q2) ? · · · !Mj Q2 · · ·),

for � ∈ {∧,∨,⇒,⇔}. Accordingly, the method’s formal parameter, Ij , must range over propositions,
and the argument to every recursive call must be an immediate subtree of Ij , lexically obtained by
decomposing Ij with patterns. Hence this kind of method recursion is the same kind of “primitive
recursion” encountered in functions over Herbrand universes [22], whereby the argument to each
recursive call is an immediate subterm of the parameter, obtained either via pattern matching or
via the application of some appropriate selector function such as “tail” or “left-tree”. (Primitive
recursion on Herbrand terms is a natural generalization of primitive recursion on the non-negative
integers; instead of recursing on the predecessor of a number, we recurse on the tail of a list, the left
or right branch of a binary tree, and so on. The connection to our case is apparent once we view
propositions as a term algebra.)

Because the size of the argument strictly decreases with each recursive call, termination is guaran-
teed for type-δ proofs. A typical type-δ method is the recurse method written given within equiv-cong.

Continuing in this fashion we can extend the hierarchy by defining type-ε proofs, type-ζ proofs, and
so on, with each level allowing for more computation than its predecessors and eventually culminating
in unrestricted type-ω proofs that may diverge. We stress that all of these classes of proofs are equally
powerful from a deductive viewpoint, meaning that they are all logically complete; if a conclusion
follows logically from an assumption base then it can be derived by a type-α proof.9 The difference
lies in expressiveness, abstraction, and usability. Type-α proofs can be checked quickly but can also

9However, the classes are certainly not equally powerful from the extensional viewpoint of what proposition-yielding
functions one can formulate in them as methods. For instance, it is not difficult to see that there are methods which
one can define in unrestricted type-ω NDLω

0 that cannot be expressed as type-δ methods.

43

be tedious to write for non-trivial theorems. As we start moving to the type-β and type-γ levels,
the proofs become smaller and easier to write but somewhat more expensive to check; in a sense,
we are trading space for time. The tradeoff continues to intensify as we move through the various
levels and reaches its peak with unrestricted type-ω proofs, which may exchange infinitely much space
for infinitely much time. This hierarchical classification also serves as a rigorous characterization of
the intuitive distinction between proof checking, which is generally considered to be computationally
tractable, and automated theorem proving, which is computationally expensive. The hierarchy that
extends from type-α proofs to type-ω proofs essentially captures the spectrum that lies between proof
checking and automated deduction.

1.11 A general framework for type-ω DPLs

A cursory inspection of the syntax and semantics of NDLω
0 will reveal little that is specific to classical

propositional logic. The fragments that are specific to that logic are small and easy to isolate:

1. Most of the constants—the propositional atoms, the constants true and false, the five propo-
sitional constructors, and the primitive methods.

2. The definition of what constitutes a proposition, as given by 1.3.

3. The syntax forms assume and suppose-absurd.

The essential ideas behind NDLω
0 —most notably, the two-tier syntax and the semantic abstrac-

tion of assumption bases—are independent of any particular logic. Indeed, every syntactic form of
NDLω

0 outside of assume and suppose-absurd is thoroughly generic. For instance, method ap-
plications !E F1 · · ·Fn and their semantics, as given by rules [R1], [R2], and the cut rule [R7], have
nothing to do with classical zero-order logic; they are applicable intact to any logic that induces
a transitive provability relation. Likewise for deductions of the form dlet I = F in D, E by D,
dmatch F (π1 D1) · · · (πn Dn), and so on.

This means that the same core syntax and semantics may be used for a wide variety of logics.
We need only change the constants, in order to introduce different propositional constructors and
different primitive methods. Occasionally we may also need to introduce some special syntax forms
for deductions, such as the assume construct, in order to capture certain modes of inference that are
difficult or impossible to model with primitive methods. But this is a type-α concern. Once a type-α
DPL has been formulated for a given logic, lifting it to the type-ω level is standard and immediate.

This observation led to the development of the λφ-calculus [4], an abstract framework for type-ω
DPLs.10 The λφ-calculus has the same advantages for the study of type-ω DPLs that the λ-calculus
has for the study of functional programming languages: it offers a terse formal system that strips
away inessential features and crystallizes the key ideas of type-ω DPLs in a single uniform framework
in which the theory of such DPLs can be studied in isolation from any particular language. What we
gain is generality and a deeper understanding of the essential issues. For instance, the soundness result
of Theorem 1.4 can be obtained in a more general form in the setting of the λφ-calculus—we can show
that the provability relation induced by any type-ω DPL is the least Tarskian relation that respects the
primitive methods and special syntax forms of the language. The soundness of a particular type-ω
DPL then follows as a corollary simply by demonstrating the soundness of its primitive methods
and special forms, which is usually quite straightforward (e.g., no inductive argument is required).

10This system originally appeared under the name “λµ-calculus” in “Denotational Proof Languages” [4]; the µ
operator was subsequently changed to φ to avoid confusion with Parigot’s λµ-calculus [26].

44

Indeed, most of the concepts that we have introduced in this paper, such as the notions of deductive
and computational cost, the hierarchy of type-β DPLs, type-γ DPLs, and so forth, can be defined
and studied in the abstract setting of the λφ-calculus.

1.12 Static type systems for type-ω DPLs

NDLω
0 is an untyped language. It is a distinguishing feature of DPLs that they achieve soundness

dynamically, by virtue of their assumption-base evaluation semantics, rather than by virtue of a static
type system. This is in marked contrast to LCF-based systems such as HOL, whose soundness depends
to a large extent on a specific static type discipline.

Nevertheless, strongly typed DPLs are also possible. Many different type disciplines could be
imposed on any given DPL, and in this section we will illustrate this by formulating a polymorphic
Hindley-Milner type system for NDLω

0 . We also present a type inference procedure for this system,
along the lines of Milner’s original algorithm, that infers the most general type of a phrase. Thus this
type system is à la Curry [6]: types need not be explicitly declared by the NDLω

0 user; they can be
automatically inferred by the system.

We stress that a type system is not necessary for the logical soundness of the language, which is
guaranteed by its evaluation semantics. In particular, there is no need for any type “theorem”. The
benefit that a static type system would confer on a DPL is similar to the benefit conferred by such
systems on programming languages: it would statically weed out a certain class of type errors (in
the case of a DPL, such as applying modus-ponens to an integer) which could otherwise only be
detected at run-time. To what extent static type systems are advantageous is a controversial subject,
and it is not our intention here to take sides. We only wish to show that it is straightforward to define
sophisticated static type disciplines for type-ω DPLs. (In fact, because soundness is guaranteed by
the dynamic semantics, DPLs are left with greater freedom to choose a static type system. Whereas
HOL or Isabelle must by necessity use a specific type system, a DPL is not locked into any particular
choice.)

We define the types of NDLω
0 by the following grammar:

τ ::= α | prop | τ1 × · · · × τn→ τ | τ1 × · · · × τn �prop | (∀α) τ

where α ranges over an unspecified countably infinite set of type variables, disjoint from the set of
identifiers. Free and bound occurrences of a type variable in a given type are defined in the usual
manner; e.g., in the type (α1 × α2)→ (∀α2) (α2→ α2), α1 occurs free while α2 occurs both free and
bound. We will write FV (τ) for the set of type variables that occur free in τ . Types of the form
τ1 × · · · × τn �prop will describe methods. Since a method must always return a proposition, the
type prop appears by default to the right of the arrow �. Types of the form τ1×· · ·×τn→ τ describe
functions as usual.

By a type substitution (or just “substitution”) θ we will mean a function from the set of type
variables to the set of types that is the identity almost everywhere. For distinct α1, . . . , αn, we write

{α1 �→ τ1, . . . , αn �→ τn}

for the substitution that maps each αi to τi, and every other type variable to itself. Thus {} denotes
the identity function on the set of type variables. Further, we write θ[α �→ τ] for the substitution that
maps α to τ and every other type variable α′ to θ(α′). Given a substitution θ, we define a function θ

45

from the set of all types to itself as follows:

θ(α) = θ(α)
θ(prop) = prop

θ(τ1 × · · · × τn→ τ) = θ(τ1)× · · · × θ(τn)→ θ(τ)
θ(τ1 × · · · × τn �prop) = θ(τ1)× · · · × θ(τn)�prop

θ((∀α) τ) = (∀α) θ[α �→ α](τ)

The function θ called the lift of θ.11 Note that applying θ to a type τ could result in variable capture;
but in what follows we will make sure that this never happens.12 For a list of types L = [t1, . . . , tn],
we define θ(L) as [θ(t1), . . . , θ(tn)]. Finally, given any two substitutions θ1, θ2 we can define a new
substitution θ1 ◦ θ2 as:

θ1 ◦ θ2 = λα . θ1(θ2(α)). (1.28)

We refer to θ1 ◦ θ2 as the composition of θ1 and θ2. (The letter λ in 1.28 is used as part of our
metalanguage; it is not related to the λ of the object language NDLω

0 .)
A type τ2 is an instance of a type τ1 iff there is a θ such that θ(τ1) = τ2. We say that τ1 is more

general that τ2. For example, the type prop→ prop is an instance of α→ α under the substitution
{α �→ prop}. Two types τ1, τ2 are unifiable iff there is a θ such that θ(τ1) = θ(τ2).

The following algorithm U takes two quantifier-free types τ1, τ2 and produces a unifying sub-
stitution for them, if τ1 and τ2 are unifiable. If not, the algorithm raises an exception. The algo-
rithm is written using ML-style pattern matching. Also, for a boolean-valued expression B, we write
B⇒E1, E2 to mean “if B then E1 else E2”.

U(prop,prop) = {}
U(α, τ) = if α ∈ FV (τ) then {α �→ τ} else (if α = τ then {} else error())
U(τ, α) = U(α, τ)
U(τ1 × · · · τn � prop, τ ′

1 × · · · τ ′
n � prop) = U∗([τ1, . . . , τn], [τ ′

1, . . . , τ
′
n])

U(τ1 × · · · τn → τ, τ ′
1 × · · · τ ′

n → τ ′) = U∗([τ1, . . . , τn, τ], [τ ′
1, . . . , τ

′
n, τ ′])

U(,) = error()
U∗([], []) = {}
U∗(s::L1, t::L2) = θ′ ◦ θ, where θ = U(s, t), θ′ = U∗(θ(L1), θ(L2))
U∗(,) = error()

By an “atomic type assignment” we will mean an ordered pair 〈I, τ〉 consisting of an identifier
I and a type τ . We will write such a pair more suggestively as I : τ , and we will call I and τ the
subject and value of that assignment, respectively. By a type context we will mean a finite list of
atomic assignments:

[I1 : τ1, . . . , In : τn]. (1.29)

We will use the letter Γ to range over type contexts. For any given substitution θ and type context
Γ of the form 1.29, we write θ(Γ) for the context [I1 : θ(τ1), . . . , In : θ(τn)]. The expression FV (Γ)
will denote the set of type variables that occur free in the value of some assignment in Γ. We write
Γ(I) = τ to signify that I : τ is the first (leftmost) assignment in Γ with subject I. Finally, for a
pattern π with PI (π) = [I1, . . . , In], we define ∆(π) as the type context [〈I1,prop〉, . . . , 〈In,prop〉].

11If we exclude quantifications, the remaining types form a free term algebra over the set of type variables, and θ then
coincides with the unique homomorphic extension of θ. Milner’s inference algorithm essentially ignores quantifications
and treats the set of all types as a free algebra.

12Of course in practice this can always be ensured by alphabetically renaming τ before applying θ.

46

Γ � E : τ1 × · · · × τn � prop Γ � F1 : τ1 · · · Γ � Fn : τn [T1]
Γ � !E F1 · · ·Fn : prop

Γ � E : prop Γ � D : prop [T2]
Γ � assume E in D : prop

Γ � E : prop Γ � D : prop [T3]
Γ � suppose-absurd E in D : prop

Γ � F : τ 〈I, τ 〉::A � D : prop [T4]
Γ � dlet I = F in D : prop

Γ � E : prop Γ � D : prop [T5]
Γ � E by D : prop

Γ � F : prop ∆(π1) ⊕ Γ � D1 : prop ∆(πn) ⊕ Γ � En : prop [T6]
Γ � dmatch F (π1? D1) · · · (πn? Dn) : prop

[T7]
Γ � I : τ

provided Γ(I) = τ

〈I1, τ1〉:: · · · 〈In, τn〉::Γ � D : prop [T8]
Γ � φ I1, . . . , In . D : τ1 × · · · × τn � prop

Γ � E : τ1 × · · · × τn → τ Γ � F1 : τ1 · · · Γ � Fn : τn [T9]
Γ � E F1 · · ·Fn : τ

〈I, τ 〉::Γ � E : τ [T10]
Γ � fix I . E : τ

Γ � F : τ 〈I, τ 〉::A � D : prop [T11]
Γ � dlet I = F in D : prop

Γ � F : prop ∆(π1) ⊕ Γ � E1 : τ ∆(πn) ⊕ Γ � Dn : τ [T12]
Γ � match F (π1? E1) · · · (πn? En) : τ

Γ � E : τ [T13]
Γ � E : (∀α) τ

provided α ∈ FV(Γ)

Γ � E : (∀α) τ [T14]
Γ � E : {α �→ τ ′}(τ)

Figure 1.13: Core rules of the static type system of NDLω
0 .

The judgments of the type system are of the form Γ � F : τ , asserting that the phrase F has
type τ with respect to the context Γ. The core rules of the system are shown in Figure 1.13. Type
axioms for the constants are trivial: we have Γ � A : prop for all atoms A, Γ � ¬ : prop→ prop,
Γ � � : prop × prop→ prop for � ∈ {∧,∨,⇒,⇔,≡}, and Γ � c : prop for c ∈ {true, false}. The
types for the primitive methods are obvious, e.g., we have Γ � both : prop × prop�prop. Note
that deductions are always of type prop, since for all rules that establish conclusions of the form
Γ �D : τ (namely, rules [T1]—[T6]), we have τ = prop.

A type is called shallow iff it is of the form (∀α1) · · · (∀αn) τ for some n ≥ 0 and quantifier-free
τ . That is, a type is shallow iff it has no quantifiers or else every quantifier is up front and its scope
includes everything to its right. This type system allows us to prove that certain expressions have
non-shallow types. For example, the “self-application” λ I . I I can be shown to have the non-shallow

47

W(e, A) = τ , where 〈τ, θ〉 = V(e, A) and

V(!E F1 · · ·Fn, Γ) = 〈prop, θ2 ◦ θ1〉, where 〈τ, θ〉 = V(E, Γ), 〈[τ1, . . . , τn], θ1〉 = V̂([F1, . . . , Fn], [Γ, . . . , Γ], θ),

θ2 = U(θ1(τ), τ1 × · · · × τn � prop)
V(assume E in D, Γ) = 〈prop, θ4 ◦ θ3 ◦ θ2 ◦ θ1〉, where 〈τ, θ1〉 = V(E, Γ), θ2 = U(τ1, prop),

〈τ ′, θ3〉 = V(D, θ2 ◦ θ1(Γ)), θ4 = U(τ ′, prop)
V(suppose-absurd E in D, Γ) = 〈prop, θ4 ◦ θ3 ◦ θ2 ◦ θ1〉, where 〈τ, θ1〉 = V(E, Γ), θ2 = U(τ1, prop),

〈τ ′, θ3〉 = V(D, θ2 ◦ θ1(Γ)), θ4 = U(τ ′, prop)
V(dlet I = F in D, Γ) = (prop, θ3 ◦ θ2 ◦ θ1),

where (τ1, θ1) = V(F, Γ), Γ′ = 〈I, (∀α1) · · · (∀αn) τ1〉::θ1(Γ), (τ2, θ2) = V(D, Γ′), θ3 = U(τ2, prop)

and {α1, . . . , αn} = FV (τ1)− FV (θ1(Γ))
V(dmatch E (π1? D1) · · · (πn? Dn), Γ) = 〈prop, θ′ ◦ θ〉, where 〈τ, θ1〉 = V(E, Γ), θ2 = U(τ, prop),

[Γ1, . . . , Γn] = map ∆ [π1, . . . , πn], 〈[τ1, . . . , τn], θ〉 = V̂([D1, . . . , Dn], [Γ1 ⊕ Γ, . . . , Γn ⊕ Γ], θ2 ◦ θ1),

θ′ = U∗([θ(τ1), . . . , θ(τn)], [prop, . . . , prop])
V(E by D, Γ) = 〈prop, θ4 ◦ θ3 ◦ θ2 ◦ θ1〉, where 〈τ, θ1〉 = V(D, Γ), θ2 = U(τ, prop)

〈τ ′, θ3〉 = V(E, θ2 ◦ θ1(Γ)), θ4 = U(τ ′, prop)

V(I,Γ) = if Γ(I) = (∀α1) · · · (∀αk) τ then 〈{α1 �→ α′
1, . . . , αk �→ α′

k}(τ), {}〉 else error(),
where α′

1, . . . , α′
k are fresh, k ≥ 0

V(λ I1, . . . , In . E, Γ) = 〈θ(α1 × · · · × αn→ τ), θ〉,
where 〈τ, θ〉 = V(E, [〈I1, α1〉, . . . , 〈In, αn〉]⊕ Γ) and α1, . . . , αn are fresh

V(φ I1, . . . , In . D, Γ) = 〈θ2(α1)× · · · × θ2(αn) �prop, θ2〉,
where 〈τ, θ〉 = V(D, [〈I1, α1〉, . . . , 〈In, αn〉]⊕ Γ), θ1 = U(τ, prop), θ2 = θ1 ◦ θ, and α1, . . . , αn are fresh

V(E F1 · · ·Fn, Γ) = 〈θ2(α), θ2 ◦ θ1〉, where 〈τ, θ〉 = V(E, Γ), 〈[τ1, . . . , τn], θ1〉 = V̂([F1, . . . , Fn], [Γ, . . . , Γ], θ),

θ2 = U(θ1(τ), τ1 × · · · × τn→ α), and α is fresh
V(fix I . E, Γ) = 〈θ2(α), θ2〉, where 〈τ, θ〉 = V(E, 〈I, α〉::Γ), θ1 = U(τ, θ(α)), θ2 = θ1 ◦ θ, and α is fresh
V(let I = F in E, Γ) = (τ2, θ2 ◦ θ1),

where (τ1, θ1) = V(F, Γ), Γ′ = 〈I, (∀α1) · · · (∀αn) τ1〉::θ1(Γ), (τ2, θ2) = V(E, Γ′)
and {α1, . . . , αn} = FV (τ1)− FV (θ1(Γ))

V(match E (π1? E1) · · · (πn? En), Γ) = 〈θ′(τ1), θ′ ◦ θ〉, where 〈τ1, θ1〉 = V(E, Γ), θ2 = U(τ1, prop),

[Γ1, . . . , Γn] = map ∆ [π1, . . . , πn], 〈[τ1, . . . , τn], θ〉 = V̂([E1, . . . , En], [Γ1 ⊕ Γ, . . . , Γn ⊕ Γ], θ2 ◦ θ1),

θ′ = U∗([θ(τ1), . . . , θ(τn−1)], [θ(τ2), . . . , θ(τn)])
and

V̂(L,
−→
Γ , θ) = let h([], [], θ, T) = 〈θ,

←−
T 〉

h(F ::L, Γ::L′, θ, T) = let 〈τ, θ′〉 = V (F, θ(Γ))
in

h(L, L′, θ′ ◦ θ, τ ::T)
in

h(L,
−→
Γ , θ, [])

Figure 1.14: A Milner-style type-inference algorithm for NDLω
0 .

type
[(∀α)α→ α]→ [(∀α)α→ α]

(with respect to the empty context) as follows:

1. [I : (∀α)α→ α] � I : (∀α)α→ α [T7]
2. [I : (∀α)α→ α] � I : [(∀α)α→ α]→ [(∀α)α→ α] 1, [T14]
3. [I : (∀α)α→ α] � I I : (∀α)α→ α 2, 1, [T9]
4. [] � λ I . I I : [(∀α)α→ α]→ [(∀α)α→ α] 3, [T9]

Our type type inference algorithm, however, like Milner’s original algorithm [24], will only able to
infer shallow types. For instance, the algorithm will fail on the above self-application. The problem
is that there is no effective (algorithmic) way of deducing non-shallow types. Accordingly, just like
Milner’s procedure, our algorithm will be incomplete with respect to the type system of Figure 1.13:
even though certain judgments are provable in the system, the algorithm will not derive them. Alter-
natively, we could syntactically restrict our set of types by weeding out non-shallow types and then

48

slightly reformulating the rules so as to make the algorithm complete with respect to the inference
system, which is the approach of Milner and Damas [14]. Our approach here is similar to Cardelli’s
[9].

The algorithm W appears in Figure 1.14 in conventional ML-like notation. It uses an auxiliary
function V that takes a phrase F and a context Γ and returns a pair (τ, θ) consisting of a type τ (the
most general type of F w.r.t. Γ), and a substitution θ that is used to update our current “guesses”
about the types of the bound variables of F . The definition of V(F, Γ) is given by pattern matching on
F . We omit the cases when F is a constant, as those are trivial. Although we will not prove this here,
we claim that ifW(F, Γ) = τ then Γ � F : τ . Moreover,W(e, A) is a principal type, i.e., more general
that any other type that can be derived for F with respect to Γ. Formally: for all τ , if Γ � F : τ then
τ is an instance of W(F, Γ). Principality follows from the fact that unification is used to “guess” the
types of bound NDLω

0 identifiers, and unification always returns the most general possible unifying
substitution.

Note the difference in the handling of let-bound and dlet-bound identifiers vs. λ-bound and
φ-bound identifiers. When we encounter a function λ I1, . . . , In . E or method φ I1, . . . , In . D, we
augment the current type context with n assignments I1 : α1, . . . , In : αn, for fresh αj , and move on
with the body E or D. Once a type variable αj becomes instantiated to some type τj within the body,
it remains an instance of τj throughout. This means that the type of Ij cannot be freshly instantiated
as needed at different places within the body E (or D): in Hindley-Milner parlance, Ij is a non-generic
identifier. Every occurence of Ij within the body must have the same (principal) type. That is why the
algorithm is unable to infer non-shallow types. By contrast, for an expression such as let I = F in E
or a deduction dlet I = F in D, we can process the phrase F first, obtain a type judgment I : τ ,
then generalize τ over its free variables α1, . . . , αk to get a judgment I : (∀α1) · · · (∀αk) τ , and then
freely specialize this generic type as needed within the body E (or D). That is why we say that the
free occurrences of I within the bodies E and D are generic. Note that W performs specialization in
the clause for identifers, which is

V(I,Γ) = if Γ(I) = (∀α1) · · · (∀αk) τ then 〈{α1 �→ α′
1, . . . , αk �→ α′

k}(τ), {}〉 else error(),
where α′

1, . . . , α
′
k are fresh, k ≥ 0.

Hence, if I is generic, i.e., if it was previously bound by a let or dlet, then its type in the current
context is of the form (∀α1) · · · (∀αk) τ , and the above clause will return a copy of τ with α1, . . . , αk

replaced by fresh type variables α′1, . . . , α
′
k.

1.13 Type-ω DPLs as programming languages

In Section 1.9 we saw that there is an isomorphism between NDL0 and the set of pure NDLω
0

deductions PD, which meant that by restricting ourselves within PD we can use NDLω
0 as a type-α

DPL. In this section we will single out a set of “pure expressions” PE ⊆ E and show that there is an
isomorphism between PE and the regular λ-calculus. This will entail that by syntactically restricting
ourselves within PE we can use NDLω

0 as a conventional programming language.
Our discussion here will be concerned only with the kernel of NDLω

0 , but the ideas readily extend
to the full language. We will say that a NDLω

0 expression E is pure iff it contains no deductions
D. That is, viewing E as a parse tree, no subtree of it is a deduction. We write PE to denote the
set of all pure expressions of core NDL0. The intuition that pure expressions E look and behave
just like regular λ-calculus expressions can be made precise by defining a regular λ-calculus L and
then establishing an isomorphism between L and PE. Accordingly, let us define a language L of
expressions E as follows:

E ::= c | I | λ I1, . . . , In . E | E E1 · · ·En (1.30)

49

As constants c we take the propositional atoms, true, false, the five propositional constructors, and
the propositional equality function ≡. So we have here the same constants that we had in NDLω

0

except for the primitive methods. We define propositions P as before and the set of values V as

V ::= c | P | λ I∗ . E.

Free and bound identifier occurrences are defined as usual, expressions are viewed as identical modulo
alphabetic conversion, and the substitution operation E[E1, . . . , En/I1, . . . , In] is introduced in the
customary manner. A formal substitution-based call-by-value semantics can be given by three rules
that establish judgments of the form �E ↪→ V :

[L1]
� V ↪→ V

� E ↪→ c �Ei ↪→ Vi � c V1 · · · Vn ↪→ V [L2]� E E1 · · ·En ↪→ V

�E ↪→ λ I1, . . . , In . E′ � Ei ↪→ Vi � E′[Vj/Ij] ↪→ V [L3]
�E E1 · · ·En ↪→ V

along with two “δ-axioms” for the equality function:

[L4]� P ≡ P ↪→ true

[L5]� P ≡Q ↪→ false

when P 	= Q

Thus L is a conventional applied λ-calculus [23]: it consists of the usual λ-calculus core (variable
references, abstractions, and applications), augmented with constants that represent certain objects
and computable operations on a particular domain of interest—in this case, the set of propositions of
classical zero-order logic.

Note that L is embedded intact within NDLω
0 . Accordingly, the isomorphism mapping between L

and PE is the identity function, since every expression of L is a pure expression of NDLω
0 and every

pure expression of NDLω
0 is an expression of L. This gives a trivial syntactic bijection between L and

PE. The next result makes this bijection into an isomorphism by showing that the similarity extends
to the semantics: every expression in the intersection of L and NDLω

0 has the exact same meaning
in both languages.

Theorem 1.16 (Pure expression isomorphism) �E ↪→ V iff (∀β) [β �E � V].

Proof: A straightforward induction on E.

The fact that this equivalence holds for all β captures the intuition that the behavior of pure NDLω
0

expressions is completely independent of the assumption base. In particular, we can choose β = ∅,
which means that pure expressions may well be evaluated in the empty assumption base.

These ideas extend to the full NDLω
0 language. Every pure expression of NDLω

0 looks and behaves
like a regular “program” in a higher-order call-by-value lexically-scoped language. This could readily
be made precise by extending the λ-calculus L given by 1.30 to a “full” λ-calculus L as follows:

E ::= · · · | fix I . E | let I = E1 in E2 | begin E1 · · ·En end |match E (π1? E1) · · · (πn? En)

Rules [L1]—[L3] would then be augmented with rules that give the semantics of these new syntax
forms in the usual manner, and Theorem 1.16 would be extended to assert an isomorphism between
L and the pure expressions of NDLω

0 , the relevant bijection again being simply the identity function.
The practical import of this containment is that a type-ω DPL could be used as a regular program-

ming language. In the case of NDLω
0 , we can write arbitrary functions to operate on propositions,

50

e.g., functions to compute normal forms for propositions (such as CNF or DNF), functions to imple-
ment procedures such as resolution, or the Davis-Putnam algorithm, or semantic tableaux, and so on.
But in fact there is no a priori reason why the computational part of a type-ω DPL should be limited
to propositions. One could easily introduce additional primitive values (represented as constants) for
integers, reals, strings, lists, and other scalar and compound data types. The set of pure expressions
will then constitute a powerful higher-order functional language in the tradition of Scheme or ML
(depending mainly on whether or not a static type discipline is enforced; see Section 1.12). In fact
data types such as integers and lists are very useful for writing powerful and flexible methods and so
any sophisticated type-ω DPL is likely to offer them. Accordingly, such a DPL would constitute a
general-purpose programming language. As an example, Athena [1] is a type-ω DPL whose compu-
tational part comprises a rich programming language featuring strings, numbers, lists, input/output
facilities, side effects, and so on.

In closing, we draw attention to how orthogonally type-ω DPLs integrate computation and deduc-
tion. One could be using a type-ω DPL as a regular programming language for months on end without
even being aware of the deductive aspects of the language, because those aspects are non-intrusive in
every respect:

• Syntactically, no special keywords or syntax forms are required if one simply wants to write pro-
grams. Programmers can write code in type-ω DPLs just as they would write it in a conventional
modern language such as Scheme or ML.

• Semantically, type-ω programs (pure expressions) have the exact same meaning that one would
expect them to have in a conventional modern programming language based on the call-by-value
λ-calculus, as made precise by Theorem 1.16. The presence of assumption bases has no bearing
on the meaning of such expressions.

• Pragmatically, type-ω programs incur zero static and zero run-time penalty, because one only
“pays” for the deductive machinery if one uses it. Pure expressions contain no deductions and
hence they never touch the assumption base—an intuition formally captured in Theorem 1.16
by the universal quantification over all assumption bases.

Conversely, of course, one could be using a type-ω DPL as a type-α DPL by remaining within
the set of pure deductions, without even being aware that a full-blown higher-order programming
language is available alongside the deductive framework.

1.14 Related work

We have seen that a type-ω DPL L can be used both for proof presentation, when we simply wish to
express a proof in a form that can be checked efficiently; and for proof search, when we want to write
a theorem prover with a strong soundness guarantee. In the first case, the type-α subset of L is used;
in the second case, the full range of type-ω features of L can be used. We will first discuss related
work on proof presentation and checking, and then related work on proof search.

There are many systems for proof presentation and checking. Prominent among them are systems
deriving from Automath [8], such as the Calculus of Constructions [12, 11], Nuprl [10], and LF [18].
These systems are largely based on and inspired by the Curry-Howard isomorphism [19] and make
heavy use of fairly sophisticated type theories. A proof is represented by a term of the typed λ-calculus,
using a sufficiently rich type theory to guarantee that the proof is sound iff the term that represents
it is well-typed. If type checking is decidable in the theory at hand, then this reduction means that
proofs can be checked mechanically.

51

Proofs in such systems are typically annotated with a large amount of type information, which
must be explicitly given in order to make sure that type checking is decidable. This increases the size of
the proofs and makes them harder to read and write. In addition, assumption scope in Curry-Howard
systems is captured by the lexical scope of λ-bound variables. By contrast, in a type-ω DPL such
as NDLω

0 there are two distinct notions of scope, the lexical scope of identifiers and the assumption
scope of propositions. We believe that teasing apart these two notions of scope results in much cleaner
deductions. For additional comments on the difference between DPLs and Curry-Howard systems,
refer to Section 1.4 of the paper “Denotational Proof Languages” [5]. A deeper comparison of DPLs
and LF, in particular, can be found in Chapter 3 of Arkoudas’s dissertation [4].

On the proof discovery front, the systems that are closest to type-ω DPLs are those derived from
LCF [16], such as HOL [17]. They are the only systems we are aware of that make strong soundness
guarantees on the basis of rigorously formulated semantics. They are substantially different than
DPLs, however. HOL is a programming language (ML) augmented with some abstract data types
that model sequents and various built-in functions for constructing valid sequents. There is nothing
in the core semantics of HOL that pertains to proofs. This essentially means that everything has to
be done via regular functional abstraction and application, with a lot of top-level helper functions
and a strong type system mounted on top to guarantee soundness. While this is possible, it has
several drawbacks. Most notably, the burden of hypothesis management falls on the users, who must
explicitly keep track of their assumptions and intermediate conclusions by manipulating sequents.

The difference between assumption bases and sequents is fundamental. It is akin to the differ-
ence between recursion versus explicit manipulation of the control stack. In a language that allows
recursion, the user manipulates the control stack implicitly. The tedium of pushing and popping
stack frames is relegated to the language implementation. The benefits are well known: programs are
shorter, easier to read and write, and expressed at a higher level of abstraction. Likewise, in DPLs
the user manipulates the assumption base implicitly. The tedium of assumption manipulation (e.g.,
discharging hypotheses) is relegated to the DPL semantics.

Furthermore, it is not the case that the abstraction capabilities and rich type system of a language
such as ML can magically “hide” the onus of sequent manipulation. To see this, it is useful to draw
another parallel, this time between assumption bases and stores. While in principle everything can
be done with regular functional abstraction and application, perhaps in tandem with a type system,
some applications—e.g., those dealing with bank accounts—have such a strong state component that
they can be expressed much more naturally in an imperative programming language that provides
stores and mutation. Of course we could, in principle, develop the application in a purely functional
language; we could represent the store using state lists and simulate its manipulation by explicitly
passing those lists around at run time. However, this would be inordinately cumbersome. No matter
how wonderfully abstract the functional language might be in other respects, in some cases it is
simply much easier to use an imperative programming language that posits the store as a fundamental
abstraction and shifts the burden of its management to the formal semantics. In the case of proofs,
the role of the store is played by the assumption base. HOL represents assumption bases by lists
(sequents) and explicitly passes those around at run time (e.g., every primitive HOL inference rule
operates on sequents), much as a purely functional language would simulate stores by passing around
state lists dynamically. While this works, it is inordinately cumbersome. It is much easier to use a
language that posits the assumption base as a fundamental abstraction and shifts the burden of its
management from the user to the formal semantics. That is exactly what DPLs do, and we believe
this to be the chief reason why proofs and proof methods are easier to express in such languages.
A more detailed technical comparison of HOL and a specific type-ω DPL, Athena, can be found in
another paper [2].

52

1.15 Concluding remarks

Beginning users of type-ω DPLs occasionally protest that a proof in such a language is “not really a
proof” but rather a proof recipe—an algorithm for constructing a proof, which, like any algorithm,
might or might not succeed. This reflects a misunderstanding of the fundamental distinction between
expressions (computation) and deductions (inference). What such users mean by “a proof recipe”, of
course, is a method. And they are quite correct in that a method is not by itself a proof of anything.
This is made explicit in type-ω DPLs owing to the fact that methods are classified as expressions,
not as deductions. It is the application of a method that constitutes a deduction. To put it in simple
syntactic terms: a proof in a type-ω DPL is “a D”: a parse tree generated by the abstract grammar
for deductions. The evaluation of any given D in any assumption base β will always result in some
specific proposition P , if it results in anything at all, which is logically derived from β. And we argue
that this is sufficient justification for regarding D as a deduction—a deduction of the conclusion P
from the premises in β.

A more interesting issue is raised by an appeal to the traditional view of a proof as an argument
whose validity can be checked efficiently. One might argue that whatever a proof is, it ought to be
something that we must be able to check promptly. Determining whether an argument successfully
derives its professed conclusion should be an expeditious process—at any rate, a process that is at
least guaranteed to terminate.

There are two main motivations for this viewpoint, one theoretical and the other practical. The
theoretical motivation is that if proof checking terminates then, assuming a countable set of proofs,
we can mechanically enumerate all theorems that can be derived from a given set of axioms β: we go
through each proof D, check it, and if we find that D derives a conclusion P from β then we append P
to our list of theorems, otherwise we continue with the next proof. Using standard Gödel numbering
schemes, this means that we can identify first-order theories—sets of theorems—with recursively
enumerable sets of integers, and this has pleasant consequences. For instance, many concepts and
results from the theory of recursively enumerable sets, such as productive sets, creative sets, the
positive solution to Post’s problem, etc., carry over immediately to the subject of first-order theories
in mathematical logic.

But it is easy to see that the recursively enumerability of theorems is preserved even when proofs
can diverge. Specifically, let β be a recursive set of axioms, let D be a proof, and let Yieldsβ be a
binary relation from proofs to propositions such that Yieldsβ(D, P) holds iff D deduces P from β.
Then the set of theorems of β can be defined as

Tβ = {P | (∃D)Yieldsβ(D, P)}.

When Yieldsβ is decidable, the above set is in Σ1, i.e., it is recursively enumerable. In the case of
DPLs, Yieldsβ(D, P) holds iff β �D � P , which is not decidable in the type-ω case. Nevertheless,
Tβ remains recursively enumerable in the type-ω case because the relation β �D � P is still semi-
decidable. We need only note that Tβ can be expressed via an additional existential projection as

Tβ = {P | (∃D) (∃n)Yields-Stepβ(D, P, n)}

or, in the DPL case,
Tβ = {P | (∃D) (∃n)β �n D � P} (1.31)

where the predicate Yields-Stepβ(D, P, n) (or, in the DPL case, β �n D � P), holds iff D derives P
from β in at most n steps. Since β �n D � P is decidable for type-ω proofs, we conclude from 1.31
that the set of theorems Tβ is recursively enumerable. (To see this algorithmically, note that we can

53

enumerate all conclusions of an infinite list of type-ω proofs D1, D2, D3, . . . by dovetailing : we perform
one step from D1, then two steps from D1 and one from D2, then three steps from D1, two from D2

and one from D3, and so forth.)
The practical motivation for insisting on terminating proofs appears to stem from the social view

of proofs as arguments adduced in a debate: to settle such matters conclusively, we must be able to
tell in a finite time period whether or not a given argument is valid. Here we simply point out that no
rational agent S would ever adduce a proof D in order to convince others that a conclusion P follows
from some premises β unless S is already certain that the judgment β �D � P holds. Presumably,
S has already privately checked D and has ascertained that it derives P from β. In fact S might have
well counted the number of steps it took to check D, call it n, and can confidently allow others to
halt their efforts after n steps.

We can gain some additional insight into this issue by drawing an analogy with the formalization
of algorithms as Turing machines. Prior to the 20th century an algorithm was customarily viewed
as a procedure that always terminates with a well-defined result—what is the use, after all, of a
recipe that never produces anything? But the diagonalization arguments which showed that no class
of terminating machines could ever constitute a thorough formalization of the concept of algorithm
led researchers to adopt diverging computations. So why are Turing machines viewed as a good
formalization of the concept of algorithm even though they can diverge? The answer does not lie
merely in the pragmatic desire to avert the diagonalization obstacle. Rather, it is mainly because a
Turing machine embodies all the essential characteristics that we informally attribute to algorithms:
it admits a finite description, it operates in a discrete stepwise fashion, and so on (see properties
1—5 in the list given by Rogers in Section 1.1 of his “Theory of recursive functions and effective
computability” [29].) Termination is not an essential property of algorithms. If it were, then no
formalization that allowed infinite computations could ever claim to capture the concept successfully.

Likewise, we submit that termination is not an essential characteristic of proofs. We see no
qualitative difference between type-α deductions, which adhere to the conventional view of proofs
and can be checked efficiently, and NDLω

0 deductions, which may take indefinitely long to yield
a conclusion. Both are logical demonstrations : starting from certain assumption bases, they both
proceed in a stepwise manner, deducing various intermediate propositions by sound manipulation
of the assumption base, until the ultimate conclusion is finally obtained or some logical oversight is
uncovered. The only difference is quantitative: where a NDL0 proof will promptly reach a verdict
(either the desired conclusion or an error), a NDLω

0 proof might take much longer—indeed, in the
extreme case it might take forever. But we stress that this does not constitute a difference in essence,
at least no more than it does in the case of algorithms.

One could also perhaps argue that type-α proofs are focused because they have zero computational
cost, whereas unrestricted type-ω proofs might wander around performing search, and that this lack
of focus constitutes a qualitative difference. But we note that type-α proofs can also be terribly
unfocused by way of detours and superfluous intermediate conclusions—consider a billion-line type-α
proof that derives the proposition true. Focus is no more an essential feature of proofs than efficiency
is of algorithms.

Of course, for engineering purposes, we may be perfectly justified in restricting attention to classes
of proofs that have complexity properties appropriate for the application at hand. If we download a
proof-carrying [25] executable and need to check the proof to make sure that the code does not corrupt
any of our system’s resources, we want the proof to be validated in no more than a few seconds. In
that case it may well be reasonable to accept only type-α or type-β proofs. On the other hand, if
someone hands us an alleged proof of Goldbach’s conjecture we are probably willing to let a computer
check that proof over a period of weeks, or even months if need be. But in any event we should resist

54

the temptation to draw ontological conclusions about the nature of deduction on the basis of our own
practical needs and limitations. The development of the theory of algorithms teaches us otherwise.

1.16 Implementation

In this section we present a complete implementation of the full NDLω
0 language in fewer than 400

lines of SML code. The implementation consists of three SML structures, AbstractSyntax, Semantics,
and AssumptionBase. We do not include a parser here because we want to stress that the choice
of concrete syntax is largely arbitrary and independent of the abstract syntax and semantics; it is
an issue that should be sharply decoupled in the language design process.13 Perhaps the simplest
approach is to use a concrete syntax based s-expressions, but infix variants are also possible and we
encourage the reader to experiment with different alternatives.14

The structure AbstractSyntax models the abstract syntax of propositions, deductions, expressions,
and phrases. It is shown in Figure 1.15. The structure AssumptionBase models assumption bases and
is defined thus:

structure AssumptionBase =

struct

val empty_ab = [];

fun member(P:AbstractSyntax.Prop,[]) = false

| member(P,Q::rest) = if P = Q then true else member(P,rest);

fun members([],_) = true

| members(P::rest,ab) = member(P,ab) andalso members(rest,ab);

val insert = op::;

val augment = op@;

end;

Thus assumption bases are modelled by lists that grow and shrink on the left side, in a stack-like
fashion. This is clearly a naive implementation. More efficient implementations would result by rep-
resenting assumption bases as tries, for example. It is interesting to note, however, that implementing
assumption bases as simple lists is nowhere as bad as one would think at first. For instance, Athena (a
type-ω DPL for polymorphic multi-sorted first-order logic) uses a heavily optimized implementation
of assumption bases based on hash tables and balanced search trees. Yet when we compared the
performance of that implementation with the performance of a naive list implementation we only
found a substantial difference in cases involving very large assumption bases (containing thousands
of propositions). In more common cases there was little difference, and in fact in some cases the
naive implementation was slightly faster. A little reflection will reveal the reason for this. A typical
deduction proceeds by inferring a lemma P , putting it in the assumption base, then another lemma
Q, putting that in the assumption base too, and then applying some primitive method that requires
P and Q, so P and Q will be looked up more or less immediately after they are put on the stack,
while they are still at the top. Moreover, they will rarely ever be used again afterwards. Accordingly,

13David MacQueen [20] gives the following advice to language designers about concrete syntax: do it last. Getting
bogged down in premature debates and dilemmas about concrete syntax can greatly hinder the design of a language.
If the abstract syntax and the semantics are clean, the language will be readable and writable with pretty much any
sensible concrete syntax. But if the designer does not get the abstract syntax and the formal semantics right, the best
concrete syntax in the world will not save the language.

14Nevertheless, for the sake of offering a complete working system, the online copy of this implementation, at
www.ai.mit.edu/projects/dynlangs/dpls/omega, includes a lexer and a parser (for an s-expression concrete syn-
tax). A source file for the SML-NJ compilation manager can also be found there.

55

we usually do not have to search the stack at any great depth, and thus very few comparisons are
actually made. So the worst case where the entire list must be searched will rarely occur because of
the way deductions are written: there is usually a very small gap between the derivation of a lemma
and its first—and often last—use.

The structure Semantics is the gist of the system. Lexical environments (implemented as higher-
order functions for simplicity) are used instead of substitutions. The interpreter evPhrase takes a
phrase phr, an environment reference env, and an assumption base ab and evaluates phr in env and
ab, ultimately producing an element of the datatype value, or else diverging or raising an exception
EvalError. Environment references are used in order to implement recursion. In particular, functions
and methods are represented as lexical closures that contain pointers to the corresponding environ-
ments. The implementation of fix puts this to use by resetting the environment pointer appropriately,
thereby “tying the knot” in the usual manner (see Chapter 8 of “Functional Programming Languages”
[28] and Chapter 5 of “Essentials of Programming Languages ” [15] for a discussion of this technique).
The relevant data types and the pattern matcher are shown in Figure 1.16. The expression interpreter
appears in Figure 1.17, and the deduction interpreter in Figure 1.18.

Environment-based implementations of type-ω DPLs such as the one given here highlight the
differences between assumption bases and lexical environments. The most important difference is that
methods and functions are statically closed over environments but dynamically closed over assumption
bases. In particular:

• The assumption base in which we evaluate a method is thrown away. By contrast, a pointer to
the lexical environment in which we evaluate the method is retained in the method’s closure.

• Symmetrically, the application of a method takes place in the environment that was stored in
the method’s closure, on one hand, and in the current assumption base on the other, i.e., the
assumption base in which the application occurs.

In a sense, assumption bases are a cross between lexical environments and stores. Like environments
and unlike stores, they grow and shrink in a context-free fashion and are free of side effects. But
like stores and unlike environments, they are dynamic rather than static. A denotational-style for-
mal semantics would clarify these differences rigorously, and would also serve to emphasize that the
meaning of a deduction is a function over assumption bases.15

15Indeed, the reason why these differences are brought out in interpreters such as the one presented here is because
these interpreters are essentially implementations of denotational semantics.

56

structure AbstractSyntax = struct

datatype prim_fun = eqFun | notFun | andFun | orFun | ifFun | iffFun;

datatype prim_method = claim | dn | mp | both | leftAnd | rightAnd | cd | leftEither

| rightEither | equiv | leftIff | rightIff | absurd | trueIntro;

datatype constant = primMethodConst of prim_method

| primFunConst of prim_fun

| propAtomConst of string

| trueConst

| falseConst;

type ide = string;

datatype prop = atom of string

| trueProp

| falseProp

| neg of prop

| conj of prop * prop

| disj of prop * prop

| cond of prop * prop

| biCond of prop * prop;

datatype exp = constExp of constant

| idExp of ide

| funExp of {params: ide list, body:exp}

| methodExp of {params: ide list, body:ded}

| funAppExp of exp * phrase list

| letExp of ((ide * phrase) list) * exp

| fixExp of ide * exp

| matchExp of {discriminant: phrase, cases: (pat * exp) list}

| seqExp of exp list

and

ded = methodAppDed of exp * (phrase list)

| assumeDed of exp * ded

| supAbDed of exp * ded

| letDed of ((ide * phrase) list) * ded

| byDed of exp * ded

| seqDed of ded list

| matchDed of {discriminant: phrase, cases: (pat * ded) list}

and

pat = idPat of ide

| atomPat of string

| truePat

| falsePat

| anyPat

| negPat of pat

| conjPat of pat * pat

| disjPat of pat * pat

| condPat of pat * pat

| biCondPat of pat * pat

and phrase = expression of exp | deduction of ded;

end;

Figure 1.15: The abstract syntax structure.

57

structure Semant = struct

structure A = AbstractSyntax;

structure AB = AssumptionBase;

datatype value = propVal of A.prop

| primMethodVal of A.prim_method

| primFunVal of A.prim_fun

| funClosVal of {params:A.ide list,body:A.exp,env:environment ref}

| methClosVal of {params:A.ide list,body:A.ded,env:environment ref}

and

env_binding = unBound | bind of value

withtype environment = A.ide -> env_binding;

exception EvalError of string;

fun evError(str) = raise EvalError("\n"^str^"\n");

val empty_env = fn id => unBound;

fun extend(f,[]) = f

| extend(f,(a,b)::rest) = extend(fn x => if x = a then b else f(x),rest);

fun augmentEnv(env1,env2) = fn id => (case env2(id) of unBound => env1(id) | b => b);

fun failMatch() = evError("Failed match.");

fun match(P,A.idPat(id),env) =

(case env(id) of

unBound => extend(env,[(id,bind(propVal(P)))])

| bind(propVal(Q)) => if P = Q then env else failMatch()

| _ => failMatch())

| match(_,A.anyPat,env) = env

| match(A.trueProp,A.truePat,env) = env

| match((A.falseProp,A.falsePat,env) = env

| match(A.atom(s1),A.atomPat(s2),env) = if s1 = s2 then env else failMatch()

| match(A.neg(P),A.negPat(pat),env) = match(P,pat,env)

| match(A.conj(P1,P2),A.conjPat(pat1,pat2),env) = thread(P1,pat1,P2,pat2,env)

| match(A.disj(P1,P2),A.disjPat(pat1,pat2),env) = thread(P1,pat1,P2,pat2,env)

| match(A.cond(P1,P2),A.condPat(pat1,pat2),env) = thread(P1,pat1,P2,pat2,env)

| match(A.biCond(P1,P2),A.biCondPat(pat1,pat2),env) = thread(P1,pat1,P2,pat2,env)

| match(_) = failMatch()

and thread(P1,pat1,P2,pat2,env) = match(P2,pat2,match(P1,pat1,env));

fun findMatch(P,cases) =

let fun tryCases([]) = failMatch()

| tryCases((pattern,phrase)::rest) =

(phrase,match(P,pattern,empty_env)) handle _ => tryCases(rest)

in

tryCases(cases)

end;

Figure 1.16: The semantics structure, part 1.

58

fun withProp(propVal(P),f) => f(P)

| withProp(_) = evError("Wrong kind of value; a proposition was expected here.");

fun evalMethArgs(args,env,ab,eval) =

let fun f([],vals,lemmas) = (rev(vals),lemmas)

| f(arg as A.expression(_)::rest,vals,lemmas) =

f(rest,eval(arg,env,ab)::vals,lemmmas)

| f(arg as A.deduction(_)::rest,vals,lemmas) =

withProp(eval(arg,env,ab),fn P => f(rest,propVal(P)::vals,P::lemmas))

in

f(args,[],[])

end;

fun evExp(A.constExp(A.primMethodConst(m)),_,_) = primMethodVal(m)

| evExp(A.constExp(A.primFunConst(f)),_,_) = primFunVal(f)

| evExp(A.constExp(A.trueConst),_,_) = propVal(A.trueProp)

| evExp(A.constExp(A.falseConst),_,_) = propVal(A.falseProp)

| evExp(A.constExp(A.propAtomConst(A)),_,_) = propVal(A.atom(A))

| evExp(A.idExp(id),env,_) =

(case (!env id) of unBound => evError("Unbound identifier: "^id)

| bind(v) => v)

| evExp(A.funExp({p,b}),env,_) = funClosVal({params=p,body=b,env=env})

| evExp(A.methodExp({p,b}),env,_) = methClosVal({params=p,body=b,env=env})

| evExp(A.funAppExp(fexp,args),env,ab) =

let val (fval,vals) = (evExp(fexp,env,ab),map (fn p => evPhrase(p,env,ab)) args)

in

(case fval of

primFunVal(f) => applyPrimFun(f,arg_vals,ab)

| funClosVal({params,body,clos_env}) =>

evExp(body,ref(extend(!clos_env,zip(params,map bind arg_vals))),ab)

| _ => funAppError())

end

| evExp(A.letExp([],body),env,ab) = evExp(body,env,ab)

| evExp(A.letExp((id,p)::rest,body),env,ab) =

evExp(A.letExp(rest,body),ref(extend(!env,[(id,bind(evPhrase(p,env,ab)))])),ab)

| evExp(A.fixExp(x,body),env,ab) =

let val rec_env = ref(!env)

val rec_value = evExp(body,rec_env,ab)

val new_env = extend(!env,[(x,bind rec_value)])

in

(rec_env := new_env;rec_value)

end

| evExp(A.matchExp({discriminant,cases}),env,ab) =

withProp(evPhrase(discriminant,env,ab),

fn P => let fun f(pat,e) => (pat,A.expression(e))

val (env’,e) = findMatch(P,map f cases)

in

evPhrase(e,ref(augmentEnv(!env,env’)),ab)

end)

| evExp(A.seqExp([e]),env,ab) = evExp(e,env,ab)

| evExp(A.seqExp(e::rest),env,ab) = (evExp(e,env,ab);evExp(A.seqExp(rest),env,ab))

and

Figure 1.17: The semantics structure, part 2.

59

evDed(A.methodAppDed(mexp,args),env,ab) =

let val mval = evExp(mexp,env,ab)

val (arg_vals,lemmas) = evalMethArgs(args,ab,evPhrase)

val new_ab = AB.augment(ab,lemmas)

in

(case mval of

primMethodVal(m) => applyPrimMethod(m,arg_vals,new_ab)

| methClosVal({params,body,env=clos_env}) =>

evDed(body,ref(extend(!clos_env,zip(params,map bind arg_vals))),new_ab)

| _ => methAppError())

end

| evDed(A.assumeDed(hyp,body),env,ab) =

withProp(evExp(hyp,env,ab),fn P => withProp(evDed(body,env,AB.insert(P,ab)),

fn Q => propVal(A.cond(P,Q))))

| evDed(A.supAbDed(hyp,body),env,ab) =

withProp(evExp(hyp,env,ab),

fn P => withProp(evDed(body,env,AB.insert(P,ab)),

fn Q => if Q = A.falseProp then propVal(A.neg(P))

else supposeAbsurdError()))

| evDed(A.letDed([],body),env,ab) = evDed(body,env,ab)

| evDed(A.letDed((id,A.expression(e))::rest,body),env,ab) =

evDed(A.letDed(rest,body),ref(extend(!env,[(id,bind(evExp(e,env,ab)))])),ab)

| evDed(A.letDed((id,A.deduction(d))::rest,body),env,ab) =

withProp(evDed(d,env,ab),

fn P => evDed(A.letDed(rest,body),

ref(extend(!env,[(id,bind(propVal P))])),

AB.insert(P,ab)))

| evDed(A.byDed(e,d),env,ab) =

(case (evDed(d,env,ab),evExp(e,env,ab)) of

(v as propVal(P),propVal(Q)) => if P = Q then v else evError(by_errror))

| evDed(A.seqDed([d]),env,ab) = evDed(d,env,ab)

| evDed(A.seqDed(d::rest),env,ab) =

withProp(evDed(d,env,ab),fn P => evDed(A.seqDed(rest),env,AB.insert(P,ab)))

| evDed(A.matchDed({discriminant,cases}),env,ab) =

withProp(evPhrase(discriminant,env,ab),

fn P => let fun f(pat,d) = (pat,A.deduction(d))

val (chosen_ded,match_env) = findMatch(P,map f cases)

in

evPhrase(chosen_ded,ref(augmentEnv(!env,match_env)),ab)

end

and

evPhrase(A.expression(e),env,ab) = evExp(e,env,ab)

| evPhrase(A.deduction(d),env,ab) = evDed(d,env,ab);

end;

Figure 1.18: The semantics structure, part 3.

60

Bibliography

[1] K. Arkoudas. Athena: a formal system integrating deduction and computation. Forthcoming, at
www.ai.mit.edu/projects/express.

[2] K. Arkoudas. A case comparison of Athena and HOL. Forthcoming MIT AI memo.

[3] K. Arkoudas. Certified Computation. MIT AI memo 2001-07.

[4] K. Arkoudas. Denotational Proof Languages. PhD thesis, MIT, 2000, available from
http://www.ai.mit.edu/projects/dynlangs/dpls/dpl-thesis.ps.

[5] K. Arkoudas. Type-α DPLs. MIT AI Memo 2001-25.

[6] H. P. Barendregt. Lambda calculi with types. In S. Abramsky, D. M. Gabbay, and T. S. E.
Maibaum, editors, Background: Computational structures, volume 2 of Handbook of Logic in
Computer Science. Oxford Science Publications, 1992.

[7] R. S. Boyer and J. S. Moore. A computational logic handbook. Academic Press, New York, 1988.

[8] N. G. De Brujin. The Automath checking project. In P. Braffort, editor, Proceedings of Sympo-
sium on APL, Paris, France, December 1973.

[9] L. Cardelli. Basic polymorphic type checking. Science of Computer Programming, 8(2):147–172,
1987.

[10] R. L. Constable et al. Implementing Mathematics with the Nuprl Proof Development System.
Prentice-Hall, EngleWood Cliffs, New Jersey, 1986.

[11] T. Coquand. Metamathetical investigations of a Calculus of Constructions. In P. Odifreddi,
editor, Logic and Computer Science, pages 91–122. Academic Press, London, 1990.

[12] T. Coquand and G. Huet. The Calculus of Constructions. Information and Computation, 76:95–
120, 1988.

[13] G. Cousineau and G. Huet. The caml primer. Technical report, INRIA, Rocquencourt, France,
1990.

[14] L. Damas and R. Milner. Principal type schemes for functional programs. In Ninth Annual
Symposium of Principles of Programming Languages, pages 207–212, 1982.

[15] D. P. Friedman et al. Essentials of Programming Languages. McGraw-Hill, 1992.

61

[16] M. J. Gordon, A. J. Miller, and C. P. Wadsworth. Edinburgh LCF: A Mechanized Logic of
Computation, volume 78 of Lecture Notes in Computer Science. Springer-Verlag, 1979.

[17] M. J. C. Gordon and T. F. Melham. Introduction to HOL, a theorem proving environment for
higher-order logic. Cambridge University Press, Cambridge, England, 1993.

[18] R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. Journal of the Association
for Computing Machinery, 40(1):143–184, January 1993.

[19] W. A. Howard. The formulae-as-types notion of construction. In J. Hindley and J. R. Seldin,
editors, To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalisms, pages
479–490. Academic Press, 1980.

[20] David B. MacQueen. Reflections on standard ML. In Peter E. Lauer, editor, Functional Program-
ming, Concurrency, Simulation and Automated Reasoning, volume 693, pages 32–46. Springer
Verlag, 1994.

[21] Z. Manna. Mathematical Theory of Computation. McGraw-Hill Computer Science Series, 1974.

[22] David A. McAllester and Kostas Arkoudas. Walther recursion. In Conference on Automated
Deduction, pages 643–657, 1996.

[23] A. R. Meyer. What is a model of the lambda calculus? Information and Control, 52:87–122,
1982.

[24] Robin Milner. A theory of type polymorphism in programming. Journal of Computer and System
Sciences, 17:348–375, 1978.

[25] G. Necula and P. Lee. Safe kernel extensions without run-time checking. In Proceedings of
the Second Symposium on Operating Systems Design and Implementation, Seattle, Washington,
October 1996.

[26] M. Parigot. λµ-calculus: an algorithmic interpretation of classical natural deduction. In Proc.
Int. Conf. Log. Prog. Automated Reasoning, volume 624 of Lecture Notes in Computer Science,
pages 190–201. Springer-Verlag, 1992.

[27] L. C. Paulson. ML for the working programmer. Cambridge University Press, Cambridge, Eng-
land, 2nd edition, 1996.

[28] C. Reade. Elements of functional programming. Addison Wesley, International Computer Science
Series, 1989.

[29] H. Rogers. Theory of recursive functions and effective computability. McGraw-Hill Book Com-
pany, 1967.

62

