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Abstract

Using smooth profit functions to characterize production

possibilities we are able to extend the concepts of regularity and fixed

point index to economies with very general technologies, involving both

constant and decreasing returns. To prove the genericity of regular

economies we rely on an approach taken by Mas-Colell, which utilizes in an

elegant and insightful manner the topological concept of transversality.

We also generalize the index theorem given by Kehoe. Our results shed new

light on the question of when an economy has a unique equilibrium.
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A Dual Approach to Regularity

in Production Economics

by

Timothy J. Kehoe*

1. INTRODUCTION

Differential topology has, over the past decade, provided economists

with a unified framework for studying both the local and the global

properties of solutions to general equilibrium models. Debreu (1970)

initiated this line of research with his introduction of the concept of a

regular economy, a model whose equilibria are locally unique and vary

continuously with the underlying economic parameters. Dierker (1972)

pointed out the close connection of this concept with that of the fixed

point index, a concept ideally suited to the study of existence and

uniqueness of equilibria. Both of these studies focused attention on pure

exchange economies that allow no production. More recently a number of

different researchers, among them Fuchs (1974, 1977), Mas-Colell (1975,

1976, 1978), Smale (1976), and Kehoe (1979a, 1979b, 1980a), have extended

these concepts to models with production. In all of these studies the

concepts of genericity and transversality have played an important role in

ruling out degenerate situations.

*Many people have influenced the ideas presented in this paper. Most
of my understanding of the concept of regularity has developed as a result
of conversations and correspondence that I have had with Andreu Mas-
Colell. Sidney Winter taught me the importance of the concept of duality
in characterizing production technologies. Franklin Fisher and David
Levine provided helpful suggestions. Above all, I am grateful to Herbert
Scarf, who introduced me to index theorems and encouraged me to apply them
to production economies.
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The approach taken in this paper is in the spirit of Mas-Colell

(1978) and Kehoe (1980a), who emphasize the development of a formula for

computing the index of an equilibrium and the connection between this

formula and theorems dealing with the uniqueness of equilibrium. Both of

these writers model the production side of an economy as an activity

analysis technology. Unfortunately, the results obtained by Mas-Colell

and Kehoe are not immediately applicable to economies with more general

production technologies. It is true, of course, that any constant-returns

technology can be aproximated in a continuous manner by an activity

analysis technology. Furthermore, any decreasing-returns technology can

be represented as a constant-returns technology with certain non-marketed

factors of production. As we shall see, however, the differentiable

nature of our approach makes an activity analysis approxiation to a smooth

production technology unsuitable. An essential local property of an

equilibrium price vector is the curvature of the dual cone at that point.

An activity analysis approximation misses this property.

Using smooth profit functions to characterize production

possibilities, we are able to extend the concepts of regularity and fixed

point index to economies with very general technologies, involving both

constant and decreasing returns. To prove the genericity of regular

economies we rely on an approach taken by Mas-Colell (1978) , which

utilizes in an elegant and insightful manner the topological concept of

transversality. We also generalize the index theorem given by

Kehoe (1980a). Our results shed new light on the question of when an

economy has a unique equilibrium. Providing a satisfactory answer to this
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question is crucial to the applicability of general equilibrium models in

comparative statics excercises.

2. ECONOMIES WITH SMOOTH PROFIT FUNCTIONS

We initially deal with constant-returns production technologies. We

later treat decreasing returns as a special case. The model that we

employ is identical to the one used by Kehoe (1980a) except for its

description of the production technology. The consumption side of the

model is completely described by an aggregate excess demand function. In

an economy with n commodities the excess demand function £ is assumed to

be completely arbitrary except for the following assumptions:

ASSUMPTION 1 (Differentiability): 5 : R \(0} > R is a continuously

differentiable function, in other words, is C . Here R,\{o} is the set of

all non-negative prices except the origin.

ASSUMPTION 2 (Homogeneity) : £ is homogeneous of degree zero;

£ (tir) = Ei(TT) for all t > 0.

ASSUMPTION 3 (Walras's law): Z, obeys Walras's law; Tr'C(ir) = 0.

Kehoe (1979b) generalizes Assumption 1 to one that allows the norm of

excess demand to become unbounded as some prices approach zero. For the

sake of simplicity, however, we assume here that £ is defined and

continuous over all non-negative prices except the origin.



4

We use a dual approach to characterize the production side of the

model. The technology is specified by m C 2 profit functions

n \ .
n \ r i

m
a : R \{0} * R , which can be regarded as a mapping from R \10) into R ,

j + +

a(ir) = (a,(Tr), ..., a (it)). To motivate this approach, let us consider

the problem of maximizing profits when production possibilities are

specified directly by a production function, Suppose that a vector of

feasible net-output combinations is one that satisfies the constraints

f(TT) =

x . > 0, i = 1 , ..., h

x. >_ 0, i = h+1, . . . , n.

Here f : Rn * R is a constant-returns production function that produces the

first h commodities as outputs employing the final n-h commodities as

inputs. We assume that f is homogeneous of degree one and concave.

Suppose that we attempt to find the vector that maximizes tt'x subject to

the feasibility constraints where i is a fixed vector of non-negative

prices. The problem that immediately arises is that, given the assumption

of constant returns, profit is unbounded if there is some feasible vector

x for which tt'x > 0. There are several ways to get around this

difficulty. For example, if h = 1, that is, if f produces a single output,

we can impose the additional constraint x, = 1. Another, more general,

solution to this problem is to impose the constraint II x II =1.

Consider, for example, the Cobb-Douglas production function

a 1 -a
f(x , x , x ) = (-x ) (-x ) - x , < a < 1. The problem to be solved



IS

max n x + n x + it x
11 2 2 3 3

a 1—

a

s.t. (-x
2

) (-x
3

) - x
1

=

V X3^°

At any price vector tt the optimal net-output vector is easily calculated

to be

air 3 1-a it - air a

«,<*) = 1 , x
2

(ir) = -
( . —) , x

3
(ir) = - ( __> .

The profit function is defined by the rule a(iT) = Tr'x(Tr); in this case

it 2 a tt 1-a
a(ir) = * - (_) (_) .

It is well known that a(Tr) is homogeneous of degree one, convex, and

continuous as long as the feasible set is non-empty, even when the optimal

net-output vector is not single-valued. When a is differentiable

Hotelling's lemma tells us how to recover the profit maximizing net-output

vector for any vector of prices: We merely find the gradient vector Da^

and check that it equals x(tt) (see, for example, Diewert (1974) . Given

the constant-returns nature of the production technology we can consider

this gradient vector as an activity analysis vector: Any non-negative

scalar multiple of it is a feasible input-output combination.

Let us now consider again the general case a : R \{0} + R .
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The Jacobian matrix Da^ maps R11 into R?
11

. Define the mapping

A : R \{0} » R by the rule A(tt) = (Da )*. A(it) is a generalization

of the concept of an activity analysis matrix. Indeed, in the situation

where each a. is the linear function £. . a.. it. A(it) is a matrix
D i=1 i] l

of constants. The set of feasible net-output vectors corresponding to

a(ir) is the production cone Y = {x e R
|
x = A(ir)y for some it e R \{0},

y e R }. Observe that Y contains the origin, is convex, and is closed if
T Si

a is C 1
. We specify the production side of our model by imposing

restrictions on the mapping a.

ASSUMPTION 4 (Differentiability) : a : R \{0} * R has continuous first

2
and second order partial derivatives, in other words, is C .

ASSUMPTION 5 (Homogeneity) : a is homogeneous of degree one;

a(tir) = ta(Tr) for any t > 0.

ASSUMPTION 6 (Convexity) : Each function a- is convex;

a^tir 1 + (l-t)Tr 2
) _< ta-jtTr

1
) + (1-t)aj(Tf 2

) for any < t < 1.

ASSUMPTION 7 (Free disposal) : A(tt) always includes n free disposal

activities, one for each commodity. Letting these activities be the first

n _<_ m, we set a.: (tt ) = -ttj , j = 1, . . . ,n.



ASSUMPTION 8 (Boundedness) : There exists some tt > such that a(ir) < 0.

The convexity of a implies that afir
1

) - a(ir 2 ) > Da ^(tt 1 - it
2

) for all— TT

tt
1

, tt
2 e R \{o}. Combining this observation with the homogeneity of a

yields
a(Tr 1

)
- a(ir 2 ) >_ Da 2

Trl - a^ 2
)

Da itt
1

> Da ott
1

TT
x — TT^

T^'AfTT 1
) >_ T^'AfTr 2

)

for all tt
1

, tt
2 e R \{o}. It is easy to use this result to demonstrate

that Assumption 8 is equivalent to the assumption that there is no output

possible without any inputs in the sense that Y P\R = {o}.

Notice that the activity analysis specification used by Mas-Colell

and Kehoe is a special case of this type of technology. Assumptions 5-8

are quite natural; it is the differentiability part of Assumption 4 that

is restrictive. It would be possible to impose conditions on production

functions that would give rise to such smoothness in the corresponding

profit functions and net-output functions. These conditions would be

similar to those on a consumer's utility function that imply smoothness in

the corresponding indirect utility function and individual demand

function. Since we have chosen to specify the production side of the

economy using profit functions rather than production functions, we shall

not pursue this issue. A further restriction embodied in Assumption 4 is

that we require the net-output functions to be continuous even on the

boundary of R . Notice that in the example that we worked out this

condition does not hold. We would have avoided this problem if we had
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imposed the constraint II x II = 1 rather than x1 = 1. This is not an

important conceptual issue, however. We shall ignore it.

An economy is specified as a pair (£,a) that satisfies Assumptions

DEFINITION: An equilibrium of an economy (£ ,a) is a price vector it that

satisfies the following conditions:

A
a. a(ir) <_

A _ A A A
b. There exists y >_ such that £(tt) = A(ir)y.

A
c. TT'e = 1 where e = (1, ...,1).

A
The condition a (it) <^ implies that at ir no excess profits can be made.

The second condition, when combined with Walras's law and the homogeneity

A A A A A A A
of a, implies that tt'5('t) = TT'A(iT)y = a(ir) 'y = 0. Thus any activity

A A A
actually in use at equilibrium earns zero profit. Since 7r'A(iT) _< tt'A(tt)

for all it e R \{o} this implies that the production plan A(n)y is profit

A
maximizing at prices n. We can justify the final condition as follows:

Since a is homogeneous of degree one, A is homogeneous of degree zero.

A
Consequently the homogeneity assumptions on £ and a imply that, if tt

A
satisfies the first two equilibrium conditions, tir also does for any

t > 0. Therefore, when examining equilibrium positions, we possess a

A
degree of freedom that we use to impose the restriction ir'e = 1. The free

disposal assumption allows us to restrict our attention even further to



the unit simplex S={ireRn tt>0, ir'e = l}.

When discussing the space of economies that satisfy Assumptions 1-8,

we shall need to utilize some sort of topological structure. We now give

the space of economies the structure of a metric space. LetJJ be the

space of excess demand functions that satisfy Assumptions 1-3. We endow Jj

with the topology of uniform C 1 convergence by defining the metric

1 2
35 . H.

d(5
1

, 5
2

) = SUP
|
C (IT) - q (TO

I

+ SUP
I 9it

1
(TT) - ^-ix_ (TT)

|

i,ireS i,j,ireS j j

for any C
1

, ?
2 £ X) . Letj^ be the space of profit maps that satisfy

Assumptions 4-8. Notice that the first n components of any such map are

fixed by the free disposal assumption. We endow^A with the topology of

uniform C 2 convergence by defining the metric

.1 .2
8a. 8a.

1 2, i 1
•

2 --- I —- i
1 1

d(a L
, a z

) = sup a
i

(ir) - a
£

(ir)
|
+ sup

| -^ (tt) - -^ (ir)

i,TTES i,j,TT£S j j

da. 3a.
+ SUP I -* \ (TT) - -

^ (TT) I

. .
i 3tt . 3tt, 3ir. 3ir, I

i,],k,TreS j k j k

for any a 1
, a 2 e^/A. The space of economics t =J^xj\ receives the

product topology induced by the metric d[(Z l
, a 1

), (E,
2

, a 2
)] = d(C 1

, £
2

)

+ d(a x
, a 2

) .

The proof of the existence of an equilibrium follows the same lines

as that in Kehoe (1980a). We begin with a few preliminary definitions.



TT + ?(TT)

Figure 1
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Letting N be any non-empty, closed, convex subset of Rn , we define the

continuous projection pN : r" -*- n by the rule that associates any

point q e Rn with the point p
N
(q) that is closest to q in terms of

Euclidean distance. We also define the set Sa
= jir e Rn

|
a(iT) <

0, Tr'e = 1J. The boundedness of production implies that Sa is non-

empty. The convexity of a implies that it is convex . It is compact by

definition and the continuity of a. We define the map g : S > S by the

S

rule g(iT) = p (it + £(tt)).

Figure 1

THEOREM 1: Fixed points it = g(ir) of the map g and equilibria of (£, a)

are equivalent.

PROOF: At any point i £ S , g = g(ir) can be computed by solving the

quadratic programming problem

min 1/2 (g - it - £(TT))'(g - it - £(ir))

s.t. a(g) _<

g'e = 1 .

The Kuhn-Tucker theorem implies that the vector g solves this problem if

m
and only if there exists y e R and A e R such that



11

g - it - £(tt) + A(g)y + Xe = 0.

A A
and a(g) 'y = 0. Consequently, tt = g(ir) is a fixed point if and only if

-5 (it) + A(Tr)y + \e = 0. Walras's law implies that this relationship

A A A A a
holds if and only if X = 0. Therefore, £(tt) = A(ir)y and it e Sa is

equivalent to tt = g(ir).

Since S is compact and convex and g continuous, Brouwer's fixed point

theorem implies the existence of an equilibrium of (5, a).

3. REGULAR PRODUCTION ECONOMIES

We have just resolved a fundamental issue concerning the applicablity

of our model in comparative statics exercises. We now know that the model

is internally consistent in the sense that an equilibrium always exists.

Even when an equilibrium exists, however, there are circumstances in which

the comparative statics method makes little sense. A relevant concern is

whether there is a unique equilibrium consistent with a given vector of

parameters. If a solution is not unique, the question becomes whether it

is locally unique. Finally, when comparing the equilibria associated with

different parameter values, the question that naturally arises is whether

the equilibrium varies continuously with the parameters.

The concept of regularity provides us with answers to the questions

of local uniqueness and continuity of equilibria. In the subsequent

discussion we focus our attention on the partial derivatives of g at its

fixed points. For proofs and more detailed discussion of many of the
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results presented here we refer to Kehoe (1980a) . To make matters simple,

we define X as a smooth (that is, C ) n dimensional manifold with boundary

that is a compact, convex subset of R° chosen so that it contains S in

its interior and does not contain the origin. It is easy to smoothly

extend the domain of £, to X. We are justifed, therefore, in viewing X as

the domain of g.

Unfortunately, g is not everywhere differentiable except in very

special cases. All we really need is that if is differentiable at its

fixed points. To ensure that this requirement holds we need to impose

two additional restrictions on (£, a) . Consider the mapping

b : R \{o} * R , O <_ k <_ m, made up of k of the profit functions

(a (it),..., a (it)). Let B : R \ {o} * R be the corresponding matrix

function whose columns are the gradients of the individual profit

functions b^ , j = l,...,k. In the case where k = the images of both b

and B are empty.

ASSUMPTION 9: At any point it e S the profit functions b that satisfy

b(ir) =0 are such that the columns of B(n) are linearly independent.

ASSUMPTION 10: Suppose that b is the vector of profit functions that earn

a a k
zero profit at some equilibrium ir. Then the vector y e R is strictly

A A A
positive in the equation £(ir) = B(iT)y.

We later justify these assumptions on the grounds that they hold for any

open dense subset of economies in *£. Actually, Assumption 9 is stronger
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than needed. What we require for g to be differentiable at its fixed

points is that the matrix of activities in use at every equilibrium has

linearly independent columns. Assumption 9 implies that this condition

holds but has the advantage of being easier to deal with in genericity

arguments. Assumption 10 rules out the possibility of an activity

earning zero profit but not being used at equilibrium.

A A
Suppose that tt is an equilibrium of (E,, a). Let C = [B(tt) e] where

A
B(tt) is the matrix of activities that are used at equilibrium. Further

let H be the nxn matrix formed by taking the Hessian matrices of the k

profit functions b evaluated at it, multiplying them by the corresponding

activity levels, then adding them together. In the next section we prove

the following theorem.

THEOREM 2: If an economy (£, a) e ^satisfies Assumptions 9 and 10, then

is differentiable in some open neighborhood of every fixed point it.

Moreover, DgA = (I + (I-C(C'C) ~C )H)

~

1

(I-C(C'C) ~C ) (I + D£a) .
TT TT

Notice that in the activity analysis case every element of H is zero and,

consequently, DgA = (I-C(C'C)
-
C) (I + D£a) .

Let us consider a subset of economics that satisfy Assumptions 9 and

10 and the further restriction that is a regular value of (g - I)

:

X + Rn . Here, of course, I is the identity mapping. Recall that a

point x e M is a regular point of a C 1 map f : M * N from a smooth manifold

of dimension m to a smooth manifold of dimension n if

Df : T (M) -» T, (N) has rank n; in other words, is onto. A point
x x f(x)
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y e N is a regular value if every point x for which f(x) = y is a regular

point. By convention, any point y for which the set f (y) is empty is

a regular value. Points in M that are not regular points are critical

points. Points in N that are not regular values are critical values.

DEFINITION: An economy (5, a) eCthat satisfies Assumptions 9 and 10 and

is such that Dg^ - I is non-singular at every equilibrium is a regular

economy . The set of regular economics is denoted
J/"(.

Regular economies possess many desirable properties. For example,

A
the inverse function theorem applied to g - I at every equilibrium it

implies that the equilibria of a regular economy are isolated. Since the

set of equilibria lie in the compact set S , this implies that a regular

economy has a finite number of equilibria. Consider the equilibrium price

correspondence IT: c + S that associates any economy with the set of its

equilibria. The topology on £ is fine enough to imply that II is an upper-

semi-continuous correspondence. On
J{,

moreover, II is continuous and the

number of equilibria is locally constant.

4. PROOF OF THEOREM 2

Demonstrating that the two non-degeneracy assumptions imply that g is

continuously differentiable in some open neighborhood of every fixed point

is a straightforward, if somewhat laborious, application of the implicit

function theorem. It is, nevertheless, a worthwhile exercise to work

through because the expression that we derive for Dg^ plays a central
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role in the subsequent analysis. Readers willing to accept Theorem 2 on

faith can skip this section.

The function g is the composition of the functions p and I + £. It

S
n

S
a

is p
a

that we must prove is differentiable. At any q e R p (q) is

calculated by solving the problem

min 1/2 (p - q) ' (p - q)

s.t. a(p) £

p'e = 1 .

Assumption 10 implies that if it is an equilibrium, then in some open

S
a a, a a ^

neighborhood of q = it + £(it), p (q) can be calculated by solving the

same problem where the m constraints are replaced by a subset of

constraints, b(p) <_ 0, that all hold with equality. Let c : R \{o}-»-R

be defined by the rule c(p) = b(p)

p'e

Notice that c is homogeneous of

degree one and C 2
. Furthermore, each of its components is a convex

k+1
function. Let d e R be a vector each of whose first k elements is zero

and whose last is unity. Also let C(p) = [B(p) e] . The Kuhn-Tucker

S

theorem implies that, in some open neighborhood of q, p = p (q) satisfies

p - q + C(p)X =
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k+1
for some A e R whose first k elements are positive. Assumption 9 and

S

the continuity of p imply that this neighborhood can be chosen so that

S
a

the columns of C(p) are linearly independent at every p = p (q) . We can

use this observation and the homogeneity of c, which implies that

C'(p)p = c(p), to solve for \.

C (p)p - C (p)q + C (p)C(p)\ =

d - C' (p)q + C (p) C(p)X =

X = (C (p)C(p))- 1 (C (p)q - d).

S
. . . a

The conditions that determine p can therefore be rewritten as

p - q + C(p) (C (p)C(p))- 1 (C (p)q-d) = 0.

If matrix of partial derivatives with respect to p of the left-hand side

of this expression is non-singular then the implicit function theorem

S

implies that p is locally G 1
.

Differentiating the matrix function C(p) with respect to the vector p

is a complex procedure. We can simplify it by differentiating with

respect to the scalars p^ , j=l,...,n, and then stacking the results.

See any advanced econometrics text for the matrix differentiation

techniques that are used.
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DlCfC^C)"
1
(C'q-d)] = DC (C'C)

"
1
(C'q-d)

P
j

P
j

- C(C'C) (DC C+C'DC ) (C'C) (C'q-d)
p. p

.

+ C(C'C)~
1
DC' q

P
D

= (I-C(C'C)~
1

C*) DC (C'C)"
1
(C'q-d)

P
D

+ C(C , C)~
1

DC' (q-C(C'C)"
1

(C'q-d) )

.

P
j

notice that (C'C)
-1

(C'q - d) = X and q - C(CC) _1
(C'q - d) = p. Our

results can therefore be rewritten as

D[C(C'C)"
1
(C'q - d) ] = (I - C(C'C)"

1

C')DC X + C(C'C)"
1DC p.

Pj Pj Pj

If we carefully differentiate the identity C (p)p = c(p) with respect to

p , we find that DC p = 0. Let us now stack the columns
D P

D

D[C(CC) (C'q - d) ] , j = 1,...,n, to obtain the expression
P
J

D[C(CC)~ 1 (Cq - d) ] = (I - C(CC)" 1C) [DC X ... DC X].

Let the nxn matrix H be formed by taking the Hessian matrices of each of
S

the k+1 component functions of c(p) evaluated at p (q) , multiplying

them by the corresponding Lagrange multipliers X^, i = 1,...,k+1, and

adding them together. Observe that, since the Hessian matrix of p'e is

identically zero and the first k multipliers X^ are strictly positive,
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the convexity of each c^(p) implies that H is a symmetric positive

semi-definite matrix. We demonstrated in the proof of Theorem 1 that,

S

if p (q) is an equilibrium, then these Lagrange multipliers are the

activty levels that correspond to activities B(tt) . The above expression

can be rewritten as

DlCfC'd-'fCq - d)]
p

= (I - C(C'C)- lC')H.

Remember that what we want to do is to demonstrate that

D[p - q + C(C'C) -1 (Cq - d)]
p

= I + (I - CfC'CJ^OH is non-

singular .

LEMMA 1: Let C be any nx(k+l) matrix of full column rank and H be any nxn

positive semi-definite matrix. Then det[I + (I - C(C*C) -1C )H] > 0.

PROOF: Consider the matrix I + (I - C(C'C) -1C ) H(I - C(C'C)~ 1C) .

Since it is the sum of a positive definite matrix and a positive semi-

definite matrix, it is positive definite. Hence it has a positive

determinant. We prove our contention by using elementary row and column

operations to reduce the determinant I + (I - CfC'C)
- ^') H to that of

the (n+k+l)x(n+k+l) matrix

[~I + (I - C(C'C) C')H(I - C(C'C) C) (I - C(C'C) C')HC
I

Adding the second column of this matrix post-multiplied by (C'C) 1
C' to

the first, we obtain
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I + (I - C(C'C)~ C')H

(C'C) C
(I - C(C'C)~ C')HC

I

Now adding the first row of this matrix pre-multiplied by (C'C) -1
c to

the second, we obtain

I + (I - C(C*C)~
1

C , )H (I - C(C'C)~^C')HC
I

which has the same determinant as I + (I - C(C'C) -1
C' )H.

This lemma and the implicit function theorem imply that p is

continuously differentiable in some open neighborhood of tt + £(tt) if tt is

an equilibrium. I + Z is, of course continuously differentiable. We use

the chain rule to establish that

Dg^ = (I + (I - C(C'C)~ 1C , )H)~ 1
(I - CfC'C)"^ 1

) (I + D^)

in some open neighborhood of every fixed point.

5. THE INDEX THEOREM

The concept of regularity tells us when an equilibrium is locally

unique and varies continuously with the parameters of the economy. We are

still left with the question of when an economy has a unique equilibrium.

The version of the Lefschetz fixed point theorem given by Saigal and Simon

(1973) provides us with a tool for counting the equilibria of (£, a). If

(£, a) is a regular economy, then the local Lefschetz number of any fixed
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point of g can be calculated as L£(g) = sgn(det[Dg* -I]). Saigal

and Simon prove that Y _ . .L (g) = (-1) . A regular economy therefore

has an odd number of equilibria. Furthermore, a necessary and sufficient

condition for a regular economy to have a unique equilibrium is that

1- z = -1 at svevy ;x: .<:.".; :m v .w.

.

T -

To make much economic sense of this result we need to develop

alternative expressions for sgn(det[Dg^ -I]). According to Theorem 2,

Dg* - I = (I + (I - C(C , C)- 1C , ).H)~
1
(I - C(C'C)- lC) (I + D^) - I.

Lemma 1 implies that we can pre-multiply this matrix by

(I + (I - C(C , C)" 1 C')H) without changing the sign of its determinant,

sgn(det[Dg* - I]) = sgn(det[(I - C(C'C) _i
C' ) (I + d££)-1^.

(I + (I - C(C'C)~ 1C , )H)])

-lo.= sgn(det[(I - C(C'C) -iC ) (I + D^ - H) - I])

Using elementary row operations, we can easily transform this expression

into

sgn(det[Dg^ - I] ) = sgn det

e'

e D^-H(fr)
IT

B 1
(TT)

B(fT)

(See Lemma 4 of Kehoe (1980a).)

DEFINITION: If tt is an equilibrium of a regular economy (£, a), then

index (tt) is defined as
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(-l)
n
sgn(det[Dg* - I] ) = (-l)

n
sgn det e

e'

D£a-H(TT)
7T

B' (TT)

The following theorem is an immediate consequence of the Lefschetz fixed

point theorem and the definition of index (ir).

THEOREM 3: Suppose that (£, a) is a regular economy. Then

JT£lI(?,a)
index(ir) = +1.

Notice that the existence of an equilibrium for (£, a) follows directly

from this theorem.

In applications of this theorem other expressions for index (tt) are

useful. They can be derived using simple matrix manipulations. Let the

matrix J be formed by deleting from DE> all rows and columns
TT

A
corresponding to commodities with zero prices at equilibrium it and then

deleting one more row and corresponding column. Let H be formed similarly

by deleting the same rows and columns from H(ir). Let B be formed by

A
deleting the same rows from B(tt) as well as all columns corresponding to

disposal activities. It is easy to verify that

index (tt) = sgn det
-J + H -B

§'

If only one commodity has positive price at tt, then index (tt) = +1.

Another formula for index (tt) can be expressed as follows: Choose an

nx(n-k) matrix V whose columns span the null space of the columns of B(tt) .
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Let E be the nxn matrix whose every element is unity. Then it is possible

to demonstrate that

index (tt) = sgn(det[V'(E + H(tt) - d£^)V]).

For the derivations of these, and other, formulas for index (it) see Kehoe

(1979a)

.

6. A TRANSVERSALITY APPROACH TO REGULARITY

Mas-Colell (1978) has developed an interpretation of the definition

of regular economy based on the concept of transversality. Using his

interpretation, we can reduce the demonstration that regularity is a

generic property of the space of economics to an argument dealing with

transversal intersections of manifolds. In this section we translate the

regularity conditions into transversality conditions. In the next section

we prove that J\ is an open dense subset of o- . References for the

technical concepts employed here are the books on differential topology by

Guillemin and Pollack (1974) and Hirsch (1976) .

DEFINITION: Let f: W + Y be a C 1 map of smooth manifolds, and let Z be a

smooth submanifold of Y. The map f is transversal to Z, denoted f ^\Z if,

_1
for every point x e f (Z) , Image(Df ) + T,,

,
(Z) = T_. . (Y)

.

x f (x) f (x)

An important special case of this concept is where W is a submanifold

of Y and f is the inclusion map. The derivative map
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Df„ : T„(W) + T„(Y) is then the inclusion map of TV (W) into

T„{Y). In this case, if f is transversal to Z, we say W and Z are

transversal, W/fc Z, which means T (W) + T (Z) = T (Y) for all x e WHZ.

Figure 2

Consider, for example, the situations depicted in Figure 2. Here

Y = R2 . The manifolds W and Z intersect transversally in (a); they do not

in (b) . Notice, however, that if Y = R 3 then W and Z are not transversal

even in (a) . In fact, if the dimensions of W and Z do not add up to at

least the dimension of Y, then W/k Z only if WA Z = 0. The intuitive

appeal of the concept of transversality is that transversal intersections

are stable against small perturbations while non-transversal intersections

are not.

Our goal is to rephrase the definition of regularity in terms of

transversality. A few preliminaries are necessary before we start.

Recall that, if f : R" ->- Rk is a C 1 map and y e Rk is a regular

value of f , then f
-1

(y) is a smooth n-k dimensional manifold. Let Y

denote this manifold, {x e R° f(x) = y}; notice that it can be non-

empty only if k <^ n. Suppose that x e Y and that
<f>

: U + V is a local

parametrization of some relatively open subset Ve Y containing x; here U

is an open subset of r"
-
*. Then f(<f>(u)) = y for all u e u.



TX(Z)

ixm = t
x
(z)

(a)

(b)

Figure 2
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Differentiating this identity, we obtain Dfx D<f>u = 0. Recall that the

tangent space TX (Y) is just the image of the linear map D<j>u : Rn_k

> Rn ; in other words, it is the n-k dimensional subspace of Rn

{zeRn
|z = D<t>v,veR }. Consider the set {z e R j Df z = o};

our arguments imply that this set contains Tx (Y) • In fact

it is equal to T (Y) since Dfx has rank k if x is a regular value. We

shall use this observation to calculate explicit representations for

tangent spaces that do not depend on local parametrizations.

In the subsequent discussion we shall find it convenient to change

our normalization rule for prices. By Assumptions 2 and 5 the vector

p = ,,3-r— it satisfies the conditions a(p) < and £(P) = A(p)y for some
II Tf II

—

* m A 1 n
y e R if and only if the vector ir = —j-*- p is an equilibrium of (£,a) •

Furthermore, D?£ = llirllDC*, A(p) = A(tt) , and H(p) = IIttIIH(tt) . In

this section and the next we normalize our equilibrium price vectors so

that lip II = 1. The motivation for this change will become obvious as we

proceed.

Let £ be the unit sphere {p e r" I llpll = 1 } . We define the set X so

that it now contains £ A Rn in its interior, but otherwise has the

Figure 3

same properties as before. We shall do most of out work on the

insersection of £ and the interior of X, intx. We denote this set P; it



Figure 3
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is an n-1 dimensional smooth manifold with boundary. To avoid problems

with the boundary of Kf1 , we extend both K and A to C 1 maps on X. See

Kehoe (1980a) for details. Define a(p) = A' (p)p at points not in R .

The requirement that (E,,a) is a regular economy involves three

conditions: It must satisfy Assumption 9; it must satisfy Assumption 10;

and it must satisfy the condition that a certain determinant is non-zero

at every equilibrium. Let us first turn our attention to Assumption 9.

Define M to be the power set of the integers {l,...,m}. For every

Mj e M , j = l,...,2m , define the set

Q(Mj) = {x e R™ I Xi = if i e Mj}.

In other words, Q(Mj) is just the coordinate subspace of R?" on which

the coordinates whose indices are elements of Mj are zero. If Mj has

k elements, then Q(Mi) is an m-k dimensional linear subspace and, quite

naturally, an m-k dimensional smooth manifold.

LEMMA 2: Consider a vector of profit functions a e A extended to a C 1 map

from intX into RP. Suppose that, for every Mj e M, a is transversal

to Q(Mj). Then a satisfies Assumption 9.

PROOF: The proof is an immediate application of the definition of

transversality. Suppose that x e Q(Mj). Then, if ir e a
_1

(x),
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Image (Da,,) + Tx (Q(Mj)) = Tx ($*) .

Notice that Tx (Q(Mj)) = Q(Mj) and TX (I^) = r"1
. Therefore,

since a A Q(M=), ImagefDa^) must make up for a k dimensional linear

subspace of R™ left over by Q(NL.). Consequently, it bs intX * R Ls

made up of the coordinate functions of a corresponding to elements of

Mj , Image(Db
7T ) must span Rk . This is precisely the requirement that

B(tt) has full column rank.

Observe that, since Db^ is kxn and Db^ir = if b(iT) = 0, the rank of

Db^ can be no greater than n-1. If the number of elements in M; is

greater than n-1, then the only way that it is possible for a^Q(M^) is

for a
-1

(Q(M-;)) to be empty. In other words, there can never be more

than n-1 profit functions that earn zero profit at some price vector if

the transversality condition is met. We are justified, therefore, in

considering only cases where k <_ n-1.

An alternative way of looking at Assumption 9 is that it is the

requirement that is a regular value of b : intX + R . If Assumption 9

is satisfied, then b-1 (0) is a smooth manifold of dimension n-k. Let us

define

KB = {p e intX Ip'B(p) = 0, p'p = l}

By Assumptions 5 and 9 Kg is a smooth n-k-1 dimensional manifold. At

any point p e Kg
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Tp
(KB ) = {v e Rn |v'B(p) = 0, p'v = o}

Figure 4

Let B be an nxk matrix of net-output functions and let B* be an nxk*,

k < k* < n-1, matrix that includes B as a submatrix. Define the sets

T(P) =
{ (P, x) e P x Rn [p'x = o}

graph (?) =
{ (p, x) £ P x Rn

j

x = C(p) }

L(B*, B) = {(p, x) e P x Rn|p'B*(p) = 0,

x = B(p)y for some y e Rk }.

T(P) is a smooth 2 (n-1) dimensional manifold called the tangent bundle

of P. Walras's law implies that graph (5) is a smooth n-1 dimensional

submanifold of T(P). At any (p f x) e graph(£)

T
(p fX)

(graph(5)) =
{ (v, u) £ R

n
x R

n
|p'v = 0, u = D£

p
v}.

If a £j4 satisfies Assumption 9, then L(B* f B) is a smooth (n-1) -

(k* - k) dimensional manifold for any submatrices B and B* of the matrix

of net-output functions A. It too is a submanifold of T(P). Notice that,

if p is an equilibrium of (£, a), then (p, £ (p) ) £ graph(£)AL(B* , B) where

B* is the matrix of activities that earn zero profit at p and B is the

matrix of activities that are actually in use.



Figure 4
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We shall need to have an expression for the tangent space to L(B*, B)

at an equilibrium pair (p, E, (p) ) . Any vector (v, u) e T (L(B*, B)

)

(P»x)

must clearly satisfy the restriction that v e Tp (KB*) . The

restrictions on u are less obvious. The requirement that x = B(p)y for

some y e R* can be rewritten

(I - B(p) (B' (p)B(p) )~ l
B> (p) )x =

where y = (B' (p) B(p)

)

-1
B' (p) x. Define the function h(p, x) =

(I - B(p) (B' (pJBfp))-^ 1

(p) )x. We have argued that any vector

(u, v) £ T (L(B*, B)) must satisfy Dh (p, x)v + Dh (p, x)u = 0. Notice
\P r X) p X

that

Dhx (p, x) = (I - B(p) (B'tpJBtp))-^' (P)).

To calculate Dh
p (p, x) we can differentiate with respect to the scalar

s

pj , j = l,...,n, and then stack the results. Actually, we only shall

need to know what Dh£(p, E, (p) ) looks like.

Dh£ (P/ ?(P)) = -DBa (B'B) B'£(p) + B(B'B)
_1

(DB' a B+B'DB ) (B 'B)
~

1

B' E, (p)y
-\ p

-i
P-; P^

-BfB'Bj'^B'A E,(p)
P
j

= -(I + B(B'B)
1

B')DBa (B'BJ-V^p)
pj
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-BfB'BJDB 1
/. (I-B(B'B)B'K(P)
P

(Here, to simplify notation, we use B to refer to both the function and

its value at p.) Notice that (I - B(B'B) -1
B' ) 5(p) = since

£ (p) = B($)y. Consequently,

Dh£(p, £(p)) = -(I - B(p) (B'(p)B(p))- 1B'(p))H(p)

where, as before, the matrix H(p) is constructed by multiplying the

Hessian matrices of the k components of b by the k weights

y = (B' (p)B(p)

)

-1
B' (p) K (p) and then summing them up. These arguments

and a simple counting of dimensions imply that

T
(p,Up))

(L{B*' B)) =
^
(V

'
u)e R X R

|

V ' B* ( P } " °' V 'P = °'

(I - B(p) (B 1 (p)B(p))"
1

B- (p)) (u - H( P)v)=0}

LEMMA 3: Suppose that (£, a) satisfies Assumption 9 and that, for all

possible combinations B and B* , graph(£) A\ L(B* , B) . Then (£, a) satisfies

Assumption 10.

PROOF: If {£,, a) violates Assumption 10, then the matrix of activities

that earn zero profit at some equilibrium p, B* (p) , has more columns than

the matrix in use, B(p). For this particular pair of matrix functions B*

and B
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dim L(B*, B) = n - 1 - (k* - k) < n - 1.

If, however, L(B*, B) and graph(£) are transversal, then dim L(B*, B) +

dim graph(C) > dim T(P) , which implies dim L(B*, B) _> n - 1.

Let B be an nxk matrix of net-output functions. Consider the

B n
function f : intX + R defined by the rule

f
B

(p) = (I - B(p) (B'(P)B(p))
1
B'(p)K(p).

The advantage of our normalization lip II = 1 is that f is a tangent

vector field on KB since p'fB (p) = for all p e KB . In other

B
words, f (p) £ T (K ) for all p e K . Another advantage is that,

p B B

if p is an equilibrium of (5, a), then f (p) = 0. We can differentiate

the condition p'f(p) = at p to obtain

<*> B B a a B
p'DfA + (f (p))

1 = p'DfA= 0.

B
Similarly differentiating the condition B'(p)f (p) = 0, we establish

B B a
that Df a maps Ta(k ) into itself. In fact, differentiating f at p

yields

DfA = (I - B(p) (B' (p)B(p))"
1

B'(p)) (D?a - H(p))
P P
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LEMMA 4: Suppose that (5, a) satisfies Assumption 9 and that, for all

possible combinations B and B*, graph(£)/f\ L(B*, B) . Suppose further that

p is an equilibrium of (£, a) and that B(p) is the associated matrix of

activities in use. Then the matrix

e'

e D££-H(p) B(P)

B'(P)

is non-singular.

PROOF: Lemma 3 implies that we need only concern ourselves with the case

B
B = B*. We begin by arguing that Df\ : T.n(k )

* Ta (K ) is onto, that is,ppB pB
has rank n-k-1, if graph ( £) A\ L(B, B) . Suppose that it does not. Then

there exists v e T^(KB ), not equal to zero, such that

Df* v = (I - B(B'B) V) (DC-v - H(p))v = 0.
P P
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This implies that the tangent spaces T
_j ^

.a . (graph(£) ) and

T a ^ (L(B, B) ) overlap; both include the non-zero vector (v, D£-*v).
(PfC(P)) P

Since both tangent spaces have dimension n-1, it is therefore impossible

for their sum to be a space of dimension 2(n-l). As a result, graph(^)

and L(B, B) cannot be transversal, which is the desired contradiction.

The next step of the proof is to demonstrate that rank

[(I - B(B'B) -1
B*) (D£p - H(p))] = n - k - 1 implies our contention.

This is a matter of simple, but tedious, algebraic arguments similar to

those used by Kehoe (1980a) in the proofs of his Lemma 4 and Theorem 6. We

omit it here.

^ 1

Suppose that we renormalize prices tt = T3~P* Observe that
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det e D£a - H (p) B(p)
IT

B' (p)

a n-k-1 ,
I it II det e D£- - H(TT) B(1T)

B' (TT)

Consequently, we can combine Lemmas 3 and 4 to obtain the following

theorem.

THEOREM 4. Suppose that (£, a) satisfies Assumption 9 and is such that

graph(C) A\ MB*, B) for all possible combinations B* and B, then (£, a) is

a regular economy.

7. GENERIC ITY OF REGULAR ECONOMIES

The arguments of the previous section suggest that economies that are

not regular are somehow pathological because they correspond to non-

transveral intersections of certain manifolds. If we are able to perturb

these manifolds in a sufficient number of directions, then the smallest

perturbation results in the manifolds becoming transversal. We would

therefore expect most economies to be regular. The following theorem

formalizes this intuition (see Guillemin and Pollack (1974, pp. 67-69)).

TRANSVERSALITY THEOREM: Let M, V, and N be smooth manifolds where dim

M = m, dim N = n, and m < n, and let Z be a smooth submanifold of N.

Suppose that FzMxV + NisaC 1 map transversal to Z. For any v e V

let fv : M •> N be defined by the rule fv (x) = F(x,v) . Then the set

UcV for which f ftvZ, v c U, has full Lesbesque measure.
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This theorem says that almost all maps are transversal to a given

sub-manifold in the target space if the maps come from a rich enough

family.

A problem that we face in using this theorem to demonstrate that

almost all economies are regular is that we must translate the measure-

theoretic concept of genericity involved in statement of the theorem into

a topological concept. For the infinite dimensional space of economicss

a natural concept of a generic property is one that holds for an open

dense set. We shall actually use the transversality theorem only to prove

the density of regular economics. Openness, as we shall see, follows

directly from definitions. It should be stressed, however, that, if we

are willing to restrict ourselves to some appropriately definite finite

dimensional subset of £., we could prove that the set of regular economies

has full Lebesque measure. In fact, it is by doing just this that we shall

prove the density of regular economies.

We first prove that the set of profit maps that satisfy Assumption 9

is an open dense subset of J{ . We then consider a fixed profit map a e -^\

that satisfies Assumption 9. Any such vector of profit functions is

associated with a finite number of matrices of net-output functions B* and

B. We prove that for any fixed combination B* and B the set of excess

demand functions for which graph (E,)/f\L(B* , B) is an open dense subset of

Jj. Since the intersection of a finite number of open dense sets is open

dense, this implies the genericity of regular economies.

LEMMA 5: The set of profit maps that satisfy Assumption 9 is an open

dense subset of J\ .
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PROOF: Lemma 2 implies that a : (intX) + R"1 satisfies Assumption 9 if

it is transversal to a finite number of submani folds, Q(M:)cF?n ,

j=l,..., 2m . Standard arguments imply that the set of maps that satisfy

this property is an open dense subset of all maps from intX into R™

endowed with the uniform C 2 topology. See, for example, the version of

the transversality theorem given by Hirsch (1976, pp. 74-77) . This

immediately implies that the set of maps that satisfy Assumption 9 is open

in J\.

We need to prove that this set is dense inj/\. Consider the subset

JO of profit maps that satisfy the restriction that there exists some

it > such that a(Tr) < 0. That Jo is an open dense subset of j^\ follows

immediately from Assumption 8 and the joint continuity of a(iT) in a and tt .

If we can prove that the set of profit maps that satisfy Assumption 9 is

dense in 7c5 » we will have demonstrated our contention.

Choose an (m-n)x(m-n) matrix G that is non-singular. For any

v e p/
m-n)

define the function 6: (intX) x R
tm-n

' ->• r"
1

by the rule

6(p,v) = p'e G

where is mx(m-n) and e is again the nxl vector whose every element

^is unity. For any fixed v e R and a e ^define a (p) = a(p) + 6(p, v)

It is easy to check that a z J\ for all v in some open set VcR that

contains the origin. Define the C 1 map F: (intX) x V * R"1 by the rule
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F(p,v) = a(p) + S(p,v). The transversality theorem implies that, if F is

transversal to some submanifold of R™, then, for all v in some set U c V

of full Lebesque measure, s^ is also transversal to that submanifold.

Clearly, however, F is transversal to any submanifold of R"1 because

DF,
(P»v)

-I

* G

is non-singular and hence includes all Rf11 in its image. (Here the

elements denoted *, the partial derivatives of the final m-n components of

F with respect to p, are of no consequence.)

It is now a straightforward matter to argue that for any e > there

exists some £' > such that d(a, a^ < e if llvll < e'. Recall that the

intersection of a finite number of sets with full Lebesque measure also

has full Lebesque measure and that a set with full Lebesque measure is

dense. Consequently, since the set V contains the origin, the set of

profit maps that satisfy Assumption 9 is dense in jA •

These same arguments could be used to prove genericity of Assumption

9 in the subset of -/\ made up of linear profit functions. Notice that the

perturbation function 6(ir, v) can be regarded as the vector of linear

profit functions associated with the m-n activities ev'G'. Similar

arguments could be used to prove the genericity of Assumption 9 in other

subsets of j/\ : the sets of profit maps associated with Cobb-Douglas
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production functions, with C.E.S. production functions, with trans-log

production functions, to give a few examples.

We can now choose a fixed profit map a e y\ that satisfies Assumption

9 and let perturbations of the excess demand function E, do all the work.

LEMMA 6: Suppose that B* and B are matrices of net-output functions,

where B is a submatrix of B* , associated with a profit map ae ;A that

satisfies Assumption 9. Then the set of excess demand functions for which

graph(C) 4i MB*, B) is an open dense subset of JJ .

PROOF: Once again openness follows directly from the transversality

condition. We need to find a finite dimensional family of perturbations

that allows us both to remain inland to satisfy the requirements of the

transversality theorem. Re-using some of the notation from the proof of

Lemma 5, we define the function 6 : (intX) x R11 * Rn by the rule

p'v

5(P»v) = v.

p'e

Notice that, for any fixed v £ Rn , <5 satisfies Assumptions 1-3.

Consequently, if we define £v by the rule 5v (p) = £(P) + 6(p, v) , it

is an element of if K is. In addition, 6 satisfies the condition that

D5 V (p, v) has rank n - 1 for any (p, v) e (intX) x Rn since it can

easily be verified that the only vectors x e R11 for which

x'D6 v (p,v) = are scalar multiples of p.

Define the C 1 map F : P x R™ + T(P) by the rule
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F(p,v) = £(p) + 6(p,v)

For a fixed v e Rn the image of F is, obviously, graph (£v ) . We want

to prove that F /j\L(B*, B) . Differentiating F, we obtain

DF
(PfV)

Dg + D6
P P

D6

Notice that the image of the linear map DF
(PfV)

T (P) x R
P

->• T (P) x T (P) has dimension 2(n-l) since T (P) has dimension n - 1
P P P

and D6 has rank n - 1. Consequently, this image must fill up the

tangent space to T(P) at any point (p,x) e T (P) x T (P) , since it too has

dimension 2(n-l). The transversality theorem therefore implies that

graph (Cv ) is transversal to any submanifold of T(P) for all v in some

set U cRn of full Lebesque measure. It is now easy to prove the density

of the transversality condition in Xj .

The genericity of regular economies follows directly from Lemmas 2-6.
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THEOREM 5: The set of regular economies j\ is open and dense in C-

.

One problem with our demonstration of this result is that it relies

on perturbations of the excess demand function that may not be appropriate

in economies where production plays an important role. In such economies

there are likely to primary commodities, which are inelastically supplied

as inputs to the production process, and intermediate commodities, which

are only produced in order to produce other commodities. Obviously, if we

perturb the excess demand function of such an economy, we may destroy the

primary and intermediate characteristics of these goods. It is possible

to extend our argument to such situations, but there are several minor

technical problems. First, we must explicitly confront the possibility of

excess demand being unbounded at some, but not all, prices on the boundary

of Rn to deal with primary commodities. Second, we must slightly alter

our definition of regularity to deal with the possibility of prices of

intermediate commodities being undefined at equilibria where no production

takes place. Kehoe (1979b) resolves these problems for the special case

of economies with activity analysis production technologies. His analysis

can easily be extended to the more general model that we are using here.

8. DECREASING RETURNS

In this section we sketch a procedure for extending our results to

economies with decreasing-returns production technologies. The production

side of such an economy is again specified by a vector of C 2 profit

functions. The first n profit functions correspond to disposal

activities. In addition there are k profit functions,
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r : R
n
\{o} * R , j=l,...#k, that correspond to production functions that

j + VL

exhibit strictly decreasing returns. We assume thai tht*ae Ptmctioud

satisfy Assumptions 4-6. Implicit is the assumption that these functions

have been smoothly bounded away from infinity. These functions differ

from the ones that we have defined for constant returns production

technologies in that they are always non-negative. Although Hotelling's

lemma still holds, it is no longer true that every non-negative scalar

multiple of the profit function is a feasible net-output combination.

The positive profits that are earned by activities that are used in

equilibrium must somehow be distributed to consumers. The easiest way to

specify this process is to assign each consumer a fixed share of each

profit function, which may be thought of as a firm. Consumer excess

demand then depends on profits made on the production side of the model.

There are two ways to think about this type of model. The first is

to specify an excess demand function that has both a consumption and a

production component. We set

Z(TT) = S(TT,r(TT)) - B(TT)e .

Here B is the matrix function whose columns are the gradients of the k

non-disposal profit functions. The excess demand function z naturally

satisfies Assumptions 1-3. We focus our attention on the pure exchange

economy specified by excess demand £ and free disposal. An equilibrium of

such an economy is a price vector tt such that z(tt) < . Differentiating

z, we obtain
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Dz v = D£.* + D£-sB' (it)
TT TT r

H(TT)

where H is defined as before and all activity levels are unity. H can now

be thought of as the Jacobian matrix of the aggregate supply function

B(Ti)e. If there are no zero prices at equilibrium tt, then we can

calculate the index as

index (it) = (-1) sgn det

V
e D£a + D£aB' (Tr)-H(Tr)

The second way to think about a model with decreasing-returns

production involves defining an additional good to represent the non-

marketed factors of production peculiar to each firm (see, for example,

McKenzie (1959)). There are then n+k goods in the model. The first n

profit functions, which allow free disposal of the first n goods, stay

fixed. An additional k profit functions are defined by the rule

a .(tt,,...,ir ) = r.(ir ,...,tt ) - ir , j=l,...,k.
n+j 1 n+k 3 1 n n+]

The vector of profit functions a:R \[o} * R would satisfy

Assumptions 4-8 except that it lacks components that correspond to free

disposed activities for the final k goods. The assumption of strictly

decreasing returns implies, however, that good n+j has a zero price only

if the corresponding firm j does not operate. In this case the profit

function a . (tt, ,...,tt ) = -tt .if r . (tt, , . . . ,tt ) = 0.
n+] v

1 n+k n+j D 1 n
2

The restrictiveness of the assumption that r . is C is clear in this
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context. We are, in fact, assuming that a firm's optimal net-output

function is C even at prices where it just becomes optimal to shut down.

The problem is similar to the one that is encounted in smoothing a

consumer's excess demand function when there are corner solutions to the

utility maximization problem. We have chosen to ignore both of these

minor technical problems. It would be possible to deal with them,

however, by demonstrating that, even if such non-differentiabilities

existed in r and £, they would not occur at equilibria of almost all

economies.

Let us specify the consumption side of the model by endowing each

consumer with an initial endowment of good n+j equal to his share of the

profits of firm j. Since the sum of profit shares for each firm is

unity, the aggregate initial endowment of each good n+l,...,n+k is also

unity. Each of these goods is considered a primary good in the sense that

5n+
. (tt) = - 1# j=l,...,k.

To simplify the comparison of the calculation of the index for this

formulation to the previous one, let us abuse notation a bit by

n+k r

partitioning the vector it e R into

similarly partition the vector £(Tr,r) into

n , k
where tt e R and r e R . Let us

into B(TT)

-I

-e

and the matrix B(tt)

Again assuming that there are no zero prices at

equilibrium (TT,r) so that B(tt) is made up of the gradients of the final k

profit functions, we can write
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index (it) = (-1)
n+k

sgn det

e' e'

D5-n - H(TT)
r

B(Tf)

-I

B' (IT) -I

I

where e has the appropriate dimension. We can add the tin.il i ow of this

matrix pre-multiplied by D£^ to the second row without changing its

determinant. We obtain

index (it) = (-1) sgn det

e'

e

B' (TT)

e'

e D£>+ D^B'(tt) - H(tt) B(tt)

-I

-I

Pre-multiplying the third row by B(t?) and adding it to the second row, as

well as post-multiplying the third column by B' (tt) and adding it to the

second column, produce

index (tt) =
n+k

(-1) sgn

= (-1) sgn

e'+e'B' (tt) e'

n det e+B(Tr)e D^+DE^B' (Tf)-H(Tr)
it r

e -I

-I

r

det r e'+e'B' (it)

L

e+B(Tr)e DC- + DE>B' (tt) -
tt r

n(h
.

This is, of course, the same as the expression that we derived previously.

The only difference is that now we have rescaled so that
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e'TT+e'r = e' TT+e'B' (ir) ir = 1 rather than e'"ir = 1.

Equilibria that have zero prices have the same index in either of the

above formulations. If some price is zero, then Assumption 10 implies

that the corresponding disposal activity is used in equilibrium. By

expanding the determinantal expression for the index along both the column

and the row that contain this activity, vve can easily show that the

index is the same as that for the economy where the free good does not

appear

.

9. UNIQUENESS OF EQUILIBRIUM

The most significant consequence of our results is that they permit

us to establish conditions sufficient for uniqueness of equilibria. If

the parameters of a regular economy (£, a) are such that index (tt) = +1 at

every equilibrium it e U{E, r a), then the set of equilibrium prices consists

of a single point. A partial converse to this observation is also valid.

If an economy (£, a) has a unique equilibrium tt, then it cannot be the

case that index (ir) = -1. The condition that index (it) = +1 at every

equilibrium is, therefore, necessary as well as sufficient for uniqueness

in almost all cases.

Kehoe (1980b) has studied the implications of the index theorem for

uniqueness of equilibrium in economies with activity analysis production

technologies. His two principal results are that economy has a unique

equilibrium if its excess demand function satisfies the weak axiom of

revealed preference or if there are n-1 activities in use at every

equilibrium. An economic interpretation of the first condition is that

the aggregate excess demand function behaves like that of a single
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consumer. An interpretation of the second condition is that the economy

is an input-output system; that is, there is no joint production, and

consumers hold initial endowments of a single good, which cannot be

produced.

Both of these conditions imply uniqueness of equilibrium in the more

general model that we are considering here. The weak axiom of revealed

A
perference, for example, implies that at any equilibrium it the Jacobian

matrix D£* is negative semi-definite (not necessarily symmetric) on the

null space of the nxk matrix of activities in use, B(tt). Recall that

index(iT) = sgn(det[V'(E + H(ir) - D£*)V])

where V is any nx(n-k) matrix whose columns span the null space of the

columns of B(ir) . The matrices E and H(ir) are both positive semi-definite.

If 5 satisfies the weak axiom of revealed preference, then -V'DE>jV and

V (E + H(tt) - D£-*)V are also positive semi-definite. Consequently, if

(£,a) is a regular economy, then index (tt) = +1 at every equilibrium.

An alternative expression for the index is

(
index (tt) = sgn det -J + H -B

B'

If there are always n-1 activities in use at equilibrium, then B is an

(n-1) x (n-1) square matrix. This implies that
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index (it) = sgn (det [b"'b'])= +1.

Therefore, an economy with n-1 activities in use at every equilibrium has

a unique equilibrium.

Unfortunately, it seems that these two sets of conditions, which are

extremely restrictive, are the only conditions that imply uniqueness of

equilibrium in economies with production. FOr example, if an excess

demand function £ sJU does not satisfy the weak axiom, then it is possible

to choose a vector of profit functions a ey\ so that the economy (£, a)

has a multiple equilbria. On the production side of the economy the

situation is even worse. If a profit map a ej\ satisfies the condition

a(Tr) <^ for more than tt e S, then it is easy to find an excess demand

function £ ejj such that the economy (£, a) has multiple equilibria.

Obviously, general conditions that imply uniqueness of equilibrium would

have to combine restrictions on the demand side with restrictions on the

production side. An example of such a combination is the input-output

condition mentioned earlier.

One direction to look in would seem to be combinations of

restrictions on £ and a that imply -D?£ + H(tt) is positive semi-definite

A .A
on the null space of B(tt) at every equilibrium tt. We already know that

H(tt) satisfies this condition. What we want is that H(tt) somehow

A.

dominates -D?^ so that their sum is positive semi-definite. H(tt)

measures the responsiveness of production techniques to price changes.

D££ measures the responsiveness of demand to price changes.

To get some idea of the relationship between these two, consider an

economy with three goods and one profit function, a:R \{o} * R, besides
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the three free disposal profit functions. If all prices are strictly

A
positive at equilibrium, then H(tt) is just the 3x3 matrix of second

partial derivatives of a weighted by a scalar activity level. Conditions

2
on D a are conditions curvature of the boundary of the intersection of

ir

the dual cone and the simplex, S , at it. Given an excess demand function
a

a a
t, and a price vector it e intS that satisfies £(tt) * 0, we can easily

.A A
choose a so that tt is an equilibrium with index (it) = +1. We set Da^s =

IT

A . 2
K (it) and twist the boundary of S until D a* is large enough so that

index (tt) = +1. The condition that index (tt) = +1 is equivalent in this

A A
case to tt being a sink of the vector field g-I. In Figure 5 it

Figure 5

goes from being a saddle point in (a) , to a degenerate equilibrium in (b)

A
to a sink in (c) and (d) . In (a) index (tt) = -1, in (c) and (d)

A A
index (tt) = +1, while n is a critical point of g-I in (b) . Notice that

A
(d) is the limiting case where the curvature of S is infinite at tt. Here

there are actually 2 = n-1 activities in use at equilibrium; we already

know that index (tt) = +1 in such cases.

To make statements about uniqueness of equilibrium we would want to

2 2
impose global restrictions on D a on S. To make Da a martix of

constants, for example, we would choose a ejK so that Sa is a sphere.

To increase the curvature of the boundary of Sa at every point we would

have to shrink the size of this sphere. The limiting case, of course, is
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where Sa shrinks to a single point. This situation is one where the

production set has a hyperplane as its upper boundary and there is

complete reversibility of production in every direction. For a

Figure 6

given £ it may be necessary to choose a ej^so that Sa consists of a

single point in order to ensure uniqueness of equilibrium. Consider

£ (tt) =0 for example. Nevertheless, it is possible to prove that for

almost all E, e Jj we can find an a ej\ so that (5, a) has a unique

equilibrium and that Sa has an interior. We just keep shrinking Sa .

Such a result does not seem to be of much interest, however, because it

involves almost complete reversibility of production, a very unpalatale

assumption.

Figure 7

An insight into the nature of an activity analysis approximation to a

smooth production technology is provided by considering a situation where

det
-J + H -B

B'

>

at some equilibrium ir, but

det
-J

B'

-B
< 0.



Figure 6



TT + £(TT)

Figure 7
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Such a situation is depicted in Figure 8. There are three equilibria in

(a) that coalesce into a single equilibrium as the approximation to the

smooth production set becomes more accurate. Let a:R \ {0}> R be a profit

Figure 8

function and let it ,...,ir k be a finite number of points in S. Then

b(ir) = max [tt' a (it ) , . . . ,Tr*a(ir )] provides an approximation to a that can be

made arbitrarily accurate in the uniform C metric by proper choice of the

set it
^

, . . . ,tt . Unfortunately, such an approximation is not accurate

enough in the C 2 topology we have defined onjA. The curvature of the dual

core is an essential local characteristic of any equilibrium. The unique

equilibrium in (c) can be mistaken for isolated, multiple equilibria if we

use a activity analysis approximation to the underlying production

technology.

Let us turn our attention to economies with decreasing returns

production technologies. Here

~ n
index (it) = (-1) sgn

T I

det

e D£~ + D^B' (tt)-H(tt)
it r

= sgn (det [ -J -J B'+h])

where J is d£/\ with one row and column deleted and J is D^> with the
1 tt 2 r

same row deleted. It is easy to use Walras's law and homogeneity prove

that, if D^+D^^B' (t?) has all its off diagonal elements positive and on
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A
diagonal elements negative, then index (it) = +1. This result was

originally discovered by Rader (1972), who did not use an index theorem.

The interpretation that he gave it was that gross substitutability in

demand implies uniqueness of equilibrium regardless of what the production

technology looks like. The problem with this interpretation is that the

term D£aB' (tt) involves a complex interaction between income effects from

the demand side of the model and activities from the production side. It

seems impossible to develop easily checked conditions to guarantee that

d£a+D£\B' (tt) has the required sign pattern.
tt r

Our results shed light on the applicability of the comparative

statics method to general equilibrium models. The assumptions that the

equilibria of an economy are locally unique and vary continuously with its

parameters are not at all restrictive. Almost all economies satisfy these

conditions. Unfortunately, uniqueness of equilibrium is a more elusive

property. The conditions that imply uniqueness seem to be too restrictive

for most applications. There is obviously a need for more discussion the

relationship between comparative statics and uniqueness of equilibrium.
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