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Introduction

Theorems characterizing equilibrium in economics that fail to

satisfy some of the strictures of the Arrow-Debreu model have recently

abounded. In particular, papers by Grossman [7],

Grossman and Hart [8], and Hahn [10] have studied the efficiency

properties of equilibrium with incomplete market structures and have

established analogues of the two principal theorems of welfare economics.

In this paper we undertake a study of the efficiency of a model with

a different kind of imperfection, fixed prices. More precisely, we

start by showing (Proposition 2) that Grandmont's [5] notion of

K-equilibrium in fixed-price models, which embraces both the Dreze [3]

and Benassy [1] equilibrium concepts, is equivalent to a kind of

2
Social Nash Optimum , in which optimization is incompletely coordinated

across markets and where the control variables are quantity constraints.

Viewing K-equilibria as Social Nash Optima, we believe, permits a

better understanding of the structure of the set of equilibria (see Froposition 3)

K-equilibria possess two important properties: order (the requirement

that at most one side of the market can be quantity-constrained) and

voluntary exchange (no one trades more of any good than he wants to)

.

After studying K-equilibria, we examine order and voluntary exchange

and their connection with the two principal concepts of optimality

in a fixed-price economy: constrained Pareto optimality (optimality

relative to trades that are feasible at the fixed prices! and implementable

Pareto optimality (optimality relative to feasible trades that satisfy

voluntary exchange). We show first (Proposition 4) that the usual

definition of order (c.f., Hahn [9] and Grandmont [5]), in fact,
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implies that exchange is voluntary (assuming that preferences are convex

and dif f erent iable) . We, therefore, introduce a less demanding notion

of order, weak order, which is distinct from voluntary exchange. We prove

(Corollary 6) that, with convexity and differentiability, order is equivalent

to the conjunction of implementability (voluntary exchange) and weak order.

We then demonstrate (Proposition 7) that constrained Pareto optima,

although x>7eakly orderly, are, except by accident, non-implementable and, hence,

non-orderly. Furthermore, (Proposition 8) implementable Pareto optima

need not even be weakly orderly (although in an interesting special case— the

absence of "spillover" effects— they will be)

.

In section 1 we introduce the notation and definitions. Section

2 treats the existence and characterization of K-equilibria. Section

3 studies the relationships among order, weak order and voluntary exchange.

We consider optimality in section 4. Finally, in section 5, we compute

the dimension of the various sets of optima.

1. Notation and Definitions

Consider an economy of m + 1 goods indexed by h(h = 0,1,..., m)_, whose

price vector p is fixed (p„ = 1), and n traders indexed by i(i = l,...,n)

where trader i has a feasible net trade set X c= R . We assume that

X is convex and contains the origin (so that trading nothing is possible)

and that trader i's preferences (denoted by>.) are continuous and

strictly convex on this set. We will at times require preferences' to be

dif ferentiable as well. Following Grandmont [5], we define an equilibrium

for such an economy as follows:
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Definition 1 : A K-equilibrium is a vector of net trades (t ,...,t )

associated with the vector of quantity constraints ((Z_
,

Z ),..., (Z , Z ))

(with Z
1

<_ 0, Z
1

>_ 0, Z
1

= -°°, and ZT = +°°) such that, for all i,

(a) t
1

is feasible at prices p: t
1

e X = X f) it |p-t =0}

(b) quantity constraints are observed : Z, <_ t ^_ Z

(c) exchange is voluntary: t is the ^ . - maximal element among
'vl

net trades satisfying (a) and (b)

(d) exchange is orderly: if, for some commodity h, (t , t )ey^(Z_,Z)y-y^(Z,Z)

t
l > t

1
and t

j > t
j

, then (t^ - zj) (t{ - zj) > 0, where
i ' h h n —h —

Y
1
(Z,Z) = {t

1
e X

1
IZ

1
< t,

1
< Z,

1
Vk^O.h}.

h -
'—k - k - k

(e) aggregate feasibility: St =0.
i

For any trade t by trader i, we may confine our attention to the

"canonical" rations _Z(t ) and Z(t ), associated with that trade: for h 4 0,

if t} > then Z^t 1
) = tj and Z^Ct

1
) = 0; if t"" < 0, then zV 1

) = and zNt 1
) = t^

.

h — * h h —h ' h — ' —h h

Voluntary exchange implies that agents are not forced to trade

more of any good than they want to. An allocation characterized by

voluntary exchange is said to be implemen table. Formally, we have

Definition 2 : An implementable allocation is a vector of net trades

(t ,...,t ) satisfying conditions (a), (b) , (c) , and (e) for the canonical

rations associated with these trades.

A market is orderly if buyers and sellers are not both constrained

on that market. The next two definitions represent alternative attempts

to capture the idea of order. First we introduce property (d'), which is

equivalent to (see Proposition 1) but somewhat easier to work with than (d)

.





(d'): A vector of net trades (t ,...,t ) satisfies property (d') if,

for all markets h, there exists no alternative vector (t , ...,t )e

lly, (Z(t ),Z(t )) such that t £ t (with at least one strict preference)

and I t,
1

= 0.
3

h
1

The following definition is standard:

Definition 3 : An orderly allocation is a vector of net trades (t , ...,t )

satisfying (a), (b) , (d'), and (e) for the canonical rations associated

with those trades.

The problem with the above definition of an orderly allocation, if

one is attempting to distinguish between the notions of order and

voluntary exchange, is that it itself embodies elements of voluntary

exchange. Indeed, we will show below (Proposition 4) that, with

differentiability, the above concept of order implies voluntary

exchange. Heuristically, this is because, under the definition of order,

the trade t in Y,(Z(t ), Z(t )) could be preferred to t simply because t involves

forced trading on a market k 4 h and not because t relaxes a constraint

on market h. Therefore, we propose a new notion of order that

is free from the taint of voluntary exchange.

We first define property (d")

.

(d") : A vector of net trades (t ,..,,t ) satisfies property (d") if, for

~1 ~n P —i i
all markets h, there exists no alternative vector (t ,...,t ) e 11 Y, (t )

... . i=l
such that, for each i, t > . t (with at least one strict preference)

and E tj = 0., where yJCtVft
1

e X
1

| tj = tj, k f 0, h }

i
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Notice that properties (d') and (d") are identical except that the latter

requires that alternative net trade vectors be identical to the original

trades in all markets other than h and 0.

Definition 4 ; A weakly orderly allocation is a vector of net trades

(t ,...,t ) satisfying property (a), (b) , (d") , and (e) for the canonical

rations associated with the trades.

An orderly allocation is obviously weakly orderly.

Below we shall be interested in the Pareto-maximal elements in the

sets of K-equilibria, implementahle allocations, orderly allocations

and weakly orderly allocations, which will be called K-Pareto optima

(KPO) , implementable Pareto optima (IPO), orderly Pareto optima (0P0)

,

and weakly orderly Pareto optima (WPO) , respectively. A still stronger

notion of optimality, selecting Pareto-maximal elements in the set of

all feasible allocations, is constrained Pareto optimality:

Definition 5 : A constrained Pareto optimum (CPO) is a Pareto optimum of the

economy for feasible consumption sets X = X f\ {t p*t = 0) . I.e., it

solves the program

(*) max Z X u (t
1

) subject to t e X
1

and Y.t~ = 0,

i=l
for some choice of non-negative A 's, where the u 's are utility functions

representing preferences over net trades.

2. Characterization and Existence of K -equilibrium

We first check the consistency of the definitions:

Proposition 1 : {K-equilibrium allocations} = {Implementable allocations} C\

{Orderly allocations}.

4
Proof: We need just check that (d) and (d') are equivalent. If

(d') is not satisfied for (t ,...,t )", there exist h and

(t
X

?
. . . ,t

n
)e n Y^UCt

1
) ^(t

1
)) such that (t ,...,t

n
) Pareto-dominates (t ,...,t

n
)

1=1
h
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Because (t , ...,t ) maintains equilibrium on market h, we can infer that

at least one agent is demand-constrained and one supply-constrained in

(t ,...,t ), which contradicts (d) . If, on the other hand, (d) is not

satisfied by (t ,...,t ), there exist h, i, j , and

(t\ t
j

) EY^CZCt^ZCt
1
)) x Y

J

h
(Z(t j

), Z(t
J
))

such that (t
1

, t
J

) Pareto-dominates (t
1

, t
J

) and (t^" - t,
1
) (t^ - t? ) < 0.

h h h h

Therefore, if the constraints on market h are relaxed by the amount

min {|t?" - t^"
|

,
|t^ - t^|}, property (d') is contradicted. Q.E.D.

We now turn to the characterization of K-equilibria in terms of

social Nash optima. As indicated above, the idea behind a social

Nash optimum is to consider m uncoordinated planners, one for each

market h (h^O) , who choose quantity constraints to maximize a weighted

sum of consumers' utilities, subject to keeping equilibrium on their

own market and given the rations chosen by the other planners. A

social Nash optimum is then defined as a Nash equilibrium of that "game."

Formally:

Definition 6 : For each i, let t (p , Z_ , Z ) solve trader i's preference

i —

i

maximization problem, given prices p and rations Z_ and Z . Define

i i —i i ° x i —

i

the indirect utility function V (p, Z_ , Z ) = u (t (p,Z_ ,Z )), where u

is a utility function representing i's preferences. Suppose that,

for fixed positive weights {\ } , the manager of market h chooses Z^ and

—

i

n i i i —

i

Z for each i so as to maximize I A V (p, Z , Z ) subject only to
h . . h —

n . . . i= 1
°i i —

i

the constraint £ t (p, Z_ , Z )< = and taking as given the rations

i -i
i=1

Z and Z in each market k 4 h, Q. The allocation corresponding to the
" K. K.

equilibrium of such a "game" is a social Nash optimum .

By definition, a social Nash optimum is an implementable allocation.

From the equivalence between (d) and (d'), it is also orderly. Conversely,
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a K-equilibrium is a social Nash optimum. We have thus characterized

the set of K-equilibria:

Proposition 2 ; {K-equilibria} = {Social Nash optima}

The set of weakly orderly and orderly allocations can be characterized

similarly. In particular, a weakly orderly allocation is equivalent

to a social Nash optimum where the instruments of planner h are the

trades {t } on his own market. The characterization of orderly allocations,

although straightforward, is less natural because of the hybrid nature of

these allocations: an orderly allocation is a social Nash optimum where

each planner chooses trades on his own market given the canonical rations

associated with the allocations chosen by the other planners. In other

words, each planner assumes that the others have the power only to

choose rations, whereas, in fact, they choose the actual trades.

Under differentiability, Corollary 6 below guarantees that

this kind of social Nash optimum is identical to that of Definition 6.

As a by-product of the characterizaton of K-equilibria as social

Nash optima, we obtain a straightforward proof of the existence of

a K-equilibrium at prices p based on the Social Equilibrium Existence

Theorem of Debreu [2]

:

Proposition 3 : Under the above assumptions, for any vector of positive

prices p and any choice of positive weights {A }, there exists a social

Nash optimum and, hence, a K-equilibrium, associated with those prices

and weights.

Proof : We must show that each planner faces a concave, continuous

objective function and that his feasible strategy space is a convex- and

compact-valued correspondence of the strategies of the other planners.
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To see the concavity of the objective function, consider two alternative

1 ^ls / 7
n -n . .. 1 £L ~n £ik

choices of constraints, ((Z 1
, Z 1 ) , . . . , (Z ,Z )) and ((Z_ , Z ),..., (Z , Z )).

For any a, 1 a <_ l, the trade at (p , Z , Z
1
) + (1-a) t

X
(p,Z_, z"

1
) is

feasible for the constraints (aZ
1
+ (1-a) Z_ , aZ

1
+ (1-a) Z ). The

concavity of the utility functions then implies the concavity of the

planner's objective function. Continuity follows immediately from the

continuity of preferences. The set of feasible strategies for planner

h is defined by

{((zj, zj;),...,(z£, z£»| j.tjCp, z£, zjh(i z£, zj
h(

) = o>
5

and is denoted by r, (Z., ., Z., .) . Without loss of generality, we can
h —)h( )h(

restrict r, (Z N , ,, Z., .) to canonical quantity constraints. r
, (Z N . ,, Z., ,)

h —)h(' )h( i j h —)h(' )h(

is not empty because it contains (0,0). It is bounded because if t is

the preferred vector in y (Z\, ,, Zv ,) , min/t , 0l< Z . < and

< Z, < max { t, , 0} . It is closed because of the continuity of the— h — h
° _ —i—l
t.'s. To see that T (Z ., . , Z. ,.) is convex, choose ( Z, , Z,) = ((Z, , Z ,),... ,
i h —

)h( )h( —h' h h' h

(?£. Zjj)) and CZ_
h , Z

h
) in r

h
(Z Z ) and consider a(Z_

h>
Z^ + (1-a) (Z^, Z^

for < a < 1. If for example, t, (p, Z, , Z., , Z, , Z., .) = Z, , then,
n —h 7 h( n ; n v. n

because constraints are canonical, t, (p, Z, , Z., ., Z , Z. . ) = Z,
n h )h( n )n{. —h ;

and tJ;(p,aZ^ + (1-a) Z
fe

, Z
)h(

,a Z
J;
+ U-«) Z*, Z^) = aZ^ + (1-a) z£.

Similarly, for the upper constraints. That the correspondence T is upper

hemi-continuous follows from the continuity and convexity of preferences.

It is also immediate that I\ is lower hemi-continuous. Finally, we can
h

restrict the domain of I\ to only those rations (Z., ,, Z N1 ,) which could ever
h -)h(' )hC

be canonical constraints. This domain is obviously closed,

bounded and convex. We can thus apply the Social Equilibrium Existence

Theorem to conclude that a social Nash optimum exists. Q.E.D.
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3 . Order and Voluntary Exchange

We can now demonstrate that if preferences are differentiable and there

are at least three markets, order implies voluntary exchange. For convenience,

we shall, from now on, delete the component of trade vectors corresponding to good

zero. Thus t corresponds to trades t.,...,t on markets 1 to m, with an
m 1 m

implicit trade tn
= -£ p t on market h.

h=l
h h

Proposition 4: If preferences are differentiable and m> 2, an orderly

allocation is implementable.

Proof : Consider an orderly allocation (t ,...,t ). If this allocation

is not implementable, then, in particular, if (t* , ...,t* ) is the vector

of feasible, preference-maximizing net trades associated with the canonical

rations for (t , . . . ,t ) , t* 4 t for some i. For this i, there exist

h and t such that t = t,,t. .) is feasible and t r . t (ot, such that t = t, ,t., .) is feasible and t r . t (otherwise,
h h )h( l

'

by differentiability and coivexity, t maximizes i's preferences among

all net trades satisfying p«t = 0) . If t satisfies the canonical

'h
quantity constraints associated with t , choose h' 4 h. Then t ey

,
(Z(t ),Z(t )),

and since E t~, = and t,, = t?",, t
1

contradicts the order of (t ,...t
n
).

j = l

Therefore, t cannot satisfy the canonical constraints associated

with t . This, in turn, implies that either (i) 1 1, I >
1 1, I and t, • t, >

h 1
' h 1 h h —

or (ii) t, • t < 0. If (i) holds, then, since ! t, I
> It* I , there exists

h h h — n

scalar Ae[0,l] such that At?" + (1-A) t* = t?" . Let t"
L
(A) = A t

1
+ (l-A)t*

1
.

n n h

Then t (A) + E t = By convexity, t
X
(A)

/

X- . F1 . Furthermore, t
X
(A)

j^i _±
satisfies the canonical constraints associated with t . Therefore

(t ,...,t ) is not orderly, afterall. If (ii) holds, then is a convex

combination of t, and t, . If t, = 0, then t, = t* , which violates our
h h h h h

assumption above. If |t
|

> then, by strict convexity, (0, tv, ,)S-. t

Because (0, t Xl ,) satisfies the canonical constraints associated with
)h(

t , we again conclude that (t ,...,t ) is not orderly. Thus,

—

l
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in all cases, if (t ,...,t ) is not implemen table, we conclude that it is

not orderly, a contradiction. Thus order implies implementability. Q.E.D.

That there be at least three markets and that preferences be

differentiable are hypotheses essential for the validity of the

preceding proposition. Consider, for example, a two-market economy as

represented in the Edgeworth box in Figure 1. Point A represents the

initial endowment;

Figure 1

the line through A, prices; and the curves tangent to the line,

indifference curves. Any allocation between B and C is clearly

orderly, but not implementable since it involves forced trading by the

agent whose indifference curve is tangent at B. To see that differentiability

is crucial, consider a two-person three-good economy where agents have

preferences of the form log min {x , x } + log x . Given these pre-

ferences, we can treat goods 1 and 2 together as a composite commodity,

since traders will always hold goods 1 and 2 in equal amounts. Thus the

economy is, in effect, reduced to two goods, and so Figure 1 again

becomes applicable.
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We next show that voluntary exchange and weak order together imply

order. To do so, we make use of the following:

Definition 6 : Agent i is said to be constrained on market h for feasible

trade t if there exists t, with It, > I t. such that (t. , t-. ,) is
h ' h ' h ' h )h\

feasible and (t , t, ,) V- . t .

Proposition 5 : If preferences are dif ferentiable, {implementable allocations}! 1

{Weakly orderly allocations}^: (Orderly allocations}.

Proof : Suppose that (t ,...,t ) is a weakly orderly and implementable

vector of net trades. If it is not orderly, there exists market h

and feasible net trades (t ,...,t ) that Pareto dominate (t ,...,t )

n

such that I t, = and, for all i, t e Y. (Z(t ) , Z(t ) ) . There are
. , h h -
1=1

two cases, depending on whether all agents i are constrained on market

h for trade t .

Case I : Every agent i constrained on market h for t .

Either everyone is constrained from buying or all are constrained

from selling - a mixture is not possible because of weak order. Suppose,

without loss of generality, that everyone is constrained from buying.

Then t. = for all i, and there exists j such that t^ < (if t, = for
h J h h

all i then (t ,...,t ) satisfies the canonical constraints associated

with (t ",..., t ), a contradiction of implementability) . Because j is

constrained from buying on market h, there exists t^ > such that (t, , t )
h n ; n {

is feasible and (t^, t ^
.) V- ,

tJ
• Choose Ae(0,l) such that At J + (l-X)tr' = 0.

h )n ( f j h h
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Let t
J (A) = X (t^ , t.^ ) + (l-A)f3

. By strict convexity t
J (A) . t

J
, yet

t (A) satisfies the canonical constraints associated with t , a violation

of (t ,...,t )'s implementability. Therefore, in this case, we conclude

,1 n. , ,
that (t ,...,t ) is orderly.

Case II : Not all agents are constrained on market h.

Suppose, in fact, that the sellers are not constrained. Let S be the

set of all sellers. From strict convexity and implementability, we

have
I t,

I 2l 1 t
J

for all i, with strict inequality if and only if

t
1
/^. t

1
. Thus if tt = t* for all ieS, there exists jg!S such that t? > t,

J

1 h h J h h

and therefore £t, > 0, a contradiction. Therefore, there exists i £ S

i .

such that t, < t, < 0. Define H = {k i is constrained on market k for
h h — '

t , and |t
j

< |t [}. Assume, for the moment, that H^tf) . For each k e H,

choose t* so that
|
tjM >

|
tjM and, if t

1
(k) = (tJ\ t. / ), t

1
(k))^-. t

1

(such a choice is possible since i is t -constrained on market k) . By

convexity, we can choose the t, ' s so that there exists Ae(0,l) for which

A(t -t ) = (1-A) |h| (t -t^) for all keH, where |h| is the number

of elements in H. Define

S
A Z V-Qt)

l± = 1

—

rlf
+ (1~A)

~
ti5 if ,H| > °

t
1

, if |h| =

By convexity, t is strictly preferred to t , and, by construction t, = t,

for all keH. But by differentiability, convexity, and implementability,
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t is the best trade that i can make if forced to trade t, on each market
k

keH, a contradiction. Thus, in this case too we conclude that (t ,...,t )

is orderly. Q.E.D.

Corollary 6 : If m > 2 and preferences are differentiable then

{implementable allocations} f) {Weakly orderly allocations} = {Orderly

allocations} = {K-equilibrium allocations}

4. Optimality

We next turn to constrained Pareto optimality. We show that although

a constrained Pareto optimal allocation is weakly orderly, it is

ordinarily neither implementable nor orderly, at least when preferences

are differentiable.

Proposition 7: A constrained Pareto optimum (CPO) is (i) weakly

orderly (which implies that {Constrained Pareto optimal allocations} =

{weakly orderly Pareto optimal allocations} and (ii) with differentiable

preferences, neither implementable nor (when m > 2) orderly, if it is not

a Walrasian equilibrium allocation, if each trader is assigned a

strictly positive weight in the program (*) , and if there is some (i.e.,

non-zero) trade . on every market.

Proof : Let (t , . . . ,

t

n
) be a CPO.

If it were not weakly orderly, then trades could be altered on some

market h, leaving trades on other markets undisturbed, in a Pareto-

improving way, a contradiction of optimality. Therefore, (i) is established.
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Suppose that (t ,...,t ) is not a Walrasian equilibrium allocation,

that preferences are dif ferentiable, that there is non-zero trade on

every market, and that all traders have positive weight. We will

establish that (t ,...,t ) is not implementable. Because it is not

Walrasian, there exists at least one market h and one agent i who would

prefer a trade different from t, , given his trades on other markets
h

k ^ 0, h. If, say, trader i is a net buyer of h, either he would like

to buy more or to buy less of good h. If less, the non-implementability

of (t ,...,t ) follows immediately. Assume, therefore, that he would

like to buy more. Because, by assumption, there is non-zero trade on

market h, there are traders who sell positive quantities of good h. If

among these traders, there exists an agent j who would like to sell

less of good h, the proof is, again, complete. If j would like to

sell more than -t, units of good h (given his trades on markets other

than and h) , i and j can arrange a mutually beneficial trade at

prices p, contradicting constrained Pareto optimality. Therefore, assume

that all sellers on market h are unconstrained. From differentiability,

forcing them to sell a bit more of good h does not change their utility

to the first order but does increase i's utility. Therefore, if the

allocation assigns positive weight to i in (*) , it involves forced

trading. Thus (t ,...,t ) is not implementable. If m > 2, Proposition

4 implies it is not orderly. Q.E.D.

Remark : This proposition demonstrates that Hahn's Proposition 2.2

(see [9]), which asserts the existence of a K-equilibrium that is also

constrained Pareto optimal, is false.
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By the absence of spillovers, we mean that a change in a constraint on a market

does not alter net trades in any of the other markets, except the uncon-

strained market. A sufficient condition to obtain no spillovers is

that traders' utility functions take the form U = t_ + £ $, (t, ) . In
U h h

the no spillover case, the only change in Figure 3 is that the IPO

set shrinks to coincide with the KPO and 0P0 sets. We have

Proposition 9 : In the case of no spillovers, (iPO) = {KPO} = {OPO}

.

Proof : An IPO must be orderly. Otherwise, slightly relaxing the

constraints in market h for one demand-constrained and one supply-

constrained agent would be implementable (since it would not disturb

the other markets) and Pareto improving. Q.E.D.
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The hypothesis of differentiability in Proposition 7 is, as in

previous results, essential. Crucial too is the assumption that all

traders have positive weight in the program (*). To see this, refer

again to Figure 1. Point B is both constrained Pareto optimal and

implementable. However, the trader whose indifference curve is tangent

to C has zero weight. (Note, incidentally, that all the other CPO's -

the line segment between B and C - are non-implementable. ) Finally,

the hypothesis of non-zero trade on each market is necessary. Refer,

for example, to the Edgeworth box economy of Figure 2. Initial endowments

Figure 2

are given by A, which is also a constrained Pareto optimum relative to

the price line drawn. Although A does not involve forced trading, it

does not violate the Proposition, as it involves no trade at all.

Although differentiability is a restrictive assumption, the

non-zero weight and trade assumptions rule out only negligibly many

CPO's. On the basis of Proposition 7, we may conclude that, with

differentiability, CPO's are generically non-implementable and non-orderly.
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We now consider the set of Pareto optima among implementable

allocations: the Implementable Pareto optima. As opposed to a Social

Nash Optimum where an uncoordinated planners choose the rations on their

own market according to their own weights, an IPO is a Pareto optimum

for a unique planner choosing all the rations. Obvious questions are

whether IPO's are necessarily orderly or even weakly orderly. The

following proposition demonstrates that this is not the case.

Proposition 8 : Implementable Pareto optima need not be weakly orderly,

(nor, a fortiori , orderly).

Proof : The proof takes the form of an example. Consider a two-trader,

three-good economy in which trader A derives utility only from good

and has an endowment of one unit each of goods 1 and 2. Trader B has

a utility function of the form

15 3 2 2
U(x

Q
,x

1
,x

2
) = — x + — x

2
- 3x x - 3x - x

2
+ x

Q ,

where x. is consumption of good i, and an endowment of one unit of good

0. All prices are fixed at 1. It can verified that trader B's

unconstrained demands for goods 1 and 2 at these prices are —— and —

—

12 o

respectively. This is an IPO in which all the weight is assigned to

trader B. In this IPO, trader A is constrained on both markets. Now

suppose that trader B is constrained from buying more than —r-r- units

of good 1. It can be verified that his corresponding demand for good 2

3 13 11
is -rrj- . Because -7-7- + —

—

- > ——
- H -— , trader A obtains more of

16 24 16 12 8
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of good 3 when B is constrained on market 1 than when unconstrained.

Therefore the allocation in which A is constrained from selling more

24
units of

than the vector (~ ,-A- ) and B from buying more than

good 1 is an IPO. Furthermore, it is not weakly orderly, because given

a purchase of 3/16 units of good 2, trader B would like to buy -^- units

of good A, and 5/96 > ~j^~
Q.E.D.

We can summarize the results (with differentiability) to this

point in a schematic diagram (Figure 3)

.

Figure 3

One "unappealing" feature of Figure 3 is the fact that the set of

IPO's is neither completely within nor without the set of weakly orderly

allocations. With an additional hypothesis often made in the disequilibrim

literature - the absence of spillover effects - this unaesthetic property disappears,
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5 . Structure of K-Equilibrla, Constrained Pareto Optima and Keynesian
Pareto Optima Sets .

In this section we undertake a study of the local dimension of

the different sets.

5 .1 K-Equilibria . Assume that at a K-equilibrium the m markets

(h = l,...,m) comprise at least one binding constraint (a constraint

is binding if the derivative of the indirect utility function with

respect to the constraint is different from zero). Let us show that,

on market h, the number of degrees of freedom is equal to the number

of binding constraints (b ) , minus one; for that let us remember that

a K-equilibrium is a Social Nash Optimum. The first order condition

for a Social Nash Optimum with a binding ration Z yields
h

i 3V
1

A, = u, , where u, is the multiplier associated with market
h ~-i h h

3Z,
1

A
1

h's equilibrium constraint. Let A, = — and F = A, :— 1
h % h

3Z,
1

I Z,

1
(p.z

1
/^

1
)

It is easy to see that the jacobian of F is of rank [b +1]. Because F

is a function of (2b ) variables, the inverse image F (0) is a manifold

of dimension (b -1). The local dimension, of the set of K-equilibria is

thus E (b - 1) = b - m, where b is the total number of binding constraints,
h

5.2 Constrained Pareto Optima .

The local dimension of this set is (n-1) since a Constrained Pareto

Optimum is a Pareto Optimum of the economy with consumption sets X and

induced preferences.
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5.3 Keynesian Pareto Optima . The only (direct) way to change the

weight between two traders is to change their rations for a market

on which they are. both constrained. Call T = {(i,j)
|
i and j are both

constrained on at least one market}. T is obtained from T by eliminating

the redundant pairs; more precisely, in T, starting from i there can be

at most one sequence of pairs: (i,j), (j ,k) , . .
. , (£,i) leading back

to i. The local dimension of the set of Keynesian Pareto Optima is

then: Min [ I T
|

, n - 1]

.





FOOTNOTES

Benassy's equilibrium is a K-equilibrium if preferences are convex.

2
The term is due to Grossman [7]. Grossman's SNO, however, is related

only in spirit to our own.

3
Grandmont, Laroque, and Younes [6] call property (d

' ) market-by-market

efficiency.

4
This equivalence is demonstrated by Grandmont, Laroque, and Younes [6].

If x is an m-dimensional vector, the notation x N1 , denotes the
)h(

vector (x , . . . ,x, , x, ...... ,x ), i.e., the vector obtained by

deleting component h.
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