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An Exact Small Sample Test of Non-Nested Hypotheses

Summary

Classical hypothesis testing typically validates or invalidates a

model by nesting it in a more general model and performing a likelihood

ratio test. When models are not nested there does not seem to exist a

practical way of comparing them. Generalizing the classical statistical

methodology of the likelihood ratio, we develop a practical, exact, small

sample test of non-nested hypotheses. The test may be useful because it

can allow one to check the validity of a specification directly. As an

application, we find that time series data may not support the existence

of an aggregate production function for the U.S. economy.
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Introduction

All of us have been exposed to situations where an elaborate econometric

model, supposedly based on theory, hardly fits the data better than some

simple minded ad hoc specification. Given any model, if there are

easily available alternative ways of organizing data which yield results

"too good to be true" in some sense, that should cast doubt on the

authenticity of the original specification. The discrediting alternative

need not be theoretically justified; it need not pretend to any theoretical

content whatsoever. Intuitively, there ought to be an exact sense in

which something is suspicious about a model that is supposed to be correct,

when casually chosen alternatives also fit so well.

This approach both implies and is implied by a particular philosophy

of modeling which can be simply stated as follows: should we find that a

particular model implies unlikely consequences, it should lead us to question

or even perhaps to reject the underlying specification.

The fundamental barrier to formalizing such ideas has been the lack

of an operational test for non-nested hypotheses. A procedure like the

t-test, for example, automatically screens out such foolish behavior as

accepting a linear model with a zero coefficient when an obvious alterna-

tive fits the data much better. But the inability to compare non-nested

hypotheses is a very severe limitation which prevents us from inferring

that a model as a whole may be incorrectly specified when some other

model is fitting too well relative to it. Nor does the trick of



-3-

artificially nesting two equally well fitting alternatives in a more

general model help much in practice, because multi-collinearity will almost

surely prevent either alternative from rejecting the other.

In this paper we offer an exact small sample test of non-nested

models which directly generalizes the classical F-test. In most cases

there should be no difficulty in performing our test routinely on the

computer, although it is definitely a more demanding computation than the

classical tests to which it reduces in a nested environment.

The test statistic we use is the likelihood ratio proposed by Cox

[1961], [1962], and subsequently applied by Pesaran [1974]. Our own

philosophy of modeling closely parallels the exposition of Pesaran and

Deaton [1978], q.v. , except that we would go further in asserting the

"other" hypothesis can be used to reject a maintained hypothesis even with-

out any pretence whatsoever about the viability of the rejection model as

an alternative.

The main contribution of the present paper consists of showing that

there is essentially no computational barrier to getting as close as we

want to the exact distribution of the likelihood ratio statistic for non-

nested linear models. By looking at the problem slightly unconventionally,

it is possible to obtain an exact, small sample test which avoids altogether

the pitfalls of asjanptotic large sample theory.

Our feeling is that the test we propose is powerful and is likely

to prove damaging to certain classes of models. As an example, we show

that the existence of a stable aggregate production function for the U.S.

economy may be questionable because a general formulation with capital
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and labor explains the growth of output significantly worse (or

insignificantly better) than a specification which is identical except

for omitting capital and labor altogether.

Note that in our framework it does not make sense to talk about

proving a model is "true". A model can never be proved true; it can

only be discredited, which occurs if it is found to result in unlikely

coincidences. A model remains a viable hypothesis only under circum-

stances in which other data or other models do not yield an implausibly

good fit, considering the original model is supposed to be correct.

Models are viable, as it were, only by default. Any given field may

or may not be characterized by a viable model, and the situation can

change over time. In our view this is a correct description of how

science works. It is quite possible to be in an agnostic situation,

temporarily or permanently, where no single hypothesis is able to establish

itself against refutation. If a model has established itself (by de-

fault) as viable, it may at any time be discredited by newly conceived

specifications or changed data. And the discrediting model does not have

to be viewed as a candidate to replace the discredited model, since it

too may be non-viable.
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Formal Description of the Test

The model being tested, called the "hypothesis model" is denoted (H)

.

Another model, denoted (R) , may be used to possibly reject (H) . It is

assumed that the hypothesis and rejection models satisfy:

(H) Y = X B + e X and £ independent
(Txl) (Txk ) (k xl) (Txl) .._, ,,,„ 2,

X ^ X £. xid N(0,a ),

(R) f(Y) = Z Y +6 Z and E independent.
(Txl) (Txk ) (k xl) (Txl)

Z Z

X and Z represent data that might coninclde in part, or might be

completely different. f(Y) denotes some transformation of Y, such as

f.(Y'.) = logY., or f(Y) = Y + V for some vector V. The most common

transformation used in practice would be the identity f(Y) = Y. The

rejection model (R) is not assumed to be a reasonable "alternate hypothesis"

to (H) , or to satisfy any statistical properties beyond independence of

Z and e

.

Suppose we consider performing OLS regressions on (H) and (R) , and

using the ratio of the sum of squared residuals (SSR) as a test statistic

X:

SSR. = (Y-X3) ' (Y-X3) = Y'M Y

-1 ~1
3 = (X'X) X'Y , M = I ~ X(X'X) X'

SSR^ = (f(Y)-ZY)'(f(Y)-ZY) = f(Y)'M^f(Y)

-1 -1
Y = (Z'Z) Z'f(Y) , M = I - Z(Z'Z) Z'



-6-

and

A =̂ f!\ ^ f(Y)'Mzf (Y)

SSR^ Y'M Y
""

• (2)

Under the assumption that (H) is the correct model, suppose we

could somehow obtain the distribution G(A) of our test statistic. Then,

following the classical likelihood-ratio approach, we could specify a

critical region [0,c], and reject model (H) if A e [0,c]. Choosing

c = A, we would always reject (H) , and the probability that this decision

is wrong is given by

a =
I

dG(A).
J o

That is, a is the probability of making a type I error, or the level of

significance of the test.

In this framework, we reject (H) at a high level of significance

(low a) only when the test statistic A is much lower than we would expect

if (H) were true. That is, should we find that assuming (H) true leads

to an unlikely event (i.e., low A), we conclude that the hypothesis model

cannot be the correct specification. Our test is thus a formalization

of what we mean by a model being "untrue", i.e., its acceptance leads

to unlikely consequences.
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The distribution G(X) is derived as follows. Assuming that (H)

is true, we can substitute Y = xB+£ into (2) to obtain,

^ f(XB+£)'Mzf(X3+c) ,,
e'M e

'
^ ^

X

Now suppose that 6 did not appear in (2'), e.g., suppose we could

rewrite the expression so that 3 cancels out (this actually occurs in

the classical case of nested hypotheses). Then one method of obtaining

the distribution of X is to simply simulate e using a random number

generator. Denoting simulated values with a tilde we would have

?^ _ f(xB+£V M^f(x3+^) (..
iv K,

^^^

e'M £
X

Repeating this simulation many times, we would obtain a frequency

distribution which has been derived under the assumption that model (H)

is correct, so with enough simulations G would approach the actual distribu-

tion G. Our hypothesis test could then be performed.

Of course, the unknown coefficients 3 need not cancel out of (2')

or (3), except in the special case of nested models. But under the assump-

tion that (H) is correct, 3 has a precise relation to 3 and £, namely,

3 = (X'X)'-^X'Y = (x'X)"''"X' (X3+e) = 3 + (X'X)"-"" X'e



Using the assumption of "flat" priors on 3 (which underlies classical

statistics), we can use Bayes' law to invert the above expression, obtaining

a posterior distribution of 3 as a function of e. conditional on the

observed 3-

3 = 3- (X'X)"-'-X'c. (4)

In our simulations, posterior values of 3 are calculated from the

% "^ — ]_ a. %
formula 3=3- (X'X) X'e. Substituting 3 for 3 in (3), we derive

^ ^ f(X3 + Mx£)'Mzf(X3 + M^£)

e'M e
X

From (3') we see that each simulation merely requires the evaluation

of linear and quadratic forms in £ with a fixed matrix and does not require

inverting a new matrix at each step. This crucial feature makes our exact,

small sample test an absolutely routine calculation. It is derived from two

underlying assumptions. First, the (H) and (R) models must be linear in

3 and y. Second, X and Z must be independent of £, since otherwise when

we simulate £ we must also simulate X and Z, and re-compute M and M . Note,

however, that transformations of the form f(Y) can easily be performed. Our

experience is that the test can be calculated in a routine fashion on the

computer and could be programmed as a standard part of a regression package.

Our method for obtaining G is now complete except for one detail: in

'Xj

order to generate e we must know its variance. The £. are assumed to be

2 2
iid N(0,a ), and a is estimated as

'2 Y'M„Y
= ,.

'-

(T-k^)
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Under the assumption that (H) is the correct model, we have

^Z _ ^ -^ = V CT-k >

X

Consistent with classical statistics, uniform or "flat" priors on

loga yields the posterior distribution,

2
In practice, posterior values of a are calculated from the formula

'^'2 .'2>2 '^2
c = (T-k )a /x , where x is obtained from a random-number generator.

'\^2 0/ %
For each drawing of x we generate a vector e, and then compute A

from (3'). Repeating this simulation many times we obtain the distribu-

tion G, derived under the assumption that (H) is correct. The hypothesis

test described above can thus be routinely performed on the computer.

We are calculating the probability a that the observed test statistic

A should be as small as it is, given the maintained hypothesis (H) . The

error in estimating a can easily be calculated from the binomial distribu-

tion: with N simulations, var(a) = a(l-a)/N.

Our procedure for testing (H) using (R) shows why the rejection

model itself need not be believable: at no point have we assumed that

(R) satisfies any desirable statistical properties, beyond independence

of Z and £. This feature is closely related to our methodological view

that models can be rejected, but not accepted (except by default). To

formally accept a model, we need to know the probability that this deci-

sion is wrong (i.e., the type II error). In other words, we must know

the distribution of our test statistic X when (H) is not the correct

specification. But if (H) is not correct, then we do not know the "true"
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specif ication: in some cases (R) might be a reasonable candidate, but

there are surely many other possibilities. In principle, one can imagine

assigning priors to all possible specifications, and then integrating over

the space of models to obtain the probability of a type II error. In

practice, such a computation could obviously not be perfonned. Note that

reversing the roles of (H) and (R) simply means that (H) could be used to

reject, but not accept, model (R)

.

While we have used some elementary Bayesian methodology in deriving

the distribution G(A.), our procedure for testing non-nested hypotheses

is really no more Bayesian than any other aspect of classical statistics.

In fact, our test is a direct generalization of the classical, nested

likelihood-ratio tests.

The classical statistical approach to analyzing the regression model

Y = X6+e is consistent with the Baynesian approach of using a quadratic

2
loss function, and diffuse priors on 6 and loga . For example, the

standard t-test for the hypothesis 3, = b, is equivalent to obtaining

the posterior distributions (4) and (5) , and then testing whether b is

likely to have been drawn from the distribution of 3-,. That is, we

exclude the upper and lower lOOa/2 percentiles of 3-, , and then observe

whether b falls into the middle range. This approach is computationally

identical to the t-test. Observe, however, that our formulation does not

depend on a fortuitous cancelling out of 3 in (2') which may make it

a more appealing conceptual approach for understanding statistical
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test ing, even for nested hypotheses.

We note that for the special case of nested models, our procedure

reduces to the standard F or t tests. As an example, consider testing

the hypothesis that certain coefficients of a model equal zero. Then the

data matrix X of (H) includes only a subset of the variables in Z. It

follows that M X = 0, and so with f(Y) = Y (2') becomes
z '

X

That is, the test statistic X is simply the SSR of the unrestricted

model divided by the SSR of the restricted model. A simple transformation

of X, i.e.

(l-X)/(k -k )
z X

X/(T-k^)

is distributed as F(k -k ,T-k ).
z X z

That classical nested hypothesis testing with its well known

statistical properties is a special case of our generalization suggests

to us the general test is likely to be "powerful" in some sense. We

expect that to pass the A test, the hypothesis model in most cases has

to perform somewhat better than a casually specified, empirically

oriented rejection model.
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More work is needed to determine the properties of our test

under general and specific circumstances. As one special case, consider

testing a model against itself (i.e., (H) = (R)). Substituting f(Y) = Y

and Z = X into (3'), the simulated test statistic becomes

£'M e

^ = n ^ = 1-

e'M e
X

The observed test statistic is also X = 1. In other words, we are

observing an event which occurs with probability one, and so we certainly

cannot reject (H) (a=l) . This suggests that testing a model using another

which is "similar" will not lead to a rejection. Intuitively, some sort

of orthogonality between X and Z, along with a good fit for (R) , should

lead to stronger tests (lower a).

Finally, note that while we are allowed to choose (R) by comparing

the X and Z matrices, we definitely cannot choose the rejection model by

first observing the results of the test, and then searching for a Z with

stronger results: the latter procedure would violate the assumption of

independence between Z and £.
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An Application

Without taking the example too seriously, the aggregate production

function nicely illustrates some of the points we are trying to make.

In the aggregate U.S. private economy for year t, let

Y(t) = actual output

Y(t) = potential output

E(t) = emploj^ent rate

L(t) = labor

K(t) = capital

Suppose we postulate an Okun's law type of relationship between

potential and actual output of the form

Y(t) = Y(t) E(t)^. (6)

By this rule a one point increase in unemployment decreases output by

Y%.

If potential output is accurately described by a constant returns

to scale production function of the general form F(K,L) with Hicks

neutral technical change, then

Y(t) = A(t) F(K(t),L(t)). (7)

In practice we have chosen A(t) to be of the exponential form

A(t).Ae*'. ">
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and verified that more general specifications like

2
. / \ . A t "T A t ,_^
A(t) = A e (9)

do not negate our conclusions.

Logarithmically differentiating (6), (7), and (8), we can

derive the "growth equation"

Sy = ^Vk + \^l^ + ^ + ^§e-
(^°^

and

In formula (10)

,

s
•

_ Y
Y

\
•

K=
K

H
•

L
L

^e

•

_ E

E

\ Y

\
^ 9L

Y '
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Under the assumption of constant returns to scale and a marginal

productivity theory of value, n. and rip can be obtained as empirical

factor shares. Knowing grox-fth rates of capital and labor, we can then

calculate the factor growth contribution term (l, g, + 'Ungn) for each

year.

Now a legitimate question to ask is whether the factor growth

contribution to equation (10) is "doing anything" more to explain the

growth of output over and above what is explained by the obvious base

case of a constant long-term trend modified by a short-term correction for

economic activity. Is the sophisticated production function specification

of potential output (7) statistically superior to the simple constant

growth alternative

Y(t) = Be^*" (11)

which is frankly empirical?

In the language of this paper, if_ the true specification is

S = ^Vk " \H^ + \ -^ ^1 Se + ^ (12)

where e is i.i.d. normal, how likely is it that a naive ad hoc specifica-

tion which omits the production function part altogether

should fit the data as well as it does? This way of posing the question

seems like a fair way to inquire about the statistical likelihood of a

stable production function relation between aggregate output, capital,

and labor. Observe that (12) and (13) are not nested models in the usual

statistical sense, although they are related to each other in a particularly
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2
simple fashion through a zero-or-oiie coefficient. Thus, our basic

question about the role of the aggregate production function in explaining

growth cannot be answered directly within the classical framework.

Note that we have imposed no conditions on the specific form of

the production function F(K,L), having used only the assumption of

competitive shares and constant returns to scale.

The data used are an updated and revised version of the

Christianson ~ Jorgenson series on the aggregate private economy from

3
the Review of Income and Wealth. The primary period investigated

was 1947-1978, although in all cases we have verified the legitimacy

of our results over the longer span 1929-1978.

The ESS for the regression based on (12) is 7.072E-03(with a DW

of 2.15) whereas the ESS is 7.024E-03 for the regression based on (13).

Thus, omitting capital and labor altogether gives a slightly better fit

than if the production function were included in the growth equation.

More importantly, the difference is highly significant. The probability

that (13) would fit as well as it does if (12) were the true specifica-

tion is

a = .06 + .01

(based on 1000 simulations). In this sense, we tend to reject the

production function specification at a high level of significance.
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Conclusion

Our guess is that the rejection of so-called "theoretically

justified" economic models by empirical, ad-hoc specifications might

be a pervasive feature in several (although by no means all) areas of

applied econometric work.

Often what we deal with in economics is essentially a collection

of time series, somewhat erratic but on the whole growing together. It

is tempting to read into this mild chaos some order, and an economist

naturally tries to impose order by fitting an economic model — for

example a production function. But we fear the sad truth is that many

of our "theoretically justified" models may not be fitting the data

much better than clever ad hoc specifications. And this would mean,

in a sense we have tried to make rigorous, that the "theoretically

justified" model is suspect on empirical grounds, however strong the

desire or motivation to believe it is true.

Failing our test does not necessarily mean the hypothesis model

must be abandoned. But it can signal us when to be more modest in our

claims, more tentative in our applications, and more alert for alterna-

tive explanations.

We hope the exact test we have proposed can be constructively used

to sift out those models where there exists an empirically viable struc-

ture from other situations where our own wishful thinking is making us

impose a theoretical grouping that perhaps nature does not intend.



FOOTNOTES

we checked these results empirically by performing several nested
ests, and coirparing the values of a obtained from a t or F distribution
ith our simulations:

a from
Form of test a from t or F dist. simulations

h = (t) 0.640 0.625

6. = (t) 0.776 0.760

3=^2=0 (F) 0.88A 0.890

The number of simulations in each case was 1,000.

2
Of course models (12) and (13) could be artificially nested by

introducing a free coefficient on the factor growth contribution term.

However, this would not be the same test as we propose, '.[n fact it js

statistically much weaker because of the multicollinearit^' typically
introduced by artificial nesting. The estimated coefficif'nt is .34

with a standard error of .42.

3
We thank Dale Jorgenson for providing us with this data.
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