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NLOS Identification and Mitigation for Localization
Based on UWB Experimental Data

Stefano Maranò, Student Member, IEEE, Wesley M. Gifford, Student Member, IEEE, Henk Wymeersch,
Member, IEEE, Moe Z. Win, Fellow, IEEE

Abstract—Sensor networks can benefit greatly from location-
awareness, since it allows information gathered by the sensors to
be tied to their physical locations. Ultra-wide bandwidth (UWB)
transmission is a promising technology for location-aware sensor
networks, due to its power efficiency, fine delay resolution, and
robust operation in harsh environments. However, the presence of
walls and other obstacles presents a significant challenge in terms
of localization, as they can result in positively biased distance
estimates. We have performed an extensive indoor measurement
campaign with FCC-compliant UWB radios to quantify the effect
of non-line-of-sight (NLOS) propagation. From these channel
pulse responses, we extract features that are representative of
the propagation conditions. We then develop classification and
regression algorithms based on machine learning techniques,
which are capable of: (i) assessing whether a signal was trans-
mitted in LOS or NLOS conditions; and (ii) reducing ranging
error caused by NLOS conditions. We evaluate the resulting
performance through Monte Carlo simulations and compare
with existing techniques. In contrast to common probabilistic
approaches that require statistical models of the features, the
proposed optimization-based approach is more robust against
modeling errors.

Index Terms—Localization, UWB, NLOS Identification, NLOS
Mitigation, Support Vector Machine.

I. INTRODUCTION

LOCATION-AWARENESS is fast becoming an essential
aspect of wireless sensor networks and will enable a myr-

iad of applications, in both the commercial and the military
sectors [1], [2]. Ultra-wide bandwidth (UWB) transmission
[3]–[8] provides robust signaling [8], [9], as well as through-
wall propagation and high-resolution ranging capabilities [10],
[11]. Therefore, UWB represents a promising technology for
localization applications in harsh environments and accuracy-
critical applications [10]–[15]. In practical scenarios, however,
a number of challenges remain before UWB localization
and communication can be deployed. These include signal
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acquisition [16], multi-user interference [17], [18], multipath
effects [19], [20], and non-line-of-sight (NLOS) propagation
[10], [11]. The latter issue is especially critical [10]–[15] for
high-resolution localization systems, since NLOS propagation
introduces positive biases in distance estimation algorithms,
thus seriously affecting the localization performance. Typical
harsh environments such as enclosed areas, urban canyons,
or under tree canopies inherently have a high occurrence of
NLOS situations. It is therefore critical to understand the
impact of NLOS conditions on localization systems and to
develop techniques that mitigate their effects.
There are several ways to deal with ranging bias in NLOS

conditions, which we classify as identification and mitigation.
NLOS identification attempts to distinguish between LOS
and NLOS conditions, and is commonly based on range
estimates [21]–[23] or on the channel pulse response (CPR)
[24], [25]. Recent, detailed overviews of NLOS identification
techniques can be found in [22], [26]. NLOS mitigation goes
beyond identification and attempts to counter the positive bias
introduced in NLOS signals. Several techniques [27]–[31] rely
on a number of redundant range estimates, both LOS and
NLOS, in order to reduce the impact of NLOS range estimates
on the estimated agent position. In [32]–[34] the geometry of
the environment is explicitly taken into account to cope with
NLOS situations. Other approaches, such as [35], attempt to
detect the earliest path in the CPR in order to better estimate
the TOA in NLOS conditions. Comprehensive overviews of
NLOS mitigation techniques can be found in [26], [36].
The main drawbacks of existing NLOS identification and

mitigation techniques are: (i) loss of information due to the
direct use of ranges instead of the CPRs; (ii) latency incurred
during the collection of range estimates to establish a history;
and (iii) difficulty in determining the joint probability distribu-
tions of the features required by many statistical approaches.
In this paper, we consider an optimization-based approach.

In particular, we propose the use of non-parametric ma-
chine learning techniques to perform NLOS identification and
NLOS mitigation. Hence, they do not require a statistical
characterization of LOS and NLOS channels, and can perform
identification and mitigation under a common framework. The
main contributions of this paper are as follows:

• characterization of differences in the CPRs under LOS
and NLOS conditions based on an extensive indoor mea-
surement campaign with FCC-compliant UWB radios;

• determination of novel features extracted from the CPR
that capture the salient properties in LOS and NLOS
conditions;

0733-8716/10/$25.00 c© 2010 IEEE
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• demonstration that a support vector machine (SVM) clas-
sifier can be used to distinguish between LOS and NLOS
conditions, without the need for statistical modeling of
the features under either condition; and

• development of SVM regressor-based techniques to mit-
igate the ranging bias in NLOS situations, again without
the need for statistical modeling of the features under
either condition.

The remainder of the paper is organized as follows. In
Section II, we introduce the system model, problem statement,
and describe the effect of NLOS conditions on ranging. In
Section III, we describe the equipment and methodologies
of the LOS/NLOS measurement campaign and its contribu-
tion to this work. The proposed techniques for identification
and mitigation are described in Section IV, while different
strategies for incorporating the proposed techniques within
any localization system are discussed in Section V. Numerical
performance results are provided in Section VI, and we draw
our conclusions in Section VII.

II. PROBLEM STATEMENT AND SYSTEM MODEL

In this section, we describe the ranging and localization
algorithm, and demonstrate the need for NLOS identification
and mitigation.

A. Single-node Localization

A network consists of two types of nodes: anchors are nodes
with known positions, while agents are nodes with unknown
positions. For notational convenience, we consider the point of
view of a single agent, with unknown position p, surrounded
by Nb anchors, with positions, pi, i = 1, . . . , Nb. The distance
between the agent and anchor i is di = ‖p − pi‖.
The agent estimates the distance between itself and the

anchors, using a ranging protocol. We denote the estimated
distance between the agent and anchor i by d̂i, the ranging
error by εi = d̂i − di, the estimate of the ranging error
by ε̂i, the channel condition between the agent and anchor
i by λi ∈ {LOS,NLOS}, and the estimate of the channel
condition by λ̂i. The mitigated distance estimate of di is
d̂mi = d̂i − ε̂i. The residual ranging error after mitigation is
defined as εmi = d̂mi − di.
Given a set of at least three distance estimates, the agent

will then determine its position. While there are numerous
positioning algorithms, we focus on the least squares (LS)
criterion, due to its simplicity and because it makes no
assumptions regarding ranging errors. The agent can infer its
position by minimizing the LS cost function

p̂ = arg min
p

∑
(pi,d̂i)∈S

(
d̂i − ‖p− pi‖

)2

. (1)

Note that we have introduced the concept of the set of useful
neighbors S, consisting of couples

(
pi, d̂i

)
. The optimization

problem (1) can be solved numerically using steepest descent.

B. Sources of Error

The localization algorithm will lead to erroneous results
when the ranging errors are large. In practice the estimated
distances are not equal to the true distances, because of a
number of effects including thermal noise, multipath propa-
gation, interference, and ranging algorithm inaccuracies. Ad-
ditionally, the direct path between requester and responder
may be obstructed, leading to NLOS propagation. In NLOS
conditions, the direct path is either attenuated due to through-
material propagation, or completely blocked. In the former
case, the distance estimates will be positively biased due to
the reduced propagation speed (i.e., less than the expected
speed of light, c). In the latter case the distance estimate is
also positively biased, as it corresponds to a reflected path.
These bias effects can be accounted for in either the ranging
or localization phase.
In the remainder of this paper, we focus on techniques that

identify and mitigate the effects of NLOS signals during the
ranging phase. In NLOS identification, the terms in (1) corre-
sponding to NLOS distance estimates are omitted. In NLOS
mitigation, the distance estimates corresponding to NLOS
signals are corrected for improved accuracy. The localization
algorithm can then adopt different strategies, depending on the
quality and the quantity of available range estimates.

III. EXPERIMENTAL ACTIVITIES

This section describes the UWB LOS/NLOS measurement
campaign performed at the Massachusetts Institute of Tech-
nology by the Wireless Communication and Network Sciences
Laboratory during Fall 2007.

A. Overview

The aim of this experimental effort is to build a large
database containing a variety of propagation conditions in
the indoor office environment. The measurements were made
using two FCC-compliant UWB radios. These radios repre-
sent off-the-shelf transceivers and therefore an appropriate
benchmark for developing techniques using currently available
technology. The primary focus is to characterize the effects of
obstructions. Thus, measurement positions (see Fig. 1) were
chosen such that half of the collected waveforms were cap-
tured in NLOS conditions. The distance between transmitter
and receiver varies widely, from roughly 0.6 m up to 18 m,
to capture a variety of operating conditions.
Several offices, hallways, one laboratory, and a large lobby

constitute the physical setting of this campaign. While the
campaign was conducted in one particular indoor office envi-
ronment, because of the large number of measurements and
the variety of propagation scenarios encountered, we expect
that our results are applicable in other office environments. The
physical arrangement of the campaign is depicted in Fig. 1.
In each measurement location, the received waveform and

the associated range estimate, as well as the actual distance are
recorded. The waveforms are then post-processed in order to
reduce dependencies on the specific algorithm and hardware,
e.g., on the leading edge detection (LED) algorithm embedded
in the radios.
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Fig. 1. Measurements were taken in clusters over several different rooms and hallways to capture different propagation conditions.

B. Experimental Apparatus

The commercially-available radios used during the data
collection process are capable of performing communications
and ranging using UWB signals. The radio complies with
the emission limit set forth by the FCC [37]. Specifically,
the 10 dB bandwidth spans from 3.1 GHz to 6.3 GHz. The
radio is equipped with a bottom fed planar elliptical antenna.
This type of dipole antenna is reported to be well matched
and radiation efficient. Most importantly, it is omni-directional
and thus suited for ad-hoc networks with arbitrary azimuthal
orientation [38]. Each radio is mounted on the top of a plastic
cart at a height of 90 cm above the ground. The radios perform
a round-trip time-of-arrival (RTOA) ranging protocol1 and are
capable of capturing waveforms while performing the ranging
procedure. Each waveform r(t) captured at the receiving radio
is sampled at 41.3 ps over an observation window of 190 ns.

C. Measurement Arrangement

Measurements were taken at more than one hundred points
in the considered area. A map, depicting the topological
organization of the clusters within the building, is shown

1RTOA allows ranging between two radios without a common time
reference; and thus alleviates the need for network synchronization.

Fig. 2. The measurement setup for collecting waveforms between D675CA
and H6 around the corner of the WCNS Laboratory.

in Fig. 1, and a typical measurement scenario is shown in
Fig. 2. Points are placed randomly, but are restricted to areas
which are accessible by the carts. The measurement points are
grouped into non-overlapping clusters, i.e., each point only
belongs to a single cluster. Typically, a cluster corresponds
to a room or a region of a hallway. Within each cluster,
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measurements between every possible pair of points were
captured. When two clusters were within transmission range,
every inter-cluster measurement was collected as well. Overall,
more than one thousand unique point-to-point measurements
were performed. For each pair of points, several received
waveforms and distance estimates are recorded, along with the
actual distance. During each measurement the radios remain
stationary and care is taken to limit movement of other objects
in the nearby surroundings.

D. Database

Using the measurements collected during the measurement
phase, a database was created and used to develop and
evaluate the proposed identification and mitigation techniques.
It includes 1024 measurements consisting of 512 waveforms
captured in the LOS condition and 512 waveforms captured
in the NLOS condition. The term LOS is used to denote the
existence of a visual path between transmitter and receiver, i.e.,
a measurement is labeled as LOS when the straight line be-
tween the transmitting and receiving antenna is unobstructed.
The ranging estimate was obtained by an RTOA algorithm
embedded on the radio. The actual position of the radio
during each measurement was manually recorded, and the
ranging error was calculated with the aid of computer-aided
design (CAD) software. The collected waveforms were then
processed to align the first path in the delay domain using a
simple threshold-based method. The alignment process creates
a time reference independent of the LED algorithm embedded
on the radio.

IV. NLOS IDENTIFICATION AND MITIGATION

The collected measurement data illustrates that NLOS prop-
agation conditions significantly impact ranging performance.
For example, Fig. 3 shows the empirical CDFs of the ranging
error over the ensemble of all measurements collected under
the two different channel conditions. In LOS conditions a
ranging error below one meter occurs in more than 95% of
the measurements. On the other hand, in NLOS conditions a
ranging error below one meter occurs in less than 30% of the
measurements.
Clearly, LOS and NLOS range estimates have very dif-

ferent characteristics. In this section, we develop techniques
to distinguish between LOS and NLOS situations, and to
mitigate the positive biases present in NLOS range estimates.
Our techniques are non-parametric, and rely on least-squares
support-vector machines (LS-SVM) [39], [40]. We first de-
scribe the features for distinguishing LOS and NLOS situa-
tions, followed by a brief introduction to LS-SVM. We then
describe how LS-SVM can be used for NLOS identification
and mitigation in localization applications, without needing
to determine parametric joint distributions of the features for
both the LOS and NLOS conditions.

A. Feature Selection for NLOS Classification

We have extracted a number of features, which we expect
to capture the salient differences between LOS and NLOS
signals, from every received waveform r(t). These features
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Fig. 3. CDF of the ranging error for the LOS and NLOS condition.

were selected based on the following observations: (i) in
NLOS conditions, signals are considerably more attenuated
and have smaller energy and amplitude due to reflections
or obstructions; (ii) in LOS conditions, the strongest path
of the signal typically corresponds to the first path, while
in NLOS conditions weak components typically precede the
strongest path, resulting in a longer rise time; and (iii) the root-
mean-square (RMS) delay spread, which captures the temporal
dispersion of the signal’s energy, is larger for NLOS signals.
Fig. 4 depicts two waveforms received in the LOS and NLOS
condition supporting our observations. We also include some
features that have been presented in the literature. Taking these
considerations into account, the features we will consider are
as follows:

1) Energy of the received signal:

Er =

+∞∫
−∞

|r(t)|2 dt (2)

2) Maximum amplitude of the received signal:

rmax = max
t

|r (t)| (3)

3) Rise time:
trise = tH − tL (4)

where

tL = min {t : |r(t)| ≥ ασn}
tH = min {t : |r(t)| ≥ βrmax} ,

and σn is the standard deviation of the thermal noise.
The values of α > 0 and 0 < β ≤ 1 are chosen
empirically in order to capture the rise time; in our case,
we used α = 6 and β = 0.6.

4) Mean excess delay:

τMED =

+∞∫
−∞

tψ(t) dt (5)

where ψ(t) = |r (t)|2 /Er.
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Fig. 4. In some situations there is a clear difference between LOS (upper
waveform) and NLOS (lower waveform) signals.

5) RMS delay spread:

τRMS =

+∞∫
−∞

(t− τMED)2 ψ(t) dt (6)

6) Kurtosis:

κ =
1

σ4
|r|T

∫
T

[|r(t)| − μ|r|
]4
dt (7)

where

μ|r| =
1
T

∫
T

|r(t)| dt

σ2
|r| =

1
T

∫
T

[|r(t)| − μ|r|
]2
dt .

B. Least Squares SVM

The SVM is a supervised learning technique used both for
classification and regression problems [41]. It represents one
of the most widely used classification techniques because of its
robustness, its rigorous underpinning, the fact that it requires
few user-defined parameters, and its superior performance
compared to other techniques such as neural networks. LS-
SVM is a low-complexity variation of the standard SVM,
which has been applied successfully to classification and
regression problems [39], [40].
1) Classification: A linear classifier is a function R

n →
{−1,+1} of the form

l (x) = sign [y (x)] (8)

with
y (x) = wTϕ (x) + b (9)

where ϕ(·) is a predetermined function, and w and b are
unknown parameters of the classifier. These parameters are de-
termined based on the training set {xk,lk}N

k=1, where xk ∈ R
n

and lk ∈ {−1,+1} are the inputs and labels, respectively. In
the case where the two classes can be separated the SVM
determines the separating hyperplane which maximizes the

margin between the two classes.2 Typically, most practical
problems involve classes which are not separable. In this
case, the SVM classifier is obtained by solving the following
optimization problem:

arg min
w,b,ξ

1
2
‖w‖2 + γ

N∑
k=1

ξk (10)

s.t. lky (xk) ≥ 1 − ξk, ∀k (11)

ξk ≥ 0, ∀k, (12)

where the ξk are slack variables that allow the SVM to
tolerate misclassifications and γ controls the trade-off between
minimizing training errors and model complexity. It can be
shown that the Lagrangian dual is a quadratic program (QP)
[40, eqn. 2.26]. To further simplify the problem, the LS-SVM
replaces the inequality (11) by an equality:

arg min
w,b,e

1
2
‖w‖2 + γ

1
2

N∑
k=1

e2k (13)

s.t. lky (xk) = 1 − ek, ∀k. (14)

Now, the Lagrangian dual is a linear program (LP) [40, eqn.
3.5], which can be solved efficiently by standard optimization
toolboxes. The resulting classifier can be written as

l (x) = sign

[
N∑

k=1

αklkK (x,xk) + b

]
, (15)

where αk, the Lagrange multipliers, and b are found from the
solution of the Lagrangian dual. The function K (xk,xl) =
ϕ (xk)T ϕ (xl) is known as the kernel which enables the SVM
to perform nonlinear classification.
2) Regression: A linear regressor is a function R

n → R of
the form

y (x) = wTϕ (x) + b (16)

where ϕ(·) is a predetermined function, and w and b are
unknown parameters of the regressor. These parameters are
determined based on the training set {xk,yk}N

k=1, where
xk ∈ R

n and yk ∈ R are the inputs and outputs, respectively.
The LS-SVM regressor is obtained by solving the following
optimization problem:

arg min
w,b,e

1
2
‖w‖2 + γ

1
2
‖e‖2 (17)

s.t. yk = y (xk) + ek, ∀k, (18)

where γ controls the trade-off between minimizing training
errors and model complexity. Again, the Lagrangian dual is
an LP [40, eqn. 3.32], whose solution results in the following
LS-SVM regressor

y (x) =
N∑

k=1

αkK (x,xk) + b . (19)

2The margin is given by 1/ ‖w‖, and is defined as the smallest distance
between the decision boundary wT ϕ (x) + b = 0 and any of the training
examples ϕ(xk).
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C. LS-SVM for NLOS Identification and Mitigation

We now apply the non-parametric LS-SVM classifier to
NLOS identification, and the LS-SVM regressor to NLOS
mitigation. We use 10-fold cross-validation3 to assess the
performance of our features and the SVM. Not only are we
interested in the performance of LS-SVM for certain features,
but we are also interested in which subsets of the available
features give the best performance.
1) Classification: To distinguish between LOS and NLOS

signals, we train an LS-SVM classifier with inputs xk and
corresponding labels lk = +1 when λk = LOS and lk = −1
when λk = NLOS. The input xk is composed of a subset
of the features given in Section IV-A. A trade-off between
classifier complexity and performance can be made by using
a different size feature subset.
2) Regression: To mitigate the effect of NLOS propagation,

we train an LS-SVM regressor with inputs xk and corre-
sponding outputs yk = εk associated with the NLOS signals.
Similar to the classification case, xk is composed of a subset
of features, selected from those given in Section IV-A and the
range estimate d̂k. Again, the performance achieved by the
regressor will depend on the size of the feature subset and the
combination of features used.

V. LOCALIZATION STRATEGIES

Based on the LS-SVM classifier and regressor, we can
develop the following localization strategies: (i) localization
via identification, where only classification is employed; (ii)
localization via identification and mitigation, where the re-
ceived waveform is first classified and error mitigation is
performed only on the range estimates from those signals
identified as NLOS; and (iii) a hybrid approach which discards
mitigated NLOS range estimates when a sufficient number of
LOS range estimates are present.

A. Strategy 1: Standard

In the standard strategy, all the range estimates d̂i from
neighboring anchor nodes are used by the LS algorithm (1)
for localization. In other words,

SS =
{(

pi, d̂i

)
: 1 ≤ i ≤ Nb

}
. (20)

B. Strategy 2: Identification

In the second strategy, waveforms are classified as LOS or
NLOS using the LS-SVM classifier. Range estimates are used
by the localization algorithm only if the associated waveform
was classified as LOS, while range estimates from waveforms
classified as NLOS are discarded:

SI =
{(

pi, d̂i

)
: 1 ≤ i ≤ Nb, λ̂i = LOS

}
. (21)

Whenever the cardinality of SI is less than three, the agent is
unable to localize.4 In this case, we set the localization error
to +∞.
3In K-fold cross-validation, the dataset is randomly partitioned into K

parts of approximately equal size, each containing 50% LOS and 50% NLOS
waveforms. The SVM is trained on K − 1 parts and the performance is
evaluated on the remaining part. This is done a total of K times, using each
of the K parts exactly once for evaluation and K−1 times for training.
4Note that three is the minimum number of anchor nodes needed to localize

in two-dimensions.

TABLE I
FALSE ALARM PROBABILITY (PF), MISSED DETECTION PROBABILITY
(PM), AND OVERALL ERROR PROBABILITY (PE) FOR DIFFERENT NLOS
IDENTIFICATION TECHNIQUES. THE SET Fi

I DENOTES THE SET OF i
FEATURES WITH THE SMALLEST PE USING THE LS-SVM TECHNIQUE.

Identification Technique PF PM PE

Parametric technique given in [42] 0.184 0.143 0.164

LS-SVM using features from [42] 0.129 0.152 0.141

F1
I = {rmax} 0.137 0.123 0.130

F2
I = {rmax, trise} 0.092 0.109 0.100

F3
I = {Er, trise, κ} 0.082 0.090 0.086

F4
I = {Er, rmax, trise, κ} 0.082 0.090 0.086

F5
I = {Er, rmax, trise, τMED, κ} 0.086 0.090 0.088

F6
I = {Er, rmax, trise, τMED, τRMS, κ} 0.092 0.090 0.091

C. Strategy 3: Identification and Mitigation

This strategy is an extension to the previous strategy, where
the received waveform is first classified as LOS or NLOS, and
then the mitigation algorithm is applied to those signals with
λ̂i = NLOS. For this case SIM = SI ∪ SM, where

SM =
{(

pi, d̂
m
i

)
: 1 ≤ i ≤ Nb, λ̂i = NLOS

}
, (22)

and the mitigated range estimate d̂mi is described in Sec. II.
This approach is motivated by the observation that mitigation
is not necessary for range estimates associated with LOS
waveforms, since their accuracy is sufficiently high.

D. Strategy 4: Hybrid Identification and Mitigation

In the hybrid approach, range estimates are mitigated as in
the previous strategy. However, mitigated range estimates are
only used when less than three LOS anchors are available:5

SH =

{
SI if |SI| ≥ 3
SIM otherwise

(23)

This approach is motivated by the fact that mitigated range es-
timates are often still less accurate than LOS range estimates.
Hence, only LOS range estimates should be used, unless there
is an insufficient number of them to make an unambiguous
location estimate.

VI. PERFORMANCE EVALUATION AND DISCUSSION

In this section, we quantify the performance of the LS-SVM
classifier and regressor from Section IV, as well as the four
localization strategies from Section V. We will first consider
identification, then mitigation, and finally localization. For
every technique, we will provide the relevant performance
measures as well as the quantitative details of how the results
were obtained.

5In practice the angular separation of the anchors should be sufficiently
large to obtain an accurate estimate. If this is not the case, more than three
anchors may be needed.
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TABLE II
MEAN AND RMS VALUES OF RRE FOR LS-SVM REGRESSION-BASED
MITIGATION. THE SET Fi

M DENOTES THE SET OF i FEATURES WHICH
ACHIEVES THE MINIMUM RMS RRE.

Mitigation Technique with
LS-SVM Regression Mean [m] RMS [m]

No Mitigation 2.6322 3.589

F1
M = {d̂} -0.0004 1.718

F2
M = {κ, d̂} -0.0042 1.572

F3
M = {trise, κ, d̂} 0.0005 1.457

F4
M = {trise, τMED, κ, d̂} 0.0029 1.433

F5
M = {Er, trise, τMED , κ, d̂} 0.0131 1.425

F6
M = {Er, trise, τMED , τRMS, κ, d̂} 0.0181 1.419

F7
M = {Er, rmax, trise, τMED, τRMS, κ, d̂} 0.0180 1.425

A. LOS/NLOS Identification

Identification results, showing the performance6 for each
feature set size, are given in Table I. For the sake of compari-
son, we also evaluate the performance of the parametric identi-
fication technique from [42], which relies on three features: the
mean excess delay, the RMS delay spread, and the kurtosis of
the waveform. For fair comparison, these features are extracted
from our database. The performance is measured in terms of
the misclassification rate: PE = (PF + PM) /2, where PF is the
false alarm probability (i.e., deciding NLOS when the signal
was LOS), and PM is the missed detection probability (i.e.,
deciding LOS when the signal was NLOS). The table only lists
the feature sets which achieved the minimum misclassification
rate for each feature set size.
We observe that the LS-SVM, using the three features from

[42], reduces the false alarm probability compared to the
parametric technique. It was shown in [43] that the features
from [42], in fact, give rise to the worst performance among
all possible sets of size three considered here. Using the
features from Section IV-A and considering all feature set
sizes, our results indicate that the feature set of size three,
F3

I = {Er, trise, κ}, provides the best performance. Compared
to the parametric technique, this set reduces both the false
alarm and missed detection probabilities and achieves a correct
classification rate of above 91%. In particular, among all
feature sets of size three (results not shown, see [43]), there are
seven sets that yield a PE of roughly 10%. All seven of these
sets have trise in common, while four have rmax in common,
indicating that these two features play an important role. Their
importance is also corroborated by the presence of rmax and
trise in the selected sets listed in Table I. For the remainder of
this paper we will use the feature set F3

I for identification.

B. NLOS Mitigation

Mitigation results, showing the performance7 for different
feature set sizes are given in Table II. The performance is
measured in terms of the root mean square residual ranging

6We have used an RBF kernel of the form K (x,xk) =

exp
“
−‖x− xk‖2

”
and set γ = 0.1. Features are first converted to the

log domain in order to reduce the dynamic range.
7Here we used a kernel given by K (x,xk) = exp

“
−‖x − xk‖2 /162

”

and set γ = 10. Again, features are first converted to the log domain.
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Fig. 5. CDF of the ranging error for the NLOS case, before and after
mitigation.

error (RMS RRE):
√

1/N
∑N

i=1 (εmi )2. A detailed analysis of
the experimental data indicates that large range estimates are
likely to exhibit large positive ranging errors. This means that
d̂ itself is a useful feature, as confirmed by the presence of
d̂ in all of the best feature sets listed in the table. Increasing
the feature set size can further improve the RMS RRE. The
feature set of size six, F6

M = {Er, trise, τMED, τRMS, κ, d̂}, offers
the best performance. For the remainder of this paper, we will
use this feature set for NLOS mitigation. Fig. 5 shows the
CDF of the ranging error before and after mitigation using this
feature set. We observe that without mitigation around 30% of
the NLOS waveforms achieved an accuracy of less than one
meter (|ε| < 1). Whereas, after the mitigation process, 60%
of the cases have an accuracy less than 1 m.

C. Localization Performance

1) Simulation Setup: We evaluate the localization perfor-
mance for fixed number of anchors (Nb) and a varying prob-
ability of NLOS condition 0 ≤ PNLOS ≤ 1. We place an agent
at a position p = (0, 0). For every anchor i (1 ≤ i ≤ Nb),
we draw a waveform from the database: with probability
PNLOS we draw from the NLOS database and with probability
1−PNLOS from the LOS database. The true distance di corre-
sponding to that waveform is then used to place the ith anchor
at position pi = (di sin(2π(i−1)/Nb), di cos(2π(i−1)/Nb)),
while the estimated distance d̂i is provided to the agent. This
creates a scenario where the anchors are located at different
distances from the agent with equal angular spacing. The agent
estimates its position, based on a set of useful neighbors S,
using the LS algorithm from Section II. The arithmetic mean8

of the anchor positions is used as the initial estimate of the
agent’s position.
2) Performance Measure: To capture the accuracy and

availability of localization, we introduce the notion of outage
probability. For a certain scenario (Nb and PNLOS) and a

8This is a fair setting for the simulation, as all the strategies are initialized in
the same way. Indeed, despite the identical initialization, strategies converge
to significantly different final position estimates. In addition, we note that
such an initial position estimate is always available to the agent.
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Fig. 6. Outage probability for Nb = 5 anchors, with PNLOS = 0.2.

certain allowable error eth (say, 2 m), the agent is said to
be in outage when its position error ‖p − p̂‖ exceeds eth. The
outage probability is then given by

Pout (eth) = E
{
�{‖p−p̂‖>eth}

}
, (24)

where �{P} is the indicator function, which, for a proposition
P , is zero when P is false and one otherwise. The outage
probability can then be determined through Monte Carlo
simulations.
3) Results: Based on the simulation setup described above,

we now evaluate the performance with Nb = 5 anchors
for different values of PNLOS. The outage probability as a
function of the allowable error eth for different strategies is
plotted in Figs. 6 and 7. The possibility of NLOS anchors
can deteriorate the performance as shown in Fig. 6, where
PNLOS = 0.2 (corresponding to the scenario where there is, on
average, one NLOS anchor). When identification is employed,
only the signals identified as LOS are used. We observe that
the standard strategy suffers from performance degradation
compared to the identification strategy. The identification
strategy leads to an error floor phenomenon due to the fact
that less than three anchors are available with probability of
about 0.06. Identification with mitigation does not suffer from
the error floor, since all the anchors are utilized. However
this leads to performance degradation for allowable errors
below 1.5 m, since the identification with mitigation strategy
utilizes all Nb anchors, including those identified as NLOS.
This may be attributed to the fact that the ranging error
is not completely eliminated by this strategy, although it is
significantly reduced compared to the standard strategy. The
hybrid approach combines the benefits of the previous two
strategies, leading to the lowest outage probability for all
allowable errors.
When PNLOS = 0.8 (Fig. 7), the identification strategy

does not perform well, since the probability that less than
three LOS anchors are available is about 0.94. The standard
strategy does not fare much better, and both are outperformed
by the identification and mitigation strategy. Again, the hybrid
strategy leads to the best performance. We observe that as
PNLOS tends to one, the latter two strategies will have very
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Fig. 7. Outage probability for Nb = 5 anchors, with PNLOS = 0.8.
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similar performance. This is due to the fact that most of the
anchors will be in a NLOS condition, yielding SH ≈ SIM.
Finally, in Fig. 8, we depict the outage probability as a

function of PNLOS for a fixed value of eth = 2 m. The
identification strategy is useful only when PNLOS is small, due
to the error floor phenomenon. Identification with mitigation
dramatically improves the performance, giving an outage prob-
ability of around 10% even when all the anchors are in NLOS.
The hybrid approach can further improve the performance,
especially when a significant fraction of anchors are in LOS
conditions.

VII. CONCLUSION

In this paper, we presented a novel approach to deal with
non-line-of-sight propagation that relies solely on features
extracted from the received waveform. This technique does
not require formulation of explicit statistical models for the
features. To validate these techniques in realistic scenarios,
we performed an extensive indoor measurement campaign
using FCC-compliant UWB radios. We then put forth sev-
eral features that capture the salient properties of LOS and
NLOS signals based on analysis of our measured waveforms.
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Using SVMs, we developed techniques that are capable of
distinguishing LOS/NLOS propagation and further mitigating
the ranging error in NLOS conditions. Our results revealed
that the proposed SVM classifier outperforms previous para-
metric techniques from the literature, and the proposed SVM
regressor improves ranging accuracy under NLOS conditions.
We observe that our non-parametric NLOS identification and
mitigation techniques can: (i) deal with highly correlated
features without making assumptions about underlying sta-
tistical models; and (ii) significantly improve the localization
performance in realistic environments.
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[42] I. Güvenç, C.-C. Chong, F. Watanabe, and H. Inamura, “NLOS iden-
tification and weighted least-squares localization for UWB systems
using multipath channel statistics,” EURASIP J. on Advances in Signal
Processing, vol. 2008, pp. 1–14, 2008.
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