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ABSTRACT

An emergent technique known as 21-cm tomography has the potential to become the most
sensitive tool we have for probing the early universe. It is expected to shed light on some of
the most pressing questions in modern physics—such as the nature of dark matter. However,
there are significant technical challenges involved in developing an instrument capable of
21-cm tomography. Radio telescopes are particularly well suited to the task. However, the
cost of scaling a traditional radio telescope to achieve the necessary sensitivity is prohibitive.
The Omniscope is an elegant solution to this problem. It is a new type of radio telescope
that scales significantly better than traditional large array telescopes by using an innovative
computational framework. I detail the implementation of many of the major subsystems
of one of the very first Omniscopes ever built—including the digital correlator, the direct
sequence spread spectrum channel encoding system and powerful system and data analysis
software.
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Chapter 1

Background

1.1 Introduction

An emerging technique known as 21-cm tomography, which maps neutral hydrogen in the
distant universe via its emission of radio waves, has the potential to become the most
sensitive tool in observational cosmology and is expected to help us better understand dark
matter, dark energy, neutrinos and the origin of our universe. However, to observe the 21-cm
background, we need a different type of telescope than the traditional radio interferometers

of today.

Unlike the radio astronomy of the past, the goal of 21-cm tomography is not having the
ability to discern stellar objects (which requires very fine angular resolution), but having
the sensitivity to detect neutral hydrogen in spite of foreground objects. While current
designs could be scaled to increase sensitivity, doing so would not be cost effective. This
has prompted the need for a different type of telescope that can sacrifice angular resolution

for increased sensitivity while maintaining a reasonable cost.

The Omniscope is precisely such a solution. By restricting array elements to lie within
regular hierarchical grids, the Omniscope can replace the pairwise correlation step in a
traditional radio interferometer (which multiplies the signals from all antenna pairs) with a
more efficient Fast Fourier Transform (FFT). This reduces the computational cost (i.e. the
cost of computational hardware and resources) from a scaling of O(N?) to a scaling of

O(N log N) compared to a traditional radio interferometer (N is the number of antennas).
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Figure 1-1: Time-line for the evolution of the universe [15]. On the far left is the Big
Bang, marking the creation of the universe almost 14 billion years ago. The period between
300,000 and 150 million years marks the cosmic dark ages that we hope to observe using
21-cm tomography.

1.2 21-cm Tomography

1.2.1 Inflationary Cosmology

Figure 1-1 shows a rough picture of the evolution of our universe as we understand it today.
Astronomy has so far been one of most important tools we have for probing the early
universe. When we view a star that is 3 billion light-years away, we are not observing it
as it is today, but as it was 3 billion years ago, when the light we receive was first created.
Much of radio astronomy for the last half century has been done for the purpose of resolving
these light sources (which individually occupy a very small fraction of the sky), so that we
can probe the evolution of the universe after the formation of the first stars.

In recent years, the more pressing questions in physics have been focused on the state
of the universe in its much younger stages. Moments after the Big Bang. the universe was
filled with hot hydrogen plasma, in which matter (hydrogen) and energy (photons) were
roughly in thermal equilibrium. Since the photons were scattered by the free electrons, the
universe was opaque at this time. As the universe expanded, it cooled so that this balance
was eventually broken. The photons nb longer possessed enough energy to remove electrons
from the hydrogen atoms. Thus, all matter became a transparent gas, through which we can

observe the photons that were previously obscured. This period is known as recombination.
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Because of recombination, we observe the Cosmic Microwave Background (CMB) at the
furthest depths of our observable universe. The observation of the CMB ([13, 5]) has been
hailed as one of the most important accomplishments in modern astronomy.

There remains, however, one period in the time-line of the universe that has been rela-
tively difficult to accurately observe. Following recombination, the universe was filled with
neutral hydrogen and remained so for about 150 million years until the period of reioniza-
tion (in which the first large objects were formed that could reionize the hydrogen). This
period of time between recombination and reionization is known as the cosmic dark ages

and is so named because matter in the universe did not give off visible light at this time.

1.2.2 Hyperfine Splitting

Fortunately, due to a quantum mechanical process in neutral hydrogen called hyperfine
splitting, there is a way to probe the cosmic dark ages. In quantum mechanics, spin is an
elementary vector quantity of a particle (similar to charge or mass) that characterizes the
magnetic dipole moment generated by the particle. Just as classical dipoles favor aligning
with a surrounding magnetic field, particles favor aligning their spins with surrounding
magnetic fields. For this reason, it is energetically favorable for the electron to have a spin
that is anti-parallel to that of the proton.

The energy difference between the two configurations (parallel and anti-parallel spin
alignment) is relatively small. Therefore, when an electron in a neutral hydrogen atom
flips its spin to enter a more favorable configuration, it emits a photon with a relatively
large wavelength. The wavelength associated with the electron’s spin flipping in neutral
hydrogen is approximately 21 c¢m. It is this spectral emission line that we will use to
observe the distribution of matter in the cosmic dark ages. The process of reconstructing the
distribution of matter by observing the 21-cm emission line is known as 21-cm tomography.

Because the universe is constantly expanding, photons emitted at time periods in the
past undergo stretching as the space they occupy expands. This causes them to be red-
shifted, or reduced in frequency. If we know the precise frequency of the photon when it
was emitted, then we can use the amount of red-shift to determine when the photon was
emitted (equivalently, how distant the source is). Photons emitted at earlier times (greater
distances) will have experienced more expansion and will therefore experience more red-

shift. Thus, by observing particular narrow frequency bands, we can localize specific time

15



periods during the cosmic dark ages. A 21 cm wavelength photon will have a frequency of
approximately 1.4 GHz. By the time it reaches current-day Earth, it will have been red-
shifted to anywhere from 9 MHz to 200 MHz, depending on what period within the dark
ages it was emitted. Observing spectral emissions near 200 MHz, therefore, will give us the

distribution of matter in the universe as the first stars were beginning to form.

1.2.3 Why do we care?

There are many other important questions in modern physics (other than the origins of
the universe) on which 21-cm tomography can shed light. For example, the origin and
nature of dark matter is one of the most puzzling open questions in modern physics. Dark
matter is an exotic form of matter that can so far only be observed by its (significant)
gravitational influence on stellar objects. It played a large role in driving reionization, since
reionization occurs when the gravitational pressure in clumped regions of matter generates
enough energy to reionize hydrogen. Thus, it is useful to observe the behavior of the
distribution of matter during the time periods leading up to reionization. The dependence
of this cosmic clustering on both scale and time encodes information not only about dark
matter, but also about dark energy and the inflation of our early universe. It is this
clustering, (specifically, the spatial and temporal correlations of fluctuations in the neutral
hydrogen signal) that we wish to measure with 21-cm tomography. Other applications

include measuring the cosmological constant [8].

1.2.4 Technical Considerations for Performing 21-cm Tomography

Because the red-shifted 21-cm emission line lies within the radio frequency range, radio
astronomy is an important tool for preforming 21-cm tomography. However, it provides
a unique set of technical challenges when compared to radio astronomy of the past. In
particular, the signals coming from the cosmic dark ages are as many as four orders of

magnitude smaller than the foreground “noise” (stars, galaxies and nebulae).

1.3 Radio Interferometry

Because 21-cm wavelength radiation falls within the radio frequency band, it is natural to

turn to radio telescopes to observe it. For this reason, it is helpful to develop the principles
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behind how radio telescopes function—particularly, the radio interferometer. I describe the
basic mathematics behind radio interferometry and how it allows us to form images of the
sky. This development is largely based on the exposition in [16]. I then use this as a building

block for describing the principles behind Fast Fourier Transform Telescopes.

1.3.1 From Baselines to Pixels

Radio astronomy is concerned with measuring the electromagnetic emissions of astronomical
sources and synthesizing images or maps of them. Because of the nature of the processes that
generate this radiation, astronomical sources are spatially incoherent (with the exception
of certain bodies, such as pulsars and masers). This allows for the use of a very powerful

relationship in coherence theory—the Van Cittert-Zernike theorem.

The Van-Cittert Zernike Theorem

Suppose we wish to observe a source S at a narrow frequency band centered at v with
bandwidth Av < v. Furthermore, assume that S subtends a small enough angle in the
sky that the sky can be considered essentially flat within the extent of the source (the flat-
sky approximation). We wish to recover the intensity map I(l,m) of the electromagnetic
radiation as a function of the direction cosines [ and m. The direction cosines are defined
with respect to a coordinate system perpendicular to the line of sight. If a point has
spherical coordinates @ (with respect to the zenith) and ¢ (the azimuth), then
l sin(f) cos(¢p)

m sin(6) sin(yp)
Suppose we measure the electric field induced by the source at two points P; and P in
the plane perpendicular to the line of sight to the source. Let ry = (z1,41) and ry = (2, y2)
be the positions of P; and P» on this plane. Define

) _ (e me)/A) (1.1)

v (y2 —y1)/A

The numbers w and v represent the separation in wavelengths between P and P, and

we will see that these represent spatial frequencies. Let Ei(t) and E3(t) be the measured
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electric fields at P; and P, represented as phasors (i.e. E(t) = |E|e!“**+9) where |E| is the
magnitude of the field, w = 27w is the frequency and ¢ is the phase). Then the mutual

coherence function I'13(u, v, 7) is defined as the cross-correlation of F;(t) and Ea(t),
1 /T
Fia(u,v,7) = (B2 () E5(t — 7)) = lim -——/ E{(t)E5(t — 1) dt. (1.2)
T—o0 2T -T

It turns out that we can use I'12(u,v,7) to obtain the 2D Fourier components of I(l,m),
which are known as the complezr visibilities. We can now state the Van Cittert-Zernike

theorem as follows.

Theorem 1 (Van Cittert-Zernike Theorem). The mutual coherence function for an inco-
herent source is equal to the complex visibility of the source when observed in the far field.

That is,
Tya(u, v, 0) = Dy (u, v) = / / I(l, m)e2miEtm) gy g (1.3)
S

For a proof of this theorem, see [16]. The theorem relates the mutual coherence function
to the two-dimensional Fourier transform of the intensity map and provides us with a
powerful means for reconstructing I(l,m). In particular, if we can sample I'1o(u,v) at

sufficiently many points in the u-v plane, we can recover I(I,m) by inverse Fourier methods.

Traditional Radio Astronomy

Traditional radio astronomy attempts to reconstruct I';o(u,v) as accurately as possible so
that (1.3) may be inverted and I(l,m) can be faithfully recovered. Radio interferometers
are instruments for computing (1.2). The basic building block of a radio interferometer
is shown in Figure 1-2. Each baseline measured by the instrument represents a sample
point (u,v) of the complex visibility function of a patch of sky—equivalent to the mutual
coherence function of the two antennas as shown by the van Cittert-Zernike theorem. The
visibility function is computed by sending the signals from each pair of antennas through a
correlator, which is a subsystem that multiplies and integrates the two signals over time.
In order to measure many baselines at once, most radio telescopes are formed by a
collection or array of antennas. Furthermore, as the Earth rotates, the baseline vectors

change orientation with respect to the sky, so that even more baselines can be measured by
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. Correlator

Visibility

Figure 1-2: Correlator for a pair of antennas. The signal from the two antennas (separated
by a vector known as the baseline) is multiplied and integrated over a sufficiently large time
T to produce a visibility.

combining measurements at different times of day.

Radio astronomy has traditionally been concerned with resolving stellar objects that
subtend very small solid angles on the celestial sphere. In order to resolve them accurately,
a large number of unique baselines are necessary. Furthermore, since the visibility function
is the spatial Fourier transform of the intensity map, each baseline represents a particular
spatial frequency component of the sky map. In order to resolve fine structures (such
as distant sources within small solid angles), large baselines are necessary. Hence, the
resolution of a radio interferometer is a function of the baseline distribution that it can

measure.

Mapping Principles

In order to reveal the basic principles behind how one can recover images from radio inter-
ferometer measurements, we will simplify the problem by restricting to a one dimensional
array. We will also assume that the measured visibilities are regularly spaced on the u axis
with M baselines that are integer multiples of a distance d (which can be accomplished
by a regular linear array with separation d). By the conjugate symmetry of the mutual
coherence function, each visibility can be conjugated to produce another visibility in the
opposite position with respect to the origin. We thus have 2M + 1 points, —M, ..., M.

The Nyquist sampling theorem ([9]) can tell us what spatial information can be recovered
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from the visibilities. Specifically, it is the spacing between samples (the sampling rate) that
specifies the span of direction cosines that are measured, and it is the longest baseline that
determines how finely this interval is sampled. Under the assumptions, (1.1) allows us to

write (1.3) as

T2(u) = / ’ I(De™?milu gy, (1.4)

-L

The fact that we are sampling I'12(u) discretely implies that the intensity function (1) that
we can recover is of finite duration L. Really, this is only an issue when we are under-
sampled, because L must necessarily be less than 1 by the fact that it is a direction cosine.

The sampling period of the angular spatial frequencies v is

The finite extent of ['12(u), terminated by the longest baseline at M \/d, means that I(l) is

also a discrete signal. Hence, we can rewrite (1.4) as a discrete Fourier transform,
M .
Tipfn]= > I[mle ™.

m=—M

From the sampling theorem, we know that the width L of the image (the “bandwidth”) is

inversely related to the sampling period,

L= (i—fj) _ f;-. (1.5)

Furthermore, we can see that if we apply a inverse discrete Fourier transform to (1.4), we

recover M samples of the interval [—L, L]. Thus,

2rnA
Flg[n] = Flg(nA’U) = Flg ( W; ) and
mL md
= — | =I|{—].
t =1 (57) =1 (i)
This expression makes clear the relationship between the baseline distribution and the data

recoverable by the instrument. Baseline distributions with longer tails reveal more fine

structure, and finer baseline distributions cover a larger area of the sky. There is a limit,
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of course, to how finely distributed the baselines need to be. Indeed, the horizon lies at
direction cosines |{| = 1. Thus, by (1.5) we gain maximum coverage whenever d < A. For a
radio telescope, this means separations on the order of meters.

In practice, traditional radio telescopes have been willing to sacrifice sky coverage for
resolution. That is, long baselines have been preferred, even if they could not be placed
finely enough to cover the whole sky. These baseline distributions are coarser than A,
and as a result, suffer from the problem of aliasing. Since L < 1, the points in I[n]
represent ambiguous points in the sky. This is analogous to the phenomenon by which
higher frequencies become ambiguous with lower frequencies when a signal is sampled below
the Nyquist rate. This can be described in terms of the beam pattern of the array, which
quantifies the sensitivity of the instrument to signals coming from different directions. The
presence of aliasing implies the presence of grating lobes in this beam pattern. To overcome
the problem of aliasing, long baseline interferometers utilize parabolic dish receivers that
are highly directional and mechanically track their sources —significantly suppressing the
grating lobes. This is analogous to applying an aliasing filter to a signal, except that the

“filter” selects an interval in the space domain, rather than the frequency domain.

1.3.2 Shortcomings of Traditional Radio Telescopes

With current radio telescopes, there are many difficulties in doing 21-cm tomography. Tra-
ditional radio telescopes were originally designed with the purpose of resolving objects that
occupy a small angular fraction of the sky. To observe the cosmic dark ages, we need to
observe a faint 21-cm background in spite of these stellar objects in the foreground. As one
can imagine, it requires a remarkably sensitive instrument to be able to see 21-cm emissions
through almost 13 billion years of collective matter formation.

The sensitivity of a radio interferometer is a measure of the effect of the instrument on
the signal to noise ratio of the measurements. Specifically, it is a measure of the detector
noise with respect to the desired signal. It has been shown that the detector noise is inversely
proportional to the total collecting area of the array [17]. The form of the relationship is

N2

; SYs
Cnoise m, (1.6)

where Tys is the system temperature, A is the total collecting area of the array, f“"" is
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the fraction of the sky that is covered and 7 is the length of the integration. The sensitivity
is inversely proportional to the detector noise.

The relationship in (1.6) reveals several challenges for the traditional approach to radio
astronomy with respect to performing 21-cm tomography. In order to reach the level of
sensitivity required to discern the 21-cm spectral line, very large collecting areas are nec-
essary. The fact that f“"¢" is typically very small in traditional radio interferometers (as
we saw in the last section) worsens this yet. These problems can be solved by drastically
increasing the number of antennas—both to increase A and f°¥¢". However, this brings
about another problem in computation.

For very large N (number of antennas), the computational costs of the correlators will
dominate. This is because traditional radio interferometers are designed with the intent to
correlate all O(N?) pairs of antennas. Thus, the cost of the computational hardware needed
to build a radio interferometer scales as O(N?), which is not cost effective for the scales
that will be needed to perform 21-cm tomography (N ~ 10* — 10%). Because of this, we
must direct our efforts towards modifying the techniques that we use to do radio astronomy.

This is the inspiration behind the Omniscope.

1.4 Fast Fourier Transform Telescopes

We saw in the last section that radio telescopes can be great instruments for resolving stellar
objects in the distant universe. However, as described, traditional radio telescopes face a
significant cost barrier if they are naively re-purposed for performing 21-cm tomography.
Specifically, we need enough antennas to supply a collecting area large enough for the
required sensitivity. To accomplish this, we need a reasonable way to surmount the O(N?)
computational cost. A fast Fourier transform telescope, as described in this section, provides
an elegant solution to this problem that reduces the computational cost to O(N log N) while

maintaining increased sensitivity.

1.4.1 Principles

The concepts behind the operation of a fast Fourier transform telescope (FFTT) are similar
to those used in traditional radio telescopes in that there is a Fourier relationship between

the sky intensity map and the measured correlations. However, we will see that we can
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lift many of the approximations imposed by the traditional designs. We shall follow the

development of the FFTT algorithm given in [15] for completeness.

For a fixed frequency w = ck, we can encode the information about the electric field at
the position of a receiver (the sky signal) in a vector s(k), called the Jones vector. This
vector is two-dimensional and complex, so that it encodes the electric field components in
two orthogonal directions (polarizations). It is a quantity that is specified for each direction
(encoded in the direction of k from which the radiation is traveling). We can characterize
the response of an antenna element n to radiation from the direction k (the primary beam)
as an operator Bn(R), a 2 x 2 complex matrix, acting on s(lA<) to produced the measured
signal. Furthermore, if the antenna element is at position ry, then there is a time dependent

—i[k-rp+wt]

phase factor of e Thus, the data measured by the receiver n is,

d, = / e tlerntwlB (k)s(k) dfl.

This relationship is quite general. For a FFTT, we make the assumption that the
antenna responses are equivalent, B, = B, and that they lie on a plane, z = 0, so that

z-r, = 0. We can define

k-x r, X
q= and Xp = ,
k-y rn-y

so that, with a suitable change of variables, we can write

dn:/€—i[q-xn+wt] B(q)S(q) d2 (17)

W@

We now define the function

B(q)s(q)

s = =
B(q) P

so that it is equivalent to s(gz, @y, —[k? — g2 — ¢2]'/?) when q = |q| < k and zero otherwise
(analogously for B(q)). This is effectively windowing, beam weighting and zero-padding
the sky signal. If indeed the beam pattern B(k) vanishes below the horizon (which can

be accomplished with a ground screen), then when we limit our integration over the upper
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hemisphere, (1.7) becomes a two dimensional Fourier transform of sg(x,)e~**. That is,

dn — /e—i[q~xn+wt]sB(q) d2q — §B(Xn)€—iwt.

As we did before in developing the van Cittert-Zernike theorem, we assume that the

signals we are observing are spatially uncorrelated. Thus, when we correlate the sky signals,
<s(f<)s(f<’)f> = 5(k, k
A~ A
where 6(k, k) is the spherical é-function satisfying

/ 5(k, K )g(k) dety = g(k),

for any function g. The quantity S(R) is known as the 2 x 2 sky intensity Stokes matrix
and is the quantity of interest for radio astronomy applications of FFTTs. Therefore, when
we compute the mutual coherence function (as seen through the antenna response), we find

that

(i) = [ e-atms BOIS@BGE)

k\/k2 — 2

This is just the two-dimensional Fourier transform of the quantity

.
Safe) = 20 ZLTY,

so that
<dmd;> = Sp(Xm — Xa)- (1.8)

Hence, we have again recovered a spatial Fourier relationship between the measured
correlations and the sky signal. However, this time the relationship is exact—lacking the
flat-sky approximations that were made in the previous sections when developing traditional

radio astronomy. We can recover S(q) simply by inverse Fourier transforming (1.8) and
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computing
S(q) = kv/k* — ¢*B(a) 'Sp(a)B(a)

What this analysis has shown us is that computing the sky signal of the whole hemisphere is
not significantly more challenging than analyzing small patches. One simply needs enough

u-v plane coverage to obtain usable resolution at this scale.

1.4.2 The FFTT Correlator

The hallmark feature of an FFT telescope is its correlator. The elements in an FFTT are
arranged in a regular rectangular grid. If we imagine having a one-dimensional grid (evenly
spaced points on a line), we can imagine placing the antenna measurements in a vector
f = (f1, f2,.--, fn). Since the elements are regularly spaced, their relative positions within
the vector correspond directly to their physical separations up to a single scale factor Dy.
Because of this, we can compute all of the correlations via a convolution of f with the

reversal of itself

min{ N, N +i}
Exf)i= D> fifie
j=max{1,i+1}
Thus (f xf7),,, defined for m = —(N —1) to m = N —1, is the sum of the products of those
antenna signals separated by a distance m in f, which is precisely what we want. By the
convolution theorem, this can be efficiently computed by multiplying the Fourier transform
of f by its complex conjugate and inverse Fourier transforming. By using an FFT, we can
therefore compute the full correlations in O(N log(N)) computations rather than O(N?).
Conceptually speaking, the reason that we can perform this computation so much more
efficiently is that there are fewer data points being computed. A rectangular grid necessarily
has many baselines that are redundant, and the FFT correlator aggregates correlations
measuring the same baseline into a single data point. Traditional radio telescopes tend
to layout the elements to maximize the number of unique baselines. Based on our earlier
discussions on synthesis, this means that with an FFTT we are sacrificing resolution (by
having fewer unique baselines) for cost. However, because of the cost savings, we can have

vastly more elements in the array for the same computational cost—which could give us
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the collecting area necessary to perform 21-cm tomography. Redundancy in baselines also
gives us a novel way to calibrate the instrument that could make FFT Telescopes the most

precise instruments of their kind.

1.5 Omniscopes

Omniscopes are fast Fourier transform telescopes that expand the class of baseline dis-
tributions that can be used. They accomplish this by weakening the requirement that the
elements be located on a regular grid. As we will see, hierarchies of regular grid arrays, even
those with arbitrary shearing and rotation, are still amenable to the O(N log N) FFT cor-
relation algorithm. This concept is introduced in [14], and we shall follow this development

to introduce the principles of operation behind the Omniscope.

1.5.1 Principles

We can generalize the development of the FFTT correlator given in Section 1.4.2. Suppose
we have m unique lattice basis vectors a; € R%. In the one-dimensional case that was
developed, there was only one such vector a; = (Dyp,0), and as long as the elements were
regularly spaced, their positions could be uniquely expressed as r; = ia;. Thus, ¢ determined
its location in the vector f. If we generalize this to two-dimensions, we can introduce another
vector ag = (0, D) and uniquely express the positions of the elements as r;; = ia + ja, if
the elements lie on a regular rectangular grid. If we place the measurements of the antennas
labeled as such in a two-dimensional vector f, the baseline between element (i, j) and (k, £),
for example, maps directly to the relative positions of the elements within f via a scale
factor. We can therefore use a two dimensional convolution to compute the correlations,

min{N,N—j} min{N,N—i}

(Exf)yy = > Yo = frefries

f=max{N,j+1} k=max{N,i+1}

Thus, (f x f7);; is the sum of the products of elements separated in f by (i,j)—hence,
physically separated by the baseline (i Dy, jDo).
In general, we do not require the vectors a; to be the same magnitude or even linearly

independent (indeed, we can’t if we want more than two). As long as we can uniquely
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Figure 1-3: An example of a three-dimensional hierarchy. It is composed of 5 x 3 lattices
arranged in a 3 x 3 lattice. The lattice basis vectors describing this layout are a; = (1,0),
ay = (8,0), a3 = (40,10), ag = (0,1), a5 = (2,8) and ag = (—10,40), with 4; = 1,...,5 and
ig,...,06 = 1,...,3. (Figure from [14]).

express the position of each element in the form

d
Titin,iq = Z 1585, (1.9)
j=1
where i; are integers spanning a finite range of values, then we can use a convolution corre-
lator. By the uniqueness of (1.9), each element can be uniquely placed in a d-dimensional
vector f and computing a d-dimensional convolution will recover the correlations. That is,
(£%F7 )my ma,...,m, Tepresents the sum of the products of the measurements made by elements

separated by the baseline

d
ArmlvaV"'vmd = : :mja.]'
7=1

The class of layouts for which (1.9) is unique for some set of a; can be seen to be those
which form hierarchical lattices. Figure 1-3 shows an example of such a layout. From the

figure, it can easily be seen that the class of layouts which fit this requirement is quite large.
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Figure 1-4: Baseline distribution of the antenna layout shown in Figure 1-3. Baselines of
the same magnitude are binned together. (Figure from [14]).

1.5.2 Using Earth’s Rotation

Despite the rather large class of antenna layouts that can use an O(N log(N)) FFT cor-
relator, we cannot escape the fact that we are making a sacrifice in the number of unique
baselines that are present. However, it is possible to use the instrument to construct images
that are composed of far more baselines than are present in the static array. Because the
Earth is constantly rotating throughout the day, the baselines measured by the instrument
at one time are not the same as those measured an hour afterward (they are rotated).
Using this fact, we can cover a significantly larger part of the u-v plane by combining
measurements over a 12-hour period. Indeed, one baseline alone will effectively cover a
circle within the u-v plane. What matters, then, is the distribution of baselines that can be
provided by a particular antenna layout that is important. Figure 1-4 shows the baseline
distribution of the antenna layout in Figure 1-3. A traditional layout, looking to maximize
the number of unique baselines, may be modeled as a randomized distribution with a
particular density function. Figure 1-5 compares the distributions attainable in this manner

with those obtainable using a hierarchical layout.

1.5.3 Relevance to 21-cmm Tomography

From Figures 1-5, we can see that the sacrifice made by reducing the number of unique
baselines for a hierarchical layout is not prohibitive when Earth’s rotation is used to fill in
the u-v plane, and is in fact especially worthwhile when considering the vast computational
benefits that can be reaped with such a layout. This makes the Omniscope a worthy

candidate for performing 21-cm tomography. There is a surprising amount of flexibility in
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Figure 1-5: Comparison of the baseline distributions of random antenna layouts (top) and
hierarchical layouts (bottom). The named layouts in the bottom figure are those described
in [14], from which this figure was taken.

the kinds of baseline distributions that can be achieved by an Omniscope layout (e.g. one
may want shorter baselines to generate large-scale hydrogen maps and longer baselines for
foreground elimination). The O(N log(NN)) computational cost of an Omniscope correlator
means that the instrument can feasibly be constructed on much more massive scales than
other radio telescopes with the same purpose. This is precisely what is needed for 21-cm

tomography.

1.6 A Guide to This Thesis

This thesis covers a great deal of material about the Omniscope system, including the theory
(as developed in the current chapter), design (developed in Chapter 2) and implementation
(developed Chapter 3). In Chapter 2, I provide a high level functional overview of the
Omniscope and its components. This includes a description of how the Omniscope will
produce the measurements necessary to achieve the science goal outlined in Chapter 1.
Chapter 2 also includes a comprehensive treatment of the poly-phase and overlap add filter
banks as they are applied to the problem of spectral leakage—a treatment rather difficult to

find in current literature (see [1, 12, 10]). Finally, I provide a brief overview of the butterfly
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corner-turner, which solves a very important networking problem that will arise when large
scale Omniscopes are constructed. For a more complete description of the corner turner,
the reader is referred to (7], on which I am a co-author.

In Chapter 3, I detail the implementation of the subsystems outlined in Chapter 2 as
developed for a small 2 x 4 element Omniscope array. Many of these components were
developed by other members of the Omniscope team, but are described here for complete-
ness. To begin, the analog chain was designed and built by Eben Kunz, with help from
Kris Zarb-Adami along with his group at Oxford and from MIT graduate student Andy
Lutomirski. As an addition to this analog chain, I designed and built a Walsh modulation
phase switching system for suppressing cross-talk. I provide a mathematical treatment of
the technique and establish some interesting results on its application to the problem of
cross-talk. Furthermore, I design a physical implementation of the switching system, de-
scribe how I built it and provide promising results on its performance. Finally, I detail a
set of software tools that I developed for real-time monitoring of the Omniscope and for
comprehensive and sophisticated presentation of the data measured by the Omniscope. In
Chapter 4, I provide a summary of these results and discuss the future directions of the

Omniscope.
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Chapter 2

System Overview

In this chapter, we present a detailed overview of the Omniscope system. The system
architecture described in the current chapter will be generally scalable to very large Om-
niscopes. In the next chapter, we focus on the instrumentation of the very first Omniscope
prototypes. We begin by introducing the F-X correlator pattern and describing how we can
implement it to compute the data necessary to form images, as described in the previous
section. We start with a high-level functional schematic of the Omniscope, including the
major subsystems and signal paths that connect them. We then describe, in detail, the
purpose, composition, and functional behavior of each subsystem so that we have a working

specification of its operation.

2.1 The F-X Correlator Pattern

Recall from the previous chapter, that the central purpose of a radio interferometer, is to
compute (z(t)y(t)), for all pairs of antenna signals z(t) and y(t)—knowing that we can

reconstruct the sky signal from these values by Fourier inversion methods. By definition,

T

(w(y"(0) = Jim 7= [ (O (0) . 2.1)

Define z7(t) and yr(t) to be z(t) and y(t), respectively, truncated to zero outside of [T, T
and T (t) = yr(—t). Then (2.1) can be rewritten as

(B (1) = lim — / " e OT(~t) dt. 2.2)

—00



The integral is easily recognized as the convolution of z(¢) and y(t) evaluated at offset 0.

Thus, we define more generally

o0

() = Galt)y* (=) = Jim o [ wor(O7r(r - 1)

= Jim - for(r) + B0

T—o00

Noting that

oo

F @O = [ v di = [ /

—00

yr(t)e ™ dt] ,
we can use the convolution theorem to see that

L [Xr(w) - V()]

Pw) = lim o7

where I'(w), Xr(w) and Yr(w) are the Fourier transforms of v(7), zp(t) and yz(t), respec-
tively. By Fourier inversion, then

@Y ) = 1o = 57 [ L) d

R )
‘Tlﬁléom/,m Xr(w) - Vi(w) dw.

If we suppose that the signals are emitting at a narrow band-width Av, then this reduces

to

@0y (1) = Jim ¥ Xp(2m) Y (2r0). (2.3)

The above discussion shows that we can obtain the complex visibilities by first Fourier
transforming the antenna signals, and then conjugate multiplying them. This is the principle
behind an F-X correlator. We first transform the signals into the frequency domain and
then correlate them in the space domain. The subsystems that perform these two tasks are

called the “F-Engine” and the “X-Engine”, respectively.
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2.1.1 Practical Considerations

To implement (2.3) in a digital setting, we must make some practical considerations. To
begin, we cannot in reality compute the expression in (2.3) in the limit as T — oo, for
obvious reasons. Rather, we must compute for a finite time 7" long enough to adequately
approximate the true mutual coherence function. Furthermore, since the Omniscope is a
digital instrument, the signals z(¢) and y(¢) will be discrete signals z[n] and y[n]. While
the finiteness of the limit 7" places a limit on the spectral resolution, the discreteness places
a limit on the observable band-width via the Nyquist theorem.

The expression in (2.3) assumes that the sources of the signals are narrowly band-limited.
In fact, by invoking the principle of superposition and the linearity of the Fourier transform,
we can use the same formula to construct maps of the sky at several different frequency
bands. Since the multiplication correlates each frequency independently, we can think of
(xz(t)y*(t)) as being the superposition of complex visibilities at many frequencies. Thus, we
can synthesize a map for each sub-band. Section 2.4.1 will shed some light on this matter.

While the finite limit of T places a limit on the spectral resolution obtainable by a
practical F-X correlator (though for large T, this limit is insignificant), we can drastically
reduce the length of the Fourier transform computation by sacrificing spectral resolution.
Specifically, we can think of the data point representing a (coarser) sub-band as an “average”
of the frequency components contained within the sub-band. We can do this by breaking the
observation time into chunks, each of length N (the length of discrete Fourier transform used
to compute X (%) and Y (e*)), and then summing per-component (vector accumulating)
the result. The length of this average serves to better the approximation of (2.3) and
increase the signal to noise ratio, but has the added side-effect of reducing the temporal

resolution of the maps.

2.1.2 The Omniscope as an F-X Correlator

In this thesis, we will focus on the implementation of the Omniscope as a digital F-X
correlator. The analog data from the antenna receiver system is first digitized and then
passed into the F-Engine (which performs the temporal Fourier Transforms). Since each
frequency is correlated independently, the frequency-domain is subdivided and transferred to

the corresponding X-Engine. In this design, the X-Engine subsystem is actually a collection
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Figure 2-1: Conceptual overview of the Omniscope.

of X-Engines, each performing correlations for a particular frequency or group of frequencies.
The correlations are then used for synthesis and map-making.

An important part of the chain was overlooked in the description above, and that is the
means of communicating the measured frequency data with the X-Engines. Each X-Engine
requires data from all of the antenna channels. For large numbers of antennas, this task can
be prohibitive (it is known as the 'corner-turning problem,’ since the operation resembles
a matrix transpose). However, we will see in section 2.5 that there is an elegant solution
to this for the Omniscope. Figure 2-1 shows a conceptual diagram of the Omniscope as an

F-X correlator.

2.2 Functional System Schematic

The rest of this chapter is devoted to explaining the function of each of the subsystems in
Figure 2-2. In this section, we give a high level summary of the function of each component
and its role within the Omniscope. The main systems shown in the figure are the analog
chain (which filters and amplifies the measured antenna voltages and then digitizes it),
the F-Engine (which applies some signal processing and converts the digitized data to the
frequency domain), the calibration system (which continuously calibrates the whole system),
the X-Engines (which perform the spatial correlation) and the post-processing step (which

synthesizes maps and analyzes the data). Many of the signal paths between these systems

34



require very high data rates, while others require considerably lower data rates. This is
important when considering the implementation platform for each system.

The electric field at each receiver position is measured by the antenna elements. This
signal is incredibly weak and therefore must be amplified significantly to become usable.
Furthermore, there are many practical considerations that compel us to apply analog filters
to the incoming signal. Quadrature demodulation will be applied to allow us to measure a
wider range of frequency ranges. The analog chain encompasses the analog amplification,
filtering and demodulation, as well as the analog to digital converter. Once through the
ADC, the data moves on to the digital components.

The F-Engine is the first recipient of the digitized data. Each F-Engine is associated with
an antenna or group of antennas and computes the discrete Fourier transform of the received
signal as described in 2.1.1. As we will see in Section 2.4.1, the F-Engine uses efficient signal
processing techniques to perform this spectral analysis while combating undesired effects
such as spectral leakage.

An instrument as sensitive as the Omniscope requires careful calibration. Fortunately,
certain features of the Omniscope’s design (namely, the presence of redundant baselines),
enable the use of powerful techniques for precisely calibrating the instrument in real-time.
The calibration system is responsible for this task. In [6], MIT graduate student and current
Omniscope team member Adrian Liu provides a thorough development of the methods by
which one can calibrate an instrument like the Omniscope using its redundant baselines.
Because the calibration algorithm relies on the separate measurements of the redundant
baselines, we cannot employ the FFTT algorithm for supplying these correlations. Fortu-
nately, calibration does not need to happen at the same rate as the imaging computation.
Thus, we can afford to build a much lower data-rate full-correlator for the calibration sys-
tem.

The X-Engines are the heart of the Omniscope. The corner-turner is responsible for
transporting data from the F-Engines to the X-Engines. Each X-Engine operates on a
particular frequency or group of frequencies, to produce visibilities that can be used to
form maps at the associated frequency. So far, all of the systems (except the calibration
system) are processing data at the full sampling rate of the ADC. Data leaving the X-
Engine, however, has been accumulated for a relatively long time. As a result, the data rate

is significantly lower when it reaches the post-processing stage. Within the post-processing
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Figure 2-2: Diagram of the signal path for a single channel of the Omniscope. Thick lines
indicate high-data rate digital signal paths (needing real-time computation) while thinner
lines correspond to digital signal paths of much lower data rates (reduced by a factor of up
to ~ 10%). The dotted lines indicate analog signal paths.
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stage, most of the relevant science is performed. This includes map synthesis, modeling of

foregrounds, cosmological model fitting and other forms of scientific data analysis.

2.3 Analog Chain

The first element in the analog chain is the antenna. The antenna used in the Omniscope
is undirected and measures the electric field components along two orthogonal directions
(polarizations). Since these polarizations are measured and correlated completely indepen-
dently, we will focus on the composition of an analog signal channel (of which each antenna
has two). The signal measured by the antenna is quite weak and must be amplified. Because
the signal levels are so low, it is important that the first amplifier be a low-noise amplifier
(LNA) and that it be applied as early as possible. Furthermore, additional filters (including
low-pass and notch filters) are desired at this stage to ensure that unwanted signals do not
saturate the amplifiers. A line driver is then used to reliably transmit the signal between
systems.

The phenomenon of aliasing that occurs when discretely sampling a signal generally
limits the range of observable frequencies. However, with clever signal processing tech-
niques, this turns out to only be a limitation on the observable bandwidth. Given a signal
proportional to ™!, we may produce a lower frequency signal with the same information
by multiplying by e *0¢ (producing a signal proportional to edw—wo)t) If one is interested
in a band at a frequency higher than the Nyquist rate of the ADC, but with a lower width,
it can be obtained by shifting the center of the band to 0 frequency and then sampling.
Careful use of bandpass filters ensures that only the desired band is measured. The com-
plex multiplication required to shift the received signal can be performed with quadrature
demodulation, as discussed in the next subsection. The very last step in the analog chain
is the analog to digital converter. Figure 2-3 summarizes the components in the analog

conditioning system between the antennas and the ADC.

2.3.1 Quadrature Demodulation

wot needed

Quadrature demodulation is a means for realizing the complex multiplication by e
to translate signals in the frequency domain. The principles of its operation are as follows.

Suppose a signal z(t) has been band-pass filtered so that it occupies a band Aw with center
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Figure 2-4: Spectrum of z(t).
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Figure 2-5: (a) Spectrum of I(t) and (b) spectrum of —iQ(t).

frequency wy (see Figure 2-4). Define

I(t) = LPF o (cos(wot)z(t))

Q(t) = LPF aw(sin(wot)x(t)).

By the convolution theorem, we can construct the spectra of I(¢) and Q(t) by convolv-
ing X (w) with 3 [6(w + wo) + 8(w — wp)] and 5: [d(w + wo) — 8(w — wo)], respectively, in the
frequency domain. I (w) is thus sum of the upper and lower copies of the frequency bands
in X(w), as shown in Figure 2-5(a). Similarly, Q(w) is —i times the difference between
the upper and lower copies of the frequency bands in z(t), as shown in Figure 2-5(b). By
the linearity of the Fourier transform, it follows that we can reproduce the upper sideband

spectrum X4 (t) and the lower sideband spectrum X_(t) with

Since X;(w) = X* (—w) if z(¢) is real, this simply means that we can make either sideband
appear in the interval [0,00) (i.e. we can measure above and below the center frequency
wp). This becomes important when we discuss the biplex FFT that is used to compute
the discrete Fourier transform, since it discards the negative frequencies in computing the

Fourier transform.
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2.4 F-Engine

The F-Engine is one of the two core digital components. It is responsible for taking the
digitized antenna data and computing the Fourier transform of the signal. The structure of
choice for performing this is not a simple windowed DFT, but rather, a more sophisticated
structure known as a polyphase filter bank. Once the data has been transformed into fre-
quency domain, the F-Engine divides the spectrum into individual or groups of frequencies,

to be transmitted to each X-Engine unit.

2.4.1 Polyphase and Overlap-Add Filter Banks

Spectral analysis involves determining the frequency content of a signal. Ordinary windowed
DFTs are useful tools for performing spectral analysis on a sampled signal. However, the
phenomenon of spectral leakage, in which one frequency generates spectral components in
neighboring frequency bins, makes them unattractive for many applications. Filter banks
provide a method of performing spectral analysis that significantly reduces spectral leakage
by design.

We begin by defining Short Time Fourier Transform (STFT) and then describe the phe-
nomenon of spectral leakage that follows from straightforward use of it. We then introduce
the filter bank as a solution to the problem of spectral leakage and describe implementa-
tions of the filter bank using DFTs. We develop two alternate representations for efficient

realizations of the DFT filter bank
2.4.2 Discrete Fourier Analysis and Spectral Leakage

The Discrete Fourier Transform

Ideal spectrum analysis for a sampled (discrete) signal z(n) can be performed by the Discrete

Time Fourier Transform (DTFT) [9],
X(w) = Z x(n)e Iwn, (2.4)

However, for signals that have infinite support (are non-zero for an infinite number of
points), (2.4) cannot be physically realized. To approximate (2.4), we give up perfect

frequency resolution for a finite length calculation. Instead, we use the N-point Discrete
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Fourier Transform (DFT),

N-1
~ 1
X(k) = 5 D wln)e KON (25)
n=0
1 N-1
=< 3 smW, (2.6)
n=0

where we have defined Wy = ¢/"/N) for convenience. If z(n) = 0 for n ¢ [0, N — 1], then
(2.5) is just (2.4) sampled at N equally spaced intervals in frequency space and scaled by
1/N. We can see this by plugging w = 27k /N into (2.4).

In general, if z(n) is nonzero for n < 0 or n > N, then (2.5) is equivalent to forcing
z(n) to be zero outside of [0, N — 1] and sampling the DTFT of the result. We can think
of this as applying a “window” to z(n) and Fourier transforming the result. As it stands,

(2.5) is equivalent applying a rectangular window to x(n). That is,

N-—

,_..

w(n)z(n) Wy, (2.7)
=0

1
N

3

where w(n) is given by,

1 if0<n< N
w(n) =

0 otherwise.

The function w(n) is called a window function. Any function that is zero outside of the
range [0, N — 1] is a valid window function and we will see later why we might want to

choose a non-rectangular window function.

In consideration of the above discussion, we can summarize the meaning of X (k) as.

X (k) = SAMPLEy (DTFT(z(n)w(n))). (2.8)

That is, we window z(n) by w(n), compute the DTFT, and then take N equally spaced

samples from [0, 27) in the frequency domain.
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Spectral Leakage

There is an alternate way of viewing the action of a DFT than that given in (2.8). Suppose

we force z(n) to be periodic with period N by defining
Z(n) = z(n mod N).

That is, we copy the first V values repeatedly to the left and right of the origin. The
DFT can be thought of as the discrete time Fourier coefficients of #(n). Consider, for the

moment, a sinusoidal z(n). That is,
z(n) = ™™, (2.9)

Ifw = k(27 /N) for some integer k, then Z(n) = z(n) (the sinusiod will “fit” perfectly inside
the window) and we will reproduce a spike in frequency bin k as expected. However, if this
is not the case, then Z(n) # z(n) and we will clearly have several other Fourier harmonics in
the DFT spectrum due to the discontinuity at the period boundaries. That is, the spectrum
that would otherwise be a spike in a DTFT with infinite spectral resolution will “leak” into

the other frequency bins as we instead perform a DFT.

The nature of this spectral leakage depends of the window function used in the DTFT.
By the convolution theorem, we can see that the DTFT of x(n)w(n) is the convolution of
the DTFT of z(n) and the DTFT of the window function W (w). Thus, if z(n) is given by
(2.9) then the DFT is a sampled version of the DTFT of w(n) offset by w.

In Figure 2-6, we show the zero-padded 16-point DFT of a sinusiod in the 8th frequency
bin using a rectangular window (see Appendix A for information on zero-padding). Because
the signal falls directly in frequency bin 8, the zeros of W(w) precisely coincide with the
other frequency bins. However, if the frequency of the signal lies between bins, the other
bins will sample the nonzero side-lobes of W (w), leading to the spectrum in Figure 2-7. The

spread in the sampled signal is spectral leakage.
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Figure 2-6: DFT of a sinusiod in bin 8 through a rectangular window (red). Note that the
zeros of zero-padded spectrum (blue) align with bins of DFT.

Magnitude (dB)

2 4 6 8 10 12 14 16
Frequency Bin

Figure 2-7: DFT of a sinusiod in bin 7.5 through a rectangular window (red). Note that

the bins of the DFT now align with the peaks of the lobes in the zero-padded spectrum
(blue).
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Figure 2-8: Conceptual view of the short time Fourier transform in three dimensions (trans-
form versus time and frequency). Each X,,(w) is a windowed Fourier transform of the signal
at frame m.

2.4.3 Short Time Fourier Transform (STFT) Analysis
The Short Time Fourier Transform

Often, we may want to analyze more than just the first N points of a signal z(n). We can
imagine “sliding” our reference frame along z(n) by a hop size R so that we window z(n)

at regularly spaced locations. That is, we compute

o0
Xlta] = Z w(mR — n)z(n)e 1"
n=—00
This is a time varying function that tells us the DFT of z(n) at the mth hop. For real-

time spectral analysis, we keep the window fixed in time and shift z(n) in time. By an

appropriate change of variables, we can write

Xm(w) = e7JomE Z w(—n)z(n + mR)e 7" (2.10)
= e ImB X (w). (2.11)

X (w) is the Short Time Fourier Transform (STFT) of z(n) and X (w) is the STFT
with respect to the fixed frame of the observer (as in the real time case). Figure 2-8 shows
a conceptual depiction of the STFT as a series of discrete Fourier spectra at regular time

samples.

2.4.4 Discrete Filter Banks

A filter bank provides a technique to overcome the problem of spectral leakage that occurs

when performing ordinary discrete time Fourier analysis. It works by dividing the frequency
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Figure 2-9: Frequency bin division for a discrete filter bank. Bin k is filled. The solid curve
represents the actual spectrum of z(n), whereas the stem plot shows the approximate values
of X} within each bin (i.e. the collective frequency content).

Figure 2-10: Conceptual view of a discrete filter bank. Each X (n) is a time varying signal
representing the frequency content of bin k.

domain into a series of K frequency bins (analogous to the discrete samples we get from
a DFT). The value in bin k represents the collective contribution of all of the frequencies
within a band of width 27 /K centered at the frequency 27k/K (see Figure 2-9).

Filter banks are a common tool in the audio processing profession [12], in which each
of the bins represents an equalizer channel. The signal coming from each bin, X (n), is a
time varying signal that reflects only desired frequency components. It can be thought of
as the result of filtering the signal with a bandpass filter centered at the bin frequency. A
conceptual representation of this process is shown in Figure 2-10. We now present several

useful techniques for implementing the Discrete Filter Bank adapted from [2].

Implementation

Let h(n) be the impulse response of a low-pass filter with width 2% We can obtain the
signal Xy(n) by first shifting z(n) so that the frequency band at wy is centered at 0 and

then filtering with h(n). We do this through complex modulation by ngn. Thus,
Xi(n) = h(n) x [z(n)Wik). (2.12)
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Figure 2-11: Diagram of a discrete filter bank system.

A diagram of this system is shown in Figure 2-11. In each channel of the filter bank, the
signal z(n) is first mixed with ngkn to center the desired band of the signal over the low-
pass filter, and then it is filtered by h(n). The rest of our discussion focuses on optimizing

this structure.

There is an alternative but useful way of viewing a filter bank in terms of band pass

filters. From (2.12), we have

Xi(n) = Z h(r)x(n — r)WI;k(n_r)

T—=—00

oo
=Wk > AW z(n—7)
r=-—00

= W% [h(n) x 2(n)], (2.13)
where,
hi(n) = h(n)WE (2.14)

is h(n) shifted by wg in the frequency domain (i.e. it is a bandpass filter centered at wy
with the same shape as h(n)). What (2.13) tells us is that we can get Xi(n) by bandpass
filtering z(n) at the kth bin and shifting it to the origin in frequency. Figure 2-11 becomes
Figure 2-12 under this perspective.
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Figure 2-12: Bandpass filter view of a discrete filter bank system.
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Figure 2-13: Decimating one channel of the filter bank.

The Polyphase Filter Bank

One thing to note about the system shown in Figure 2-12 is that the Xj(n) are oversampled.
The bandwidths of the X (n) are a factor of K smaller than that of z(n), but are sampled
at the same rate. It makes sense to decimate each channel, as shown in Figure 2-13.
Unfortunately, we are still filtering in the undecimated time n. We could save computational
bandwidth by commuting the decimation with the filtering. Fortunately, we can do this by
using a polyphase structure to perform the decimated filtering with hg(n). This structure

is described in detail in Appendix B.

For a polyphase structure, (B.2) would transform (2.13) into

M-1
Xi(m) = WF™M 3" gy, (m) % z,(m), (2.15)
p=0

where
Prp(m) = he(mM +p),  z,(m) = z(mM — p),

are the polyphase filters for h(n) and the polyphase components of z(n), respectively. If we
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Figure 2-14: Decimating one channel of the filter bank using a polyphase decimator.

expand (2.15) using (2.14), we get
M-1
Xie(m) = Wik 37 5, (m) W™ 0] sz, (m), (2.16)
p=0
Thus, using a polyphase decimator turns Figure 2-13 into Figure 2-14.

If we critically sample each channel of the filter bank so that M = K, then (2.16) reduces

to

S
L

Xi(m) = 3 [Bm)Wic™] «zp(m)

ol
L

[B,(m) * z,(m)] Wi

hS)
Il
o

This is precisely in the form of (2.6) for the discrete Fourier transform. Thus, it is clear
that we can efficiently compute the Xj(m) using a Fast Fourier Transform (FFT), so that
Figure 2-11 becomes Figure 2-15.

Typically, the h(n) has finite length L, and if it as an integer multiple N, of K, then
each of the polyphase filters p,(m) have length N,—referred to as the number of taps in
the polyphase filter. A network diagram of a polyphase filter with four taps is shown in
Figure 2-16.
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Figure 2-15: Efficient realization for a critically sampled polyphase filter bank using an
FFT.
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Figure 2-16: Digital network diagram of a polyphase filter with four taps.
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Weighted Overlap-Add Filter Bank

Another implementation of a discrete filter bank (also adapted from [2]) can be reached if

we begin by rewriting (2.13) as

Xi(m) = Z h(mM — n)z(n)Wg*"

n=—00
o0
= ngmM Z h(—n)z(n + mM)Wk_k"
n=-00

= WM X, (m).

Comparing this to (2.10), we see that this is just like a discretized STFT of z(n). Using
a trick similar to that used to derive the polyphase filters in Appendix B, we can break

summand in X x(m) up into blocks of K samples by changing variables to n = [K +

Xip(m) = i h(—n)z(n + mM)WI}k”
n;—oooo
D> h(—r —IK)z(r + mM + lk)W*

r=0[=—00

K
= Em(r) Wi
r=0

This is just the DFT of the signal Z,, (7). The signal Z,,(r) is obtained by sliding the window
h(n) in time in hops of M (analogous to R in the Section 2.4.3). Then at each step, we
multiply the translated z(n) by h(n), break it up into blocks of K samples, overlap them,
and add them. The last step is carried out by the sum over . Viewing h(n) as a weighting
function, we can see why this is called a weighted overlap-add filter bank. Figure 2-17
represents this process graphically where the filter h(n) is finite and of length 4K (i.e. it
has four taps).

The weighting function h(n) for applied filter banks is usually a sinc function (corre-
sponding to the rectangular filter shape) with nodes at the overlapping window boundaries
(because we are critically sampling the channels). Since the sinc must be finite (because we
can only have a finite number of taps), we also often apply a windowing function to this
to taper the side-lobes beyond the cutoff frequency. The hamming window is a common

choice since it minimizes the magnitude of the nearest (largest) side lobe [11].
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Figure 2-17: Graphic representation of a weighted overlap-add filter bank with four taps.
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Comparison of Polpyhase and Overlap-Add Filter Banks

There is a noteworthy relationship between the polyphase implementation of a discrete
filter bank and the overlap-add implementation. If we imagine expanding each one of the
polyphase filters in Figure 2-15 using the digital network model in Figure 2-16 (letting the
taps lie on the axis coming out of the page), there is a subtle relationship to the overlap-add
filter bank in Figure 2-17.

If we consider the special case where the filter bank channels are critically sampled
(i.e. M = K), then each of the polyphase filters in Figure 2-15 corresponds to a single =
value in the overlapadd windows in Figure 2-17. The four windows that are accumulated
then correspond to the four taps in each polyphase filter. Thus, if M = K and the width of
h(n) is NpK, then the polyphase filter bank and overlap-add filter bank are conceptually
and functionally equivalent.

In general, the overlap-add filter bank can handle general sampling rates M of the filter
bank channels, whereas the polyphase filter bank is limited to the M = K case—although
it can easily be adapted to the case where M is an integer multiple of K by upsampling

before each polyphase filter.

Engineering The Spectral Leakage

The polyphase filter bank is well-suited for the task of suppressing spectral leakage because
it eliminates it by design. Indeed, we have defined each bin to be the representative value of
the frequencies within a certain band and no others. The shape of the filter h(n) specifies
how well we can faithfully uphold this definition. Indeed, a polyphase filter bank with only
one tap could not possibly be more effective than a windowed DFT. This is because the
finite approximation of h(n) is highly inadequate with only one tap. By increasing the
number of taps, we can increase the quality of our spectral leakage suppression. However,
taps cost hardware resources. Thus, the polyphase filter bank gives us a way of engineering

away spectral leakage by tuning the balance between leakage and hardware resources.

2.5 Corner Turner

The corner turner solves an challenging and interesting engineering problem. We must be

able to have each array element (i.e. each F-Engine) communicate data to each one of the
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