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structural mechanics. Within this field, there are many choices of finite elements, and should be

chosen by the engineer to best suit the given mathematical model. For structural analysis,

displacement based elements are undeniably the most used in practice. However, these

elements have limitations and in such cases, other elements should be used. In foundation

design, it is important to accurately model soil deformations and stresses. If the ground

conditions are proven to be best modeled orthotropic instead of isotropic, then a finite element

analysis should be implemented. If the soil is also shown to be saturated and exhibiting an

undrained condition, a finite element analysis with standard displacement based elements will

produce erroneous results due to the formulation and therefore another choice of finite

element must be made. The scope of this work is to graphically show the performance of U/P

finite elements subjected to nearly incompressible linear axisymmetric orthotropic conditions

and its superiority over standard displacement based finite elements in this situation.
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ICHAPTER 1: INTRODUCTION AND OVERVIEW

INTRODUCTION

For many mechanical, civil, and aeronautical problems, complex solid geometry subjected to

boundary conditions and various loadings need to be solved. Due to the complex nature of

these problems, a finite element analysis is performed. The finite element method works with a

modified version of the variational (weak form) derived from the differential formulations of

solid mechanics. The finite element technique will vary depending on the modeling

assumptions of the problem statement. For example, most civil engineering applications involve

a linear isotropic analysis with small strains and displacements. As is the case, there are

different types of finite elements that are designed to be used in different scenarios. One

common problem involves a linear isotropic material which is nearly incompressible. It has

been shown that for these situations a mixed U/P element is most suitable. The convergence

rate is tolerable and performs much better than standard 2D 4-U node and 2D 9-U node

displacement based elements. However, if the nearly incompressible continuum is modeled as

orthotropic instead of isotropic, the above statement continues to hold as well. This text

attempts to show this.

This thesis is to analyze the performance of U/P elements subjected to nearly incompressible

linear axisymmetric orthotropic conditions. An axisymmetric case is chosen because of practical

reasons. In the modeling of a large continuum body such as soil beneath a building foundation,

the used of 3D finite elements can prove to be vastly expensive computationally. In such cases

of modeling large unbounded arenas, 2D axisymmetric formulations are a much more efficient

and cost saving modeling technique which will produce the same effect.



IOVERVIEW
In order to show the effectiveness of U/P finite elements in this scenario, a literature review of

this behavior must first be made (as should be the case in any finite element analysis). The

following chapters which constitute this review are:

2. Mechanical Behavior

3. Finite Element Analysis Formulation

Chapter 2 discusses the mechanical behavior from which the finite element formulation is

derived. A discussion will briefly show the differences between isotropic and orthotropic

behavior. These conditions differ in modeling nearly incompressible conditions and a

comparison of the two limitations will be shown. Next, a review of structural mechanics

involving modeling axisymmetric conditions will be presented. Since the topic of this thesis

involves modeling nearly incompressible orthotropic media, a good comparison is made in the

modeling of soil media for foundation design. As such, this chapter concludes with a summary

on analytically modeling stress in soil under a foundation load, its limitations, and why the use

of a finite element analysis would prove useful in such a scenario (Coduto).

Chapter 3 provides a summary of the standard finite element formulation modeled from

continuum mechanics. In this chapter, the formulation of displacement based U elements and

mixed displacement pressure based U/P elements will be presented and compared. For this

project, 4-U, 9-U, 4/1-U/P, and 9/3-U/P elements will be compared. Therefore, this chapter will

provide on an introductory explanation of all four of these elements. For these elements to be

properly judged for their expense and adequacy in the solution process, these elements shall be

compared based on their strain energy convergence rates. Strain energy provides the engineer

a scalar basis on which to judge element performance. As such, this chapter concludes with an

introduction to modeling convergence of these various finite elements and its limitations.



4 Convergence Experiment

Chapter 4 will discuss the modeling considerations used in this experiment. An in depth

comparison analysis will be made of a nearly incompressible hollow sphere using various finite

elements. The hierarchical modeling philosophy will be presented to show the consequences in

transitioning from modeling a physical continuum body to approximating its behavior with a

finite element mathematical model. This chapter will also explain the modeling transition of

modeling expensive 3D unbounded continua with an axisymmetric approximation. 2D

axisymmetric modeling is an inexpensive strategy in the modeling of soil for foundation design.

This experiment will run 20 different combinations of orthotropic Poisson ratios acting on the

model sphere. One material will be purely compressible, and one will act as isotropic and nearly

incompressible for comparison. The 18 other combinations are a variety of nearly

incompressible and compressible orthotropic materials. The results will graphically show that

U/P based elements perform just as well in orthotropic conditions as in isotropic conditions for

nearly incompressible material problems by means of convergence of strain energy.

Figure 1: Axisymmetric Representation



Figure 2: Experimental Model

To analyze the performance of U/P elements subjected to nearly incompressible orthotropic

conditions, a comparison study of U/P elements with standard 2D 4-U node and 2D 9-U node

elements will be made. For each element, the strain energy used in each FEA will be calculated

using different mesh sizes and using different values of Poisson ratios. The three orthogonal

modulus of elasticity parameters EA, EB, and Ec will all be equivalent to some fixed value. Thus,

this analysis will only represent effects of changes of Poisson ratios. With these strain energy

values, the linear convergence rate may be calculated as a scalar measurement of performance

efficiency. The best element will have the largest linear convergence rate. Using symmetry

techniques, the solid model used in this experiment shall be an axisymmetric revolution about

the Z axis that emulates the hollowed sphere. The graphic of the 3D sphere subjected to

uniform loading and the axisymmetric 2D representation are shown in figures 2 and 1

respectively.



I CHAPTER 2: MECHANICAL BEHAVIOR

Figure 3: Global Cartesian normal and shear cauchy stresses

Chapter 2 discusses the mechanical behavior from which the finite element formulation is

derived. A discussion will briefly show the differences between isotropic and orthotropic

behavior. These conditions differ in modeling nearly incompressible conditions and a

comparison of the two limitations will be shown. Next, a review of structural mechanics

involving modeling axisymmetric conditions will be presented. Since the topic of this thesis

involves modeling nearly incompressible orthotropic media, a good comparison is made in the

modeling of soil media for foundation design. As such, this chapter concludes with a summary

on analytically modeling stress in soil under a foundation load, its limitations, and why the use

of a finite element analysis would prove useful in such a scenario. This section will explain the

importance of axisymmetric modeling and how to apply this technique to modeling soil under a

foundation load. Figure 3 was extracted from (Bauchau).

I
I



ISOTROPIC AND ORTHOTROPIC BEHAVIOR

ISOTROPIC BEHAVIOR

An isotropic material is such that the stress strain relationship is independent of direction.

Structural materials like steel provide a good example of this phenomenon. The Young's

modulus and Poisson ratios are equal in all directions. Thus, the isotropic constitutive relations

between stress and strain are shown (Ugural).

1 V v Txy
Ex=+ Ux- Ey -Ez-axT yxy=G

V 1 V Tyz
Ey=+ 0x E Ez-ayT Yyz=

V v 1 Tzx
EZ + EUx y z-T zT Yzx -

ORTHOTROPIC BEHAVIOR

An orthotropic material is such that the stress strain relationship is not independent of

direction. In particular, for a given Cartesian axis, the Young's modulus and Poisson ratio values

in a given direction do not match the values given in the other two orthogonal directions.

Hence the orthotropic relations of stress and strain can be generalized in the following form.

Materials such as timber or composite reinforced concrete behave in manner. Figure 4

illustrates the orthotropic behavior of wood due to the differences in grain in each of the main

orthogonal directions (Breyer).

Maxwell's Reciprocal Theorem states that the constitutive matrix is symmetric. Thus

Ex E, Ey Ez Ez Ex

Vxy Vyx Vyz Vzy vzx Vxz



Longitudinal

Figure 4: Orthotropic Directions of Timber

E X = + a -- Jy - az~ xT
Ex Ey Y z 11X vzx

Ey = +- Ux -- y - Uz - aYT
x y z

Ez= ^~ Ux -- T z ~zT

xz 1

With these conditions, it is also noted that there is more than

Yxy -x
xy

Tyz

Yz

Yz zx

one shear modulus G.

1INCOMPRESSIBLE MEDIA CONDITIONS

A material is said to be incompressible if the volume under traction loading remains constant.

The geometry may move but the volume in the final configuration must equal the volume of

the original configuration. In elementary mechanics, this is also expressed that the dilatation of

the material must equal to zero.

p
e = ex + Ey + Ez 0

k
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The variables p and k are labeled the hydrostatic pressure and bulk modulus respectively. For

incompressible conditions, k becomes infinite because hydrostatic pressure is not zero. These

values are intimately related to Poisson's ratio for both isotropic and orthotropic cases. In the

development of a structural mathematical model, the condition of incompressibility fails if the

constitutive relation is chosen as either plane strain or axisymmetric. However, the formulation

of the plane stress law remains unaffected.

V V

1 1 0E(-2v -v1-v

Caxisymmetric = E(l - 2v) - 1 - 2v -V
21 - v)(+ v)(1 - 2v) 0 0 2(1 - v) 0

V 1V V 0 1v v

In the case of an isotropic material for either axisymmetric or plane strain, there is a restriction

on the value of Poisson's ratio as shown above. If v = 0.5, the material is incompressible. The

constitutive matrix C is divided by 0 and the matrix reaches infinite values. Because the stiffness

matrix K relies on the constitutive matrix C, K will also approach infinity. Figure 5 illustrates

isotropic incompressible media subjected to loading (Coduto). The original volume is conserved.

PF Original shape

1 Defo>rmed

1E E

2 p 2

F'igure 5: Isotropic Incompressible Media



For orthotropic behavior, a one to one correspondence must exist between stress and strain

(linear analysis guarantees a unique solution). Therefore the determinant of the constitutive

matrix C must be invertible and thus have a determinant not equal to zero (Ting).

Mathematically, this requires the first and second block determinants to be positive. As

consequence, the following restrictions are presented (Lempriere).

f(EAEBEcGAGBGc) > 0

VABV BCV CA < 0.5 B1 -vB ~ VBC VCA - 0.5
EB Ec EA

|vij| < E ij = A,B,C

If the Poisson ratios are chosen such that the above restrictions are not satisfied, the

orthotropic material will be classified as incompressible and a solution will not be obtained.

For nearly incompressible solutions:

V AB BC CA< 0.49999 ( - C A 09999
\ EB Ec EA

AXISYMMETRIC MODELING

In structural analysis, modeling the constitutive relations for a given 3D physical body can be

rather difficult. Axisymmetric modeling is a 2D scheme that provides an efficient method to

easily model 3D problems that are symmetric in a revolution about some defined axis. Figure 6

illustrates this behavior (Bucalem).The equilibrium equations of stress are transformed from a

Cartesian to a cylindrical coordinate system and are as follows:



dTrz Trr -Too
+ + +frB = 0

19z r

o~ aT0 z Tr
+z +2-G+foB

+ r'zz +Tzr+ +dz r

I, U
z

Figure 6: Axisymmetric 2D element representation of a cylinder

For an axisymmetric case about the z axis, the following restrictions are made:

[TrO = TzO = 0]

dTrz Trr - Tee

+ z r
+fB =) ( az

adrzz

az
Tzr B
r

The above formulas are the axisymmetric force equilibrium equations. In practice, to

implement these equations a 2D shape that represents the solid formed if revolved around a

given axis is chosen. If that axis is labeled z, then the 2D shape is in a Cartesian xy plane.

Therefore, the above axisymmetric equation may be rewritten as:

(aTxx+ + x +f = 0
ay x ( \ax + +x f = 0

x }y

lr TrO
r 80

1Triat
+- 19

r8

8Trr

ar

aTor
r+ar

19 rzr

ar
zO

0
+fB= 0

-P

deformed

( 

r

[frB a



CIVIL ENGINEERING CASE: FOUNDATION DESIGN

This chapter concludes with a brief exploration of geotechnical analysis in foundation design.

When a structure is built, it must have an adequate foundation to create an effective load path

that allows the structural load to be safely transmitted to the soil below. The transmission must

be such that the soil does not fail beneath the building. Failure of soil is defined in terms of

slippage of the soil particles or excessive deformations. In 1885, mathematician Joseph

Boussinesq formulated a set of equations that allow adequate modeling of induced soil stresses

from a point load by modeling the soil as an isotropic infinite half space. Figure 7 illustrates the

implementation of these formulas (Coduto).

Figure 7: Boussinesq Infinite Half Space Modeling Figure 8: Finite element modeling of soil under foundation

R= x2-y 2+zz r= x2+yz

ax - (1 - 2v) 2 - + ) Y [ 2- - (1 - 2v) 2 22x R(Rrz(R + z) R+r 2 RI Rrz (R + z)5+ r

P[3xyz (2R + 2)xy R
T =-T -X 1-2v R x2y+z r=2x2 +yzTxY ~TxY 2rR! ( (R + z2 )R 3  R=

Shown above are the equations for the lateral normal and shear stresses of a soil subjected to a

point load P. Lateral stresses are mainly important in retaining wall design because these are

the stresses that are applied horizontally on the wall considered. The variables x,y,z are the



displacements from the stress point to the applied point load P. The variable z is always

positive. It is noticed that the lateral normal and shear stresses rely on Poisson's ratio. For an

isotropic analysis, values of Poisson's ratio for various soils and rocks have been tabulated in

table 1 and have proven to be sufficiently precise in foundation design (Coduto).

Soil Media and Poisson's Ratio Ranges

Saturated Soil, Undrained 0.50 Loose Sand, Drained 0.10 - 0.30

Partially Saturated Clay 0.30 = 0.40 Sandstone 0.25 - 0.30

Dense Sand, Drained 0.30 -0.40 Granite 0.23 -0.27

Table 1: Isotropic Poisson's ratio range for various soil media

Thus, if the soil is conditioned to be modeled as orthotropic, these equations may not be used.

If the loading cannot be approximated by a point load (as is the general case) numerical

methods must be used such as charted approximation solutions or a finite element analysis. In

a 2D finite element analysis (common), a plane strain model would be sufficient. For 3D

modeling, it is efficient to model using axisymmetric 2D elements to conserve computational

expense. Because soil mechanics analyzes this media as an infinite halfspace, the energy

provided by these elements need to be released and modeled with infinite boundaries (Kim). It

is suggested by Cook that infinite elements be used. Figures 8 and 9 depict this FEA modeling

(Cook).

i symm"Onc

Figure 9: Load P on an axisymmetric body of infinite extent



ICHAPTER 3: FINITE ELEMENT ANALYSIS FORMULATION I

Figure 10: Finite element representation of a solid continuum physical body

Before a finite element analysis can begin, it is important to understand the formulation of a

finite element analysis and the calculations computed in its results. In this section, a quick

review of the displacement based element formulation of the finite element method is

presented. Then, the mixed displacement pressure formulation will be presented and

comparisons will be made to the original displacement method. Then a quick comparison in

known facts between two dimensional 4-U node, 9-U Node, 4/1-U/P and 9/3-U/P elements will

be tabulated. Lastly, a primer of calculations considered in the evaluation of strain energy for a

displacement based solution is shown and the convergence qualitative effects for displacement

pressure elements. Figure 10 was extracted from (Bathe).



VARIATIONAL FORMULATION OF A SOLID CONTINUUM BODY

In solid mechanics, every continuum mathematical model is governed by a set of differential

equations, known as the differential formulation, which relates the behavior of the

displacements and strains the body is experiencing to the stresses and traction forces acted

upon itself. The term "continuum mathematical model" is used because any solution governed

by solid mechanics has some error and should only be reflected as a model that best

approximates the real behavior with tolerable limits. For simplistic mathematical models

(uniaxial bar in tension for example), the solution of the differential formulation is widely

known and has a closed form solution. However, as the complexity of the model increases,

closed form solutions may not be possible by hand calculation or even with aid of a computer.

This presents a problem for many applications such as modeling soil in foundation design. Thus,

either an empirical formulation must be made that relates test data to a best fitting curve (this

can be very expensive) or a finite element analysis may be implemented to provide a

computational approximation to the continuum mathematical model.

PRINCIPLE OF VIRTUAL WORK OF A CONTINUUM SOLID BODY

To utilize a finite element formulation, the variational formulation (weak form) of the

continuum mathematical model must be stated. The following is a derivation the variational

form from the differential formulation (Bathe). The derivation of this formulation from the

differential formulation is displayed in Appendix A: Principle of Virtual Displacements

Derivation.

TijEiJdV = fJBUtjdV + f [Sf UsfdS
V V Sf



As will be shown, this equation provides the basis for utilizing displacement based finite

elements. The key is to approximate the above integral equation as a summation.

CONSTITUTIVE RELATIONS OF ORTHOTROPIC BEHAVIOR

In solid mechanics, there is a relationship between the internal and external forces on the solid

body, and the strains within the body. This relationship is known as the constitutive relationship

and is dependent on the choice of mathematical model used. In chapter two, the constitutive

law for axisymmetric behavior of a solid continuum has been presented along with a summary

of its limitations due to incompressible isotropic and orthotropic behavior respectively. The

following provides additional information for the effects of orthotropic behavior for

axisymmetric finite element modeling.

ORTHOTROPIC BEHAVIOR FOR AXISYMMETRIC FINITE ELEMENT MODELING

In a finite element formulation, the constitutive matrix relations for a mathematical continuum

model are unmodified in the finite element analysis. The following legend and figure 11

illustrates the local coordinate system for modeling orthotropic behavior in a finite element

(Adina).

The directions A,B,C are defined below: 4 5

A = direction of element 2 7
- 6 3

B = orthogonal to A but within plane of solid

C = orthogonal to both A and B, out of plane Figure 11: Orthotropic local coordinate system

Each element composing the finite element mesh contains its own local coordinate system ABC.

A transformation matrix is used to relate this mapping to the global Cartesian XYZ system. The

plane stress and plane strain matrix representations of orthotropic linear behavior is:
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The displacement based finite element mesh will yield an unsatisfactory solution. For this
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strain energy formulation as described above, a mapping will be made to show how

convergence is affected as models approach incompressible conditions. Lastly, it will be shown

how U/P hybrid elements handle convergence performance and to prove that U/P elements are

the preferred element to utilize in orthotropic linear analysis just as they were for isotropic

nearly incompressible materials.

DISPLACEMENT BASED FINITE ELEMENT DISCRETIZATION OF THE VARIATIONAL FORM

DIPLACEMENT INTERPOLATION FIELDS

The variational formulation of a solid continuum body is elegant but it does not provide much

use in a solution to the mathematical model (A differential equation is "easier" to solve than an

integral equation") (Bathe). The utilization of the variational formulation becomes apparent

when the finite element method is implemented. For a complex continuum model, the problem

becomes difficult because the relationship between traction and displacement is unknown. At

best, an approximation (interpolation) must be made.

The finite element method approaches this by discretizing the continuum into finite elements.

These elements are material, bounded by a nodal configuration and connected via these nodes.

Forces are applied to these finite elements and deformations are created. The interpolation

assumption is that the displacement field within a finite element may be completely described

if the nodal point displacements are known. Thus for a given finite element:

u(M (x, y, z) = H C (x, y, z)U

UT=UT U 2  -. i ... UN

UiT = [Ui Vi Wi] = displacement vector for node i



The displacement vector at any (x,y,z) point in the element u(')(x,y,z), is defined by the nodal

displacements U and an interpolation matrix H(m)(x,y,z). To be valid, the equation must hold

true for the nodal displacements themselves. Thus if (x, y, z) is chosen to be the location of a

node, H(m)(x,y, z) but be such that u(m)(x,y,z) = the node's displacement.

DISCRETIZATION OF PVW EQUATION

As discussed above, the displacements of any point within an element is completely defined by

the nodal points (Bathe):

u(m)(x, y, z) = H W()(x, y, z)U

E") (x, y, z) = B") (x, y, z)O

If the strain field of an element m is obtained, then utilizing a constitutive relationship the

stress field can be obtained:

T(") (x, y, z) = C (in) m (x, y, z) (If no intial stresses are present prior to loading)

If the principle of virtual displacements holds for a continuum body, then it must also hold for a

finite dizretization of the body (The volume of a body is the sum of the volumes of all pieces

making the body).

Thus the principle of virtual work may be transformed to accommodate a finite element mesh.

fTij zijdV = f fB UdV f fffUsfdSf
V V Sf

E(n)T,(n) dVC"') =m U")Tf B(mdVC"') + lfSf(m)T fsf(mdS(i")

M Vm v(m M Sf(m)



TY B(m)TC"(m)B(m) dV("1 jj = T f H (")Tf B(m)dV(") +I f Hs,(m)TfSf(m)dS(l)

m V(m ) In v(M) M Sf(m)

The above equation must hold for any arbitrary virtual displacement. Thus, the variational finite

element formulation transforms into:

B(m)TC(")B(m) dV(" 1 H (m)TfB(m)dV(m) + HSf(m)Tfsf(m)dSi")}
m y(m> M m (no Mn s,(")

KU = R

K f B(M)TC(m)B(m) dV(m)
m v(m)

R =H(n)T B(rn)dV(n + HSf(m)Tfsf(m)dS(m)

M V(M) Msf)

DISPLACEMENT PRESSURE U/P BASED FINITE ELEMENT DISCRETIZATION

The mixed displacement pressure U/P based formulation is derived in a similar fashion as the

displacement based formulation but with some noticeable alterations. In the U/P formulation,

hydrostatic pressure nodes have been added to the degrees of freedom and are independent of

the displacement nodal points. Thus in the matrix equation, the displacement vector is now a

vector of displacements and pressures.

KUu/p =U/P

U/P = [U 1 T U2T ... UiT ... U p 1 T p 2 T . jT M

RU/PT = [RT R2T ... RiT ... RNT OT 02 T T -- OMT]



For this type of mixed formulation, there is a limitation in efficiency of the N/M ratio. If there

are too many pressure nodes, the element will lock and produce undesirable results. From

experience and mathematical proof, it has been shown that for 4 and 9 node displacement

elements, 1 and 3 pressure nodes are the optimum respectively. Thus 4/1 and 9/3 U/P

elements are used in practice.

PRESSURE INTERPOLATION FIELDS

For U/P elements, pressure interpolation fields may either share the same nodal points as the

chosen nodal displacements, or may be random within the element. These interpolation fields

follow the same rules as described for the displacement interpolation fields.

DISCRETIZATION OF PVW EQUATION

Just as in the displacement based formulation, the finite element discretization must satisfy the

conditions of equilibrium, compatibility, and follow a chosen constitutive relationship. From the

variational formulation of a continuum body we have

f ZTCEdV = R
V

From chapter 2, the dilation e, bulk modulus k, and hydrostatic pressure p of a material under

small strains is described as

p
e = Ex + Ey + = - k

E
k = 3(1 - 2v) p= -ke

Using these parameters, the normal and shearing stresses in the body can now be described as

a summation of the hydrostatic and deviatoric stresses.
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Tij = -pot; + 2GE
T

kk

p= 3
e

CLij = Ei U

This formulation features the kronecker delta function which signifies that only normal

stresses utilize the hydrostatic term.

Inserting these definitions into the PVW equation reveals

E~ TC'dV + f ETpdV = R
V

The hydrostatic pressure term p is unknown and therefore, the formula needs an additional

equation.

p+ke =0

fi(p + ke)dV = 0

- fP(e + )dV = 0
V

Thus the following equation may now be discretized in the same methodology used for the

displacement based formulation. However, the p term introduces additional degrees of

freedom and so the finite element assemblage formulations for a U/P element are

OU/PT = [U1 T U2 T ... Ui T ... UN p 2 T

u(m) (x, y, z) = H (m) (x, y, z)U

p("')(x, y, z) = Hp (M)(x, y, Z)P

e(m)(x,y,z) = By ()(X,y,z)

- T
- PM]



E'(") (x, y, z) = BD (X Ny, Z)U

Factoring out the virtual displacement and pressures from the formulation will result in the

mixed formulation stiffness matrix which relates the nodal displacement and hydrostatic

pressure degrees of freedom with the applied external forces.

KUu/p = Ru/p

[ Kuu Kup 1 [R
Kru KpJ J 0o

Kuu BC'BdV Kup = - BvHpdV
V V

Kpu = -HeBvdV Kpp = -H HpdV

V V

The use of static condensation on the matrix formulation results in an equation for stiffness of

the element regarding nodal displacements and strains. Thus the nodal displacements may be

directly solved.

(Kuu - KupKilKpu)U = R

Consequently, static condensation cannot be performed for an incompressible analysis because

the bulk modulus k will approach an infinite value. Thus, Kpp = 0 and the above equation

cannot be constructed. To mitigate this obstacle, in practice the Poisson's ratio is not taken at

its limiting value (0.5 for isotropic) but to nearly incompressible conditions such as 0.499999....

Thus in practice, the U/P finite element family models incompressible behavior as nearly

incompressible (Bathe). In the case of the foundation design problem, the soil for an undrained

saturated soil maybe modeled as nearly incompressible.



It should be noted that this example for isotropic behavior is easily extended to orthotropic

behavior except that the Poisson's ratios of the material may reach values greater than 0.5 but

must stay within bounds of the limitations discussed in chapter 2.

ISOPARAMETRIC ELEMENTS

When a given body is discretized into a finite element mesh, the individual finite elements in

general consist of different sizes and shapes. In order to solve the finite element equation, the

stiffness contributions from each element must be calculated and summed to equate a global

stiffness matrix that represents the entire body (Moaveni). The geometry of each element is

different and the interpolation field of each element is different which approaching directly can

be very expensive and impractical to calculate. To aid in this process, each element has its own

local coordinate system. The stiffness of the element is calculated by integrating over this local

coordinate system and then related by a transformation equation to the global coordinate

system of the body. Furthermore, each element is related to an isoparametric square element

via a transformation. This allows all stiffness calculations to be similar for each element and the

solution process to approach much more quickly. The following explores this procedure.

UV SPACE TRANSFORMATION

The following is the transformation equation that allows isoparametric elements to relate x,y,z

space to r,s space for a two dimensional element. Appendix B develops the proof for this

transformation equation and can be found as a problem in (Larson). The following can also be

used proving the transformation equation from x,y,z space to rs,t space by using Stoke's

Theorem in exchange for Green's Theorem. However, because this project involves 2D-

axisymetric modeling, the 2D transformation equation will be proved.



- 8f F C 8f ~ (x, y)f(x, y)dxdy = -dxdy= Fdy = f(x(r,s), yrsr,s drdsffffax f fa(r, s)

ax ax
a(x,y) r as (ax ay ay axl
a(r, s) ay ay - r as ar as

ar as

The above integral states that if a change of variables is used (as is the case for isoparametric

elements) then the equation must include an additional component which is the absolute

determinant of the Jacobian matrix. In the case of 2D axisymmetric revolutions, two Jacobians

are calculated. One for the x,y to r,s space and one from Cartesian to cylindrical coordinates.

The later Jacobian is R where R is the distance from the revolution axis to the center of the

isoparimetric element.

INTERPOLATION FUNCTIONS

As stated above, a complex continuum body rarely has a closed formed solution for a given

loading. In the finite element formulation, the body is discretized into finite elements

connected to adjacent elements by means of nodes. These nodes are where the degrees of

freedom are applied (u,v for 2D and u,v,w for 3D). All points within the element are described

by a function involving the nodal D.O.F's. These functions are called "interpolation functions"

and essentially describe the behavior between nodes in terms of those nodes. However, to

describe the behavior for finite element of arbitrary geometry and so to simplify we perform

the following. Tables 2 and 3 were extracted from (Bathe).

1: Take the element of consideration and represent it in r-s space as a square (cube in 3D) with

length 2 and situated at the origin.



2: Express displacement vector for the r-s representation in terms of its interpolation functions

which are known.

3: Utilize the primary property of an isoparametric element that the geometry is also expressed

with the same interpolation functions.

4: Compute the Jacobian relating the transformation from x-y space to r-s space

Interpolation functions for a 2D Element in r-s space

h - 1-(1
4

h 2 = 1
2 (1

4

h = 1
3 1(1

4

h 4 = 1
-(1

h4=
h-

+r)(1+s)

-r)(1 +s)

-r)(1 -s)

+r)(1-s)

s (1 -r r2)(1 +S)

h6 = 1
- (1 -s2)(1 - r)

h7 ~ ( -r2)(1 -S)

hi = 1
s(1 -S2)(1 + r)

h - 1

q = -(1- r 2 )(1 - s 2 )4

Table 2: Interpolation functions for a 2D Element in r-s space

Interpolation functions for a 3D Element in r-s-t space

i=6i=5

1
-- h,2

1
- h

i =7 i = 8

1
- - he2

1
- h

1
-Ih

- hs

i =9

1
-- h4

1
-ih 9

1
- h

4
1

4

1
-~h

-1h
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h, = 1 - (99 + 912 + 917)/2 hi 91i -(99 + 124 + 17)/2

h, =g 1 - (g + 9 12 + g 17)/2 hi =g 1 - (g + 912 + 9 17)/2

h, =91i - (99 + 912 + 917)/2 h, =g 1 - (g9 + g 12 + g 17)/2

h, = g1 - (99 + 912 + 917)/2 h; = g; forj = 9 - 20

hi =1 - (G9 + G12 + G17)/2

h1 = 0 if node i is not included; otherwise,

16 = G(r.r1)G(s.sj)G(t.t 1 )

1
G(w.wi) =(1 +wwj) for wi = 1 , w = r,s,t

1
G(w. wi) =-j(1+ w2) for wi = 0 w = r,s,t

Table 3: Interpolation functions for a 3D Element in r-s-t space

For the case of a 2D axisymmetric revolution to model a 3D sphere, the 2D interpolation

functions shall be used. Figure 12 is a graphical representation of the mapping described above.

S-+1,

rex

Node

y

Figure 12: Isoparametric mapping for a 2D and 3D finite element

ELEMENTS OF CONSIDERATION



4-U NODE ELEMENT

The 4-U element is a displacement based element for 2D analysis and utilizes four nodes. This

node allows the computation to become less expensive but the convergence rate is weaker.

Due to the linear interpolation of this element, it requires more elements to represent bending

behavior in beams or floor systems.

9-U NODE ELEMENT

The 9-U 2D Element is a displacement based element for 2D analysis and utilizes 9 nodes. This

node allows the computation to become more expensive but the convergence rate is faster.

This is the recommended element in the ADINA package to simulate the bending of beams.

9/3-U/P NODE ELEMENT

The 9/3 U/P 2D Element is a mixed based element that decouples pressure with displacement

degrees of freedom. Because there are more degrees of freedom, the computation is more

expensive than displacement based elements. However, for nearly incompressible isotropic

materials, the U/P element has proven to be very useful as opposed to displacement based

elements. The large increase in the bulk modulus of the material does not affect the strain

energy of this formulation. This element can be used for 2D plane strain and axisymmetric

behavior but not for plane stress.

4/1-U/P NODE ELEMENT

The 4/1 U/P 2D Element is the coarsest mixed based element that decouples pressure with

displacement degrees of freedom. This element behaves under the same guidelines as the 9/3

U/P element but with some noticeable differences. There is only one pressure node which may

lead to spurious energy problems if not properly used. This pressure node is either calculated as



"floating" and the interpolation field is taken as 1, or the node is chosen as the 9 th interpolation

location in the center of the element (Moaveni).

CONVERGENCE LAWS

LINEAR CONVERGENCE

For a continuum solid body, a solution to the variational formulation of the problem will equal

to the exact solution of the physical model. If a finite element analysis is used and the

variational formulation is discretized, the solution of the FEA regarding the displacements will

be smaller. If a finer mesh is used, the solution will achieve a closer approximation to the

physical model. It is shown that this convergence for a linear analysis is monotonic.

The following is the principle of virtual displacements for a continuum body

f TT dV = UTf B dV + f Usfifsf dSf
V V Sf

As a shorthanded notation, the left hand side shall be rewritten as:

fV TT dV = a(u, u) = E = Strain Energy Of Continuum

The left hand side can be recognized as twice the strain energy of the continuum mathematical

model and u is labeled as the exact solution. If the principle of virtual displacements is

discretized by a finite element solution, the strain energy of the finite element solution shall be

equal to:

I TT dV = a(uh, Uh) = E = Strain Energy of FEA with element measure "h"

v



The left hand side can be recognized as twice the strain energy of the finite element model with

mesh measure "h" and Uh is labeled as the solution to this finite element model. For linear

analysis, the solution of the finite element analysis with element measure "h" will have a

monotonic convergence to the solution of the continuum mathematical model. Thus, twice the

strain energy of the FEA model will always be smaller and will converge to the twice the strain

energy of the continuum mathematical model.

2a(u, u) > 2 a(uh, Uh)

This property is extremely valuable because it provides us with a measuring tool to see if a

given finite element analysis does or does not have a fine enough mesh for a given tolerable

error in solution.

To use this tool properly, the following rules must apply (Bathe):

* The inherent geometry of the finer mesh model must use the identical geometry of the

previous model and that the previous mesh mush be contained within the finer mesh.

V1 E V E - V E - V

0 The stress strain law is properly used.

* The constitutive relation C must be the same used in the continuum mathematical

model.

e Compatibility of the mesh needs to be satisfied.

For a linear analysis, the strain energy converges with an order of ch2k

E - Eh ~ Ch2 k

An example of this monotonic convergence behavior is shown below for a given setting.



Monotonic Convergence Example
1.OOE+06

9.OOE+05

8.OOE+05

7.OOE+05

6.OOE+05

r 5.OOE+05 _____4-U Node
4.00E+05 __g 9-U Node

S4.OOE+05-
3.00E+05 enm9/3 U/P Node

2.OOE+05 -4/1 U/P Node

1.00E+05

0.00E+00

0 1 2 3 4 5 6 7

Mesh Size 1/h

Figure 13: Monotonic Convergence Example

If a series of finer mesh strain energies are plotted in logarithmic space, the plot will be

approximately linear with a slope of 2k. This shall be the measure of convergence. Because we

do not know the exact strain energy E of the continuum mathematical model, a replacement

must be made. For this analysis, E will be assumed to be equivalent to a very fine mesh Eh

where Eh is the mesh implementing 1/h = 6, and two smaller meshes of 1/h = 0.5 and 2.

Finally it should be understood that for the U/P element formulation, convergence is assured

because the analysis is linear, but the convergence may or may not converge monotonically.

Therefore, the 2k law may not be used for U/P elements.



DISPLACEMENT BASED FEA STRESSES FOR NEARLY INCOMPRESSIBLE ORTHOTROPIC MEDIA

The following shows graphically the inherent problems of the displacement based FEA for

modeling nearly incompressible orthotropic media. As can be seen for nearly incompressible

orthotropic conditions, the effective stress jumps are terrible indicating the poor performance

of utilizing displacement based elements. The elements are locking and are producing

erroneous results (Cook).

A
D
||
NI
A

MAXIMUM
A1~ 80422.
EC 1. EL 5.IPT 12 t310204.J
MINIMUM
W 98.5
EG 1. EL 37, ]P T 21 (7230.J

Figure 14: Effective Stress results for orthotropic nearly incompressible media
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Figure 15: Global Y- Stress results for orthotropic nearly incompressible media



CHAPTER 4: FINITE ELEMENT ANALYSIS MODELING

Figure 16: Experimental Model - 40 meter diameter sphere with 20 meter diameter fixed hollow core

This section shall discuss the experiment to be run that shall illustrate the superior performance

of mixed U/P elements over displacement U elements regarding the analysis of a nearly

incompressible linear orthotropic media subjected to an arbitrary loading.

EXPERIMENTAL MODEL

The model chosen to be used in this experiment is a 40 meter diameter sphere subjected to a

uniform compressive load. This sphere includes a hollow 20 meter diameter core. The inner

core of this sphere shall act as a fixed surface (All degrees of freedom on its surface are null).

This geometry was chosen because of its high level of symmetry and its graphical display of

incompressible media. The model is shown below.



Figure 17: Experimental Model subjected to uniform compressive loading

Figure 16 shows a transparent view of the geometry of the sphere. The inner hollow core is

easily displayed. Figure 17 displays the uniform compressive traction acting on the exterior

surface. The purple mesh represents the applied stress field.

Recall that for an incompressible material, the volume of the material shall remain constant for

any given time. Thus for the given geometry, a uniform compressive load acting on the outer

surface of the sphere will not allow any deformation on its outer surface. Therefore, the outer

surface area shall remain constant and the initial geometry shall be equivalent to the final

geometry.

The size of the sphere chosen as 40 was made to allow the geometry to be entered in easily.

With the center core, main points are defined by a distance of 10 apart. In ADINA, (the finite

element program used to run the experiment) units are not defined. Throughout the rest of this

text, no mention of units shall be given. However, all set units were based off of the English

measuring system.



HIERARCHAL MODELS

This philosophy holds in truth the main rule when applying a finite element analysis. "Garbage

in. Garbage out". In short, the finite solution is not the exact solution to the real world physical

problem. It is rather the solution to the mathematical model representing the physical problem.

The "solution" will only expose the effects of the details the engineer has incorporated into the

model. Ideally, if a floor beam is modeled mathematically as an isotropic material and the

physical problem is an orthotropic material, the results will not display the effects of

orthotropic behavior. Likewise, if a beam with a 1D beam element, it will not show me the

stress distribution in classified Bernoulli and disturbed regions (Saint Variant's principle). With

that said, one might argue that every finite element analysis should contain as much

information as possible. i.e. everything should be modeled 3D with every screw, nut, bolt, and

discontinuity accounted for with non-linear analysis. In a sense, this is a guaranteed solution

that shows all effects from every element. But it is still only as good as the mathematical model

(complex or not) and it is also very expensive to simulate and very tedious and time consuming

to develop. The hierarchal finite element method philosophy teaches that the best model is not

the most complex but rather the most effective in a hierarchal tabulation (Bucalem).

HIERARCHAL MODEL TABULATION

Hierarchal Model 1
Hierarchal Model 2

Hierarchal Model i

Hierarchal Model n
Continuum Body Solution,



The above shows the tabulated scheme of mathematical models in order of increasing

complexity. As a model is chosen farther down the list, its "solution" will be closer and closer to

the continuum body solution. However, as stated before this increase in solution convergence

to modeling more accurate behavior is traded with increased expense of solution time and

complexity in setting up a model. The engineer must never choose the penultimate finite

element model because the setup time required and probability of mistakes in model entry will

increase drastically. Instead, the engineer must choose the hierarchal model i such that the

difference in solution performance from the next hierarchal model i+1 does not exceed a

tolerance A, a value chosen by the modeler based on engineering judgment.

MODEL SYMMETRY

Below are two utilized hierarchal models that model this experiment. Using the argument of

symmetry, it is shown how to move from model to a more simplistic version which is less

computationally expensive and easier to control.

HIERARCHAL MODEL 1

For this project, the solid geometry was chosen to be such that the effects of compressive

forces are symmetric throughout. Thus the following model was chosen. The inner core of the

sphere is hollow and will act as a fixed boundary. This condition will allow the user to see the

physical contraction of the element if compressible conditions are assumed. If a nearly

incompressible situation arises, the displacement mesh in post processing should remain

identical to the physical model (It does not move). To model this behavior, the boundary

conditions will apply a fixed wall to the entire inner surface of the hollow sphere inside.



Figure 18: Hierarchal Model 1: 3D Hollow Sphere using 3D finite elements

This model consists of 53 points and 23 solid volumes to initialize the geometry. When a mesh

of size h is applied, the number of nodes becomes rather large.

HIERARCHAL MODEL 2

Given the symmetry conditions of the above model, it is shown that to model this as an 2D

axisymmetric cases is much more efficient. Due to symmetry conditions, it is assumed that for

the axisymmetric case, the boundary conditions on the left inward boundary of the

axisymmetric element are composed of fixity in the core and rollers at the end connections

(Cook). This allows this model to contract with the same behavior as the hollowed solid sphere

using 3D elements.
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Figure 19: Hierarchical Model 2: Axisymmetric Hollow Sphere Revolution about Z-axis

Compared with hierarchical model 1, this axisymmetric model only needs 11 points and 4

surfaces to completely define its geometry. The revolution this 2D configuration creates

completely models all effects from hierarchical model 1. The letters C and B represent the

boundary conditions applied to the respective faces. The legend is shown in figure(). C

represents fixed conditions with no degrees of freedom and B represents fixed translation in

the Yaxis.

IMODELING WITH ADINA

The following is a detailed description of the modeling settings and properties within the ADINA

program. ADINA stands for Automated Dynamic Iterative Nonlinear Analysis and was founded

by Dr. Jurgen Klaus Bathe. This experiment maybe ran from any trusted finite element program

but the initial configurations in ADINA are provided to guide the user. The geometry, surface

structure, orthotropic conditions, and mesh sizes used are tabulated. The following procedure

records the initial setup in ADINA. Tables include the values to be entered and screen captions

of the related input windows are shown. For example, the heading configuration is shown

below.



Heading

1 ThG: MEng. Thesis - Bateman

Table 4: Heading

Problem Headinga [Maximum length: 80 characters including spaces):

1 ThG: M.Eng. Thesis - Bateman

OK Cancel

Figure 20: Adina Input - Heading

GEOMETRIC POINTS

The following are the points needed to define the geometry perimeter. Points 1-10 are based

off of a cylindrical coordinate system centered at the origin, and point 11 is the Cartesian origin.

Point 11 is needed as a reference to model the 8 arc lines that make the axisymmetric model.

The system is the coordinate system used to describe the geometric placement of the point in

ADINA. System 0 refers to the standard Cartesian global coordinate system and is the default

setting. System 1 refers to the cylindrical coordinate transformation of the Cartesian global

coordinate system.

Default Coordinate System: F

Auto... I I nport. Export... Clear Del How Ins FRow

phont X X11 X2 x3 system.

1 10.0 -..-90 .0 0-0 1

3 3 100 0-0 00 1

s s 10.0 90.0 0.0
120.0 -90.0 0.0 1

7 7 20.0 -4s.0 00 1
8 1 20.0 0.0 0.0 1

9 920.0 -R.0 0 20.0 45.0 0.0

Apply OK Cancel Help

Figure 21: Adina Input - Point Coordinates



Define Points

Point # X1 X2 X3 System

1 10 -90 0 1

2 10 -45 0 1

3 10 0 0 1

4 10 45 0 1

5 10 90 0 1

6 20 -90 0 1

7 20 -45 0 1

8 20 0 0 1

9 20 45 0 1

10 20 90 0 1

11 0 0 0 0

Table 5: Point Geometry

GEOMETRIC LINES AND SURFACES

For this model, only 4 surfaces are created. The surface layout was chosen to create a uniform

mesh. These surfaces are created using the patch method which requires the labeling of the

four line boundaries. There are two types of lines used to draw the desired geometry, straight

and curved lines. The straight lines require two points to define and are labeled vertex. Curved

lines require three points to define, two end points, and the center of the circle the arc is

tracing. The table below records the necessary values. Each surface created will have its own

coordinate system for meshing. In Adina, these directions are labeled by a small flag icon which

appears in the center of each created surface. All surfaces must not have interior angles greater

than 180 degrees otherwise the surfaces will not have a computed Jacobian matrix.



Surface #

1

2

3

4

5

6

7

8

Line

9

10

11

12

13

Define Arc Line

Starting Point P1 End Point P2

1 2

2 3

4

5

7

8

9

10

Define Straight Line

Vertex 1

1

2

3

4

5

Center

11

11

11

11

11

11

11

11

Vertex 2

6

7

8

9

10

Table 6: Adina Input - Geometric Lines and Surfaces

Define Surface

Surface # Line 1 Line 2 Line 3 Line 4

1 1 9 5 10

2 2 10 6 11

3 3 11 7 12

4 4 12 8 13

Table 7: Surface Geometry



Figure 22: Adina Input - Define Surface

BOUNDARY CONDITIONS

As discussed in the symmetry section of this document, the boundary conditions call for a roller

type connection which will allow rotation in every direction and translation in all but the global

Y direction. Therefore, the following input creates the need restraint in ADINA. All other

parameters not listed in the table such as temperature, warping, etc are also fixed.

Define Fixity

Name X - Trans Y - Trans Z - Trans X -Rot Y - Rot Z - Rot

FIXED X X X X X X

YRoller X X X X

Apply Fixity

Line 9, 13 YRoller

Lines 1,2,3,4 FIXED

Table 8: Boundary Conditions



Save DisardHelp OK

Apply to: 
Cancel

Default Fixity:
JALL -_Define...

Auto... Import.. Export... Clear DelRow insRow

{p}: press "S" key to subtract, marquee pick allowed

Line (p) Fbcity
1 ALL

2 ALL
3AL
4 ALL
5 YROLLER
6 YROLLER

9
10E

Figure 23: Adina Input -Apply Fixity

ORTHOTROPIC MATERIAL DEFINITIONS

The following details all material definitions in the experiment. The sphere will simulate

twenty different material properties, most of them which are nearly incompressible

situations. For this project, the Young's Modulus in each direction will be taken as a

constant value of 20000 and the shear modulus shall be taken as a constant value of 10000.

This eliminates the parameter E and G as variables from the restriction equations on

Poisson's ratio. Thermal coefficients shall be taken as 0. Wrinkling shall not be modeled.

Manage Material Definitions

Materia: Elastic Linear Orthotropic

EA EB Ec VAB VAC VBC GAB

30000 30000 30000 (Varies) (Varies) (Varies) 10000

Therm. A Therm. B Therm. C GAB GAB Wrinkling Density

0 0 0 0 0 No 0

Table 9: Material Definitions



Orthotropic Material Definitions

Material #

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

VAS

0

0

0

0

0

0

0

0

0

0.5

0.5

0.5

0.5

0.5

0.999

0.866

0.707

0.866

0.707

0.499

VAC

0

0

0

0.5

0.5

0.5

0.999

0.866

0.707

0

0

0

0.5

0.866

0

0

0

0.5

0.707

0.499

VBC

0

0.5

0.999

0

0.5

0.866

0

0.5

0.707

0

0.5

0.866

0

0

0

0.5

0.707

0

0

0.499

incompressible

N (Control)

N

Y

N

N

Y

Y

Y

Y

N

N

y

N

Y

Y

Y

Y

Y

Y

Y(Isotropic)

Table 10: Orthotropic Material Definitions



Add... DeeejCp..~ ~~ ~ d Put MDB

"" For 2-D solid, 3-D solid. shI and plate elements "

Material Number: D enity:

Description:
NONE

-Young's Modulus

2000 b: c 20000

Poisson Ratio

ab:0ac: - be:L Shear Modulus
ab:l1000 ac: be: ]

I OK

Thermal Expansion Coefficient------ Cance
a: b: c Help

Wrinkling (for 2-D solid, 3-D plane stress element only)

F~ Allow Wrinkling Time when Wrinkling is Activated:

Figure 24: Adina Input - Define Orthotropic Unear Elastic Material

ELEMENT GROUP

Groups are grouped data to be applied when meshing a surface. Groups are a category scheme

used in post processing to group areas of interest. The following group tells the program to

mesh with axisymmetric 2D analysis, no incompatible modes, the material definitions (1-20)

and small displacements and strains (linear analysis).

Define Element Group

Group # Type Element Sub Type Default Thickness

Material

1 2-D Solid Axisymmetric 1 12

Table 11: Group Conditions



SDelete Copy... Save Discard Set

Group Number 11 Type: 2-D Solid _j

Basic AdvancedI

Description- NONE

Element Su-Type: lAxisymmetic

Default Materiat |1
Default Element T hickness:

Thermal Material: il

Element Result Otput-

( Stresses/Strains ' Nodal Forces

Print: Default 3 Save. IDefau.lt 1

Element Option: 7None
Kinematic Formulation

Displacements: |Defaukz
Strains: |Detault .zJ
Incompatible Modes: No :

Interpolation Foimulation ---

Type:
Number of Pressure DOF:

OKCancel Help

Figure 25: Adina Input - Define Element Group

LOADING

Loading on the sphere shall act as a uniform compressive load acting on the external surface

area. For the axisymmetric 2D representation, this corresponds to lines 5,6,7, and 8.

Apply Load

Pressure Number

Line Number

Magnitude

1000

Pressure Load Number

Table 12: Load Parameters



Copy.. Save Dicad

Surface Number: |1 j
Mesh Density

Method: [Use Number of Divisions

Maximum Element Edge Length- 0

Progression of Element Edge Lengths: Gemetric

Number of Subdivisions

u: V

Length Ratio of Element Edges (Last/Fist)

u: 1 1
Use Central Biasing for

F u Direction r v Direction

Help _Kcl

-Also Assign to Following Surfaces

{p}: press "S" key to subtract,
marquee pick alowed

Auto... Surface @
Import...

Export... 3
4

Clearl5

DInsRowi

10

Figure 26: Adina Input - Define Surface Mesh Density

Define Surface Mesh Density

Mesh Size Measurement Subdivisions u Subdivisions v

1/h = 1/(10/5) = 0.5 5 5

1/h = 1/(10/20)= 2 20 20

1/h = 1/(10/60) = 6 60 60

Table 13: Mesh Density Parameters

Note: For this surface mesh, h = 5. When we refine the mesh for convergence check, we will

use multiples of h. It is important that surfaces are meshed in the above order 3, 2, 1. If not,

line 3 will not be meshed correctly.



[ mrMesh S4&rfaces

Basic Options I Fracture Options |
Type: 12-D Solid

Element Group: |13 ..

-Meshing Type---- --Free Meshing Algorithm-

C- Rule-Based 0 Advancing Frrnt

C Free-Form C launay

Nodal Specification

Nodes per Element: 19T" _|

Element Pattern: |Automatic fJ

Preferred Cell Shape: Automatic J
r~ Triangular Surfaces Treated as Degenerate

- Surfaces to be Meshed

Auto...Import... Export...

_lear DLOy1w naRJo

10

2
3
4
5
6
7

Apply 0K Cancel Help

Figure 27: Adina Input - Mesh Surfaces

Mesh Surfaces

Surface # Type Element Group Mesh Type Node Specification

1 2-D Solid 1 Rule - Based Varies

2 2-D Solid 1 Rule - Based Varies

3 2-D Solid 1 Rule - Based Varies

4 2-D Solid 1 Rule - Based Varies

Table 14: Surface Parameters

RESULTS

CONVERGENCE RATE EVALUATION

For each of the cases, it is shown that all displacement based elements converge monotonically

for all 20 material settings. U/P exhibit convergence but may not necessarily be monotonic

Thus, it is heavily inferred that the constitutive effect on convergence is invariant of the choice

between isotropic and orthotropic conditions.



TABLES AND GRAPHICS OF STRAIN ENERGY CONVERGENCE

The following list of tables tabulates the strain energy computed for each mesh size for each of

the four elements subjected to the given defined material (Table 10). Poisson ratios used for

each material are displayed as a heading. Logarithmic convergence only applies to the

displacement based elements and is used to illustrate poor convergence. Following the list of

tables are plotted values for each of the twenty materials.

VAB

Strain

0.5

6.94E+06

7.OOOE+06

6.943E+06

7.OOOE+06

= 0

Energy vs. Mesh Size

2

6.996E+06 6.99

7.OOOE+06 7.00

6.996E+06 7.00(

7.OOOE+06 7.00

VBC

6

)E+06

)E+06

0E+06

)E+06

= 0 VAC

Logarithmic Convergence

0.5 2 2k

6.269E+04 3.354E+03 2.112E+00

1.490E+02 6.OOOE-01 3.978E+00

5.691E+04 3.206E+03 -

1.038E+02 4.170E-01 -

Table 15: Material 1: vab = 0 vbc = 0 vac = 0

VAB 0

Strain Energy vs. Mesh Size

0.5 2

4.39E+06 4.430E+06 4.43-

4.436E+06 4.433E+06 4.43-

4.390E+06 4.430E+06 4.43

4.436E+06 4.433E+06 4.43-

VBC 0

6

3E+06

E+06

;E+06

3E+06

0.5

4.650E

-3.163

4.285E

-3.254

VAC = 0.5

Logarithmic Convergence

2

+04 2.522E+03 2.10

E+03 -1.848E+02 2.04

+04 2.416E+03

E+03 -1.857E+02

2k

2E+00

8E+00

Material 1

Mesh Size

4-U

9-U

4/1-U/P

9/3-U/P

Material 2

Mesh Size

4-U

9-U

4/1-U/P

9/3-U/P

Table 16: Material 2: vab = 0 vbc = 0 vac = 0.5



VAB 0

Strain Energy vs. Mesh Size

0.5 2

3.51E+05 7.795E+05 8.71

6.046E+05 8.686E+05 8.93

8.675E+05 8.964E+05 8.98

7.138E+05 8.693E+05 8.93

VBC =0

6

7E+05

4E+05

LE+05

4E+05

0.5

5.207E

2.888E

3.063E

1.797E

VAC =0.999

Logarithmic Convergence

2 2k

+05 9.214E+04 1.249E

+05 2.480E+04 1.771E

+04 1.699E+03 -

+05 2.410E+04 -

+00
+00

VAB = 0

Strain Energy vs. Mesh Size

0.5 2

5.48E+06 5.514E+06 5.51

5.516E+06 5.517E+06 5.51

5.485E+06 5.515E+06 5.51

5.516E+06 5.517E+06 5.51

VBC 0.5

6

7E+06

7E+06

7E+06

7E+06

0.5!

4.030E

6.440E

3.220E

5.996E

VAC = 0

Logarithmic Convergence

2

+04 2.155E+03 2.11

+02 2.912E+01 2.23

+04 1.811E+03

+02 2.894E+01

2k

3E+00

3E+00

VAB = 0

Strain Energy vs. Mesh Size

0.5 2

2.64E+06 2.661E+06 2.66

2.663E+06 2.663E+06 2.66

2.645E+06 2.662E+06 2.66

2.663E+06 2.663E+06 2.66

VBC

6

2E+06

3E+06

3E+06

3E+06

0.5 VAC = 0.5

Logarithmic Convergence

0.5 2

2.136E+04 1.148E+03 2.10

1.315E+02 2.609E+00 2.82

1.805E+04 1.012E+03

7.781E+01 2.193E+00

2k

9E+00

8E+00

Material 3

Mesh Size

4-U

9-U

4/1-U/P

9/3-U/P

Table 17: Material 3: vab = 0 vbc = 0 vac = 0.999

Material 4

Mesh Size

4-U

9-U

4/1-U/P

9/3-U/P

Table 18: Material 4: vab = 0 vbc = 0.5 vac = 0

Material 5

Mesh Size

4-U

9-U

4/1-U/P

9/3-U/P

Table 19: Material 5: vab = 0 vbc = 0.5 vac = 0.5



VAB 0 VB

Strain Energy vs. Mesh Size

0.5 2 6

4.90E+03 4.968E+04 1.173E+05

1.626E+05 1.956E+05 1.970E+05

1.903E+05 1.967E+05 1.970E+05

1.985E+05 1.972E+05 1.971E+05

C 0.5 VAC = 0.866

Logarithmic Convergence

0.5 2 2k

1.124E+05 6.764E+04 3.664E-

3.437E+04 1.396E+03 2.311E

6.792E+03 3.921E+02 -

-1.424E+03 -7.881E+01 -

-01

+00

VAB 0

Strain Energy vs. Mesh Size

0.5 2

1.39E+05 2.156E+05 2.24.

3.192E+05 2.385E+05 2.28

2.291E+05 2.263E+05 2.26

3.606E+05 2.390E+05 2.282

6E

3E+

3E+

1E+

3E+

VBC =0.999 VAC 0

Logarithmic Convergence

0.5 2

05 8.525E+04 8.712E+03 1.64

05 -9.093E+04 -1.021E+04 1.57

05 -2.915E+03 -1.402E+02

05 -1.323E+05 -1.070E+04

VAB 0B

Strain Energy vs. Mesh Size

0.5 2 6

9.69E+02 5.522E+03 9.528E+03

1.289E+04 1.379E+04 1.377E+04

1.377E+04 1.375E+04 1.375E+04

1.721E+04 1.397E+04 1.378E+04

C 0.866 VAC = 0.5

Logarithmic Convergence

0.5 2

8.559E+03 4.007E+03 5.47

8.776E+02 -1.908E+01 #N

-2.325E+01 2.130E-01

-3.429E+03 -1.829E+02

2k

SE-01

UM!

Material 6

Mesh Size

4-U

9-U

4/1-U/P

9/3-U/P

Table 20: Material 6: vab = 0 vbc = 0.5 vac = 0.866

Material 7

Mesh Size

4-U

9-U

4/1-U/P

9/3-U/P

k

5E+00

7E+00

Table 21: Material 7: vab = 0 vbc = 0.999 vac = 0

Material 8

Mesh Size

4-U

9-U

4/1-U/P

9/3-U/P

Table 22: Material 8: vab = 0 vbc = 0.866 vac = 0.5



VAB 0

Strain Energy vs. Mesh Size

0.5 2

1.24E+04 4.321E+04 5.87

6.505E+04 6.708E+04 6.71

6.530E+04 6.704E+04 6.71

6.717E+04 6.716E+04 6.71

VBC =0.701

6E

4E+04

6E+04

iE+04

6E+04

0.5

4.636E

2.110E

1.853E

-6.511

VAC = 0.707

Logarithmic Convergence

2 2k

+04 1.553E+04 7.889E

+03 7.266E+01 2.430E

+03 1.076E+02 -

E+00 -1.498E-01 -

Table 23: Material 9: vab = 0 vbc = 0.707 vac = 0.707

Material 10

Mesh Size

4-U

9-U

4/1-U/P

9/3-U/P

VAB = 0.5

Strain Energy vs. Mesh Size

0.5 2

4.38E+06 4.426E+06 4.42

4.427E+06 4.429E+06 4.42

4.386E+06 4.426E+06 4.42

4.427E+06 4.429E+06 4.42

VBC 0

6

8E+06

9E+06

9E+06

)E+06

0.5

4.592E

1.623E

4.267E

1.549E

VAC 0

Logarithmic Convergence

2

+04 2.552E+03 2.08

+03 8.483E+01 2.12

+04

+03

2k

5E+00

9E+00

2.503E+03

8.386E+01

Table 24: Material 10: vab = 0.5 vbc = 0 vac = 0

Material 11

Mesh Size

4-U

9-U

4/1-U/P

9/3-U/P

VAB = 0.5

Strain Energy vs. Mesh Size

0.5 2

2.23E+06 2.250E+06 2.25

2.252E+06 2.252E+06 2.25

2.234E+06 2.251E+06 2.25

2.252E+06 2.252E+06 2.25

VBC = 0

6

1E+06

2E+06

2E+06

2E+06

0.5

1.932E

-7.766

1.760E

-7.927

VAC = 0.5

Logarithmic Convergence

2

+04 1.032E+03 2.11

E+02 -4.288E+01 2.08

+04 9.892E+02

E+02 -4.294E+01

2k

3E+00

9E+00

Table 25: Material 11: vab = 0.5 vbc = 0 vac = 0.5

Material 9

Mesh Size

4-U

9-U

4/1-U/P

9/3-U/P

-01

+00



Material 12

Mesh Size

4-U

9-U

4/1-U/P

9/3-U/P

VAB = 0.5 VB

Strain Energy vs. Mesh Size

0.5 2 6

2.28E+03 2.401E+04 6.029E+04

7.663E+04 1.011E+05 1.023E+05

9.864E+04 1.021E+05 1.023E+05

1.055E+05 1.025E+05 1.024E+05

0.5

5.801E

2.562E

3.670E

-3.156

VAC =0.866

Logarithmic Convergence

2 2k

+04 3.628E+04 3.386E

+04 1.153E+03 2.237E

+03 2.143E+02 -

E+03 -1.718E+02 -

-01

+00

Table 26: Material 12: vab = 0.5 vbc = 0 vac = 0.866

Material 13

Mesh Size

4-U

9-U

4/1-U/P

9/3-U/P

VAB = 0.5 VB

Strain Energy vs. Mesh Size

0.5 2 6

2.64E+06 2.661E+06 2.662E+06

2.662E+06 2.662E+06 2.662E+06

2.644E+06 2.661E+06 2.662E+06

2.662E+06 2.662E+06 2.662E+06

0.5

2.150E

2.332E

1.828E

-3.532

VAC = 0

Logarithmic Convergence

2

+04 1.168E+03 2.10

+01 -1.978E+00 2.48

+04 1.043E+03

E+01 -2.565E+00

2k

1E+00

1E+00

Table 27: Material 13: vab = 0.5 vbc = 0.5 vac = 0

Material 14

Mesh Size

4-U

9-U

4/1-U/P

9/3-U/P

VAB = 0.5

Strain Energy vs. Mesh Size

0.5 2

8.89E+02 2.661E+06 2.66

1.116E+04 1.395E+04 1.39!

1.323E+04 1.386E+04 1.39(

2.025E+04 1.431E+04 1.39

6

2E+

5E+

0E+

7E+

vc= 0.866 VAC = 0

Logarithmic Convergence

0.5 2

06 2.661E+06 1.168E+03 5.57

04 2.786E+03 2.798E+00 4.98

04 6.734E+02 4.054E+01

04 -6.274E+03 -3.355E+02

2k

7E+00

OE+00

Table 28: Material 14: vab = 0.5 vbc = 0.866 vac = 0

c = 0

c = 0-5



Material 15

Mesh Size

4-U

9-U

4/1-U/P

9/3-U/P

VAB =0.999 VB

Strain Energy vs. Mesh Size

0.5 2 6

3.25E+05 7.35E+05 8.32E+05

8.39E+05 8.58E+05 8.58E+05

8.27E+05 8.56E+05 8.58E+05

8.589E+05 8.580E+05 8.581E+05

C 0 VAC = 0

Logarithmic Convergence

0.5 2

5.07E+05 9.77E+04 1.18

1.95E+04 3.13E+02 2.97

3.04E+04 2.09E+03

-8.327E+02 3.635E+01

2k

8E+00

9E+00

Table 29: Material 15: vab = 0.999 vbc = 0 vac = 0

Material 16

Mesh Size

4-U

9-U

4/1-U/P

9/3-U/P

VAB = 0.866 B

Strain Energy vs. Mesh Size

0.5 2 6

2.10E+03 2.23E+04 5.67E+04

9.45E+04 1.01E+05 1.O1E+05

9.76E+04 1.01E+05 1.01E+05

1.013E+05 1.009E+05 1.008E+05

C 0 VAC = 0.5

Logarithmic Convergence

0.5 2

5.46E+04 3.44E+04 3.33

6.27E+03 2.51E+02 2.32

3.24E+03 1.95E+02

-4.731E+02 -2.400E+01

Table 30: Material 16: vab = 0.866 vbc = 0 vac = 0.5

Material 17

Mesh Size

4-U

9-U

4/1-U/P

9/3-U/P

VAB = 0.707 VB

Strain Energy vs. Mesh Size

0.5 2 6

1.18E+03 1.19E+03 1.19E+03

1.41E+03 1.25E+03 1.20E+03

1.18E+03 1.19E+03 1.19E+03

2.544E+03 1.273E+03 1.201E+03

C :0 VAC = 0.707

Logarithmic Convergence

0.5 2 2k

9.91E+00 5.25E-01 2.119E

-2.16E+02 -4.80E+01 1.085E

3.76E+00 4.78E-01 -

-1.343E+03 -7.235E+01 -

+00

i-00

Table 31: Material 17: vab = 0.707 vbc = 0 vac = 0.707

2k

3E-01

1E+00



Material 18

Mesh Size

4-U

9-U

4/1-U/P

9/3-U/P

VAB =0.866

Strain Energy vs. Mesh Size

0.5 2

4.09E+03 4.38E+04 1.08

1.80E+05 1.94E+05 1.94

1.87E+05 1.94E+05 1.94

1.946E+05 1.942E+05 1.94

VBC = 0.5

E+05

E+05

E+05

2E+05

0.5

1.04E

1.44E

6.63E

-4.922

VAC = 0

Logarithmic Convergence

2

+05 6.45E+04 3.4f

+04 5.78E+02 2.32

+03 3.98E+02

E+02 -2.449E+01

2k

63E-01

0E+00

Table 32: Material 18: vab = 0.866 vbc = 0.5 vac = 0

Material 19

Mesh Size

4-U

9-U

4/1-U/P

9/3-U/P

VAB = 0.707 B

Strain Energy vs. Mesh Size

0.5 2 6

1.12E+04 4.16E+04 5.80E+04

6.35E+04 6.73E+04 6.73E+04

6.50E+04 6.71E+04 6.73E+04

6.912E+04 6.741E+04 6.731E+04

C 0.707 VAC 0

Logarithmic Convergence

0.5 2

4.69E+04 1.65E+04 7.54

3.82E+03 5.03E+01 3.12

2.30E+03 1.36E+02

-1.815E+03 -9.657E+01

2k

1E-01

3E+00

Table 33: Material19: vab = 0.707 vbc = 0.707 vac = 0

Material 20

Mesh Size

4-U

9-U

4/1-U/P

9/3-U/P

VAB = 0.499 VB

Strain Energy vs. Mesh Size

0.5 2 6

1.74E+04 1.75E+04 1.75E+04

1.75E+04 1.75E+04 1.75E+04

1.74E+04 1.75E+04 1.75E+04

1.749E+04 1.749E+04 1.749E+04

C 0.499 VAC = 0.499

Logarithmic Convergence

0.5 2 2k

1.25E+02 6.68E+00 2.115E

1.90E-01 1.42E-03 3.532E

1.07E+02 6.OOE+00

4.599E-02 7.700E-04 -

+00

-00

Table 34: Material 20: vab = 0.499 vbc = 0.499 vac = 0.49



Material 1: Vab = 0 Vbc = 0 Vac = 0
7.01E+06

7.OOE+06

6.99E+06
6 E
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.E 9

w 6.96E+06
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0 1 2 3 4

Mesh Size 1/h

4-U Node

=4l9-U Node
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4/1 U/P Node

5 6 7

Figure 28: Material 1: vab = 0 vbc = 0 vac = 0

Material 2: Vab = 0 Vbc = 0 Vac = 0.5
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Figure 29: Material 2: vab = 0 vbc = 0 vac = 0.5



Figure 30: Material 3: vab = 0 vbc = 0 vac = 0.999

Figure 31: Material 4: vab = 0 vbc = 0.5 vac = 0

Material 3: Vab = 0 Vbc = 0 Vac = 0.999
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Figure 32: Material 5: vab = 0 vbc = 0.5 vac = 0.5

Figure 33: Material 6: vab = 0 vbc = 0.5 vac = 0.866

Material 5: Vab= 0 Vbc= 0.5 Vac 0.5
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Material 6: Vab= 0 Vbc = 0.5 Vac = 0.866
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Figure 34: Material 7: vab = 0 vbc = 0.999 vac = 0

Figure 35: Material 8: vab = 0 vbc = 0.866 vac = 0.5
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Figure 36: Material 9: vab = 0 vbc = 0.707 vac = 0.707

Figure 37: Material 10: vab = 0.5 vbc = 0 vac = 0

Material 9: Vab= 0 Vbc = 0.707 Vac = 0.707
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Figure 38: Material 11: vab = 0.5 vbc = 0 vac = 0.5

Figure 39: Material 12: vab = 0.5 vbc = 0 vac = 0.866

Material 11: Vab = 0.5 Vbc 0 Vac = 0.5
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Figure 40: Material 13: vab = 0.5 vbc = 0.5 vac = 0

Figure 41: Material 14: vab = 0.5 vbc = 0.866 vac = 0

Material 13:vab =0.5 Vbc 0.5 Vac= 0
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Figure 42: Material 15: vab = 0.999 vbc = 0 vac = 0

Material 16: Vab 0.866 Vbc = 0 Vac = 0.5
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Figure 43: Material 16: vab = 0.866 vbc = 0 vac = 0.5
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Material 17: Vab = 0.707 Vbc = 0 Vac = 0.707
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Figure 44: Material 17: vab = 0.707 vbc = 0 vac = 0.707

Material 18: Vab = 0.866 Vbc = 0.5 Vac 0
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Figure 45: Material 18: vab = 0.866 vbc = 0.5 vac = 0



Figure 46: Material 19: vab = 0.707 vbc = 0.707 vac = 0

Figure 47: Material 20: vab = 0.499 vbc = 0.499 vac = 0.499
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CONCLUSION

The following was a finite element analysis comparison of the strain energies used for different

mesh sizes and for finite elements modeling the loading of a nearly incompressible orthotropic

solid sphere. The results are tabulated above. It is shown as predicted, that for all elements

used, strain energy converges monotonically with a progressive finer mesh that satisfies the

conditions of convergence specified above.

From each of the 20 trials above, it can be seen that the 9 U/P elements had the best

convergence rate for nearly incompressible conditions. This means that 9 U/P are just as useful

in orthotropic situations as in isotropic situations. Condition 20 performs an isotropic near

incompressibility analysis. Just as with isotropic behavior, nearly incompressible conditions

arises when the bulk modulus approaches an extremely large value. The definition of the bulk

modulus is the same as before but is altered due to each normal strain term now becoming a

function of three independent Poisson ratios instead of one. As can be shown in the 3D and

axisymmetric models used, the spheres exterior has not changed its surface area due to

confined incompressibility.

For the cases involving compressible situations (Material 1 for example), the U/P elements

performed competitively to standard 9 node displacement based elements. It is noted though

that U/P elements have more degrees of freedom than 9-U Node elements and since they

perform competitively, they should not be used in such cases.

Meshes of effective stress show that 4-Node elements have large stress jumps for coarse mesh

distributions (1/h = 0.5) and for nearly incompressible situations, these elements behave

inadequately. As from before, there is a tradeoff between 4-U Node and 9-U Node elements

between computation expense and convergence. It takes longer for 4-U Node elements to

converge but the smaller array of D.O.F's used allows quick calculations. Ideally for



compressible orthotropic situations, the choice between the two relies with engineering

judgment. The same can be said with 4/1 and 9/3 U/P elements depending on whether

efficiency or speed should be used respectively. It is the author's opinion that 4 node elements

should be used first followed by 9 node elements for comparison.

In conclusion, the assumptions of the relations of these three elements regarding convergence

rate and effectiveness for linear isotropic nearly incompressible situations are identical to

orthotropic conditions. The only difference is that instead of v = 0.499, the restriction is a

function of six variables f(EA,EB,Ec,VAB,VBC,VAC) that are bounded by restrictions to make the

constitutive relation invertible and positive definite. Under these conditions, it is shown that

any of the three Poisson ratios may reach values larger than 0.5, the restriction set in isotropic

analysis.
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IAPPENDIX A: PRINCIPLE OF VIRTUAL DISPLACEMENTS DERIVATION

Begin with the differential Formulation of a Solid 3D body. Multiply by a virtual displacement

field Ui. If the following value is always equivalent to zero, then the integral is also equal to 0.

Tij,j + f B = 0 (Ti;,7 + ftB) U, = 0 f (ri, + fB) U, dV = 0
V

Using the product rule and the divergence theorem from vector calculus

(Tij ijrUi + r

+ f BUIdV = 0 f (TijU 1)jdV = f (S1U1)njdSf
Sf

H ij+ fJBU )dV + (Ti) Ui)njdSf = 0

Recognize that the normal product is just the quantities on the surface Sf, combine equations

(T1 Ui)nj = fSfS Sf + JBU)dV + f Sf UsfdSf =0

Symmetry of the stress tensor is equal to

ri;Ui,; = ri; [ (U1 ,; + U1,)] = TijE (Linear Theory)

Thus the variational formulation is obtained

I TijEijdV=
V

fB UdV + fi ffUsfdS
Sf

L(Tiji~ U3 -iu



APPENDIX B: UV SPACE TRANSPORTATION DERIVATION

1) We wish to prove the following:

fff(x, y)dxdy = T
s

ax
a(x, y) r -
a(r,s) - ay

ar

ax
as
ay
s

f [x (r, s), y (r, s) s) drds

(x ay y x Idet)
\ar as ar as)

2) The definition of Green's Theorem states that the following two equations are

equivalent if F is continuous over the given boundary.

x
aF

F(x,y) = f(t,y)dt =f(x,y)
xf

aF
f(xy)dxdy = dxdy = Fdy

12 12 C1

3) To transform the above integral into r,s space we create the vector u which shall

represent the parametric curve C2 in the r,s space for a s t s b. Then the vector x is a

parametric representation for C1.

u(t) = (r(t) s(t))

x(t) = (x(t) y(t)) = (x(r(t), s(t)) y(r(t), s(t)))

b

F(x, y)dy =f F (x(r(t), s(t)), y(r(t), s(t))) dt
C1  a

4) Apply the chain rule on y=y(r,s) to yield the following.

dy y a



5) Simplify and substitute.

F = F(r, s) = F (x(r(t), s(t)), y(r(t), s(t))) = F(x(r, s), y(r, s))

F(x,y)dy =T F dr +
C1 C O

F - ds
O s

(Pdr + Qds) = ff a) drds
C2

OQ O Fx 02X

- -±F

Os - r Os aras

F -a~ pa( r Os +O ras Os Or

OF aFax + apay

Or Ox Or Oyar

£d =T ffI( OF Ox
Fdy =x Or

Cl

+ a I- aj
Oy-ar O s

T ff
2:

dF ay( Or Os

OF OF x OFay
as Ox Os ayas

- -+F ax O Y s

- sor) dudv

dr 1
T-I drds

Fdy = Or+ F Osor drds

fd = f (xO(r ( s )
fFdy = T fff(x(r, s), y(r, s)) a (r, s) drds

f(x,y)dxdy = -dxdy= Fdy = f(x(r, s), y(r, s)) drds
ax 19 (r, s)

D2 C,

Fdy = T f

F(x, y)dy = F (r(t), s(t)) ar' (t) + sY'(t)] dt = [F -Yr'(t) + F '(t dt
C1 aa

- dudv


