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Abstract

With the advances in technology, recent tall building design has undergone a shift to the
free-style geometric forms in the exuberant and liberal atmosphere. As a height of the
building increases, it is more susceptible to vibration caused by wind because of its
asymmetric distribution of mass and stiffness, increased flexibility and insufficient
inherent damping. This wind-induced motion, in particular crosswind response, endangers
the dynamic response of tall structures, the performance of cladding and window, and the
habitability of occupants. Therefore, much research on mitigating wind induced
excitations of tall buildings has been carried out.

This thesis focuses on the effect of shape modification on the wind flow pattern around
tall buildings. An appropriate choice of this architectural modification can significantly
reduce aeroelastic instabilities. Four aerodynamic modifications to reduce wind-induced
responses of a tall building, such as a basic square model, a corner recession model, a 3-
step setback model, and a 180 degree helical model, are evaluated through commercial
CFD (Computational Fluid Dynamics) software, STAR-CD and compared with results
from wind tunnel tests. Based on this comparison, the optimal model to effectively
mitigate adverse wind excitations is recommended.

Thesis Advisor: Jerome J. Connor
Title: Professor of Civil and Environmental Engineering
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Chapter 1 Overview

1.1 Introduction

Chief amongst reasons of constructing tall buildings have been symbolic image, power,

prestige, aesthetics and visibility. Since the late 19th century, there has been a growth in

the construction of tall buildings. A rapid expansion of the economy and a boom in the

stock market, between the late 1890s and the early 191 Os, made possible a substantial

increase in capital. This increased capital significantly flows into the construction market

of tall buildings to show off the richness accumulated. As the example of tall building,

whose structural system is steel skeletal frames encased in massive masonry walls, built in

this period, the 30 story Park Row Building in 1899 had already attained the height of

about 120 meters. Also, the 47 story Singer Building, though demolished, became the

tallest in the world when completed in 1908. Just one year later, the 50 story Metropolitan

Life Insurance in 1909 became the world tallest building. However, this first skyscraper

boom did not sustain because of the panic of 1907, one of the sharpest downturns in US

economic history (Thornton 2005). After the economy stabilized, the second skyscraper

boom occurred in the 1920s, benefitting from an unprecedented boom in the stock market,

leading to a significant growth in the construction market of residential and commercial

tall buildings including the 77 story Chrysler Building in 1930 and the 102 story Empire

State Building in 1931. During these two skyscraper booms, tall buildings were influenced

by the design principles such as the functionalism by Louis Sullivan and the Art Deco

articulately involving with the cubism, futurism and expressionism. Therefore, such

buildings showed exaggerated decorations and imagination powers with a vestige of

Gothic and Renaissance motifs (Aysin 2009). In addition, the structural system prevalent

in this era (1880-1940) was structural steel frame, before which load bearing masonry

structure had been predominantly utilized. However, these styles and structural systems

experienced considerable changes. The aftermath of the Great Depression from 1929 to

the 1930s and the World War II from 1939 to 1945 retarded the advancement of tall

buildings. This regression still remained strong until the 1950s. However, due to the boom



in economy in the 1960s, there was another skyscraper boom; the 52 story JP Morgan

Chase World HQ in 1960, the 65 story Marina City in 1964, the 70 story Lake Point Tower

in 1968, the 100 story John Hancock Center in 1970, and importantly the 108 story Willis

Tower in 1974 were constructed in this skyscraper boom in which most of the tall

buildings were influenced by International style, or Modernism. The feature of this style

was the rectangular prism-like building. Unlike between 1880 and 1940, the decorations

as vestige of Gothic and Renaissance style in tall buildings were almost absent (Aysin

2009). Also, with the significant advancement in technology and construction, buildings,

whose style was a steel frame clad with glass wall, were built more efficiently. For

instance in structural systems, the rigid frames, as interior structures, the 860-880 Lake

Shore Drive Apartments in 1949 adopted provided flexibility in the floor planning along

with fast construction (Mir M. Ali 2007). In addition, the John Hancock Center utilized

the steel braced tube system as an exterior structure, which efficiently resists lateral shears

by axial forces in diagonal members as shown in Figure 2.19. In fact, various modified

tube systems were introduced: framed tube (Aon Center in 1973) and bundled tube (Willis

Tower in 1974). Most of the tall buildings followed the modernism. However, starting

from the Marina City Tower in 1964 and the Lake Point Tower in 1968, buildings such as

the 333 South Wacker Drive in 1983 are of circular shape, conspicuously distinct from the

boxlike buildings. This separation meant the enlightenment from the ignorance of the

significance of free-style designs. However, the modernism overwhelmingly prevalent

during the period from 1940 to 1980 declined with the stagflation and deep recessions

from the 1970s to the early 1980s. Following modernism, post modernism elicited free

forms of tall buildings with their own regional and cultural features. In addition, tall

buildings with novel geometry such as the Al Faisaliah Center in 2000, the 30 St Mary

Axe in 2004 and the Turning Torso in 2006 emerged. Since the 1980s, the fourth

skyscraper boom has become unequivocally visible in the countries including Malaysia,

Japan, China, and UAE. Although severe economic crisis in Asia, starting from the sudden

collapse in stock market and deep depreciation of currency in Malaysia, was rampant, the

race for tallest buildings has been consistent. Moreover, this growth gains momentum

from the innovative technology and designs. For example, the diagrid system employed in



the 46 story Hearst Tower employed efficiently resists the lateral forces like wind and

earthquake and the gravity forces by diagonal members without vertical columns (Moon

2005). Other examples are the space truss - exterior systems (the 72 story Bank of China

Tower in 1990) and the outrigger - interior system (the 101 story 101 Taipei in 2004).

These advances made unconventional designs more feasible.

However, tall buildings have more problems than low rise buildings. Although the tall

buildings produce powerful iconic images and visibility, the construction cost is

considerably larger and the design of them is much more difficult. Moreover, recent

skyscrapers pursuit free-style forms distinct from traditional rectangular prisms as well as

the height unimaginable in the past. This is due to the desire for revolutionary and

innovative shapes of tall buildings from humans. This insatiable human desire, however,

causes many severe problems in habitability, pedestrian comfort, wind induced noise and

interference effect of neighboring buildings. Figure 3.1 shows the rapid growth of tall

buildings in residential and lodging usages. This means the importance of habitability

issue cannot be ignored. With the advanced structural systems and damping mechanism,

tall buildings are very far from the danger of collapse and structural failure. However, the

vibration and jerkiness caused by the wind to tall buildings remain an issue to be

addressed for the serviceability and habitability of buildings. Especially these problems in

super tall buildings are more profound.

To mitigate these adverse effects induced by the wind, there have been various strategies

such as addition of viscoelastic material, the tuned mass damper, and proper aerodynamic

modifications in Table 1.1. However, though equipped with the recent advancement in

analysis software and wind tunnel test, the design of tall buildings based on this

technology relies to a large extent on the several assumptions such as fundamental

mechanics and accumulated experiences. Therefore, because the precise values of

parameters in structures like damping cannot be predicted before the construction, the

performance of tall buildings is highly likely to affect the serviceability and occupant

comfort as previously mentioned. Therefore, the accuracy and validity of analytical results



should be assessed with respect to actual performance of tall buildings (Kijewski-Correa

2006). Nevertheless, the experiment on full-scaled model still remains so limited, even

though Dryden (1930) conducted the wind pressure study on circular cylinders and

chimneys. Therefore, the full-scale monitoring of the performance of actual tall buildings

already built is considered a practical means for verifying and improving analytical

practices.

Table 1.1 Means to suppress wind-induced responses of buildings (Ahsan Kareem 1999)

Means Type Methods & Aim Remarks

Aerodynamic Improving aerodynamic properties to reduce Chamfered Corners,
Design Passive wind force coefficient Opening

Increasing building mass to reduce Increased Material
Structural Passive air/building mass ratio Costs
Design Increasing stiffness or natural frequency to Bracing Walls, Thick

reduce non-dimensional wind-speed Members

Addition of materials with energy dissipative SD, SJD, LD, FD,

Passive properties, increasing building damping ratio VED, VD, OD
Adding auxiliary mass system to increase TMD, TLD

Auxiliary level of damping
Damping Generating control force using inertia effects AMD, HMD, AGS
Device to minimize response

Active Generating aerodynamic control force to Rotor, Jet,
reduce wind force coefficient or minimize Aerodynamic
response Appendages
Changing stiffness to avoid resonance AVS

SD: Steel Damper; SJD: Steel Joint Damper; LD: Lead Damper; FD: Friction Damper; VED:
Visco-Elastic Damper; V.D: Viscous Damper; OD: Oil Damper; TMD: Tuned Mass Damper;
TLD: Tuned Liquid Damper; AMD: Active Mass Damper; HMD: Hybrid Mass Damper; AGS:
Active Gyro Stabilizer; AVS: Active Variable Stiffness

Some of the most relevant characteristics of structures which affect wind-induced

structural vibrations are shape, stiffness or flexibility and damping. Damping is highly

uncertain, leading to unpredictability of the actual performance of tall buildings. Therefore,

this paper presents an overview and a summary of past and recent work on various

aerodynamic modifications to the shape of the buildings. These modifications can be

grouped into minor and major modifications. Minor modifications are aerodynamic ones

which, to a miner extent, affect the structural and architectural design. As various



modifications to corner geometry, chamfered corners or corner cut, corner recessions,

slotted corners, corner roundness, through opening, fitting of fins and vented fins are

affiliated to such modifications. On the other hands, major modifications are aerodynamic

ones which considerably affect the structural and architectural concepts. Examples of

these major modifications are belonged to by the modifications of a tall building shape,

addition of opening and vertical or horizontal slots to building, and twisting or rotating of

a building. The purpose of all the modifications is to alter the flow pattern around a tall

building and reduce the wind excited vibration of tall buildings.

This paper investigates, through computational evaluations, the effects of aerodynamic

modifications to a tall building on the wind force and wind pressure on the tall building.

During the numerical simulation, DES (Detached Eddy Simulation) based on Standard

k-,turbulence model and commercial CFD software STAR-CD is adopted. The data

obtained from wind tunnel test already conducted by Tamura (2010) are utilized to

validate the evaluation of various modifications. As mentioned in Tamura 2010, the square

model shows much more vortex sheddings inducing acrosswind vibrations of tall

buildings, while the 180 degree helical model, corner recession model and setback model

present the smaller recirculation regions, leading to the suppression of vortex shedding.

1.2 Outline

Chapter 1 briefly overviews this paper by summarizing the history of tall buildings, the

wind related issues with construction of tall buildings, the significance of full scale

monitoring of performance of tall buildings, the effect of various aerodynamic

modifications on the wind responses of tall buildings, and the computational evaluations

on the wind force and moment of various shape modified models: square, corner recession,

setback, and 180 degree helical model.

Chapter 2 mentions the history of tall buildings which is group into three periods. In each



period, the design trends, structural systems and economic situations are explored.

Chapter 3 reviews on the basic knowledge of the wind and elaborate on the issues related

to the tall buildings concisely mentioned in chapter 1. These four issues, such as built

environment for pedestrian, wind induced noise, serviceability and habitability are

discussed.

Chapter 4 mentions the significance of the full scales monitoring of performance of actual

tall buildings. Also, the works conducted by several researchers like Eiffel are reviewed.

Chapter 5 reviews minor modifications such as corner-cut, corner recession, corner

roundness and fitting small fins and major modifications such as tapering, setback, helical

shape, and openings through building. Obtained from tunnel test results, the most efficient

and effective aerodynamic shapes are introduced.

Chapter 6, through computational evaluation, studies on the effect of shape modifications

of tall buildings on wind induced vibration. The modifications involved in this chapter

include Square Model, Model with four Corner recession, Model with Setback, 180-

degree helical or twisting square model.

Chapter 7 presents the summary on each chapter, and concludes this thesis.
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Chapter 2 History of Tall Buildings

2.1 Introduction

Figure 2.1 shows skyscrapers are generally grouped into three periods (the first, the

second and the third Skyscraper Golden age) according to the economic situations and tall

building booms.

100 ..... .... ..... 1
The First Period The Second Period The Third Period

0 -.. .. ......... .... .. ... ..... ...- -- ... .. .... ....*... -.. . 3

60 -- r'rr2ta

30 -. O..ana...........

20 a

0

1900s 1910s 1920s 1930s 1940s 1950s 1960s 1970s 1980s 1990s 2000s

Figure 2.1 World's 200 Tallest Buildings by Continent (Emporis, 2011)
* Arrow means the skyscraper boom in each period.

The first period (1880-1940) is the time when steel and iron skeletal frame encased in

massive masonry walls was introduced, and then it faced the first boom of tall buildings.

Since the introduction of this steel skeletal frame in Home Insurance Building designed by

William Le Baron Jenney in 1885, other advanced structural systems like portal bracing,

riveted steel connection and braced frames had been utilized along with the development

of elevator. However, this period was not always beneficial for tall buildings. In fact, there

were two main financial risks adversely affecting the construction of tall buildings in the

first boom. The first financial panic (the panic of 1907) occurred when banks regulated

under the National Banking System refused to clear funds for the Knickerbocker,

unregulated trust (Thronton 2005) followed by Federal Reserve Act in 1913, and the

second financial downturn, Great Depression happened in 1929. In fact, resulting from the

stock market boom, numerous tall buildings were constructed including the Chrysler



Building in 1930 and the Empire State Building in 1931, even though this capital-oriented

boom consequently caused the Great Depression. The design characteristics of tall

buildings in this period were initially followed by the principle of Louis Sullivan,

Functionalism,forms everfollowsfunction, later by Eclecticism in which Gothic style was

adopted to the vertical design of tall buildings, and lastly by Art Deco design which was

merged with cubism, futurism, expressionism and exotic motif (Aysin 2009). This period

experienced vicissitude of cultures and economy, and such changes are shown in the tall

buildings built in 1880-1940.

Major Economic Downturns

Panic of 1907
Signiticant contraction begins

Federal Reserve Act-1913
WWI 11914-1918)

Great Depression begins- 1929
Economic downturn-1970
US abandons gold standard-1971

Stagflation of the 1970s
Asia Crisis and
Contagion begins
-1997

i

Figure 2.2 Skyscrapers and Economic Crisis (Thornton 2005)

In fact, the 1940s is the time which witnessed the major social catastrophic events such as

the aftermath of the Great Depression starting from 1929 and the World War 11 (1939-

1945). These chaotic incidents led to the decline in tall building construction, a distinct



transition which significantly separated the second one from the first period of tall

building boom. However, considerable amount of money from a strong economy growth

during the 1960s drew the construction boom of tallest buildings such as The World Trade

Center in New York and the Sears Tower in Chicago. In addition, it can be illustrated that

the second period (1940-1980) is the time when the mass production become prevalent.

For example, the tall buildings built just after 1950 conformed to the International style in

which the significance of free-style forms was ignored, but auspicious facts from new

technology were excessively valued. Most of tall buildings were preferably designed by

the transparency trend with the hybrid of steel frames and glass curtain walls. The

structural systems involved in this period are modified framed tube systems such as

bundled tube, braced tube, composite tube and tube in tube (Aysin 2009). More

interestingly, the characteristic of these buildings are the box-shaped, stereometric form

designed with glass cladding system and the vertical consistency, monolithic design with

little or no ornamentation and variation. However, the economic downturns, such as

stagflation and deep recessions (1970-1982) and abandonment of gold standard in 1971,

discouraged the competitive race for tallest buildings in United State, but this race

revitalized in Asian countries from the 1980s.

The last period (1980-current) initiated when the Xerox Center in 1980 and the 333 South

Wacker Drive in 1983 were constructed. The feature of these buildings is the building

itself whose shape is curvilinear with a curved glass fagade. This form is significantly

distinct from that of the internationalism widely preferred in the second period. In addition,

along with the advancements in design and construction, variations happened in shapes of

tall buildings, including cylindrical, tapered, setback, helical shaped buildings. Also,

influenced by post-modernism, skyscrapers with clear tripartite design of base, shaft and

top reemerged after the first period because of desire of exodus from the boredom of

uniform and standard form with glass and steel system. Moreover, regional architectural

and cultural traditions are good design motif in design of tall buildings in this period.

According to Aysin (2009), this period is called ultimate technology period in which more

advanced systems like Diagrid introduce and more free style forms of tall buildings made



possible by this 'high-tech', become preferred. Although the East Asian economic crisis as

well as economic recession and stagnation in Japan in the 1990s caused havoc in the tall

building construction market, tall buildings are constructing in these areas with the recent

boom in East Asia and China.

2.2 The First Golden Age in Tall Buildings (1880-1940).

This period, when tall buildings experienced a transition from masonry structures to steel

skeletal structures encased in masonry walls, began with the Home Insurance Building

(1885) by William Le Baron Jenny in Chicago. Prior to it, the structural system employed

in buildings was load bearing masonry wall, which significantly limited the height of

buildings. However, this limitation was solved; for example, the Home Insurance Building

is one of the first tall buildings to utilize steel and iron framework, though curtain wall

systems still used masonry. With the invention of steel skeletal structural system and later

elevator, many tall buildings were so intensely constructed in this period in Chicago, even

though the height of tall buildings was forced to be limited to 130 feet because of the

Chicago zoning law (Carol Willis, 1995). In fact, it is undeniable that the introduction of

the structural system led to the era of tall buildings.

In New York as well as in Chicago, prodigious amount of money was spent constructing

numerous tall buildings in the late 1920s when the stock market boom and capital-oriented

boom accelerated the speed of tallest building race. Therefore, this period is considered

the first golden age of a tall building. Much research on structural systems was carried out.

As the height of a tall building increase, needed are more efficient and innovative

structural systems against lateral wind and seismic loads. Thus, following steel skeletal

frame structure, portal bracing, riveted steel connection and braced frames appeared

(Moon K., 2004). Among them, braced frame system was more prevalent; in fact, the

Chrysler Building (1930) and Empire State Building (1931) also adopted this system. In

fact, first tall buildings which utilized these systems are Tacoma Building (1889),



Monadnock Building (1891) and Manhattan Building (1891) (Moon K.S. 2005).

The race for tall buildings, starting from the economic view to attract more rent in office

buildings, gradually grew enough for the public to recognize the symbolic connotation and

meanings; at that time, this symbol expressed the prosperity and success. Therefore, more

buildings having higher stories began to loom in the late 19th century. The bout of this race

was exist from 30-story Park Row Buildings (1 19m, 1899) to the 77-story Chrysler

Building (319m, 1930) and later 102-story Empire State Building (38 Im, 1931) . The

Empire State Building remained as the tallest skyscraper in the world, for 42 years, until

the completion of 110-story World Trade Center (417m, 1973).

Unlike the rigid frame system the buildings with lower than 30 story used, the braced

frame systems were utilized to resist horizontal loading for these two tallest buildings. At

that time when conservative design was strong, the steel skeleton frame was not exposed

because steel was vulnerable to weather condition, and masonry had been still used as

cladding materials without significant advancement in technology since the 1890s. For

example, as shown in Figure 1.4, most buildings, based on traditional architectural

practices, have the same fagade system, based on traditional architectural practices. In

addition, design principles in this period were influenced by Functionalism and

Eclecticism and Art Deco (Aysin 2009). In fact, these designs represented stronger

symbolic power and more attractive decorations by adopting renaissance, gothic style and

more recent architectural styles such as cubism, futurism, and exotic motif including Japan

and China. First, functionalism mainly practiced in the late 1 9 th century was characterized

by function-based design in buildings which was manifested by Louis Sullivan. As

mentioned before, the typical tall buildings were large and gigantic in scale but limited in

height. The general tripartite subdivision of the tall building was organized into three parts:

base, shaft and top. The classic form of tall buildings in that time is flat or triangular with

the renaissance styled tops and ornamental last story from the middle height of tall

building. Examples of this functionalism are the 10 story Home Life Insurance Company

in 1885, the 10 story Wainwright Building in 1891, the 17 story Monadnock Building in



1891, the 13 story Guaranty Building in 1894, the 15 story Reliance Building in 1894, 30

story Park Row Building in 1899, and the 12 story Carson Pirie Scott Department Store in

1904. To evoke the religious and overpowering image, tall buildings designed in

Eclecticism utilized the motif from European classical design principles, Gothic and

Renaissance styles. Designed in this style, the Representative buildings are the 47 story

Singer Building, though demolished, in 1908, the 50 story Metropolitan Life Insurance in

1909 and the 57 story Woolworth Building in 1913. Starting from the 1920s, rather than

gothic and renaissance styles, numerous various styles from art movements famous in that

time such as cubism and futurism were prevailing used in tall buildings. The main

examples of this style, art deco, are the 77 story Chrysler Building in 1930, the 102 story

Empire State Building in 1931, the 27 story 32 avenue of the America (formerly AT&T

Long Distance) building in 1932 and the 70 story RCA Building in 1933.

This period experienced several financial crises including the Panic of 1907 and the Great

Depression from 1929 until the 1930s. Prior to and just after 1907, time when there was no

influence of the panic of 1907, the tallest buildings in that time such as the 47 story Singer

Building in 1908 and the 50 story Metropolitan Life Insurance in 1909 were constructed.

However, except for the 57 story Woolworth Building, there were no other tallest

buildings built after the time influenced by the panic of 1907 (Thornton 2005). Recovered

from this panic during the 191 Os and the 1920s, US economy showed unprecedented

economic growth from which many tallest buildings could be constructed. Capital

accumulated by this boom made possible the constructions of the 77 story Chrysler

Building in 1930 and the 102 story Empire State Building in 1931. However, the Great

Depression originated in 1929 discouraged the construction of tallest buildings and there

had been no tallest building built until the 1970s since the appearance of the Empire State

Building in 1931.

Table 2.1 List of Tall Buildings in 1880-1940
Completion Building City Stories/ Meter

1885 Home Life Insurance Company Chicago 10 (later 12)/42

1891 Wainwright Building St. Louis 10/



1894 Guaranty Building Buffalo 13/

1891 Monadnock Building Chicago 17/66

1894 Reliance Building Chicago 15/61

1899 Park Row Building New York 30/119

1904 Carson Pirie Scott Department Store Chicago 12/63

1908 Singer Building (demolished) Philadelphia 47/187

1909 Metropolitan Life Insurance New York 50/213

1912 Municipal Building New York 40/177

1913 Woolworth Building New York 57/241

1915 Equitable Building New York 38/164

1921 Wrigley Building Chicago 30/130

1924 Chicago Temple Building Chicago 23/173

1925 Chicago Tribune Building Chicago 36/141

1927 NY Telephone Building New York 32/

1929 Palmolive Building Chicago 37/

1930 40 Wall Street Building New York 70/283

1930 Chrysler Building New York 77/319

1931 Empire State Building New York 102/381

1930 Daily News Building New York 36/145

1931 McGraw Hill Building New York 33/148

1932 PSFS Building Philadelphia 36/150

1932 32 avenue of the America (AT&T Long Distance) New York 27/167

1933 GE (formerly RCA) Building New York 70/259

Figure 2.3
Home Life Insurance Building in 1985

Figure 2.4
Guaranty Building in 1895
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Figure 2.5
Park Row Building in 1899

Figure 2.7
Metropolitan Life Insurance in 1909

Figure 2.9
Wrigley Building in 1921

Figure 2.6
Singer Building in 1908

Figure 2.8
Woolworth Building in 1913

Figure 2.10
Palmolive Building in 1929



Figure 2.11
40 Wall Street Building in 1930

Figure 2.13
32 Avenue of the America in 1932

Figure 2.12
Empire State Building in 1931

Figure 2.14
GE Building in 1933

2.3 The Second Golden Age in Tall Buildings (1940-1980).

The 1940s is the time which witnessed the major social catastrophic events such as the

aftermath of the Great Depression starting from 1929 and the World War 11 (1939-1945).

In fact, these chaotic incidents suppressed tall building construction; as a result, the 1940s

was a distinct transition which significantly separated the second one from the first period

of tall building boom. Since the 1950s, the construction market had become recuperated,

with the development of structural systems and construction technology. Before this



period, building materials such as steel and masonry acted as constraint on the design of

tall buildings. However, since the steel skeleton and glass skin system introduced, tall

buildings, considering aesthetics and function rather than materials and distinct from the

traditional form, had emerged. The appearance of tall buildings seemed like pure

rectangular box forms, and the structural systems faced a significant advancement:

Framed-tube systems, Braced-Tube systems, Bundled-tube systems, and Outrigger

systems. These systems enabled tall buildings to be much higher and lighter, which,

ironically, arouse unwanted vibration (addressed in next chapters) from the wind.

Outrigger systems are eclectic ones modified from braced frame and shear-wall frame

system. This system utilized column-restrained outriggers to prevent the core including

braced frames or shear walls from rotating because of the lateral loading like the wind. In

particular, multi-story outriggers, with better lateral resistance and extra stiffness, enhance

the efficiency in the structural response, which can be used in more than 100 story

buildings (Gunel M.H., 2006). Buildings with this system are 42-story First Wisconsin

Center, 88-story Jin Mao Building, and 101-story Taipei 101. Another system is the frame-

tube system with the closely spaced perimeter of exterior columns and the deep spandrel

beams rigidly interconnected. This system has drawbacks such as the interrupt of the view

from interior and the narrow access to the public lobby, but it is considerably efficient in

structural mechanism against lateral wind and gravitational load. The most notable

examples of this framed tube system are the destroyed 110-story World Trade Center Twin

Towers, 43-story DeWitt-Chestnut Apartment Building, and 83-story Aron Center. To

improve the rigidity and efficiency of the framed tube systems, multistory diagonal

bracings added onto the face of the tube are utilized. This system, Braced, or Trussed,

Tube System, could make the column-spacing wider and the floor height higher, thereby

providing solutions to the existing issues the framed tube systems have. Replacing

numerous closely spaced columns with diagonals in both directions, the braced tube

system, however, has some aesthetic problem in exterior of the buildings. The excellent

examples are the 50 story 780 Third Avenue Building, 58-story Onterie Center in 1986,

the 100 story John Hancock Center in 1969, and the 59 story Citigroup Center. Another

system is Bundled tube system, which has several individual tubes. It is effective in tall



buildings wider and higher because of the limit in which a single framed can provide

sufficient resistance. In addition, this system provides the unsymmetrical shapes to tall

buildings, which opens the free-style design of a tall building. The example of this system

is the 108-story Willis Tower (formerly Sears Tower) in 1974 and the 57-story One

Magnificent Mile Building in 1983.

The general shape of tall buildings in this period was like a rectangular prism, which was

influenced by International style or Modernism. Therefore, the tall buildings designed in

this style were the steel skeletal structures with glass walls, conforming to regularity

without decorations. The classical tripartite subdivision of base, shaft and top in prevalent

in the previous period was little or not employed. As a result, the vertical shapes of tall

buildings are continuous without any variation or ornament. However, since the 1980s,

reaction against this style had appeared. The Xerox Center in 1980 and the 333 South

Wacker Drive are considered the vanguards of tall buildings which showed this reaction

(Aysin 2009).

Strong and sustained economic growth during the 1960s ushered in the era of the super

tall building. With the advancement of technology and the introduction of computer, main

tall buildings are the 100 story John Hancock Center in 1969, the 80 story Amoco

Building in 1972, the 110 story World Trade Center (now collapsed) in 1973, and the 108

story Sears Tower (currently named Willis Tower) in 1974. However, major economic

downturns, such as stagflation, deep recessions and high unemployment rate, sustaining

from 1970 to 1982 discouraged the construction of tallest buildings. The tallest building,

the Petronas Tower, had appeared in 1997 since the Willis Tower in 1974.

Table 2.2 List of Tall Buildings in 1940-1980
Completion Building City Stories/ Meter

1949 860-880 Lake Shore Drive Apartments Chicago 26/82

1952 Lever House New York 24/92

1957 Seagram Building Chicago 38/157

1960 JP Morgan Chase World HQ New York 52/216



1964 Marina City Chicago 65/179

1966 Plaza on DeWitt Chicago 43/120

1968 Lake Point Tower Chicago 70/197

1970 John Hancock Center Chicago 100/344(roof)

1972 Transamerica Pyramid San Francisco 48/260

1973 330 North Wabash (formerly IBM Plaza) Chicago 52/212

1973 Aon (formerly Amoco) Center Chicago 83/346

1974 Willis (formerly Sears) Tower New York 108/442

1977 Citigroup (formerly Citicorp) Center New York 59/279

1980 55 West Monroe (formerly Xerox Center) Chicago 41/150

1983 333 South Wacker Drive Chicago 36/149

1986 Onterie Center Chicago 60/174

Figure 2.15
860-880 Lake Shore Drive Apt in 1949

Figure 2.17
Marina City in 1964

Figure 2.16
Lever House in 1952

Figure 2.18
Lake Point Tower in 1968



Figure 2.19
John Hancock Center in 1970

Figure 2.21
Aon Center in 1973

Figure 2.23
333 South Wacker Drive in 1983

Figure 2.20
330 North Wabash in 1973

Figure 2.22
Citigroup Center in 1977

Figure 2.24
Onterie Center in 1986



2.4 The Third Golden Age in Tall Buildings (1980-Now).

Since the steel-skeletal system was first introduced in the Home Insurance Building in the

1880s, it has made a significant advancement in tall buildings. In addition, this

advancement has currently been made possible along with the advanced structural systems

and higher grade of materials, increased use of computerization in the design process,

active and passive control systems, enhanced wind tunnel tests, and improved construction

technology. For example, the diagonalized system, or braced tube system, first introduced

in the John Hancock Center began to give considerable potential for super tall buildings to

utilize various forms (Iyengar S.H., 1997). Following this diagonalized system, various

systems such as Space Truss Structure, Megaframes, and Exo-Skeleton systems, are

introduced. These systems show considerable efficiency in resisting lateral shear,

producing flexibility and aesthetics in shapes of tall buildings. With the advancements in

materials and structural systems, a movement known as post-modernism became prevalent

in this period. The shapes of the buildings designed in post-modernism are setbacks,

tapering, curvilinear, corner-modified, and helical (Aysin 2009). Therefore, the tall

buildings at that time have free forms which were significantly distinct from the regularity

convention long observed since 1880s. In fact, chief amongst reasons is the technological

stride by which tall buildings can access to the free-style forms in the exuberant and

liberal atmosphere. One of the most conspicuous shapes is 30st. Mary Axe which utilized

diagrid system. It is worthwhile to note that diagrid, relatively recently recognized, creates

new architectural aesthetic expressions with strengthening both bending and shear rigidity.

Examples of this system are 42-story Hearst Building, 41-story Swiss Re Building, and

22-story 0-14 Building.

This recent developments in the shape of tall buildings are due to the profound

consideration on the inter-relationship between structural evolutions and architectural

aesthetic forms. With analytical ability in computer and wind tunnel test, expression on

exterior shape is given more flexibility. This flexibility provides more discretionary power

to designers and makes the form possible. Moreover, tall buildings in this period adopted



various design motifs from historical, regional, cultural and imaginary contexts as well as

aerodynamic forms. As example of tall buildings expressing their cultural tradition,

Petronas Towers, Landmark Tower, Taipei 101 can be mentioned. Also, main examples of

tall buildings having aerodynamic forms are the Shanghai World Financial Center,

Guangzhou Pearl River Tower (expected in 2011), and the Kingdom Center. Another form

in this period is a twisted, helical form such as Turning Torso and proposed Chicago Spire

Project. More aggressive than aerodynamic and twisted or helical forms, numerous free-

style forms of tall buildings have recently been designed and even actually constructed.

Among several structural systems which made this freestyle forms possible, Diagrid is

currently utilized to make this irregular form feasible. Fiera Milano, Oil Company

Headquarter, Dancing Tower, The Sail at Marina Bay, and Phare Tower are, though

proposed and not actually constructed, exemplified by free-form tall buildings (Ali M.M.,

2007).
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Figure 2.25 World's 200 Tallest Buildings by Region (Emporis 2011)

In fact, Starting from the 1990s, the fourth boom (the first boom between the 1880s and

the 1900s, the second one between the 1910s and the 1930s, and the third one between the

1950s and the 1970s) in tall buildings has revived in Figure 2.25. Although the East Asian

countries, such as Hong Kong, Malaysia, South Korea, Singapore and Vietnam, severely

suffered from the economic disaster in the late 1990s, the race for height seems to be

unstoppable and increasingly intense. Even at the time when Japan was in recession and

stagnation during the 1990s, it has expended into Asia and Middle East. Now that

symbolic power can be compatible with free-style forms of tall buildings, these forms



have been predominant. To continue this trend flourish, more research on wind

engineering as well as damping mechanism should be explored.

Table 2.3 List of Tall Buildings in 1980-
Completion Building City Stories/ Meter

1980 Tower 42 (The National Westminster Bank) London 47/183

1983 Bank of America (formerly RepublicBank) Center Houston 56/240

1983 One Magnificent Mile Building Chicago 57/205

1984 Sony (formerly AT&T) Tower New York 37/197

1985 HSBC Main Building Hong Kong 44/179

1987 190 South La Salle Street Building Chicago 40/175

1987 CitySpire Center New York 72/248

1988 1201 Third Avenue (Washington Mutual Tower) Seattle 55/235

1988 Maybank Tower Malaysia 50/244

1989 900 North Michigan Chicago 66/265

1989 Bank of China Tower China 70/369

1989 60 Wall Street - JP Morgan Bank HQ New York 50/227

1990 Two Prudential Plaza Chicago 64/303

1990 311 South Wacker Drive Chicago 65/293

1990 BNY Mellon Bank Center Philadelphia 54/241

1990 Bank of China Tower Hong Kong 72/315(roof)

1991 One Canada Square London 50/230

1992 Central Plaza Hong Kong 78/309(roof)

1992 Bank of America Corporate Center Charlotte 60/265

1993 Yokohama Landmark Tower Japan 70/296(roof)

1995 China Merchants Tower China 38/150(roof)

1995 Osaka Prefectural Government Sakishima Japan 55/256

1996 King Tower China 38/212

1997 Baiyoke Tower II Thailand 85/304

1998 Petronas Towers Malaysia 88/379(roof)

1999 Yuda World Trade Center China 45/200

1999 Jin Mao Tower China 88/370(roof)

1999 China Insurance Building China 38/175(roof)

2000 Capital Tower Singapore 52/254

2000 Emirates Office Tower UAE 54/311 (roof)



2003 1 Peking Road China 30/160(spire)

2004 Taipei 101 Taiwan 101/449(roof)

2004 30 St Mary Axe London 40/180

2006 Hearst Tower New York 46/182

2006 Turning Torso Sweden 54/190

2007 The New York Times Building New York 52/228(roof)

2008 Shanghai World Financial Center China 101/484(roof)

2010 Burj Dubai UAE 163/828(roof)

2010 Blue Cross Shield Tower Chicago 57/243(roof)

on hold Plaza Rakyat Malaysia 79/382

under const. Pearl River Tower China 71/3 10(roof)

Figure 2.26
Tower 42 in 1980

Figure 2.28
Maybank Tower in 1988

Figure 2.27
HSBC Main Building in 1985

Figure 2.29
900 North Michigan in 1989



Figure 2.30
Two Prudential Plaza in 1990

Figure 2.32
Petronas Towers in 1998

Figure 2.34
Al Faisaliah Center in 2000

Figure 2.31
Yokohama Landmark Tower in 1993

Figure 2.33
Jin Mao Tower in 1999

Figure 2.35
30 St Mary Axe in 2004



Figure 2.36
Hearst Tower in 2006

Figure 2.38
Shanghai World Trade Center in 2008

Figure 2.37
Turning Torso in 2006

Figure 2.39
Pearl River Tower under Cons.
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Chapter 3 Wind-Related Issues with Construction of Tall Building

3.1 Introduction

Tall buildings have more disadvantages than lower ones. The construction cost of taller

ones is considerably larger and the design of them is also much more difficult. Moreover,

several constraints on tall buildings such as zoning laws can be a burden. However, these

drawbacks can easily be overwhelmed by the symbolic power tall buildings provide. The

shapes adopted in design of tall buildings have traditionally been symmetric rectangular,

circular or triangular prisms because this design little causes torsional vibrations induced

from eccentricity. However, recent high-rise buildings pursuit free-style forms completely

distinct from symmetry shapes. This is due to the fact that architects, clients and engineers

all demand for revolutionary and innovative forms of tall buildings along with the

advancement in technology. In addition, since the threshold of the free-style period,

irregular and unsymmetrical buildings have been fervently proposed and currently

constructed. Although the current technology appears to sufficiently predict and prevent

the adverse responses of tall buildings induced by the wind, some problems such as

habitability have been unavoidable. Moreover, the residential type of tall buildings built

since the 1990s has increased substantially, as shown in Figure 3.1. This means the

importance of habitability issue cannot be ignored.
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Figure 3.1 Buildings equal to and higher than 250m by Usage (Emporis 2010)



Therefore mitigation of wind responses of tall buildings has also been of keen interest, for

chief amongst the wind related problems is the habitability in residential buildings. With

highly advanced damping and structural systems, structural safety against lateral loads has

been guaranteed. However, issues, such as serviceability, interference effect between

buildings, built environment for pedestrians, and wind-induced noise, still remain to be

solved. Wind-induced responses cause various problems to structural frames, cladding

systems, equipment and importantly occupants as shown in table 1. To mitigate these

issues, quantitative criteria and other systems must be considered and adopted.

Table 3.1 Problems to

Physical item

Displacement, rotation

Inter-story deformation

Acceleration

be suppressed

Purpose

Safety

Serviceability

Safety

Serviceability

Safety

Serviceability

Habitability

relevant to wind-induced responses (Tamura 1998)

Building or equipment

High-rise buildings, long-span buildings, expansion joints

Elevators, antennae, furniture, cranes

High-rise buildings

Cladding, interior walls, equipment piping, expansion joints

Furniture, occupant

Equipment, elevators

Hotels, residential buildings, high-rise office buildings

3.2 Habitability

The purpose of structural design is to effectively and efficiently resist lateral and

gravitational loads in structures. Moreover, tall buildings are expected to meet wind-

induced drift- serviceability and acceleration-occupant comfort criteria (Bashor, 2007).

However, a tall building is much more susceptible to wind responses because of its lower

damping and higher flexibility than general buildings. Although multiple damping systems

are applied to tall buildings for satisfactorily mitigating motions caused by the wind, the

complex modes of vibrations, which are induced by along-wind, across-wind and torsion,

adversely affect the serviceability for occupants. Because this oscillation can be generated

due to the irregularities in mass and stiffness, the subject of considerable attention is the

issue of the habitability and the quantification of acceptable level for occupant comfort in



the era of freely shaped tall buildings. In fact, Drift criteria is not solely an adequate index

to govern the habitability limit states in tall buildings in which occupants can feel the limit

of tolerance, or discomfort, under fluctuating accelerations in the strong wind (Kijewski -

Correa 2009). Therefore, wind-sensitive buildings can be vulnerable to excessive

vibrations that cause discomfort and interruption of activities of occupants. To deal with

this subject, several guidelines have been introduced: IS06897 (1984), BS6841 (1987),

ECCS (1987), NBCC (1990), IS02631-1 (1997), AIJ-Guidelines (2004), and ISO10137

(2007). Among them, AIJ-Guidelines and ISO 10137 use 1-year recurrence peak

acceleration, while IS06897 employs root mean square (RMS) value to evaluate

habitability under lateral vibrations of tall buildings (Tamura, 2009). In detail, motion

perception criteria based on frequency of 5-year recurrence standard deviation

acceleration, or root mean square, have been adopted in IS06897 (1994) for low

frequency motion ranging from 0.063 to 1 Hz. On the other hand, Peak acceleration

criteria related with strong winds, such as extreme windstorm or cyclones, have also

established numerous contemporary design codes. To illustrate, the peak acceleration

criteria of 15 milli-g for residential buildings and 25 milli-g for commercial buildings

under 10-year return period of wind conditions are recommended in the Canada code

(NBCC 1995), the Chinese code (JGJ 3-2002), and the Hong Kong code (HKCOP 2005).

Based on experimental motion simulator research, the Japanese code, AIJ-GEH 2004

provides frequency dependent peak acceleration criteria (Chan 2010). The standard

deviation acceleration and peak acceleration are two significant factors in assessing

motion perception of vibrations in tall buildings. Generally, the motion perception can be

more influenced by long duration events of a stationary vibration leading to the fact that

the standard deviation acceleration can be a more reasonable index. Nevertheless, under

the thunderstorms and hurricanes, this root mean square value over 10 minutes of this

non-stationary motion is inappropriate. Therefore, one of these two criteria can be

considered, with understanding on the nature of prevailing winds influenced by the

topology and geography on which a tall building is located (Chan 2010). However,

unfortunately, habitability issue is closely related to psychological situations for occupants

in tall buildings. Moreover the criteria for occupant comport have not been free from



debate so far. This is due to the uncertainty and complex in human perception of motion,

accurately acceleration. Furthermore, discrepancy among individual human perceptions on

motion can be wide, according to visual, acoustic, posture effects and mental and physical

effects and other social and economic conditions (Tamura, 2009). Therefore, finding more

clear criteria for qualifying accelerations which negatively impact occupants still remains

a daunting work. Since Reed first experimented on human responses under full-scale

conditions in 1971, numerous studies have been performed. These previous works

generally are divided into three types of studies which are the first, field experiments and

surveys of building occupants conducted in tall buildings induced by wind excitation; the

second, motion simulator and shake table experiments to evaluate test subjects; and the

last, field experiments performed in artificially excited buildings (3) (Kwok, 2009). In the

first, field experiments and surveys of building occupants conducted in tall buildings

induced by wind excitation, Denoon (2000) conducted field experiments at three towers to

assess occupant reaction to wind-induced vibration of buildings. The survey investigated

that motion perceptions are dependent on peak accelerations and also evaluate the

thresholds of motion perception, annoyance levels and onset of fear and nausea. This work

suggests that exposure duration and vibration waveform play an important role in human

perception of motion and tolerance threshold. Moreover, it indicates that the acceptance

criteria should be based not on occupant perception of vibration but on occupant comfort

and general well-being with the assessment of occupant comfort in tall buildings excited

by the wind (Kwok, 2009). In the second, motion simulator and shake table experiments,

Michaels (2009) reported on empirical results form a series of experiments by motion

simulators. This work suggested that the comfort level, under bi-directional narrow-band

random motion, was dependent on the increasing frequency of motion, acceleration and

duration. As the frequency increases, the number of test subjects who became nauseated,

fatigued and distracted also increases. More interestingly, the number of test subjects who

felt these symptoms at 0.50 Hz is more than twice than at 0.16Hz. In the last, field

experiments performed in artificially excited buildings. Kijewski-Correa (2009) evaluated

occupant comfort by comparing the full-scale accelerations form an instrumented tall

building with the results from motion simulators which involved the effect of frequency,



amplitude, duration and waveform on human group. The study catalogued the number of

full-scale occurrences of short duration events that can be task disruptive and long ones

that can be nauseating in motion simulator studies. In addition, it presented the number of

occurrences annually and the percentage of occupants likely affected. Bashor (2007)

presented a probabilistic framework to evaluate occupant-comfort performance of a

building at different recurrence interval winds including parametric uncertainties such as

damping and wind speed. To better evaluate the effect of such uncertainties on occupant

comfort, the paper used FORM based analysis and Monte Carlo simulation. It also

proposed the checking procedures based on occupant comfort for evaluating habitability

of tall buildings. Since the work by Reed (1971), much research on human perception has

been performed. However, because of the fact that human perception and tolerance of the

response of tall buildings induced by wind excitation are subjective, there have been no

clearly accepted criteria for occupant comfort (Kwok, 2009). However, the research on

human perception of wind induced vibration in tall buildings is still an active topic, and

therefore it is expected to develop more practical and reasonable code for occupant

comfort in the near future.

3.3 Pedestrian level winds

Many factors affect the wind conditions around a tall building, some of which are the local

topology, local climate, building height and mass, local vegetation, the proximity of other

tall buildings. In addition, the construction of a building unavoidably leads to changes of

the climate at the environs of the building: in specific, wind speed, wind direction, air

pollution, radiation and daylight, and driving snow and rain. These factors are dependent

on the shape, size, and orientation of the building and the interaction of the building with

neighboring buildings and obstacles such as trees (Blocken 2004). Cochran (1979)

reported a wind environment around the base of a building will depreciate the attraction of

the building and estrange the perspective residents and clients of the buildings, for

example, leading to unsuccessful outdoor restaurants and cafes nearby the base of tall



buildings. To (1995) investigated wind environment around the base of a row of identical

tall buildings through wind-tunnel experiments. This paper presented the results of

pedestrian-level winds of three test cases: case 1, isolated building; case 2, four buildings

arranged in a row, and wind flow direction perpendicular to the row; and case 3, wind

flow along the row of four buildings. The results attained in this test show the distribution

of mean wind speed for three cases, with use of the reference wind speed of the

approaching flow at the building-roof height. In case 1, it is observed that a region of high

pedestrian-level wind ,the speed of which is 1.2 times more than the reference speed

(RWS), extends from the upwind corners. In case 2, the windiest conditions occur in the

upwind corners with the speed 1.3 times more than the RWS, which is like in case of the

isolated building. In case 3, wind pattern, around the most upstream building, the first

building, is somewhat similar from those of the isolated building in case 1. Around the

second and other downwind buildings, the regions of high pedestrian-level wind speeds

are not detected at their upwind corners. This is due to the strong shielding provided by

the first building. Large velocity gradients are detected for all buildings at the downwind

corners, but low pedestrian-wind speed is observed in the regions behind the buildings.

Penwarden (1975) suggests The Beaufort Scale shown in Table 4, which classifies the

speed effect on pedestrian; the wind speed is averaged in 10-minute interval at 10 m

height above the ground. Davenport adopts the criteria in Table 2 for the situation

considered, which indicates several activities such as sitting, standing and walking in

different areas. To illustrate, the main activities in an outdoor restaurants or caf6 only need

to sit or stand for a long time; therefore, the tolerable wind speed can be up to 3.4-5.4 m/s

(or Beaufort number 3), and the frequency can be less than once a week. If the wind speed

is between 8.0-10.7 m/s, the frequency should be less than once a month. These criteria by

Davenport suggest that the evaluation of the pedestrian wind should not be based on the

extreme weather conditions (Wang 2004). Ahuja (2006) assesses through wind tunnel test

the wind comfort and safety of pedestrian area around a building. The paper mentions that

there are two principal types of flow that affect the pedestrian comfort: downwash flow

brings higher energy wind to lower elevations and horizontally accelerated flow. Therefore,

it suggests the remedial methods to reduce this effect by providing a large canopy at the



main entrance and a podium on which a building is constructed for comfortable

pedestrian-wind condition.

Summary of wind effects on people
Description Wind Speed

(m/s)
Calm, light air 0-1.5

Light breeze 1.6-3.3

Gentle breeze 3.4-5.4

Moderate breeze

Fresh breeze

Strong breeze

Near gale

Gale

Strong Gale

5.5-7.9

8.0-10.7

10.8-13.8

13.9-17.1

17.2-20.7

20.8-24.4

based on the Beaufort Scale
Effect

Table 3.2
Beaufort
number
0,1

2

3

Table 3.3 Tentative comfort criteria (unit: Beaufort number)
Activity Area applicable Relative comfort

Tolerable Unpleasant Dangerous

Walking fast Sidewalks 6 7 8

Strolling, skating Parks, entrances, skating rinks 5 6 8

Standing, sitting-short Park, plaza area 4 5 8

exposure

Standing, sitting-long Outdoor restaurants, 3 4 8

exposure bandstands, theatres

Representative criteria <1 <1 <1

for acceptability occasion/week occasion/month occasion/year

Calm, no noticeable wind

Wind felt on face

Wind extends light flag

Hair is disturbed, Clothing flaps

Raises dusts, dry soil and loose paper, Hair

disarranged

Force of wind felt on body

Drifting snow becomes airborne

Limit of agreeable wind on land

Umbrellas used with difficulty

Hair blown straight, Difficult to walk steadily

Wind noise on ears unpleasant, Windborne snow

above head height (blizzard)

Inconvenient felt when walking

Generally impedes progress, Great difficulty with

balance in gusts

People blown over by gusts



3.4 Wind-Induced Noise

Generated from the corners, the cladding systems, the ventilating openings of a tall

building, wind-induced noises can have an adverse effect on serviceability, especially

occupants in residential buildings (Tamura 2009). Moreover, the desire for increased

natural ventilation, even in a tall and green building, can degrade the acoustic performance

of facades, leading to producing additional noise sources located in and nearby the fagade

of the building (Swift 2008). In addition, As previously mentioned by Diemling in 1983,

aesthetic elements like ornaments, coronets, gird, steel pipes, and structural or functional

elements like solar lamella shields, external rigidity frames can cause the wind to make

noise. As a recent example, the coronet of the Strijkijzer tower 130- meter high in Hague

was enforced to be shrouded with plywood to reduce the sound level (Vambersky 2008).

Therefore, prediction and mitigation of wind-excited noise on buildings, especially

residential tall buildings, should be considered even in the process of architectural and

structural design. This wind-related noise issue has been of particular interest to many

researchers since Curie mentioned this issue in 1955. With reviewing the noise

transmission issues across facades on green buildings, Swift (2008) mentions that it is

possible that a noise problem may occur in a place where there are repetitive geometric

elements, such as sunshade element, louvers, decorative meshes and gratings, exposed on

a building. It proposes that the potential for generating disturbing noise can be reduced by

modifying the repeating elements into a more random pattern. Kim (2009) compares, in

the peak of SPL (Sound Pressure Level), experiment results and numerical simulation

ones for three types of building shape: circular, rectangular and triangular. It identifies the

peak SPL in circular > in rectangular > in triangular, which means that different angles can

also produce distinct SPLs. Recent research on wind-excited noise has been conducted

through CFD analyses.



3.5 Interference Effect

The response of an isolated tall building by wind excitation is considerably distinct from

that of a tall building adjacent to other buildings or structures. Such influence by these

neighboring buildings is generally known as interference effect, which depends on the

shape, arrangement and orientation of the buildings with the direction of wind and its

topology (Khanduri 1997). Therefore, newly constructed buildings often have more

adverse effects upon the wind loading on the existing buildings, for cities become denser

nowadays; moreover, new buildings higher than other existing ones more contribute to

this effect (Uffelen 2009). The study on this issue is not a recent one. In fact, interference

effect has been interested since the 1930s when the tallest buildings such as Empire State

building and Chrysler Building were built. With wind tunnel experiments, Harris (1934)

mentioned that if two building blocks were built across the two streets adjacent to the

building, torque on the Empire State building in New York would be doubled. Bailey

(1942) studies on general relationship between the wind speed and the distribution of wind

pressure on three distinct roof shapes: sloped, flat, and stepped roofed buildings. In 1965,

three out of the eight natural draft cooling towers at Ferrybridge, England were collapsed

due to interference effects, which draw attention on this issue from many researchers

(Armitt 1980). Kareem (1987) investigates the interference effects on the dynamics of

bluff bodies of equal height and plan dimensions in two approach boundary layers. It

identifies that the magnitude of the localized fluctuating pressure on buildings may be

influenced differently under distinct boundary conditions.

Figure 3.2 Flow around a building (a) and a pair (b), win flowing from the left side
(Khanduri 1997)



The Austrian Standard 1989 presents a brief guideline on this issue that flow around any

structure in a group will usually differ from flow around a similar isolated one, and

interference effects are prevalent in structures located less than 1 Ob apart, where b is the

dimension of the structure normal to the wind (AS 1170.2). Khanduri (1997) presents that

an upstream taller building more significantly affects downstream buildings than in the

reverse case: with reduction of mean along-wind loads but increase of dynamic loads by

more than 70% for taller upstream buildings. Moreover, it observes that interference

effects are more pronounced in open country exposure while they are gradually decreased

in suburban or urban exposure; buildings positioned along open spaces like deserts, park

or coastal areas are more vulnerable to interference effects. Also, it shows the case of

shield effects, in which with a large group of buildings of significant sizes, the wind

loadings of a building can be decreased. As shown in Figure 1, Khanduri (1998) discussed

the physical mechanism underlying wind interference. It shows turbulent eddies separate

from the upwind building at the corners and edges of the building, then hitting the existing

downwind building with overpressure increasing. As mentioned in the report by Taniike

(1992), if the buildings are not positioned right behind each other, unlike in figure 1, the

flow released from the new building can be forced through the space between the

buildings and then generates increasing suction at the flank of the existing one, leading to

a cross force. This uneven, partial shielding can induce torsion moments around the

vertical center line of the existing downwind building. This effect are related with the

height of the new building; if the height of the new one is significantly high, wind from

higher layers can be forced downwards, or downwash, causing a further increase of the

wind loads which acts upon the downwind, existing building (Uffelen 2009). In addition,

such interference can be influenced by the distance between buildings. The wind

interference can be negligible at very small mutual distance between buildings. This is a

reason that the vortex shedding of the upwind building can be disturbed by the presence of

the downwind building. The wind flow grows less organized; large eddies have difficulty

being into smaller ones that have a higher angular velocity. Therefore, it is unlikely that

higher peaks be generated (Uffelen 2009). Recently, Xie (2007) investigates, through a

series of wind tunnel tests analyses by correlation and regression methods, effect of the



upstream terrain conditions, the relative heights of the interfering buildings, and the

spacing between two and three buildings. This study shows that the two upstream

buildings can more adversely affect the principal buildings than a single upstream one. It

further finds that two interfering buildings can generate stronger along-wind dynamic

interference effects than a single one, but induced by two interfering buildings, the

dynamic interference effects in the across-wind direction may be weaker than by a single

interfering building. As identified by many researchers, higher interfering building has

stronger effects on the principal buildings while in the case that the height ratio of the

interfering buildings to the principal building is less than 0.5, this effect can be negligible.

It proposes the simple regression equations which reflect the relationship, inherently

complex, in the mean and dynamic interference factors for different configurations of

height ratios and upwind terrains. Systematic scientific research on interference still

requires more generalized data. Furthermore, long lasing on-site measurements are

considerably significant to enhance the reliability of wind tunnel tests and computer

simulation results on wind interference.
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Chapter 4 Monitoring

4.1 Introduction

Recently, along with the development in computer, more advanced structural analysis

software and wind tunnel test have introduced. However, the design of tall buildings based

on this technology depends to a large extent on the several assumptions like fundamental

mechanics and accumulated experiences. Therefore, the performance of tall buildings

constructed in this way can affect the serviceability and occupant comfort because the

precise values of parameters in structures such as damping cannot be predicted before the

construction. Therefore, the accuracy and validity of analytical results should be assessed

with respect to actual performance of tall buildings (Kijewski-Correa 2006). Nevertheless,

the experiment on full-scaled model is so limited, so full-scale monitoring of the

performance of actual tall buildings already built becomes the pragmatic means for

verifying and improving analytical practices. Moreover, with advances in technology, the

instrumentation systems used for full-scale monitoring have improved. These systems

involve accelerometers, strain gauges, inclinometers and global positioning systems

(Isyumov, 2010).

4.2 Monitoring of the performance of actual buildings

This full-scale measurement has progressed since the 1930s. After the completion of the

tower, Eiffel conducted a pioneer work on response monitoring at the top of the Eifel

tower which was 300m high. The study of wind at this height was unprecedented. From

the table 1, for the ratio of mean deflection to square of mean wind speed, the drag of the

tower assumed in the design is of the order of 3.5 times the observed one. In addition, it

shows the gust factors are of the order 1.4 to 1.7 (Davenport 1975).



Table 4.1: Deflection of Eiffel Tower in Wind (after Eiffel)
Mean Mean Gust Mean

Wind speed Deflection Dynamic sway Factor deflection/square

/Direction cm Drag (cm) Lift (cm) of mean wind

speed

Design 24 20 0.035

Observed:

20 Dec 1893 31.8 SSW 7 +5 +3 1.71 0.007

12 Nov
28.8 S 8 +3.5 ±2 1.44 0.010

1894

Arnstein in 1936 reported full scale measurements on the Akron airship dock which had

the vaulted cross-section. The pressure of coefficients derived from a wind tunnel test is

referenced to the same internal pressure coefficient. It observes that the peak negative

sections are significantly less at full scale than at model scale while the positive pressures

are similar (Davenport 1975). Dryden (1930) conducted the wind pressure study on

circular cylinders and chimneys. Rathbun (1940) carried out full-scale experimentation on

the Empire State Buildings. Many full scale measurements have been conducted since

then. In recent, Li (2005) took the full-scale monitoring of typhoon effects on two super

tall buildings: 78-story Central Plaza Tower (374m) in Hong Kong and 78-story Di Wang

Tower (384m) in Shenzhen. It investigates the characteristics of typhoon-generated wind-

induced vibrations of these buildings by comparing the dynamic characteristics of the

buildings obtained through the field measurements with those calculated from

computational models. Two accelerometers were installed orthogonally at the elevation of

the 73rd floor of Central Plaza Tower and two Gill-propeller-type anemometers installed

on the top of the building, approximately at 300m in height. Similarly, two accelerometers

were orthogonally positioned at the height of 298m of DWT, and two same anemometers

at an elevation of 247.5m. To sufficiently study wind-induced response characteristics, this

installation is later added by two more anemometers on each building. the results of

spectral analysis of acceleration response measured from CPT and DWT shows that the

wind-induced responses of these buildings were primarily in the two fundamental sway



modes of vibrations, though higher modes are observed. In Table 2, the natural frequencies

of the first three modes of CPT and Dwt buildings are listed both from the measured

spectra and from the computational models of the same buildings.

Table 4.2: Natural frequencies (Hz) of the two buildings
Frequencies (Mode 1, sway) Frequencies (Mode 2, sway) Frequencies (Mode 1, torsion)

Measu. Calcu. Diff.(%) Measu. Calcu. Diff.(%) Measu. Calcu. Diff.(%)

CPT 0.244 0.206 15.6 0.253 0.208 17.8 0.557 0.606 -8.08

DWT 0.173 0.168 2.9 0.208 0.181 13.0 0.293 0.286 2.45

Measu.=Measured, Calcu.=Calculated, Diff.=Difference=(Measured-Calculated)/Measured.

As shown in Table 2, the difference between the calculated and measured natural

frequencies range from approximately 2.9 to 17.8% for the first and second modes of the

buildings. Consequently, it is noted that the measured natural frequencies for the two

fundamental sway modes of the buildings are larger than those calculated. As the reasons

of these differences, Li (2005) pointed out the effective mass values of the buildings less

than those assumed at the design stage and the effective stiffness values of the buildings

higher than those determined at the design stage because of nonstructural components. As

mentioned by Li (2005), Isyumov (2010) also indicates the discrepancies between

calculated and monitored frequencies by listing some of the structural modeling

assumptions: first, stiffness degradation of concrete structural members; second,

Contribution of non-structural elements to building stiffness; third, Unpredictability of

material properties under transient loading; and fourth, Soil-structure interaction. In the

third case, it is noted that concrete, when loaded at an increase strain rate, exhibits a

significant increase in both strength and stiffness (Isyumov 2010). Pauley (2002) finds that

the increase in stiffness may be of the order of 16 % or more. Therefore, the third case can

be explained from the fact that the effect of this increased stiffness has commonly been

disregarded in practice of structural engineering. In the case of Soil-structure interaction, it

is assumed that all buildings are supported on soil or rock strata not infinitely rigid. This



induces rigid body motions that are both linear and rotational at the foundation and the

supporting soil interface. To illustrate, for a building propped up on piles, flexibility of the

building is increased by the lateral stiffness of the pile assembly. Typical buildings are

modeled on the assumption of a rigid foundation, leading to overestimating the

frequencies (Isyumov 2010). Building monitoring programs generally initiate after

construction of the main structure and the damping tanks completes. However, Isyumov

(2010) utilizes this program, during the as-built periods when the building reached about

70% of its final height, in order to precisely predict the frequencies of vibration of the

building. Rather than computational models based on numerous assumptions, such

building monitoring program during the as-built periods can provide more accurate data,

thus assuring a more effective design of tuned supplementary damping systems. Yigit

(2010) investigates a 30-story tall reinforced concrete building used for a hotel in Turkey

through the full scale measurement with GPS, inclination sensor and anemometer. Gikas

(2009) observes dynamic measurement of displacement by utilizing RTS and TLS (robotic

total station and terrestrial laser scanning) (Yigit 2010). In conclusion, full-scale

measurement on an actual tall building directly shows its actual performance in terms of

accelerations, which is significant for evaluating occupant comfort. In addition, this

monitoring provides the opportunity to validate the modeling and design assumptions and

enhance the existing accumulated databases such as damping levels (Kijewski-Correa

2006).
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Chapter 5 Effect of Shape Modifications of tall buildings on wind

induced vibrations

5.1 Introduction

Some of the most relevant characteristics of structures which affect wind-induced

structural vibrations are shape, stiffness or flexibility and damping. In the previous chapter,
it is mentioned that damping is still a much more approximate characteristic in building

while mass and stiffness as structural variables are in the high level of reliability. This

chapter presents an overview and a summary of past and recent work on various

aerodynamic modifications to the shape of the buildings. These modifications can be

grouped into minor and major modifications. Minor modifications are aerodynamic ones

which, to a minor extent, affect the structural and architectural design. As various

aerodynamic modifications to corner geometry, chamfered corners or corner cut, corner

recession, slotted corners, corner roundness, through opening, fitting of fins and vented

fins are affiliated to such modifications. On the other hands, major modifications are

aerodynamic ones which considerably affect the structural and architectural concept.

Examples of these major modifications are belonged to by the modification of a tall

building shape, addition of opening and vertical or horizontal slots to building, and

twisting or rotating of a building. The detailed information about these two modifications

is presented with the pictures of tall buildings later in this chapter. In fact, the purpose of

all the modifications is to alter the flow pattern around a tall building and reduce the wind-

incited vibration of tall buildings.

5.2 Minor modifications

A square or rectangular shaped building, whose height is greater than 300m and its aspect

ratio is larger than 8, are generally susceptible to the aero-elastic instabilities. This is the

reason that approaching wind separates from the windward corner of the building and



generates strong vortices by rolling up of the separated shear layer (Kawai 1998). In fact,

the aerodynamic responses of a tall building are induced by the atmospheric turbulence

and wake excitation due to vortex shedding. In detail, this atmospheric turbulence causes

fluctuating alongwind structural loading while wake excitation induces fluctuating

acrosswind loads (Kareem 1982). Therefore, the use of corner modifications such as

slotted corners and chamfered corners is effectively beneficial in mitigating the wake-

excited response by up to 30% at the low range of reduced velocities (Kim and You, 2008).

Davenport (1971) finds that peak deflection of the model with circular cross section is

roughly half of the model with square cross section; the cross-section of most 70-story tall

buildings is generally square-shaped. Kwok (1995) investigates that corner modifications

of a tall building can significantly mitigate the along-wind and across-wind responses

when compared to its basic shape of corner. Approaching a roughly circular shape,

significant corner roundness of a building significantly improves the response of the

building (Kareem 1999). Hayashida (1990) studies the comparison between cross-wind

aerodynamic characteristics for various cross section shapes of a super high-rise building

through wind tunnel test. The author identifies that the aerodynamic shape effect of corner

cutting is pronounced in the square cross section under wind direction normal to the face

and is shown as a slightly smaller peak in the power spectrum, thus controlling vortex

shedding by corner cutting. However, for corner modification to the cross-section based

on triangular shapes, such effect is not significant, compared to that of the square cross

section. Miyashita (1993) clarifies that a method of cutting corners or making openings is

effective to reduce wind-induced motions for high-rise buildings with a square plane. The

author further investigates on the effect of the wind direction not perpendicular to the face

of the building. Kawai (1998) investigates effect of corner cut, recession and roundness on

aero-elastic instabilities such as vortex induced excitation and galloping oscillation,

through wind tunnel tests for square and rectangular prisms. The researcher finds that

small corner cut and recession are significantly effective to prevent aero-elastic instability

by increasing the aerodynamic damping. For a deep depth rectangular prism, however, this

effectiveness by the corner modifications is insignificant. The benefits of corner

modification have still remained debated, for these modifications to buildings corners, in



some cases, are ineffective and even have negative effects according to wind direction

(Miyashita 1993). Irwin (2006) mentions corner modifications in Taipei 101 building

provide 25% reduction in base moment when compared to the original square section.

Holmes (2001) finds that chamfers of the order of 10% of the building width reduces both

the along wind response by 40% and the across wind response by 30%, when compared to

the rectangular cross sectional shape without any corner modification. Many researchers

have identified that corner modifications such as corner roundness, corner recession,

chamfered corners, fitting of small fins and vented fins to the corners and slotted corners

are considerably effective to reduce the alongwind and crosswind response, compared to

original building plan shape without any corner modification. In addition, these

modifications effectively preclude the aero-elastic instability.

Basic Fum Vented fais Sbrted comers Comer cut/
Chamfered cormers

Figure 5.1 Various aerodynamic modifications to corner geometry (Amin J.A. 2010)

5.2.1 Effect of small fins and Vented fins and Slotted corners

Kwok and Bailey (1987) employ a basic square tower shape with a height h to width b

ratio of 9:1 as the subject of wind tunnel tests. Model configurations used include the

fitting of small vertical fins to the corners and the cutting of slots near the corners. Tested

as a scale of 1/400, the models have the equivalent full scale height of 216m and a width

and depth of 24m. Five model configurations are as follow: plain square tower; tower with

10mm wide vertical fins fitted to corners; tower with 5mm wide vertical fins and 5mm



gap between fins and corners; tower with 5mm wide slots cut through corners over the

entire tower height; and tower with slotted corners about the top half of the model. The

authors find that the fitting of fins and vented fins to the corners increases the along-wind

response because of the increase in the projected area perpendicular to the wind. They also

observe that for the fins, the crosswind response increases at the critical reduced wind

velocities; therefore, the fins should be used at the low range of reduced velocities. It is

noted that the slotted corners is very efficient in the alongwind and crosswind responses.

Therefore, they conclude that the usage of the slotted corners can be useful in the design

of tall buildings.

5.2.2 Effect of Slotted corners, Chamfered corners and Horizontal slots

Kwok (1988a) investigates the effect of building shape on the wind-induced responses of a

tall building with rectangular cross section with minor modifications which involve the

removal of the sharp corners, the cutting of slots near the corners and horizontal slots at

half and three-quarter height of building. Tests are conducted in two 1/400 scale models of

natural wind flow: open terrain and suburban terrain. The mean (or static) and standard

deviation (or dynamic) alongwind displacement response and the standard deviation

crosswind displacement response at the top of the building model are measured at reduced

wind velocities which range from 4 to 20 and at a structural damping value of 1% of

critical damping. For alongwind responses, slotted corners and two horizontal slots

significantly reduce the mean and standard deviation, and chamfered corners cause more

substantial reduction up to 40% in response when compared to the rectangular plain shape

with no modification. While the response reduction is little affected by the change of

terrain category, standard deviation responses are much higher in suburban terrain because

of the turbulence buffeting increased by this more turbulent terrain. For crosswind

responses, chamfered corners, slotted corners and the horizontal slots are effective in

reducing the response within the range of reduced velocities, up to a 30% reduction in

wake-excited response. At reduced velocities being approximately the critical value of 10,



observed are significant reductions in response by a factor of 2 or more. The chamfered

corners lower the critical reduced velocity to a value of 8, and slotted corners to a value of

9. With the incident wind perpendicular to the narrow face of the building, the horizontal

slots or slotted corners show up to 30% reduction in the cross wind response. This

elongated rectangular building may prevent the vortex shedding corners, leading to

reduction in the crosswind response. The author examines the wake spectra because peaks

in the wake spectrum suggest the critical reduced wind velocity and the frequency. With

the incident wind normal to the wide face of the building, the wake spectrum of the no-

modification building peaks at a reduced velocity of 10. The slotted corners or the

horizontal slots considerably reduce the wake spectrum, and the chamfered corners more

significantly reduce the wake energy. The chamfered corners more reduce the wake energy

than other models, at the high reduced frequency or low reduced velocity, with the

incident wind perpendicular to the narrow face of the building. The researcher concludes

that slotted corners, horizontal slots, and in particular chamfered corners effectively

reduce both the alongwind and the crosswind response.

5.2.3 Effect of Slotted corners, Chamfered corners and Combinations of these corners

Kwok, Wilhelm and Wilkie (1988b) study on effectiveness of modification to the building

corners in reducing the alongwind and crosswind responses of the building. A number of

configurations are investigated in the same experiment as in the study of Kwok (1988a).

For alongwind responses, chamfered corners more significantly reduce both the mean and

standard deviation responses than slotted corners. When compared to the plain building

shape, up to 40% reduction in the response is observed. For crosswind responses, the plain

building shape shows a significant peak in the crosswind response, with the incident wind

perpendicular to the wide face of the building model. However, slotted corners and

chamfered corners are effective in reducing the responses; there are up to 30% reduction

in wake-excited response. With the incident wind perpendicular narrow face of the

building model, there is no significant response peak. Slotted corners reduce the responses



up to 30%, and chamfered corners shows larger reduction in responses. Both slotted

comers and chamfered corners are effective in reducing the responses of a tall building;

however, the chamfered corners are the better modification in both responses. For wake

spectra, the plain building shape shows peaks at a reduced velocity of about 10 with the

incident wind perpendicular to the wide face of the building. However, chamfered corners

shows the wake spectrum peaks at a value of 8, leading to substantial reduction in wake

energy around the vortex shedding frequency. On the other hand, the wake spectrum of the

plain building has a small peak at a reduced wind velocity of 12, with the incident wind

normal to the narrow face of the building. However, chamfered corners show a noticeable

reduction around reduced velocity of 10. The author also considers all directions of wind.

As the angle of incident wind increases, it is more likely that the separated shear layer

reattaches onto the windward face of the building. This reattachment reduces excitation

force, then decreasing responses. In fact, the plain building shape, over the first 20 degrees,

significantly decreases the response. Chamfered corners follow the same trends. However,

at angles of 60 and 70 degrees, responses in chamfered corners are higher than those in the

plain building shape, even though these angles are considered insignificant in terms of

design. All the tests results are obtained in open terrain similar to the fringes of a city. The

author considers urban terrain where the level of wind turbulence is high. The author

points out that in this terrain, the effect of the corner modifications may be diminished, in

particular in the crosswind direction because the vortex shedding process is very sensitive

to the level of turbulence. Therefore, this study mentions that, under the situation such as

this urban terrain and interference by adjacent tall buildings, the benefit of corner

modifications to the tall buildings is uncertain.

5.2.4 Effect of Chamfered corners and Corner roundness

Hayashida and Iwasa (1990) investigate the effect of chamfered corners and roundness of

corners on aerodynamic forces and aerodynamic response of a super high-rise building

with an assumed height of 600m and floor area of 6400m^2 in a wind tunnel. Five models,



in this test, are basic shapes and the other models are deformed shapes with corners-cut.

The plain building shape with no modification shows the cross-wind response becomes

larger than the alongwind response when design wind velocity exceeds about 30m/s. This

means cross-wind response is more significant for the wind resistant design of tall

buildings under this strong wind conditions. For the maximum crosswind displacement

response, corner roundness is found to be more effective in resisting the responses than

chamfered corner and plain rectangular shape; the corner roundness is followed by

chamfered corner and then plain shape. For power spectra, a conspicuous peak fluctuation

in the crosswind force spectrum occurs by the vortex shedding. For a chamfered corner,

there is no noticeable peaks in both alongwind and crosswind response, but in corner

roundness, crosswind response shows a well-defined peak which is smaller than in plain

shape but which is larger than in chamfered corner. The author concludes that the corner

modification to the 600-meter high-rise building, under the strong wind excited by vortex

shedding, is effective in reducing the dynamic response behavior. Hayashida, Mataki and

Iwasa (1992) investigate a change of the air force caused by the difference in the shape of

the building and the dynamic effects induced by the vibration of the building. They use

some of the same model shapes adopted in the test of Hayashida and Iwasa (1990): (1)

square shape; (2) Y-shaped model; (3) equilateral triangle shape; and (4) circular shape.

They conclude that except for the circular plane section, the response value obtained from

the dynamic test is smaller than that from the analysis using the measured fluctuating

external force. This is the reason that aerodynamic damping affects the response value.

Under the resonance wind velocity, the value, obtained from the dynamic test of the

circular plane section, is larger than that of the response analysis. This value is about three

times larger in the alongwind direction and about 1.8 times larger than the value from the

response analysis. It is observed that the vortex moved from the upper levels down to the

lower levels through measurements of the fluctuating pressure of the side face. The

moving speed of this vortex is about three times the wind velocity of the approaching flow.

5.2.5 Effect of Corner-Cut, Corner Recession and Through openings



Miyashita et al. (1993) investigate the responses of a square building with chamfered

corners or openings from the wind tunnel tests, considering wind direction not

perpendicular to a certain face of the building. The models adopted are (1) rectangular

plain shaped model, (2) a model with through opening along the X axis, (3) a model with

through opening along the Y axis, (4) a model with through openings along both X axis

and Y axis, (5) a model with corner-cut and (6) a model with corner recession. Each

through opening is located at three positions, respectively h/6, 2h/6, 3h/6 from the top of

the building. To identify the effect of wind direction, the tests are conducted for the wind

direction of every 5 degree from 0 degree to 45 degree. For corner cuts or openings, the

fluctuating wind force coefficient along Y-axis around 0 degree is smaller than that of the

basic model. Moreover, the reduction of the value of the value of model with openings in

both directions of X and Y is conspicuous. For the model with corner-cuts like a square,

the maximum value of the fluctuating wind force coefficient along the Y-axis occurs at the

wind direction of 10 degree. The model shape little affects the fluctuating wind force

coefficients for X-axis. A model (3) with openings in the across-wind direction has a sharp

peak in power spectrum. A model (6) with corner recession shows the highest vortex

shedding frequency. In the wind direction of 0 degree, the correlation between the wind

forces is mostly low while a high correlation, in the directions from 5 degree to 20 degree,

is observed near the vortex shedding except for model (2). In the direction of 45 degree, a

high correlation occurs in the low frequency range.

5.2.6 Effect of Corner-cut, Corner recession and Corner roundness

Kawai (1998) studies on the effect of minor shape modifications such as corner recession

on aeroelastic instabilities such as vortex induced excitation and galloping oscillation

through wind tunnel tests. The test adopts 15 square prisms: five corner-cut square prisms

- in b/B 0.05, 0.10, 0.15, 0.20, 0.25; five square prisms with recession corners - in b/B

like corner-cuts; and five square prisms with corner roundness like in b/B above. The test



also 11 rectangular prisms with corner-cuts, corner recessions and corner roundness

varying in b/B: It is, through the tunnel test, observed that there is aeroelastic instability of

galloping along with vortex-excited vibration in the case of corner-out model. Moreover,

the corner-cut with the smallest values of b/B = 0.05 is considerably effective in reducing

the amplitude at high reduced velocity. In the damping ratio of 1.4%, the prism with

corner-cut modification remains stable except around the reduced velocity of 7.5 for

corner-cut models with large value of b/B = 0.2 and 0.25. For models with the large values

of b/B = 0.2 and 0.25 and with the damping ratios of 0.3% and 0.4%, vortex induced

vibration is observed to occurs. As the corner recession values become larger, the onset

velocity tends to be smaller. It is noted to the small corner recession of b/B=0.05

effectively reduces the instability. In the case of the corner roundness, as its value

increases from b/B=0.05 to 0.25, its effectiveness also enhances. Nevertheless, the circular

cylinder model shows instable vortex induced vibration, at the reduced velocity of

U/nB=7, with the damping ratio of 0.3% and 1.4%. For the rectangular prism with side

ratio D/B=1/2, or with deep depth, the large corner cut and corner recession increase the

instability at low velocity while they decrease the instability at high velocity. When in the

damping ratio of 0.2% and 1.2%, the corner roundness little affects the instability;

however, when in the damping ratio of 4%, large corner-cut, corner recession and corner

roundness effectively suppress the instability. For the elliptical cylinder, stability is

noticeable at the damping ratio of 1.2% and 4%. For the rectangular prism with side ratio

D/B=2/1, or shallow depth, corner modifications such as corner recession, corner-cuts and

corner roundness have little beneficial effect on the vibration, while such modifications

influence the maximum amplitude. In fact, the corner recession model with the b/B ratio

of 0.21 makes the maximum amplitude one fourth of that in the rectangular prism without

any modification. The author also investigates the reason that small corner cut and corner

recession effectively reduce the instability of a square prism in the very small damping

ratio, by comparing the power spectra of the responses of the corner recession models with

the b/B ratio of 0.05 and 0.2. For b/B=0.2, instability is observed at the range of the

reduced velocity of U/nB from 5 to 15 while for b/B=0.05, this instability is reduced.

Under the reduced velocity less than 6, two peaks, one of which is related to vortex



shedding and the other of which result from the natural vibration of the model, in the

power spectra of the response appear. In addition, the peak at the lower frequency occurs

smaller in 0.2 than in 0.05, and the shedding vortex is weaker in 0.2 than in 0.05. For the

small corner recession of the ratio b/B of 0.05, highly sharp and large peak at the natural

frequency and at the reduced speed of 2.8 appears, with the weak instability occurring.

This instability is assumed to be motion induced vibration, then making the peak become

blunt as the velocity increases. This may mean that this blunting is associated by the

increase of the aerodynamic damping. Therefore, the author concludes that for the small

corner modification, the reduction of the aerodynamic instability result not from the

suppression of the vortex shedding but from the increase of the aerodynamic damping. For

the rectangular prism with the D/B ratio of 1/2, or with the shallow depth, the corner cur

and corner recession, both with large b/B ratio, promote the instability at low velocity,

thus reducing the onset velocity of the instability. This phenomenon is similar in the case

of a model without a corner modification. Two peaks occur before and after the onset of

the instability. One peak associated to vortex shedding is not conspicuous in the corner

recession with a large b/B before the onset of the instability. However, the peak becomes

distinct and sharp after the onset. From the fact that when the vibration amplitude is about

similar to the width of the model, it is suggested that the locking phenomenon is not

significant, the instability is not related not to vortex shedding but to the low-speed

galloping. The researcher identifies that the prevention of the vortex shedding by the

corner modifications negatively affects the instability in case of low-speed galloping. He

also mentions that for the rectangular prism with deep depth, the motion induced vibration

occurs at the reduced velocity of 5. From this observation, it is noted that corner

modifications little affect the vibration, but these modifications significantly reduce the

response at the reduced velocity more than 10.

5.2.7 Effect of Incremental Corner chamfers

Mara and Case (2009) investigate, through wind tunnel test, the effect of incremental



corner chamfers, whose dimensions are 1/10 and 1/6.7 of the building face, on the mean

and dynamic response of a square building. Base on the high-frequency base balance

technique, the tests use five configurations: (baseline) unmodified model; (1) one-corner

chamfered model; (2) two-corner chamfered model; (3) all-corner chamfered model with a

chamfer dimension of 1/10 of the building face; and (4) all-corner larger chamfered model

with the dimension of 1/6.7. The length scale adopted in this test is 1/400 which means in

full-scale chamfer dimensions of 3.05m and 4.57m. For mean base bending and torsion

moment coefficient, a single chamfered corner in the windward reduces the alongwind

mean loading by 20%. Both chamfered corners on the windward face decrease the loading

by about 35%. A significant reduction is observed in the range of wind directions from -30

degree to +30 degree. It is observed that the increase of the chamfered dimension little

affects the mean loading for winds directly on to the face. All corner chamfered models (3)

and (4) at the critical angles significantly reduce the torsion coefficients by 30%. The

increase of the chamfer dimension additionally reduces this coefficient by up to 10% when

compared to the smaller chamfer dimension at critical wind directions. Researchers

investigate the influence of chamfered comers relative to a range of building periods. In

case the vibration-periods of a building are short, corner modifications have little

beneficial effect on resonant response. However, In case of larger vibration-periods of the

building, corner modifications significantly affect the response. In addition, the larger

chamfer model (4) is observed to be more effective in reducing the response than model

with smaller modification (3). This is not related to building period. Moreover, they study

the orientation of the corner chamfer relative to the statistically significant wind direction.

For a wind climate with equal preference from north and south directions, the corner

modifications of (1) and (2) shows little benefit regardless of period. However, for a wind

climate with a predominantly northern preference, these modifications, (1) and (2), have

benefit when compared to the baseline model as the corner modifications are aligned with

northern directions. However, with the corner modifications aligned away from the

southern wind directions, models (1) and (2) increase the resonant response when

compared to the baseline model: particularly for longer periods of building. Regardless of

the period of vibration, for torsion, incremental corner modifications consistently improve



the resonant behavior. Authors conclude that corner modifications to the rectangular

building can be effective in suppressing the responses induced by the wind, but they

emphasize the necessity of comprehensive study on building geometry such as size, shape

and slenderness, the building properties such as vibration periods and the local wind

climate.

5.3 Major Modification

As the height of tall building increases, the building is more susceptible to wind induced

vibration. To mitigate this adverse effect of the wind, there are various methods introduced,

particularly one of which is an aerodynamic modification to the building. This

modification can be grouped into two types according to its effect on structural and

architectural concept. Therefore, the major modification, which considerably affects the

architectural and structural design of tall buildings, contains tapering, or setbacks along

the height, sculptured building shape, openings, varying the shape of buildings, and

twisting of building. Building codes admit a reduction of the wind pressure design loads

for circular or elliptical buildings up to 40% of those of rectangular buildings (Schueller

1977). You and Kim (2008) identify that a tapered tall building effectively reduce

crosswind responses by spreading the vortex-shedding over a broad range of frequencies.

Dutton and Isyumov (1990) mention that openings completely through the building

considerably reduce vortex shedding induced forces and the crosswind dynamic response;

this effect is particularly more evident when the openings are positioned near at the top of

the building.

5.3.1 Effect of Helical models and Setback model

Tamura, Tanaka et al. (2010) investigate the relationships among structural properties,

aerodynamic modifications and aerodynamic force characteristics acting on 31 tall



building models. These models have various modifications including square plan,

rectangular plan and elliptical plan, with chamfered corner, with corner recession, tilted,

tapered, inversed tapered, with setbacks, twisting, and openings. The models have the

same height (400m, or 80 stories) and floor areas (2500 square meter), giving an aspect

ratio of 8. There are four basic models including square, circular, elliptical and rectangular.

The side ratio of elliptical and rectangular models is 1/2. For chamfered corners and

corner recessions, the modification ratio of b/B is 1/10. For the tilted model, the base floor

is shifted by 2B from the top floor of the model. For the shaking model, the floors at

0.25H and 0.75H are shifted by 0.5B respectively in the left direction and then the right

direction, thereby appearing like a smoothly curved shaking prism. Authors use two types

of tapered models: 2-tapered models having two tapered surfaces and 4-tapered models

having four tapered surfaces. For tapered models, the area ratio of top floor to base floor is

1/6. An inverse 4-tapered model means the inverse shape of the 4-tapered model. The

drum model is designed to have its floor area of 0.5H which is three times the top and

base floor areas. The sectional shapes of the helical models, which have the same floor

areas, are square, rectangular and elliptical, with the twist angle used as a prefix of the

model name. To illustrate, 270-helical rectangular means helical rectangular model with

twist angle of 270 degree. They investigate the effect of twist angle on aerodynamic force

characteristics by the twist angles of 90, 180, 270 and 360 degree. For cross void model,

the opening of the void model is located at the top center and for oblique void model, at

the top corner of the surface. To identify the effect of opening size on the aerodynamic

force characteristics, various opening sizes of 2/24H, 5/24H and 11/24H are utilized. They

also use the combination models such as 360-degree helical model with corner-cuts,

setback model with corner-cuts, and 4-tapered and 360-degree helical model with corner-

cuts. For aerodynamic force measurements, the square, corner-cut, 4-tapered, setback, 90-

helical square and 180-helical square are investigated. The maximum value of mean wind

force coefficient occurs in the square model with 0.6 at a wind direction of 45 degree,

while the minimum value appear in setback model with 0.43, indicating 70% of the value

of the square model. For fluctuating wind force coefficient, square model and corner-cut

model show the across wind component which is larger than the alongwind component.



However, the inverse trend happens in the other models, showing smaller values in the

acrosswind components.
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Figure 5.2 Power spectral density of across-wind force coefficients (Tamura 2010)

The maximum value in the square model is observed while the minimum value comes

from the setback model, with being 60% of that of the square model. 180-degree helical

model and 90-degree helical model are found to be little affected by the wind direction.

Moreover, the 180-degree helical model almost remains the same value regardless of the

direction. For the acrosswind power spectra in Figure 5.2 for the specified wind directions

at which the peak is the largest, the square model shows the sharp peak significantly

reduces when compared to those of the other models. The peak value corresponding to a

500-year return period wind speed of the 180-degree helical model is about 0.05 that of

the square model, which shows the helical model is a conspicuously effective design.

Obtained from the spectral modal method, the maximum displacement of the square

model is 0.015SH while that of the 180-degree helical model is 0.003H. Similarly, the

displacement of the setback model is 0.004H. Judged from the values corresponding to a

1-year return period wind speed, the maximum acceleration of the 180-degree helical



model is almost half that of the square model while the maximum acceleration of the

setback model is larger than that of the square model. Therefore, it is concluded from the

authors that the 180-degree helical model is the most effective structural shape of models

in terms of safety and habitability criteria.

5.3.2 Effect of Tapering

Kim and You (2002) investigate the tapering effect on the wind induced responses of tall

buildings through high-frequency force-balance test. They use four models including three

tapered models with the taper ratio of 5%, 10% and 15% and the basic square model: type

(1), the ratio of the top floor area of a square prism to the base floor area of the square

prism is 100:100; type (2) is 64:100; type (3) is 36:100; and type (4) is 16:100. Two

typical boundary layers are considered: BLI representing suburban wind climate with

turbulence intensity at the top of the model about 10% and BL2 indicating urban wind

climate about 15%. For mean alongwind force coefficients, normal reduction ratios of

type 4 for suburban and urban terrains are about 10% of those of the basic square model,
type 1. Around at 60 degree of wind direction, maximum reduction ratio of 30% is shown

in BL1. For mean acrosswind force coefficients, tapering effect in open terrain BLI is

more conspicuous than in urban terrain, with increasing wind direction. However, for rms

alongwind force coefficients, the values of rms-force coefficients in BL2 are larger than

those in BLI. Tapering effect for reducing fluctuating acrosswind forces is pronounced,

especially when wind direction is 0 degree. However, this effect becomes weaker as the

wind direction increases. For fluctuating alongwind force spectrum, although the taper

ratio increases, no conspicuous changes, though there is slight reduction, in spectral

configuration appear. For fluctuating acrosswind force spectrum, as the taper ratio

increases, it is observed that the magnitude of the spectral peak decreases and the band

width becomes broad. It is interestingly noted that a tapered tall building can spread the

vortex shedding over a broad range of frequencies, thereby effectively reducing

acrosswind responses. Authors identify that tapering effect is more effective in reducing



the large size of vortex shedding than in the smaller one. For rms-displacement of

acrosswind direction, tapering effect in BLI is more evident than in BL2, particularly

when wind direction is around 0 degree. It is also found that increased taper ratio is not

effective for reducing acrosswind and alongwind accelerations. Kim and You conclude

that the wind induced responses of a tapered building are not always mitigated compared

to that of basic square prism building, even though a beneficial tapering effect is more

evident in acrosswind direction than in alongwind direction.

5.3.3 Effect of Through-Building Openings

Miyashita et al. (1983) investigate wind forces acting on tall buildings (H: 300m, W:50m,

D:50m) with openings (Type 1, square shape without opening; Type 2, along X axis; Type

3, along Y axis; and Type 4, along X and Y axis) in various wind directions (every 5

degree, from 0 degree to 45 degree) through wind tunnel tests. Each model has 3 openings

evenly distributed from 0.5H to H along the height of the building. For the fluctuating

wind force coefficient, the reduction of the value of Type 4 is significantly pronounced,

even though Type 2 and Type 3 both show smaller reductions than Type 1. For the power

spectral densities of the fluctuating wind force along the Y-axis of wind direction of 0

degree, Type 1 shows the largest value. The wind force power spectra for Type 2 and Type

4 have peaks at the reduced velocity of 0.08 and 0.18 respectively. Type 3 is also observed

to have a sharp peak.

Dutton and Isyumov (1990) use three models including square model, model with

alongwind opening, and model with both alongwind and acrosswind openings. Each

model with opening has three openings, whose dimension is 1.25D high and which are

0.25D separated from others, along the vertical axis of the building. Utilization of the

openings results in a conspicuous reduction of the vortex shedding induced forces, leading

to reducing the acrosswind dynamic deflection of the building. The venting of the flow

through the opening into the base region causes this base pressure recovery, suppressing



the vortex shedding process and mitigating the acrosswind excitation.

5.4 Examples of utilizing modifications

It is well known that modifications such as corner-recession, chamfered corner, helical

shape, tapered shape, setback shape are significantly effective in reducing wind induced

responses of tall buildings. Armed with these modifications, tall buildings can be

aesthetically and innovatively designed by suppressing adverse effects by the wind. In

addition, along with advance in visco-elastic materials like tuned mass damper as well as

structural systems like diagrid, the shape of a tall building becomes distinct from the

rectangular and symmetrical prisms which have traditionally and compulsorily been a

norm of the shape of tall building. This trend in the shape of a tall building was initiated in

1974 by 108-story Willis Tower (formerly named the Sears Tower) in Chicago in Figure

5.3 which utilized the advantages of reducing the plan area along the height to minimize

the wind induced vibrations. The 152-meter, 34-story Mitsubishi Jyuko Yokohama

Building and the 346-meter, 83-story Aon Center (formerly Amoco) in Figure 5.4 exploits

corner modifications; four corners of the building are made chamfered. This modification

reduces the wind forces which is stronger in water front areas like open terrains on which

the building is built. The tall building which adopted the double step corner recession

modifications to the cross section is 101-story Taipei 101 building in Taiwan (2004) in

Figure 5.5. It is found that this building with such modifications can reduce the base

moment by 25% when compared to the building of basic square section (Irwan 2006). The

Marian City in Figure 5.6, Lake Point Tower in Figure 5.7, and 333 South Wacker Drive

in Figure 5.8 used the corner roundness. This circular plane section effectively reduces the

crosswind forces, suppressing vortex shedding. Recent examples of this modification are

the 30 St Mary Axe in Figure 5.9, the Burj Dubai in UAE, and the Millennium Tower in

Tokyo. The Shanghai World Trade Center in Figure 5.10, the Pearl River Tower in Figure

5.11, and the Kingdom Center in Figure 5.17 utilize the effect of through-building opening.

The Shanghai World Trade Center benefits from the conspicuous reduction of vortex



shedding while Pearl River Tower exploits through wind turbines the wind energy as well

as mitigating the across-wind excitation. As representative of major modification, Al

Faisaliah Center in Figure 5.12 employs the tapering effect, which reduces the upper level

plan areas. As examples of setback modifications, the 40 Wall Street building in figure

5.13, the Jin Mao Building in Figure 5.14, the Chrysler building and the Petronas Towers

are mentioned. Since the 2000s, there has been a sharp growth in the freestyle shapes of

tall buildings. Distinct among these shapes is the helical or twist shape. These helical

shapes are applied to the Shanghai Tower under construction in Figure 5.15 and Turning

Torso in Figure 5.16.

Figure 5.3
Willis Tower in 1974

Figure 5.5
Taipei 101 in 2004

Figure 5.4
Aon Center in 1973

Figure 5.6
Marian City in 1964



Figure 5.7
Lake Point Tower in 1968

Figure 5.9
30 St Mary Axe in 2004

Figure 5.11
Pearl River Tower under cons.

Figure 5.8
333 South Wacker Drive in 1983

Figure 5.10
Shanghai Tower under cons

Figure 5.12
Al Faisaliah Center in 2000



Figure 5.13
40 Wall Street Building in 1930

Figure 5.15
Shanghai Tower under cons.

Figure 5.14
Jin Mao Building

Figure 5.16
Turning Torso in 2006

Figure 5.17
Kingdom Center in 2002
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Chapter 6 Numerical Analysis on Aerodynamic Modifications

This chapter investigates the effects of aerodynamic modifications to a tall building on the

wind force and wind pressure on the tall building. With DES (Detached Eddy Simulation)

which combines features of classical RANS formations with elements of Large Eddy

Simulations (LES) methods, commercial CFD code, STAR-CD V4.14 is adopted. In order

to validate CFD results, four models already conducted by Tamura (2010) are used;

therefore, these results from the numerical analysis of the wind flow are compared.

6.1 Test models

To determine wind forces and wind pressures, Tamura et al. (2010) performed wind tunnel

tests on 31 tall building models with various configurations, four of which are analyzed

through CFD (Computational Fluid Dynamics) in this paper. These models, as shown in

the figure 1, are square, corner-cur, setback and 180 degree helical shaped tall building

models. Like in Tamura (2010), the model heights are 400 meter, and floor areas are 2500

square meters in common. For square model as a basic model, an aspect ratio is 1:8, while

for the corner-recession model, the corner modification length is 0.1 of the building length.

For the 180 degree helical model, the twist angle is 180 degree, and the sectional shape is

square. The setback model has a three step setback involving 28-meter, 41-meter, 52-

meter from 69-meter base floor length.

0=50
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Figure 6.1 Geometry of Tall Building Models (Tamura 2010)
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At the time when the wind around a tall building acts as a wind pressure on the surface of

the building as in the figure 2, aerodynamic characteristics on the tall building are

determined by wind velocity and turbulence. In order to numerically analyze such

characteristics, this paper considers the profile of an urban area which represents power-

law exponent of 0.27 and wind speed at model height of 7.0m/s. Based on the results by

Tamura et al. (2010), this paper studies effects of the shape modifications of tall building

on the aerodynamic forces and pressure of the tall building.

Figure 6.2 Aerodynamic characteristics

(Tamura 2010)
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Figure 6.3 Wind tunnel flow

(Tamura 2010)
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6.2 Numerical Method

Mass and momentum conservation equations, or the 'Navier-Stokes' equations, solved by

STAR-CD to analyze the flow around a tall building model are,

au.a=0
ax,

a ( =aF ( + au, lap
axi uu= (v+v)I &8x,8x 8x p8x

where u - velocity vector

v - dynamic viscosity

v, (= Ck 2 / E) - isotropic eddy viscosity

- density

- pressure

In the case of the building

Re (Reynolds number) is

turbulent flow is standard

and (4), represented as

dissipation rate.

model (400m in height, 1/1000 scale, and 7m/s in wind-speed),

1.86E+5. One of the most common models to calculate the

k -. 6 turbulence model which can be, as shown in equation (3)

transport equations for turbulent kinetic energy and eddy

8 ku (8 v, 8k + tS u,

aIJ ai k& au,

a U (=-- v+ +C -v, a66VS l C -6
&x x o-, &xJ k C&x k



where S =-'-+ a
O x, 8x,

where SU - mean stress tensor

c] - coefficient for turbulent model (1.44)

c62 - coefficient'for turbulent model (1.92)

In this paper, to represent characteristics of anisotropic turbulence, RNG model, rather

than standard k -. 6 turbulence model, is utilized because it adopts modified turbulence

dissipate rate which is shown in equation (5). io (4.38), p (0.012) are empirical

coefficients, and coefficients for RNG turbulence model are ceg (1.42) and c. 2 (1.68).

Standard k -,c turbulence model and RNG turbulence model as models involved in

RANS (Reynolds-Average Numerical Simulation) investigate the mean properties of

turbulent flows. However, to accurately predict the turbulent flow features like pressure

fluctuation acting on building models, it is necessary is to compute unsteady flow fields.

a C v, ) a C au, C2  Cql (1--/q0 ) .62

(su )=- v++ -, 'c 6 2  (5)
8x i -(x, o a 8xi k a x, k 1+16y7 k

k
where 1=S-

C

Equation (5) reveals that the distinctive feature of the RNG model is the additional, last

term in the dissipation equation. This is a term from the RNG analysis, representing effect

of mean flow distortion on the turbulence (Rodi 1979).

As shown in Figure 4, as a hybrid RANS (Reynolds-averaged Navier-Stokes) - LES

(Large-Eddy Simulation) method, DES (Detached Eddy Simulation) is in this study used.

Turbulence kinetic energy and turbulence dissipation rate are considered in Equation (6)

and (7).
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Figure 6.4 Diagrammatical summary of the motivation of DES (Mockett 2009).
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where D-" =k

- temporal derivative term

- velocity

- empirical constant of turbulence model

- constant of turbulence model

- production of turbulence kinetic energy

- dissipation of turbulence kinetic energy

The length scale of DES model is determined by equation (8).

i=min k-3/2 , CDES

where A is the maximum of the grid spacing for the sides of computational cell (X,YZ),

and CDES is a constant which takes the value 0.65. Dissipation term along with length

(6)

(7)

(8)



scale is modified as in equation (9).

D k-" =k

6.3 Solution strategy

The dimension of the model considered in the computational study is a 1:1000 scale

model of the tall building. Computational domain, coordinate definition and boundary

conditions for this study are shown in Figure 5 and Figure 6.

Outlet

Inlet

Figure 6.5 Computational domain including building model and boundary conditions

The Reynolds numbers involved in the simulations are in the range of about 1.86E+5,

which is the same range as in the wind tunnel test of Tamura (2010). As in the figure 6, the

computational domain covers 120B (B is the building width of the building) in stream-

wise (X) direction (-40 < X/B < 80) and 40B in lateral or normal (Y) direction (-

20<Y/B<20) and 29B in vertical (Z) direction. The reason for such configurations is to

eliminate the flow obstacle effect on the inflow and outflow boundary conditions

(Murakami 1998).

(9)
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Figure 6.6 Size of computational domain based on the building width showing plan view
(top) and section view (bottom)

The computational meshes are automatically created through the function of pre-process

in STAR-CCM+ V5.06. As shown in figure 6, the grid topology is trimmed grid, and the

total number of this mesh in all cases is 8,900,000. The mesh number must be as low as

possible for efficient computation, even though the mesh near and aligned with the

surfaces of the models is more refined for better analysis as in figure 7.

Figure 6.7 Section view of meshes at the 0.3 m height from ground showing mesh refinement

technique to resolve complex flow around building model

Wind force coefficient and wind moment coefficient acting on the wall surfaces of tall

88



is due to the flow instability. In addition, instability at the recirculation region causes the

flow separation region where the flow detaches from the surface of the model to move in

the direction of the flow, which is a phenomenon called vortex shedding.

Velocity Kimil I
[Pa] 0.0 10.0

Figure 6.8 Velocity magnitude distribution around the square model (x-z section at y=O)

Pressure 5 l li
[Pa] -10.0 15.0

Figure 6.9 Pressure distribution around the square model (x-z section at y=0)

This vortex shedding is affected by the turbulence effect, and small scaled vortex shedding

as well as big scaled vortex shedding can exist. The vortex shedding resulting from the

flow separation induces the pressure difference, which, according to time, acts on the

building model periodically. Finally, this fluctuating pressure creates unfavorable vibration

on the building model. In case that the fundamental frequency of the building model is in

accordance with the frequency of the vibration, the building can be susceptible to the

damage or partial collapse. Characteristics of vortex shedding around the tall building are,

as in Fig. 11, evaluated as the velocity distribution and pressure distribution in x-y section.

The features of the vortex shedding in horizontal section are influenced by those of the air

flow around the building; they are can be affected by the height from the ground and the

flow at the top face of the building. For the flow characteristics in height, the flow velocity

in the vicinity of the building at the 0.25H is low, thereby leading to showing low pressure.
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Figure 6.10 Transient flow characteristics around the square model (x-z section at y=0)
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Fig. 6.11 Flow characteristics around the square model (x-y section)

Moreover, at the section of 1.OOH or the top of the building, the pressure difference

between at two faces is shown low because of vortex shedding. In the other hand, at 0.50H

where vortex shedding occurs actively, the pressure difference at two faces is shown large.

As illustrated in Fig. 12, for transient flow characteristics around the square model in x-y

section at z=0.50H, because of the instability of the recirculation region occurring at the

both sides (left and right sides) of the building, vortex is shown to be shedding form left to

right or from right to left alternatively. Created by this alternating vortex shedding,

periodical pressure differential induces vibrations of the building. Therefore, to mitigate

the pressure gradient caused by this vortex shedding can be one of the methods to reduce

the motion regularly acting on the building.
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6.4.2 Flow characteristics with various building models.

In this study, to mitigate the vibration, induced by the characteristics of the vortex

shedding in the flows around a building, regularly acting on the building, flow

characteristics around the various shapes of building models as illustrated in Fig 1 are

evaluated through numerical analysis. Obtained from the analysis on the various shapes of

tall buildings, velocity and pressure of the flow around each model - (a) square model, (b)

corner-recession model, (c) setback model and (d) 180 degree helical model - are seen in

Fig. 13. From this figure, in the direction of height of the building (x-y section), it is

noticeable that aerodynamic characteristics are determined by the position and the area of

the section facing the flow. By modifying the shape of the corner at which vortex shedding

occurs, the corner-recession model makes the recirculation region less than that of the

square model, leading to effectiveness on reducing the pressure gradient. In the case of

setback model, as the distance from the ground increases, the section area of the model

decreases. Thus, the pressure difference between two faces of the model at the top of the

model is shown much smaller than that of the square model. Moreover, for the 180 degree

helical model, according to the height, square section forms specific angles by which the

smooth flows are made; therefore, the helical model suppresses the vortex shedding.

Accordingly, when compared to the square model, the models with shape modifications

reduce the recirculation regions and then lessen the pressure gradient induced by vortex

shedding. This eventually leads to the decrease in the vibration characteristics of the tall

buildings. To evaluate general characteristics of the pressure periodically acting on the

surface of a tall building, mean wind pressure acting on the surface in the time span of 1.5

seconds are shown in Fig. 14 and Fig. 15. From the figures, between the front and back

face of the square model occurs the pressure difference of 20Pa. However, it is

significantly noticeable that the pressure differences decrease by 2Pa or 3Pa in all the case

of other models with aerodynamic shape modifications. The reason for this decrease is

that the pressure gradient between two faces is reduced because such modification makes

the recirculation region smaller. In addition, it is shown that the reduction of the pressure

difference between two left and right sides as well as between the front and back face of a



tall building significantly suppresses vibrations by modifying the shape of the building.
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6.4.3 Characteristics of wind force and moment with various building models

From the numerical analysis of flow around a tall building model, flow characteristics

such as wind force and wind moment are evaluated. Fig. 16 shows wind force coefficient

and wind moment coefficient acting on the wall of each of various models. The reason that

wind force coefficient of each model has the mean value of about 0.15 to 0.18 is that a

certain force acts on the front face of a building model. As vortices are shed alternatively

first from one side and then the other side after the flow develops, the feature that

coefficient values fluctuate within certain ranges is shown. Wind force coefficient acting

on left and right side of a building model has a mean value of about 0.0. For the force

acting on these sides, vortices are shed alternatively to the left and the right side of a

model, thereby inducing pressure difference. Like wind force coefficients in the direction

of the wind and two sides of a building, wind moment coefficient shows similar patterns.

Table 1 shows mean and standard deviation of wind force and wind moment acting on

various models. As shown in Fig. 15, wind force and wind moment in the direction of



wind flow are observed to be within certain values and to be fluctuating due to the effect

of vortex shedding. However, wind force and wind moment in the direction of two sides

of a model is shown to only fluctuate due to the effect of vortex shedding. Therefore, as

compared to the square model, models with shape modification reduce the recirculation

region, and then models have smaller wind force and wind moment than those of square

model. Moreover, it is noticeable that fluctuation

Table 6.1 Mean and standard deviation of wind force and moment with various models
CFD CFD' CFL CFL' CMD CMD' CML CML

Square model 0.1759 0.0020 0.0002 0.0022 0.0950 0.0012 0.0950 0.0012
Corner-recession 0.1529 0.0011 -0.0001 0.0017 0.0827 0.0005 0.0827 0.0005

Model

Setback model 0.1539 0.0017 0.0006 0.0024 0.0691 0.0006 0.0691 0.0006
Helical modal 0.1541 0.0012 0.0013 0.0019 0.0826 0.0006 0.0826 0.0006

ranges decrease in standard deviation showing characteristics of fluctuation. Also, in the

case of wind moment than in case of wind force, setback model, whose sectional area

decreases as the height from the ground increases, shows the smaller value of wind

moment. Unlike other models, helical model, whose twist is made in the horizontal

direction (x-y section), has a certain value of wind force and wind moment in the lateral

direction. The power spectral densities of the wind force and moment coefficients are

shown in Figure 16 and Figure 17. The power spectra of the square model show a sharp

peak around a reduced frequency of 1. However, those of other models with shape

modification show a reduced value at the same frequency. For wind force, the power

spectra of corner-recession model are shown much smaller than those of other models in x

direction.
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Fig. 6.15 Characteristics of wind force and moment with various building models
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Chapter 7 Conclusions

There have been three skyscraper booms throughout history since the 1880s. The first

boom had been from the 1880s, through the panic of 1907, until the Great Depression in

the 1930s. This period utilized the steel skeletal frames encased in masonry walls which

made construction of tall buildings higher than 300m possible. Designed in Art-Deco,

many tall buildings still had tripartite subdivisions and florid decorations from Gothic and

Renaissance styles.

=> Section 2.2

During the second one, Modernism since the 1950s had affected the shapes of tall

buildings. These buildings are like rectangular prism with no or little decorations. More

based on high technology and materials rather than on exterior decorations, tall buildings

(1940-1980) employed modified framed tube systems like Aon Center and John Hancock

Center and Willis Tower.

=> Section 2.3

For the third skyscraper boom since the 1980s, postmodernism with technological

innovations has permeated into tall buildings. Exuberant and liberal atmosphere produces

the free forms of tall buildings which also represent eclecticism; Jin Mao Building carries

the regional and cultural features. Moreover, tall buildings like art sculpture are proposed

and constructed like the 71 story Phare Tower.

=> Section 2.4

Although tall buildings express powerful iconic images, esthetics, affluence, and visibility,

the construction cost is considerably larger and the design of them is much more daunting.

Moreover, the recent high rise buildings pursuit free-style forms completely distinct from

symmetry shapes. Although seemingly the current technology sufficiently predict and

prevent the adverse responses of tall buildings excited by the wind, some problems such
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as habitability, pedestrian comport and wind induced noise have long remained to be

solved.

=> Section 3.2 to 3.5

With the development of sophisticated structural design and computer analysis, various

irregular, sculpture-like shapes of tall buildings emerged since the 2000s can be feasible

enough to be constructed. However, the design of tall buildings based on this technology

depends to a large extent on the several assumptions like accumulated experiences.

Therefore, the performance of tall buildings constructed in this way can affect the

serviceability and occupant comfort because the precise values of parameters in structures

such as damping cannot be predicted before the construction. Thus, the accuracy and

validity of analytical results should be assessed with respect to actual performance of tall

buildings. Nevertheless, the experiment on full-scaled model is so limited, so the full scale

monitoring of the performance of actual tall buildings already built becomes the pragmatic

means for verifying and improving analytical practices.

=o Section 4.1 to 4.2

Uncertainty in structural design and wind tunnel test and irregular, unsymmetrical shapes

and flexibility in tall building make tall buildings highly vulnerable to excessive levels of

vibrations under wind activities, thereby severely affecting serviceability and occupant

comfort. Various methods to mitigate these adverse effects have been introduced. Example

of these means are aerodynamic modifications like corner-cut and changing sectional

areas or plan shape with height, auxiliary damping devices like Tuned Mass Damper and

Active Variable Stiffness and structural design like increasing mass or stiffness.

=> Section 5.1

Many researchers have identified that corner modifications such as corner roundness,

corner recession, chamfered corners, fitting of small fins and vented fins to the corners

and slotted corners are considerably effective to reduce the alongwind and crosswind
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response, compared to original building plan shape without any corner modification. In

addition, these modifications effectively preclude the aero-elastic instability. In particular,

chamfered model reduces the across wind responses by 30% when compared to the model

without modification (Holmes 2001). However, the larger corner-cut and corner recession

increase the instability at low velocity while they decrease the instability at high velocity

(Kawai 1998a). Moreover, the effect of the corner modifications may be diminished in the

cross-wind direction because the vortex shedding process is very sensitive to the level of

turbulence; therefore, the benefit of corner modifications is uncertain in urban terrain and

interference by neighboring buildings where the level of wind turbulence is high (Kowk

1998b).

=> Section 5.2

In addition, changing the cross sectional shape or areas along the height of a tall building

significantly suppresses the crosswind responses. Although increasing taper ratio shows

no conspicuous changes in along-wind direction, this increasing taper ratio in across-wind

direction decreases the peak of force spectrum and broadens its band width (Kim and You

2002). As one of major modifications, opening completely through a tall building

considerably reduce vortex shedding induced forces and the crosswind dynamic response;

this effect is particularly more evident when the openings are positioned near at the top pd

the building (Dutton and Isyumov 1990).

=> Section 5.3

The mean wind force coefficient value of setback model indicates 70% of that of square

model. For fluctuating wind force coefficient, square model and corner recession model

show the across-wind component larger than the along-wind component. However, the

inverse trend is shown in setback model and helical model. Therefore, the square model

shows that the sharp peak, in the acrosswind power spectra, significantly reduces when

compared to other models. The peak value corresponding to a 500-year return period wind

speed of the 180 degree helical model is about 0.05 that of the square model. The



maximum displacement of the square model is 0.0 15H, while that of the 180 degree

helical model is 0.003H; the setback model's is 0.004H. Therefore, the 180 degree helical

model is the most effective structural shape of models in terms of safety and habitability

criteria (Tamura 2010).

=> Section 5.3.1

Based on the results obtained from many researchers, the square model without

modification, corner-recession model, setback model, and 180 degree helical model are

evaluated. Shown is good agreement between the wind tunnel test results conducted by

Tamura and the numerical simulation results by DES version. Rather than in square model,

the other models are shown to effectively reduce the wind force and moment. This is the

reason that aerodynamic modifications suppress the vortex shedding with the smaller

recirculation regions.

-: Section 6.4 to 6.4.1

Like in the research (Tamura 2010), the distributions of mean wind pressure on the

windward surfaces of four models are almost identical. However, on the across-wind

surface of the square model, negative regions are distributed mainly in the area from the

bottom to 0.3H. For the corner recession model, negative wind pressure much smaller than

that of the square model is distributed more widely. The 180 degree helical model and the

setback model shows better distribution of wind pressure than those of the others.

=* Section 6.4.2

The wind force coefficient in the wind direction remains almost constant in 0.15 to 0.18

because constant wind force acts on the windward surfaces. On the other hand, the wind

force coefficient in the across-wind direction fluctuates because of the vortex shedding.

The wind force coefficient acting on the both sides of a model has a mean value of 0.0.

Vortices are shed alternatively first from one side and then from the other one, thereby

inducing pressure difference. Like wind force coefficients in the along-wind and
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transverse-wind directions, wind moment coefficients show similar patterns.

=> Section 6.4.3

In the power spectral density of wind force coefficients, the sharp peak in the square

model appears at 1.0 Hz; the value of the largest peak in each model is 1.7 in the square

model 1.2 in the setback model, 1.0 in helical model, and 0.8 in the corner recession

model. In the power spectral density of wind moment coefficients, shape modified models

show much smaller values, about 40% of the value of the square model.

- Section 6.4.3

From the numerical analysis, it is observed that armed with aerodynamic modifications,

these fluidic designed tall buildings can be aesthetically and innovatively designed by

suppressing adverse effects by the wind. Therefore, engineers can achieve significant

reduction in wind responses by providing these fluidic designed modifications.
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Appendices

Appendix A: Model Mesh

N

Figure 1: Square Model

N

Figure 2: Corner Recession Model



Figure 3: Setback Model

\/

Figure 4: Helical Model

Table 1 Mesh Detailed

Model Mesh Number of Elements Number of Nodes

Square Model 8,969,474 9,107,692

Corner Recession Model

Setback Model

180 degree Helical Model

8,930,921
__ _ _ _ _ _ _ _ _ _ i

8,865,089
I *1

9,098,433

9,1634,888SZ

9,088,3368,868,938



Appendix B: Brief Procedure in Numerical Analysis

CAD modeling for the building model

(Pro-E)

*.iges

Converting surface data to surface mesh

(ANSA)

*nas

Generation of computational volume mesh

(STAR-CCM+)

*.ccm

Setting of simulation conditions

(STAR-CD)

*.geom *.prob

Simulation

(STAR-CD)

*ccmp *.ccmt

Post-processing

(STAR-CD)



Flow characteristics around a square model (velocity)
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Flow characteristics around a square model (pressure)
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Flow characteristics around a corner recession model (velocity) -

C(orner cut model (Tamura et al. 20 10)
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Flow characteristics around a corner recession model (pressure)
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Flow characteristics around a setback model (velocity)
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Flow characteristics around a setback model (pressure)
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Flow characteristics around a 1800 helical model (velocity)
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Flow characteristics around a 1800 helical model (pressure)
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Appendix D: Post-processing for CFD simulation (STAR-CD V.4.14)

1. Mesh Generation, Analysis Features and Run Time Control
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pro-STAR Model Guide

LQ Tme Relationships

Gometry

Grids

iLocate Boundaries

Validate Boundary Locations

mThermophysicaJ Models and Propertie

3- Define Boundaries

1?yAVJAnasis Controls

7Analysis Preparation

Post Processing

Export Data

Analysis Features

Time Domain

Multi- Fuid

Multi-Phase Treatment

Rotating Reference Frame Status

Reacting Flow

Aerocoustic Analysis

Liquid Flms

Stress Analysis

Moving Grid

ABAQUS Direct Coupling
L ..... ......

Trasient

None

Off
None

Off

Off

Off
Off -j



pro-STAR Model Guide

I Analysis Features

tyGeometry
Grids

Locate Boundaries

/yVaidate Boundary Locations

Thermophysical Models and Propertie

S yDefine Boundaries

iy Analysis Controls

fyMalysis Preparation

Model Validation

- Adaptive Refinement

- Restart

- Create Batch File

- istory Of Analyis

Post Processing

Export Data

Run Time Controls

Run time control Run for

Time (sec) 2

rThme Step Option---- - - - -

lme Step Method Constant I

Period start time (sec)

Time step for period (sec)

Minimum time step (sec)

Maximum time step (sec)

Vary by

0.001

nm Ra

ime Step Ratio

Start lime Method arwneter
Constant 0001

Set Delete

-I
P



2. Create Boundaries & Define Boundary Regions

pro-STAR Model Guide

1 Anaysis Features

I ! Geometry

I- Grids

- Locate Boundaries

kj -Vakldate Boundary Locations

IyThermophysical Models and Propertie

Define Boundaries

Analysis Controls

Analysis Preparation

Post Processing

/Export Data

Create Boundaries

Regions Cyclics Couples Patches

Boundary Regions

2 Wal ace top

2 I nlet boun inlet

Type

Name

Define

uil -

uitBoundar_.Region

Delet e

Create/Modify Boundaries- -
Action List

Create by Picking Celi Faces
Create by Picking a Zone
Create by Picking Surface based on Edges
Create by Picking Surface based on Vset
Change Current Boundary Set
Change Cursor Selected Region
Change Zone
Delete All in Region
Delete Current Boundary Set
Delete Cursor Selected Region
Delete Zone

Apply

Compress

plot AM Plot Region

Merge

Count

jL >xw1i 71Z 4
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pro-STAR Model Guide

Aalysis Features

Geometry

Grids

Locate Boundaries

L Import BoundariesL Create Boundaries

F Validate Boundary Locations

T Thermophysical Models and Propertie

Define Boundlaries

L *alar Boundaries

0 Analysis Controls

VYAnalysls Preparation

Post Processing

y Export Data

I ~ I _ 1*
Define Boundary Regions

Region Setup Plot Boundary Porous Couples

Region TW Region Name

fam tim

Region Type

Region Name

User Option

Table Name

Wall Parameters

Slip

Coordinate System

Omega (rpm)

Wan U (mIs)

Wall V (m/s)

wal W (m1s)

Roughness

Elog

Displacement (m)

A

B

C

Wall Heat

Emissivty

Reflectivity

Transmissivity

Solar Heating

Wall -j

utBoundaryRegion

Standard -

No

0

10

Standard

9

b4
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SUBROUTINE BCDEFI(SCALAR,U,V,W,TE,ED,TDEN,TURINTRSU,V2PF2P)

C Boundary conditions at inlets

REAL*8 VELREFZ_REFVELALPHA,TURREFTURALPHA

VELREF =7.0

Z REF =0.4

VELALPHA = 0.27

TURREF =0.2

TURALPHA =-0.32

IF (IREG.EQ.2) THEN

U = VELREF * (Z / Z_REF)**VELALPHA

V = 0.0

W = 0.0

TURINT =.TRUE.

TE = TURREF * (Z / Z_REF)**TURALPHA

ED =0.133

DEN = 1.205

ENDIF

RETURN

END
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3. Material Properties (Fluids) and Turbulence Models (DES)

pro-STAR Model Guide

I .MAnalysis Features

/yGeometry

I lr Grids

S "Locate Boundaries

£yValidate Boundary Locations

whermophysical Models and Propertie

- Thermal Options

- Gravity

LiD quids and Gas

- Turbulence Models

- Thermal Models

-71 Fluid Initialization

L Monitoring and Reference D

- Buoyancy

k7Additional Scalars

Porosity

Sources

uuFl

_/Define Boundaries

Analysis Controls

Analysis Preparation

[ yPost Processing

Export Data

Material Properties (Fluids)

Define user materia a:

Material FV fj AAR

Molecular Properties Mechancal Properties I

Density Constant -

Density (kgn3205

Thermal Expan. Coef (1/IK)
a (kgrn3)

al (Pa)

Molecular Vsc

mu (kgns)

EN

Specific Heat

CV (JikgK)

Conductivity

k (WAK)

osity Constant

1.81. -05

Constant

1008

Constant -j

:002637

Molecular Weight (kg kmol) 128.96

Apply Delete Defaults
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Geometry

Grids

Locate Boundaries

VaIidate Boundary Locations

Thermophysical Models and Propertie

Thermal Options

Gravity
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- Material Properties (Fluids)

-L Thermal Models
Fluid Initialization

- 1 Monitoring and Reference D

- Q Buoyancy

-yAdditional Scalars

Porosity

Sources

Preparation

Turbulence Models

Material # AIR

Turbulence On

Turbulence JNear -wadi Treatment jMultiphase Options

model k-Epslon/High Reynolds Number

C-Mu 0.09
C-EpsI 1.44

C-Eps2 1.92

C-Eps3 1.44

C-Eps4 -0.33

CAPPA 0.419

Prandtl (K.E.) 1

Prandtl (Eps) 1.219

Prandtl (Enth) Value

U efine .9

F DES

L F

r Time Averaging

Step to start averaging

Blend

1.
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_11- 0

... ..... .... .....

2;j%1 7W



Appendix E:

Data of Pressure Characteristics of the Square Model and the Helical Model

Square Helical Square Helical
Model Model Model Model
C Mx C Mx C My C My

0 0.001095 0.001675 0.096911 0.085279
0.001 0.001067 0.001668 0.097023 0.085334
0.002 0.001032 0.001654 0.097102 0.085378
0.003 0.000975 0.001637 0.097142 0.085413
0.004 0.000888 0.001617 0.09714 0.085439
0.005 0.000772 0.001598 0.0971 0.085461
0.006 0.000634 0.001577 0.097033 0.085479
0.007 0.000489 0.001564 0.096953 0.085494
0.008 0.00035 0.001558 0.096875 0.085509
0.009 0.00023 0.00156 0.096813 0.085525
0.01 0.00014 0.001569 0.096779 0.085546

0.011 8.11E-05 0.001582 0.096773 0.08557
0.012 3.66E-05 0.001594 0.09679 0.085603
0.013 -8.9E-06 0.001604 0.096813 0.085643
0.014 -6.4E-05 0.001606 0.096826 0.085688
0.015 -0.00013 0.001605 0.096819 0.085735
0.016 -0.00022 0.001598 0.096794 0.085781
0.017 -0.00031 0.001586 0.096764 0.085828
0.018 -0.0004 0.00157 0.096742 0.085875
0.019 -0.00048 0.001554 0.096742 0.085923
0.02 -0.00053 0.001543 0.096772 0.085973

0.021 -0.00056 0.001534 0.096828 0.086023
0.022 -0.00057 0.001531 0.096901 0.086074
0.023 -0.00056 0.001533 0.096973 0.086125
0.024 -0.00055 0.001541 0.09703 0.08618
0.025 -0.00055 0.001549 0.097063 0.086234
0.026 -0.00056 0.001558 0.09707 0.086285
0.027 -0.00058 0.001566 0.097059 0.086331
0.028 -0.00061 0.001573 0.097042 0.086374
0.029 -0.00064 0.001581 0.097029 0.086415
0.03 -0.00068 0.001593 0.097027 0.086456

0.031 -0.00071 0.001606 0.097036 0.086498
0.032 -0.00074 0.001628 0.097052 0.086539
0.033 -0.00076 0.001651 0.097069 0.086581
0.034 -0.00077 0.001679 0.097084 0.08662
0.035 -0.00078 0.00171 0.097092 0.086657
0.036 -0.00078 0.00174 0.097093 0.086691
0.037 -0.00079 0.00177 0.097086 0.086724
0.038 -0.0008 0.001801 0.097074 0.086756
0.039 -0.00082 0.001834 0.097061 0.086787
0.04 -0.00085 0.001868 0.097051 0.086817

0.041 -0.00089 0.001902 0.097047 0.086847
0.042 -0.00091 0.001935 0.097053 0.086875
0.043 -0.00093 0.001971 0.097068 0.086904
0.044 -0.00093 0.002007 0.097093 0.086935
0.045 -0.00092 0.002044 0.097123 0.086965
0.046 -0.00089 0.002079 0.097157 0.086992
0.047 -0.00085 0.002114 0.097189 0.087013
0.048 -0.00079 0.002146 0.097216 0.087024
0.049 -0.00071 0.002172 0.09724 0.087031
0.05 -0.00063 0.002195 0.097255 0.08703

0.051 -0.00054 0.00221 0.097262 0.08703
0.052 -0.00044 0.00222 0.097262 0.08703
0.053 -0.00034 0.002227 0.097258 0.087031
0.054 -0.00024 0.002233 0.097255 0.087034
0.055 -0.00013 0.002239 0.097255 0.087038
0.056 -2.5E-05 0.002246 0.097265 0.087043

0.057 7.43E-05 0.002256 0.097282 0.087049
0.058 0.000159 0.002269 0.097298 0.087053
0.059 0.000227 0.002283 0.09731 0.087052
0.06 0.000274 0.002295 0.097311 0.087047

0.061 0.000302 0.002308 0.097299 0.087037
0.062 0.000315 0.002316 0.097276 0.087025
0.063 0.00032 0.002326 0.097251 0.087014
0.064 0.000322 0.002329 0.097227 0.087009
0.065 0.000323 0.002333 0.097204 0.087013
0.066 0.000325 0.002335 0.097185 0.087029
0.067 0.000326 0.002334 0.097167 0.087054
0.068 0.000324 0.002334 0.097145 0.087084
0.069 0.000313 0.002336 0.097114 0.087117
0.07 0.000287 0.00234 0.097079 0.08715
0.071 0.000251 0.002346 0.097038 0.087178
0.072 0.000201 0.002353 0.096995 0.087198
0.073 0.000141 0.002359 0.096953 0.087207
0.074 7.61E-05 0.002362 0.096917 0.087209
0.075 1.23E-05 0.002362 0.096889 0.087206
0.076 -3.9E-05 0.00236 0.096873 0.087204
0.077 -7.5E-05 0.002354 0.096871 0.087212
0.078 -9.2E-05 0.002347 0.096884 0.087232
0.079 -9.4E-05 0.002337 0.09691 0.087267
0.08 -8.3E-05 0.002324 0.096945 0.087312

0.081 -6.5E-05 0.002307 0.096977 0.08736
0.082 -4.5E-05 0.002289 0.097002 0.087405
0.083 -3E-05 0.002266 0.097011 0.08744
0.084 -2.4E-05 0.002245 0.097001 0.087466
0.085 -3.1 E-05 0.002223 0.096975 0.087486
0.086 -5.8E-05 0.002207 0.09694 0.087504
0.087 -0.0001 0.002194 0.0969 0.087525
0.088 -0.00017 0.002183 0.096855 0.087553
0.089 -0.00025 0.002177 0.096812 0.08759
0.09 -0.00034 0.00217 0.096775 0.08764

0.091 -0.00044 0.002165 0.096742 0.087698
0.092 -0.00053 0.00216 0.096715 0.087765
0.093 -0.00062 0.002154 0.096692 0.087835
0.094 -0.0007 0.002149 0.096674 0.087903
0.095 -0.00078 0.002144 0.096662 0.087964
0.096 -0.00086 0.002142 0.096655 0.088017
0.097 -0.00094 0.002141 0.096653 0.088062
0.098 -0.00101 0.002142 0.096656 0.088102
0.099 -0.00108 0.002146 0.096663 0.088138

0.1 -0.00115 0.002148 0.096672 0.088174
0.101 -0.00121 0.002149 0.096685 0.088211
0.102 -0.00126 0.002153 0.0967 0.088251
0.103 -0.00131 0.002157 0.096724 0.088297
0.104 -0.00137 0.002165 0.096755 0.088342
0.105 -0.00143 0.002176 0.096791 0.088387
0.106 -0.00149 0.002188 0.096829 0.088427
0.107 -0.00154 0.002203 0.096865 0.088463
0.108 -0.00159 0.002216 0.0969 0.088494
0.109 -0.00163 0.002224 0.096923 0.088522
0.11 -0.00165 0.002232 0.096939 0.08855
0.111 -0.00166 0.002233 0.096948 0.088579
0.112 -0.00166 0.002229 0.096958 0.088613
0.113 -0.00167 0.002216 0.096974 0.088656
0.114 -0.00169 0.002195 0.096997 0.088704
0.115 -0.00172 0.002169 0.097018 0.088753
0.116 -0.00177 0.002136 0.097027 0.088799
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0.424 -0.00173 0.000313 0.093928 0.09657
0.425 -0.0018 0.000263 0.093933 0.096595
0.426 -0.00186 0.000211 0.09397 0.096626
0.427 -0.00189 0.000155 0.094023 0.096661
0.428 -0.00189 9.29E-05 0.09408 0.096693
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0.44 -0.00152 -0.00042 0.094119 0.096958
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0.442 -0.00142 -0.00039 0.094161 0.097013
0.443 -0.00141 -0.00037 0.09416 0.09704
0.444 -0.00143 -0.00035 0.09414 0.097067
0.445 -0.00147 -0.00033 0.094103 0.097094
0.446 -0.00151 -0.00031 0.094063 0.097124
0.447 -0.00154 -0.00028 0.094022 0.097154
0.448 -0.00153 -0.00023 0.093988 0.097185
0.449 -0.0015 -0.00019 0.093963 0.097216
0.45 -0.00143 -0.00013 0.093944 0.097245

0.451 -0.00135 -7.8E-05 0.093931 0.097273
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0.453 -0.00119 2.22E-05 0.093901 0.097325
0.454 -0.00114 5.68E-05 0.093881 0.09735
0.455 -0.00111 8.47E-05 0.093862 0.097377
0.456 -0.0011 0.000105 0.093846 0.097407
0.457 -0.00111 0.00012 0.093835 0.097441
0.458 -0.00111 0.000129 0.09383 0.097476
0.459 -0.0011 0.000136 0.09383 0.097509
0.46 -0.00108 0.000138 0.09383 0.097537

0.461 -0.00104 0.000142 0.09383 0.097561
0.462 -0.00099 0.000151 0.093833 0.097582
0.463 -0.00094 0.000162 0.093834 0.097599
0.464 -0.00089 0.000179 0.093833 0.097616
0.465 -0.00086 0.000206 0.093836 0.097638
0.466 -0.00084 0.000249 0.093841 0.097663
0.467 -0.00083 0.000303 0.093844 0.097691
0.468 -0.00083 0.000371 0.093846 0.097721
0.469 -0.00084 0.000446 0.093842 0.097754
0.47 -0.00085 0.000529 0.093837 0.097789

0.471 -0.00085 0.000614 0.093824 0.097824
0.472 -0.00086 0.000705 0.093808 0.097859
0.473 -0.00087 0.000806 0.093797 0.097898
0.474 -0.00089 0.000912 0.093787 0.097941
0.475 -0.00091 0.001027 0.093776 0.097986
0.476 -0.00095 0.001145 0.093758 0.098032
0.477 -0.001 0.001267 0.093737 0.098077
0.478 -0.00106 0.001387 0.093708 0.098119
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0.48 -0.00117 0.001626 0.093651 0.0982

0.481 -0.00122 0.001748 0.093631 0.098242
0.482 -0.00127 0.001867 0.093616 0.098284
0.483 -0.00131 0.001986 0.093606 0.098329
0.484 -0.00134 0.0021 0.093599 0.098373
0.485 -0.00138 0.002207 0.093595 0.09842
0.486 -0.00141 0.002306 0.093593 0.098465
0.487 -0.00145 0.002391 0.093588 0.098508
0.488 -0.00148 0.002462 0.093582 0.098548
0.489 -0.00152 0.002516 0.093573 0.098585
0.49 -0.00156 0.002552 0.093568 0.098621

0.491 -0.0016 0.00257 0.093565 0.098656
0.492 -0.00163 0.002573 0.093567 0.09869
0.493 -0.00166 0.00256 0.093574 0.098724
0.494 -0.00169 0.002536 0.093579 0.098755
0.495 -0.00171 0.002503 0.093584 0.098782
0.496 -0.00173 0.002466 0.093587 0.098806
0.497 -0.00174 0.002432 0.093591 0.098828
0.498 -0.00175 0.0024 0.093599 0.09885
0.499 -0.00175 0.002372 0.093614 0.098873

0.5 -0.00175 0.002347 0.093634 0.098898
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0.501 -0.00175 0.002334 0.093658 0.098926
0.502 -0.00174 0.002317 0.093679 0.098952
0.503 -0.00172 0.002303 0.093696 0.098976
0.504 -0.00169 0.00229 0.093709 0.098997
0.505 -0.00166 0.002273 0.093722 0.099018
0.506 -0.00161 0.002259 0.093735 0.099038
0.507 -0.00156 0.002242 0.093751 0.09906
0.508 -0.0015 0.002227 0.093766 0.099082
0.509 -0.00144 0.002215 0.093777 0.099103
0.51 -0.00136 0.002203 0.093779 0.099121

0.511 -0.00128 0.002198 0.093777 0.09914
0.512 -0.0012 0.002197 0.09377 0.099156
0.513 -0.00112 0.002196 0.093755 0.09917
0.514 -0.00103 0.002193 0.093735 0.099184
0.515 -0.00094 0.002188 0.093711 0.099196
0.516 -0.00085 0.002182 0.093687 0.099209
0.517 -0.00077 0.002178 0.093668 0.099224
0.518 -0.00068 0.002179 0.093662 0.099245
0.519 -0.0006 0.002184 0.093669 0.09927
0.52 -0.00053 0.002193 0.093676 0.099296

0.521 -0.00047 0.002201 0.093677 0.099318
0.522 -0.00042 0.002208 0.093665 0.099337
0.523 -0.00039 0.002209 0.093636 0.099353
0.524 -0.00038 0.002206 0.093595 0.099368
0.525 -0.00039 0.002197 0.093548 0.099384
0.526 -0.00041 0.002182 0.093501 0.099404
0.527 -0.00043 0.002168 0.093455 0.099426
0.528 -0.00046 0.002159 0.093407 0.099448
0.529 -0.00049 0.002158 0.093358 0.099469
0.53 -0.00052 0.002166 0.093313 0.099489

0.531 -0.00055 0.002179 0.093273 0.099511
0.532 -0.00057 0.002198 0.093235 0.099532
0.533 -0.00059 0.002219 0.093198 0.099553
0.534 -0.00061 0.002238 0.09316 0.099573
0.535 -0.00062 0.002251 0.093122 0.09959
0.536 -0.00063 0.002257 0.093082 0.099606
0.537 -0.00063 0.002252 0.093036 0.099617
0.538 -0.00063 0.002239 0.09298 0.09963
0.539 -0.00065 0.002219 0.092914 0.099643
0.54 -0.00068 0.00219 0.092845 0.099662

0.541 -0.00073 0.002158 0.09278 0.099686
0.542 -0.0008 0.002126 0.092719 0.099717
0.543 -0.00088 0.0021 0.092664 0.099752
0.544 -0.00095 0.002083 0.092613 0.099787
0.545 -0.00101 0.002078 0.092564 0.099821
0.546 -0.00104 0.002085 0.092525 0.099856
0.547 -0.00107 0.002105 0.092489 0.099889
0.548 -0.00109 0.002137 0.092466 0.099925
0.549 -0.00109 0.002175 0.092454 0.099962
0.55 -0.0011 0.002211 0.092457 0.100002

0.551 -0.00109 0.002243 0.092471 0.10004
0.552 -0.00107 0.002263 0.09249 0.100075
0.553 -0.00105 0.002267 0.092508 0.100105
0.554 -0.00101 0.002257 0.092525 0.100129
0.555 -0.00097 0.002237 0.09254 0.100148
0.556 -0.00092 0.002213 0.092556 0.100164
0.557 -0.00088 0.002188 0.092577 0.100176
0.558 -0.00083 0.002159 0.092605 0.100186
0.559 -0.00079 0.002131 0.092637 0.100195
0.56 -0.00073 0.002101 0.092671 0.1002

0.561 -0.00067 0.002065 0.092708 0.100204
0.562 -0.00058 0.002026 0.092751 0.100208
0.563 -0.00048 0.001982 0.0928 0.100213
0.564 -0.00037 0.001933 0.092858 0.100218

0.565 -0.00023 0.001882 0.092925 0.100227
0.566 -9.6E-05 0.00183 0.092994 0.100237
0.567 4.44E-05 0.001782 0.093064 0.100248
0.568 0.000176 0.001739 0.093125 0.100257
0.569 0.000293 0.001706 0.093177 0.100267
0.57 0.000391 0.00168 0.093212 0.100275

0.571 0.000468 0.001662 0.093231 0.100283
0.572 0.000525 0.001651 0.09323 0.100288
0.573 0.000574 0.001643 0.093214 0.100293
0.574 0.000625 0.001639 0.093191 0.100299
0.575 0.000687 0.001632 0.093165 0.100306
0.576 0.000762 0.001625 0.09314 0.100315
0.577 0.000847 0.001613 0.093115 0.100322
0.578 0.000941 0.001595 0.093094 0.100332
0.579 0.001039 0.001574 0.093074 0.100338
0.58 0.001135 0.001548 0.093059 0.100345

0.581 0.001228 0.001516 0.093053 0.100351
0.582 0.001309 0.00148 0.093052 0.100361
0.583 0.001376 0.001444 0.093054 0.100369
0.584 0.001427 0.001414 0.093057 0.100382
0.585 0.001467 0.001389 0.093058 0.100395
0.586 0.001501 0.00137 0.093055 0.100411
0.587 0.001536 0.001352 0.093043 0.100427
0.588 0.001575 0.00133 0.093023 0.100442
0.589 0.001621 0.001306 0.092998 0.100458
0.59 0.001672 0.001276 0.092971 0.100474

0.591 0.001713 0.001244 0.092948 0.100493
0.592 0.001725 0.001215 0.092935 0.100518
0.593 0.001703 0.001193 0.092942 0.10055
0.594 0.001641 0.001188 0.09297 0.100594
0.595 0.001544 0.001195 0.093015 0.100647
0.596 0.001424 0.001217 0.093068 0.100704
0.597 0.001289 0.001249 0.093118 0.100763
0.598 0.00115 0.001285 0.093158 0.100822
0.599 0.001012 0.001312 0.093185 0.100878

0.6 0.00088 0.001326 0.0932 0.10093
0.601 0.000752 0.001323 0.093202 0.100976
0.602 0.000627 0.0013 0.093205 0.10102
0.603 0.000507 0.001256 0.093212 0.101058
0.604 0.000393 0.001202 0.093226 0.101094
0.605 0.000286 0.001138 0.093246 0.101125
0.606 0.000187 0.001073 0.093271 0.101157
0.607 8.84E-05 0.001013 0.093289 0.101185
0.608 -IE-05 0.000961 0.093302 0.101212
0.609 -0.00012 0.00092 0.093302 0.101238
0.61 -0.00024 0.000893 0.093292 0.101265
0.611 -0.00036 0.000875 0.093271 0.101291
0.612 -0.00047 0.000863 0.093244 0.101313
0.613 -0.00055 0.000855 0.09321 0.101333
0.614 -0.00062 0.000852 0.093182 0.101354
0.615 -0.00067 0.000853 0.093159 0.101376
0.616 -0.00072 0.000859 0.093142 0.101402
0.617 -0.00077 0.000869 0.093124 0.101428
0.618 -0.00082 0.000877 0.093103 0.101455
0.619 -0.00087 0.000886 0.093078 0.101482
0.62 -0.00093 0.000898 0.093042 0.101507

0.621 -0.00099 0.000913 0.093004 0.101528
0.622 -0.00103 0.000936 0.09297 0.101548
0.623 -0.00105 0.000966 0.092945 0.101564
0.624 -0.00104 0.000994 0.092928 0.101578
0.625 -0.00101 0.001018 0.092928 0.101591
0.626 -0.00096 0.001034 0.092935 0.101605
0.627 -0.0009 0.001044 0.092953 0.101622
0.628 -0.00083 0.001049 0.092967 0.101639
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0.885 0.000916 0.003795 0.096435 0.109122
0.886 0.001053 0.003765 0.096411 0.109127
0.887 0.001163 0.003726 0.096403 0.109138
0.888 0.001244 0.003682 0.096418 0.10916
0.889 0.001295 0.003635 0.096461 0.109193
0.89 0.001328 0.003594 0.096518 0.109232

0.891 0.001358 0.003559 0.096577 0.109272
0.892 0.001396 0.00353 0.096637 0.109311
0.893 0.001449 0.003509 0.096699 0.10935
0.894 0.001522 0.003492 0.096759 0.109386
0.895 0.001604 0.003477 0.096824 0.109423
0.896 0.001676 0.003462 0.096893 0.109464
0.897 0.001727 0.003447 0.096949 0.109507
0.898 0.00174 0.003428 0.096983 0.109552
0.899 0.001712 0.003412 0.096993 0.109598

0.9 0.00165 0.003401 0.096968 0.109639
0.901 0.001563 0.003394 0.09692 0.109679
0.902 0.001464 0.003389 0.096861 0.109717
0.903 0.001361 0.003387 0.0968 0.109753
0.904 0.001265 0.003382 0.096746 0.109788
0.905 0.001179 0.003372 0.096709 0.109825
0.906 0.001096 0.003358 0.096688 0.109866
0.907 0.001005 0.003336 0.096675 0.109909
0.908 0.000901 0.003309 0.096661 0.109954
0.909 0.000781 0.003274 0.096631 0.109996
0.91 0.000638 0.003235 0.096591 0.110038

0.911 0.000474 0.003193 0.096541 0.11008
0.912 0.000289 0.00315 0.096481 0.11012
0.913 8.86E-05 0.003105 0.096417 0.110162
0.914 -0.00012 0.003059 0.096362 0.110204
0.915 -0.00031 0.00301 0.096319 0.110248
0.916 -0.00049 0.002966 0.096298 0.110292
0.917 -0.00063 0.002927 0.096296 0.110333
0.918 -0.00073 0.002901 0.096317 0.110373
0.919 -0.00079 0.002885 0.09635 0.110411
0.92 -0.00083 0.002876 0.096388 0.110445

0.921 -0.00086 0.002869 0.096418 0.110473
0.922 -0.00091 0.002864 0.096429 0.110496
0.923 -0.00099 0.002858 0.096414 0.110514
0.924 -0.00109 0.002857 0.096374 0.110527
0.925 -0.00121 0.002863 0.096312 0.110537
0.926 -0.00134 0.00288 0.096235 0.110544
0.927 -0.00145 0.002908 0.096162 0.110551
0.928 -0.00153 0.002942 0.096105 0.110559
0.929 -0.00158 0.002973 0.096082 0.110575
0.93 -0.0016 0.002995 0.096104 0.1106

0.931 -0.00157 0.003 0.096162 0.110634
0.932 -0.00154 0.002991 0.096246 0.110677
0.933 -0.00151 0.002968 0.09633 0.110724
0.934 -0.00151 0.002938 0.0964 0.110776
0.935 -0.00156 0.002906 0.096447 0.110829
0.936 -0.00165 0.002875 0.096475 0.110882
0.937 -0.00176 0.002851 0.096484 0.110932
0.938 -0.00188 0.002833 0.096487 0.110981
0.939 -0.002 0.00282 0.096496 0.11103
0.94 -0.0021 0.002808 0.096523 0.111081

0.941 -0.00216 0.002792 0.096572 0.111134
0.942 -0.00218 0.002774 0.096641 0.111189
0.943 -0.00217 0.002747 0.096722 0.111242
0.944 -0.00213 0.00272 0.096797 0.11129_
0.945 -0.00207 0.002688 0.096852 0.111326
0.946 -0.00199 0.002661 0.096876 0.111352
0.947 -0.00192 0.002639 0.096868 0.111367
0.948 -0.00185 0.002629 0.096839 0.111377

0.949 -0.00178 0.002632 0.096808 0.111386
0.95 -0.00174 0.002648 0.096788 0.111401

0.951 -0.00173 0.002676 0.096786 0.111421
0.952 -0.00173 0.002713 0.096802 0.11145
0.953 -0.00174 0.00276 0.096832 0.111479
0.954 -0.00177 0.002815 0.096867 0.111512
0.955 -0.0018 0.002875 0.096888 0.111541
0.956 -0.00182 0.002938 0.096877 0.111559
0.957 -0.00183 0.002997 0.096818 0.111564
0.958 -0.00184 0.003046 0.096722 0.111556
0.959 -0.00183 0.003082 0.09661 0.111542
0.96 -0.00181 0.0031 0.096505 0.111527

0.961 -0.00178 0.0031 0.096429 0.111517
0.962 -0.00174 0.003086 0.096398 0.111516
0.963 -0.00166 0.003063 0.096417 0.111524
0.964 -0.00154 0.003043 0.096483 0.11154
0.965 -0.00138 0.003032 0.096592 0.111565
0.966 -0.00117 0.003042 0.096714 0.11159
0.967 -0.00092 0.003064 0.096822 0.11161
0.968 -0.00066 0.003097 0.096894 0.111619
0.969 -0.0004 0.003126 0.096929 0.111618
0.97 -0.00015 0.00315 0.096934 0.111611

0.971 5.87E-05 0.003159 0.096909 0.111598
0.972 0.000228 0.003157 0.096862 0.111585
0.973 0.000354 0.003145 0.096797 0.111573
0.974 0.000447 0.00313 0.096723 0.111565
0.975 0.000516 0.003119 0.09664 0.111559
0.976 0.000567 0.003115 0.096548 0.111553
0.977 0.000602 0.003118 0.096444 0.111548
0.978 0.000614 0.003125 0.096331 0.111541
0.979 0.000595 0.003126 0.096219 0.111538
0.98 0.000548 0.003115 0.096126 0.111539

0.981 0.000476 0.003091 0.096058 0.111548
0.982 0.00039 0.003059 0.096017 0.111564
0.983 0.000302 0.003019 0.096002 0.111587
0.984 0.000221 0.002977 0.096009 0.111615
0.985 0.000158 0.002933 0.096031 0.111642
0.986 0.000112 0.002888 0.09607 0.111672
0.987 8.29E-05 0.00285 0.09612 0.111702
0.988 5.39E-05 0.002819 0.09617 0.111729
0.989 2.08E-05 0.002803 0.096201 0.111752
0.99 -3.3E-05 0.002802 0.096202 0.111767

0.991 -0.0001 0.002814 0.096167 0.111775
0.992 -0.00018 0.002835 0.096107 0.111778
0.993 -0.00026 0.002856 0.096037 0.111779
0.994 -0.00033 0.002867 0.095978 0.111784
0.995 -0.0004 0.002862 0.095943 0.111798
0.996 -0.00047 0.00284 0.095933 0.111821
0.997 -0.00052 0.002801 0.095931 0.111847
0.998 -0.00057 0.002749 0.095934 0.111875
0.999 -0.00061 0.002694 0.095934 0.111903

1 -0.00065 0.002638 0.095916 0.111928
1.001 -0.00068 0.002585 0.095878 0.111948
1.002 -0.00072 0.002538 0.095825 0.111968
1.003 -0.00077 0.002499 0.095766 0.111989
1.004 -0.00082 0.002473 0.095714 0.112016
1.005 -0.00087 0.002465 0.095671 0.112049
1.006 -0.00091 0.002483 0.095651 0.112089
1.007 -0.00094 0.002519 0.095648 0.112133
1.008 -0.00095 0.002559 0.095653 0.112178
1.009 -0.00095 0.002585 0.095657 0.112222
1.01 -0.00093 0.002589 0.095664 0.112262

1.011 -0.00091 0.002576 0.095667 0.112301
1.012 -0.00089 0.002559 0.095673 0.112339
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1.013 -0.00088 0.002554 0.095689 0.112382
1.014 -0.0009 0.002569 0.095714 0.112429
1.015 -0.00094 0.002608 0.095746 0.112479
1.016 -0.00098 0.002674 0.095775 0.112532
1.017 -0.00103 0.00276 0.095788 0.11258
1.018 -0.00107 0.002862 0.095776 0.112624
1.019 -0.0011 0.002968 0.09574 0.112662
1.02 -0.00111 0.003076 0.095685 0.112697

1.021 -0.00112 0.003172 0.095618 0.112728
1.022 -0.00113 0.003245 0.095556 0.112759
1.023 -0.00114 0.003286 0.095504 0.11279
1.024 -0.00114 0.003287 0.095467 0.112823
1.025 -0.00113 0.003248 0.095437 0.112853
1.026 -0.00111 0.003179 0.09541 0.112881
1.027 -0.00107 0.003084 0.095377 0.112905
1.028 -0.00103 0.002982 0.095334 0.112923
1.029 -0.00097 0.002885 0.095277 0.112937
1.03 -0.00091 0.002807 0.095215 0.112951

1.031 -0.00085 0.002744 0.095151 0.112963
1.032 -0.00078 0.002696 0.095093 0.112978
1.033 -0.00072 0.002657 0.09504 0.112992
1.034 -0.00065 0.002621 0.095002 0.113009
1.035 -0.00058 0.002586 0.094987 0.11303
1.036 -0.00051 0.002552 0.09499 0.113054
1.037 -0.00044 0.002514 0.095009 0.11308
1.038 -0.00037 0.002476 0.095031 0.113107
1.039 -0.00029 0.00244 0.095052 0.113134
1.04 -0.00021 0.002407 0.095067 0.113156

1.041 -0.00013 0.002378 0.095078 0.113177
1.042 -4.6E-05 0.002355 0.095088 0.113194
1.043 3.5E-05 0.002336 0.095101 0.113211
1.044 0.000114 0.002327 0.095121 0.11323
1.045 0.000192 0.002329 0.09514 0.113249
1.046 0.000268 0.002339 0.095155 0.113267
1.047 0.000338 0.002345 0.095171 0.113285
1.048 0.000402 0.002346 0.095177 0.113301
1.049 0.000457 0.002343 0.095175 0.113316
1.05 0.000507 0.002329 0.095174 0.113328

1.051 0.000553 0.002303 0.095174 0.113338
1.052 0.000601 0.002268 0.095183 0.113347
1.053 0.00065 0.002226 0.095199 0.113358
1.054 0.000706 0.002184 0.095222 0.113368
1.055 0.000765 0.002156 0.095246 0.11338
1.056 0.000833 0.00214 0.09526 0.113391
1.057 0.000907 0.002143 0.09526 0.113402
1.058 0.000984 0.002163 0.095246 0.113411
1.059 0.001066 0.002191 0.095222 0.113417
1.06 0.001142 0.002219 0.095197 0.113419

1.061 0.001215 0.002241 0.095173 0.11342
1.062 0.001282 0.002254 0.095149 0.113419
1.063 0.001343 0.002258 0.095129 0.113421
1.064 0.001398 0.00225 0.095117 0.113432
1.065 0.001451 0.002238 0.095111 0.113453
1.066 0.001499 0.002225 0.09511 0.113484
1.067 0.001541 0.002217 0.095107 0.113521
1.068 0.001574 0.002219 0.095099 0.113562
1.069 0.001594 0.002236 0.095084 0.113605
1.07 0.001598 0.002266 0.095057 0.113645

1.071 0.001586 0.002308 0.09502 0.113682
1.072 0.00156 0.002357 0.094979 0.113719
1.073 0.001525 0.002402 0.094946 0.113757
1.074 0.001487 0.002437 0.094924 0.113798
1.075 0.001455 0.00246 0.094923 0.113843
1.076 0.00143 0.00247 0.094946 0.113891

1.077 0.001413 0.002471 0.094982 0.113938
1.078 0.001403 0.002474 0.095026 0.113982
1.079 0.001402 0.002485 0.095072 0.114022
1.08 0.001407 0.002502 0.095116 0.114057

1.081 0.001417 0.00253 0.095153 0.114086
1.082 0.00143 0.002571 0.095181 0.114111
1.083 0.001439 0.002626 0.095196 0.11413
1.084 0.001438 0.002693 0.095192 0.114144
1.085 0.001422 0.002774 0.095179 0.114159
1.086 0.001383 0.002859 0.095155 0.114175
1.087 0.001319 0.002948 0.09513 0.114197
1.088 0.001229 0.00303 0.095106 0.114226
1.089 0.001117 0.003098 0.095081 0.114262
1.09 0.000991 0.003151 0.095058 0.114305

1.091 0.000863 0.003187 0.095037 0.114351
1.092 0.000743 0.00321 0.095016 0.114399
1.093 0.00063 0.003225 0.094992 0.114444
1.094 0.000522 0.003236 0.094969 0.114489
1.095 0.000418 0.003253 0.094944 0.114535
1.096 0.000316 0.003277 0.09492 0.114581
1.097 0.000218 0.003312 0.094902 0.114627
1.098 0.000124 0.003348 0.094905 0.114675
1.099 3.18E-05 0.003382 0.09493 0.114727

1.1 -5.5E-05 0.003413 0.094971 0.114781
1.101 -0.00014 0.003433 0.095018 0.114834
1.102 -0.00022 0.003441 0.095059 0.114883
1.103 -0.00029 0.003438 0.095089 0.114929
1.104 -0.00036 0.003427 0.095106 0.11497
1.105 -0.00042 0.003413 0.095113 0.11501
1.106 -0.00049 0.003402 0.095111 0.115049
1.107 -0.00054 0.003401 0.095102 0.115087
1.108 -0.00059 0.003412 0.095089 0.115124
1.109 -0.00061 0.003437 0.095078 0.115162
1.11 -0.00062 0.003476 0.095072 0.115201

1.111 -0.0006 0.003521 0.095075 0.11524
1.112 -0.00058 0.003574 0.095084 0.115282
1.113 -0.00054 0.003624 0.095094 0.115324
1.114 -0.0005 0.00367 0.0951 0.115364
1.115 -0.00046 0.003707 0.095102 0.115403
1.116 -0.00042 0.003729 0.095097 0.115438
1.117 -0.00039 0.003737 0.095092 0.115467
1.118 -0.00036 0.003732 0.09509 0.11549
1.119 -0.00033 0.003713 0.095095 0.115506
1.12 -0.0003 0.003688 0.095107 0.115516

1.121 -0.00027 0.003663 0.095122 0.115519
1.122 -0.00024 0.003643 0.095135 0.115517
1.123 -0.00022 0.003632 0.095142 0.115511
1.124 -0.0002 0.003626 0.095141 0.115504
1.125 -0.00017 0.003623 0.095135 0.1155
1.126 -0.00014 0.003622 0.095129 0.115499
1.127 -9E-05 0.003621 0.095128 0.115503
1.128 -3.3E-05 0.00361 0.095131 0.115511
1.129 3.17E-05 0.003593 0.095134 0.115521
1.13 0.0001 0.003574 0.095132 0.115533

1.131 0.00017 0.003552 0.095117 0.115542
1.132 0.000241 0.003532 0.095083 0.115548
1.133 0.000309 0.003514 0.095038 0.115553
1.134 0.000373 0.003499 0.094984 0.115558
1.135 0.000425 0.003484 0.094919 0.115565
1.136 0.000465 0.003471 0.094851 0.115574
1.137 0.000495 0.003455 0.09478 0.115585
1.138 0.000521 0.003435 0.094714 0.115597
1.139 0.000547 0.003411 0.094662 0.115611
1.14 0.000582 0.003378 0.094631 0.115628
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1.141 0.000632 0.003338 0.094624 0.115647
1.142 0.000693 0.003286 0.094637 0.115666
1.143 0.00076 0.003228 0.094659 0.115687
1.144 0.00083 0.003162 0.094688 0.115708
1.145 0.000899 0.003095 0.094721 0.115731
1.146 0.000959 0.003025 0.094751 0.115754
1.147 0.001008 0.002962 0.094774 0.115776
1.148 0.001038 0.002904 0.094791 0.115798
1.149 0.001051 0.002857 0.094814 0.115822
1.15 0.001046 0.002815 0.094849 0.115851

1.151 0.001027 0.002777 0.094894 0.115882
1.152 0.000996 0.002739 0.094944 0.115916
1.153 0.000962 0.002694 0.094998 0.115948
1.154 0.00093 0.002643 0.095052 0.115979
1.155 0.000905 0.002585 0.095096 0.116007
1.156 0.000894 0.002521 0.095133 0.116028
1.157 0.000887 0.002453 0.095161 0.116045
1.158 0.000881 0.002387 0.095178 0.116059
1.159 0.00086 0.002326 0.095184 0.116072
1.16 0.000818 0.002273 0.095179 0.116085

1.161 0.000741 0.002233 0.095165 0.1161
1.162 0.000634 0.002207 0.095141 0.116117
1.163 0.0005 0.002193 0.09511 0.116135
1.164 0.000353 0.002185 0.095076 0.116154
1.165 0.000208 0.002182 0.095048 0.116176
1.166 7.1E-05 0.00218 0.095029 0.116199
1.167 -5.5E-05 0.002174 0.095021 0.116225
1.168 -0.00017 0.002164 0.095024 0.116252
1.169 -0.00028 0.00215 0.095039 0.116284
1.17 -0.00038 0.002135 0.095055 0.116317

1.171 -0.00049 0.00212 0.095069 0.116351
1.172 -0.0006 0.002113 0.095078 0.116384
1.173 -0.0007 0.002114 0.095088 0.116416
1.174 -0.00079 0.002126 0.095099 0.116448
1.175 -0.00087 0.002148 0.095116 0.116481
1.176 -0.00093 0.002179 0.095138 0.116515
1.177 -0.00096 0.002218 0.095165 0.116549
1.178 -0.00097 0.002259 0.095201 0.116584
1.179 -0.00094 0.002301 0.095249 0.116618
1.18 -0.00087 0.002342 0.095302 0.11665

1.181 -0.00077 0.002386 0.095361 0.11668
1.182 -0.00065 0.002431 0.09542 0.116707
1.183 -0.00051 0.002481 0.095476 0.116735
1.184 -0.00038 0.002535 0.095524 0.116766
1.185 -0.00025 0.002598 0.09556 0.1168
1.186 -0.00012 0.002668 0.095589 0.116838
1.187 9.28E-06 0.002748 0.095615 0.11688
1.188 0.000147 0.002839 0.095636 0.116923
1.189 0.000296 0.002935 0.095659 0.116964
1.19 0.000457 0.003039 0.095677 0.117002

1.191 0.000627 0.003142 0.095689 0.117038
1.192 0.000796 0.00324 0.095701 0.117072
1.193 0.00096 0.003328 0.095709 0.11711
1.194 0.00111 0.003407 0.095711 0.117148
1.195 0.001246 0.003482 0.095701 0.117186
1.196 0.001368 0.003551 0.095685 0.117225
1.197 0.001479 0.00362 0.095665 0.117262
1.198 0.001583 0.003689 0.095658 0.117302
1.199 0.001685 0.003753 0.095663 0.117341

1.2 0.001792 0.003812 0.095678 0.117378
1.201 0.001904 0.003858 0.095701 0.117414
1.202 0.002024 0.003886 0.095729 0.117446
1.203 0.002157 0.003891 0.095764 0.117475
1.204 0.002306 0.003877 0.095803 0.117498

1.205 0.002467 0.003852 0.095843 0.117518
1.206 0.002638 0.003825 0.095881 0.117536
1.207 0.002809 0.003801 0.09591 0.11755
1.208 0.002977 0.003783 0.095927 0.117564
1.209 0.003131 0.003772 0.095935 0.117578
1.21 0.003271 0.003771 0.095936 0.117593

1.211 0.003388 0.003777 0.095935 0.117611
1.212 0.003485 0.003786 0.095937 0.117634
1.213 0.003561 0.003792 0.095941 0.117661
1.214 0.003614 0.00379 0.095948 0.117691
1.215 0.003643 0.003779 0.095952 0.117719
1.216 0.003649 0.00375 0.095953 0.117748
1.217 0.003634 0.003706 0.095943 0.117777
1.218 0.003599 0.003647 0.095923 0.117805
1.219 0.003543 0.003584 0.095898 0.117838
1.22 0.003464 0.003515 0.095861 0.117873

1.221 0.003362 0.003444 0.095818 0.117911
1.222 0.003236 0.003371 0.095772 0.117951
1.223 0.003091 0.003293 0.095732 0.117993
1.224 0.002934 0.003204 0.095706 0.118035
1.225 0.002776 0.003108 0.095698 0.118081
1.226 0.002629 0.003003 0.095707 0.118128
1.227 0.0025 0.002892 0.095725 0.118176
1.228 0.002392 0.002779 0.095747 0.118227
1.229 0.002304 0.002666 0.09577 0.11828
1.23 0.002227 0.002561 0.095781 0.118331

1.231 0.002152 0.002463 0.095776 0.118381
1.232 0.00207 0.002378 0.095755 0.118428
1.233 0.001979 0.002305 0.095718 0.11847
1.234 0.001876 0.002253 0.095667 0.118507
1.235 0.001763 0.002222 0.095606 0.118539
1.236 0.001644 0.002211 0.095536 0.118567
1.237 0.001519 0.00222 0.09546 0.118594
1.238 0.001392 0.002244 0.095384 0.118623
1.239 0.001268 0.002276 0.095308 0.118654
1.24 0.001155 0.002315 0.095238 0.118688

1.241 0.001053 0.002357 0.095178 0.118726
1.242 0.000968 0.002399 0.095132 0.118766
1.243 0.000898 0.002446 0.095092 0.118804
1.244 0.000837 0.002489 0.095066 0.118841
1.245 0.000773 0.002528 0.095041 0.118875
1.246 0.000698 0.00256 0.095023 0.118908
1.247 0.000606 0.002577 0.095002 0.118938
1.248 0.000501 0.002584 0.094977 0.118966
1.249 0.000396 0.002579 0.09495 0.118992
1.25 0.000297 0.002565 0.094933 0.119019

1.251 0.000221 0.002546 0.094932 0.119048
1.252 0.000177 0.002523 0.094949 0.119078
1.253 0.000171 0.002495 0.094984 0.119106
1.254 0.000207 0.002467 0.095031 0.119133
1.255 0.000279 0.002438 0.095083 0.119158
1.256 0.000371 0.00242 0.09513 0.119178
1.257 0.000469 0.002412 0.095163 0.119194
1.258 0.000558 0.002417 0.095177 0.119208
1.259 0.000631 0.002434 0.095181 0.119221
1.26 0.000678 0.002462 0.095172 0.119236

1.261 0.000699 0.002498 0.09516 0.119255
1.262 0.000699 0.002538 0.09515 0.119277
1.263 0.000694 0.002582 0.095145 0.119304
1.264 0.000693 0.002624 0.095146 0.119336
1.265 0.000703 0.002665 0.095151 0.119373
1.266 0.000733 0.0027 0.095153 0.119409
1.267 0.000776 0.00273 0.095151 0.119447
1.268 0.000818 0.002756 0.095141 0.119486

138



£17lLZ0 Z06960'0 SO0O000 98170000 96L1

LL1LVl gL65600 £66100*0 Z I V0000 6El1

VEL1LU1 896960"0 £6100'0 9ZE£000 t6El1

£LIZV0 900960'0 £98100*0 1 CZOOO0 L6L1
9fLI CZl0 LV09600 86LI00*0 6Z 1000'0 M6V1

6E1£ZI0 £60960'0 6fLL1000 90-380'Z 16EL1

St 1 *~0 Z1v1960'0 969100*0 90-36*8 6EL1

1£10 961960'0 1L9100*0 1Z0000O 68L1
Lg1£Z10 EgZ960*0 L99100*0 ZE£0000 8KL1

91L1 1 C £ I9600 19100'0 t17000'0- L8L1

191 fZ1 0 1LE9600 61791000 9S&0000 98CL1

691 CZ10 1L1960*0 Zt91000 L9000*0 98f'1

LM1Z10 SLt7960'0 £9100*0 8000'0- t'l1
£171£ZI0 Z09960*0 919100*0 E6000'0 £CHI
8Z1£ZV0 909960'0 9100*0 LOIOO0O Z8E*1

601EZ10 68t79600 689100*0 ZZ1000- 18£!l

980£Z10 gt9600 t,891000 9L100*0- 8E.1
990£Z1 6f960'0 L8St1000 9100'0- 6L£ I
~ZZl0 1ZE960*0 969100*0 Z9 100'0- 8L£ I

686ZZ V0 LgZ960*0 609 100'0 ELL1000 LLELI
L96ZZ10 I1Z960*0 1L9100'0 Z8 100*0 9L£ I
6Z6Z10' 61960'0 99100'0 68100*0- 9LE* I
I706ZZIVO 561960"0 LL9100*0 £6 100'0- 17L£ I
88ZZI10 81 Z960'0 Z69100'0 96 100'0- £L£ I

998ZL0 117Z9600 S69100'0 86 100'0- ZLE I
8Z8Z10' 8SZ960'0 989100*0 66 100'0- ILE£1
8ZZ10 L9Z960*0 199100*0 10ZO000- LL-1
ZLLZ1 0 ZLZ960'0 8Z9100'0 170OO000 69£' I

£1LZl0 I LZ96O0 689100*0 90ZO000 89£!l

91LZZ10O ZLZ96O0 L17gI1000 90ZO000 L9£ I
69ZZ10O 68Z960'0 909 100'0 f£0O000 99£* I
L99Z VO ZZ960*0 £9171000O L6 100'0- S9£- I

9'v9Z1 0 ELL960'0 8Zt71000O 88100*0 179£ I
9Z9Z1 0 1779600 10171000 SLL00'0 £9£I
L09ZZ10 91 S960*0 Z8E£1000 19 100'0- Z9LI

169Z1 0 1699600 ILLIOQ'O L171000 19L*1

9L5ZI0O 199960*0 99£1O000 L£1000O 9£ 1
L&&SZ1 0 689960'0 LM00*0 I1CI00'0- 69f£ 1

t75ZZ10 Z69960*0 9££1000 6Z 100'0 89f*1
909ZZ10 899960'0 LO£1000O I1E100'0 L~l1

8917Z10 L 19960*0 L21000 9f£100'0 99El1
LZ17,Z10* 8t799600 6ZZ1000 L£L000O ggfL1
L£ZZL0 Li7960'0 881100*0 9E£100*0- VgE* I
ZI1£Z10 96E960'0 LV I1000 1£1000O fgV1
L&ZZ1 0 ZL£9600O 1701000 1 Z100'0- z~fL

l61Z10* 6LZ960*0 L90100*0 60 100'0- 1L1f

LL1ZZ10 L17Z9600 900100'0 96000*0- 9EL1
80Z10 CLZ9600 ZS6000'0 E8000*0 617EL1

17L0ZZ10 817Z9600 £060000 ILOOO0O 817EL1
9661I* 10 LZ9600 880000 WOOO00- L17f*1

6961Z10 L6Z960'0 fZ8000*0 9SO0000- 917£
t7Z61ZI10 LO£960'0 L6LOOO0 9S&0000 g17fl

6881ZI10 98Z960*0 9LL0000O L9000'0 VVE'L1
9981Z10 17Z9600 EgLOOO0O 19000'0- EVE7LI
gZ8l~t* L1Z9600 9ZLOOO0O 99000*0 ZtfLI

66L10 I %91960*0 L89000'0 LOOO0O 1Ltl~

8LL1ZI10 961960*0 19000'0 ILOOO0O 17£!l

89L1Z10 ZZ960'0 69000'0 69000'0 6£El1

9LLIZI0 19Z960*0 6L&0000O t79000'0- 8fl

ZILlI 0O L0L960'0 96t7000'0 89000*0 L£EL1

f891Z10 17179600 £9170000 Z5000'0 9LE*l

E991ZI10 19£960*0 6fL170000 I~00 SOOO- ElL
Z91ZI10 ZgE960'0 ZZt0000 t,9000'0 17£V*I

69LZI0O 1ZL960-0 6010000 C9000'0- LLl

Z951 1O0 ILZ96OO0 1000*0 LLOOO*O- ZfE'1
1t1l~1O 9OZ960*0 6CO0000 t,6000'0 1EC1
9O51ZI*O ILC1960'0 t7LE00OO 1 100'0- CE'I

t7LV71I10 L90960O0 95CO00*0 £E1O0*- 6ZE1
8EVIZ1-0O 186560-0 1£OOO' ££100Th- 8ZE,1
66CIZ10 9069600 ZH£000O 1 100'0- LU'I

89f£110 5E8960'0 tE£000O 147100*0- WE' I
Z£IZIO 8L960O 99f£0000 91,100*0- f* I

L8Z1ZI10 917L56OO0 Z117000*0 81,100*0- 17ZE*1
£9ZI1I10 LEL60*0 fLt0000 6v1100'0- M* I
ttZ I Z 10 1gLg60'O 517000*0 61100'0- Z'
1£Z1ZI10 6LL5600 gZ9000*0 9100*0- 1ZE'1
9L1Il0* Z08560*0 IOLOOO0 Z5 100'0- U* 1

961 1 *0 L0860*0 17LLOOO0 £g 100'0- 61V1l
L91IZ10 £8L960*0 8E80000O 99100'0 81E£1

8Z I1 10 EL60*0 Z68000*0 95l00*0- LIEJ
£801Z10 199600 6E60000O V9 100'0- 9HV1

t1E£01I10 889960*0 186000*0 Z9 00'0- 91E I
9860Z10O E99600 9Z01000 Lt7100*0 V71 I '
1760Z V0 1617g600O 9L0 100'0 6f 100'0- E I I'
60Z10O 9L7600 11I100'0 1£C100'0- Zlf£i
9980Z V0 LLt1%0'0 81Z1000 EZ 100'0- TIEl
17L80Z I0 8LI7960'0 90C100*0 L I 100'0- lfVI
1080Z10O L9t1%0'0 1100*0 t, I100*0- 60L*1
ZLL0Z I0 917960*0 Z617lI0*0 11100'0- 80£!l

6fL0ZF LLE960'0 9L9100*0 L1I100*0 LOE-l
6690Z 1 0 16Zg600 147,9100*0 IZ100'0- 90£!l
9S90 1 0 161960*0 L69 100'0 9Z 100'0- 50C1
ll90ZIl0 Z60960*0 17LIOO0O LZ 100*0- VN0LI

699OZ 1 0 90060*0 19L100*0 9Z 100'0 LMCI
8Z90Ol V 7L67600 L8LI1000 LZIOO0O- ZO0li
Z6t1O0 V0 17881600 Z08l00*0 81100*0 lMCI
69t,0Z1F0 Z98t60'0 1Z8l00*0 11I100'0- LI1
LL17OZ10O Zt7817600 178100*0 10100*0- 66Z'l
Zl1170Z*0 61781600 Z98100*0 86000*0- 86Z1l
86f0ZI0O 69817600 L88100*0 16000'0- L6Z*
98L0Z0 Z68t760'0 116 100'0 Z6000'0- 96Z'l
9LL0ZI0O Z16t7600 Lt6 100'0 16000'0 96Z*I

L9LOZ 1 0 9Z61760'0 86100*0 16000*0 t76Z'1
917L0Z10 6Z6t7600 V I0Z000 6000'0- L6Z'1
8Zf0ZI0O LZ6t7600 6170Z000 L8000*0 Z6ZIl

0Z10Z ' 6161760*0 t80Z000O Z8000'0- 16Z1
t7LZOZI0O 161760*0 fZ1Z000 9L0000O- 6Z*
5Vt'ZV10 f£161760'0 69 1 Z000 99000*0- 68Z1l
~ZZ0Z F 9E6t7600 61 Z000' 99000'0 88Z*

17OZOZ 1 0 86t7600 8LZZOO0O 9t7000*0 L8ZIl
1610ZI10 117060*0 617LfZ000 LfOOO0O- 98Z*
810Z10 11l60*0 6Zt7O000 8Z0000O 98Z1l

L10ZIl0 ,160*0 CLI Z00 lZ0000- 178Z*1
99 10Z10 Z9Zg600O 969Z000 91t000'0- MIZ
9fL10OZ10 80E960'0 ZL9ZOO0O Z 1000'0- Z8Z1
9010Zl0 LZE960'0 8fLZ000O 90-99*8 18Z*1
1900Z 1*0 LOL&60*0 68LZ000O 90-3L*S- 8Z'1
Z100Z10 17Z960*0 LZ8ZO000 90-917- 6LZ'l
C96610 L81960'0 198ZO000 90-366'Z 8L2'1
168611 0 11960'0 L98Z000O 101000.0 LLZI
6Z861 1 0 90960'0 998ZO000 L6 1000'0 9LZ'1
ZLL61 10 LO00900 Z98ZO000 60L000*0 9LZ*1
I1ZL61l1l0 886t7600 998Z000 8f'v70000 1LZi
8L961 1 0 96617600 1718O00 L99000'0 ELZ I
609611 0 9ZO900 I E8ZOO0O 189000*0 ZLZI
£0961 10 90960'0 918ZO000 17LLOOO0 1LZIl
9961 10 96060*0 86LZ000O 8Z8000*0 L21
9Z96l 10 V 1Z66-0 8LLZOO0O t80000 69Z1

6E I



6ZI1v7I10 8817Z600 89L000 t,99000'0 9'1
L I117Z10 ZZ60'0 99L0000O £09000*0 6617'1
COI17Z 1 0 17gZ60*0 99LO0000 8171000*0 8617
88017Z t0 6SZ60'0 ZL£0000O 66£O0000 L6171

1L017ZI10 ,9Z9Z60'0 L8LOOO-0 E9£000-0 961
L9017Z10 t99Z60*0 908000*0 1£0000 96V7I

9t17017 10 669Z60*0 gZ8000*0 89ZO0000 176171
8E017I10 ELZ60'0 17180000 LZZO0000 £6171

'vft£01 10 99LZ60*0 198000'0 L81000*0 Z6V I
££017ZI0 t08Z60'0 g18000*0 617 1000'0 16171l

££017F1 6f8Z60*0 17Z80000 Z1I1000'0 6171
Zf£017ZV0 ZL8Z6'0 96LOOO0 90-gfL'L 6817'1
6ZO1 10 Z06Z60*0 89L0000O 90-369't, 88171l

9Z0t1 10 t f6Z60*0 LI00 t OO' 0-31C1 L8171l
L1017ZI10 996Z60*0 9L9000'0 90-R I- 98171
60017Z10 86Z60'0 9£9000*0 90-3L*E- 98V I

17Z0 £00£60'0 109000*0 90-39'9- 1717
Z66fZ10 9Z0£60*0 Z89000'0 50-36'8- £8171
986EZ10 670£60'0 17L50000 1 1000'0- Z8V17I
186f£I*0 £LOE60'0 98W0000 Z 1000'0- 1 817'1
LL6E£l10 901£f60'0 809000'0 11000'0- 8171

17£6EZIO 1£E600 179000*0 90-36*6- 6L171
696fZV0 61 f60'0 gL9000*0 90-31'L- 8L171

Z96EZ 1 0 8 1£C60*0 LOLOOO0O SO0-31£- LL171l
96£C10 981£E60*0 6ZL0000O 90-3611' 9Lv* I

CW6ZI0 V81 E60'0 6£LOO*0 90- 11 * 9L17'1

176EZI0O 8L1I£60*0 ZV7£0000 90-38Z*8 'vL171l
Z68EZ10O L91£E60'0 K7LOOO0O 801000*0 £L171
ZL8EZ10 £91£E60'0 81LO0000 9Z1000*0 ZL171
ME8Z1-0 691t£60'0 669000-0 Z'v71000 1L17t
ME8ZV0 98 1£60*0 89000*0 89 t0000 £171

818fZI0 I I £60'0 899000*0 LLI0O0O* 69171
Z08EZ1 0 Z17Z60*0 999000'0 9O000 89171
98L£Z10 LLZE60*0 I1L9000'0 ft7O0000 L9171
L9LfZ0 O 0££60*0 £89000'0 6ZO0000 99171
6t7L£ZI0 9Z££600 869000*0 £17£000*0 ~99V1
£L£Z10 6££60*0 ZIL0O0O* L6E£0000 179171
1Z1I0 F LKE£600O £ZLOOO0O 1g'17000 £9171

169U 1I0 89EC60*0 LZLOOO0O 6617000*0 Z9171
8L9E£ 10- £L£ 600 8ZL000-0 8fSOOO0 19171

199C£ 1 0 96CE600 ZL0000 899O00* 9V7I
S9tZI0 9Zt7£60'0 I LOOO0O 689000'0 6917l

LOU VIO i7917£60O ZOLOOO'O 909000*0 89t171
5Z9C O 909£60O 669000'0 17Z9000'0 L9V I
919EZI1 0 617&£600 80L0000 £D79000-0 99VI
809EZIO f69E60*0 9CL000-0 899000*0 _ggt171
Z09E1 ££9£E60*0 9LL000-0 V69000-0 t79V I
£69fZI0 L9E60'0 6Z8000*0 6 1 L0000 UV1I
l69f£Il0 669C60*0 688000*0 9CLOOOO0 Zg17*

989EZ1 VO i7ZLE60'0 8176000*0 17tL0000 1917'1

189fZ10 8i7Lf60'0 100100*0 6CLOO*0 9t171
89CZV0 9LLf60'0 1790100*0 8ZL000*07 617
89fZV0 808E60*0 960 100'0 60L000*0 81717

C89CU0 8i78E60*0 E£1100*0 889000'0 LVV17
689E£t*0 L68C600O £91 100'0 1 L9000'0 91717
669tZl0 17%600 Z 100'0 999000'0 9tt, I
809EZL £OL101760'0 Lt7I1000 Zt79000'0 171717
8L9f£I0 £801760*0 Z~f£1000 9Z9000*0 £17171I
9Z9EZ V0 81711600 171000O 909000'0 Z177I

I M9 1 0 1 Z760'0 96t,100'0 LL9000*0 117171
£9£ZI 99Z1760'0 t,69100'0 6E9000*0 1717
&9£~f10 81 C1760'0 L89 100'0 8817000-0 6ft171

V I 9fZ V 19ft760*0 LLtOO0O 6Zt7000*0 8£171
L69EZ1 171M7600 9W8100'0 99C0000 LEV7I
LL~fZ10 V7t171600 Z88100*0 90C£0000 9£171
V99fZV0 L917t60*0 806100*0 1 9Z000 9fV I

I£gf£I10 109t,60'0 IZ6 100'0 E£IZ0000O 17t17I

609EZ 1 0 9fgi760'0 £Z61000O Z61000*0 ED,17I
88t1f£ V0 9Lgt760*0 6Z6100*0 881000*0 ZEV I
UL17£ 0 Z9t760*0 116100*0 96 1000'0 1 f171
89VE£ZV0 8991760*0 996100*0 11 ZOOQO £17*1

91717t 10 171L16006 1700Z000 LZZO0000 6Zt171
8£17£Z10 9L1760*0 99&0000 17Z0000 8zv171

t17£Z10 1081760'0 L II O0' 9Z0000 LZV I

LOZI0t ML1600 Z81700 81100 611719OO*O 9Z
tI Z 1 0 976160*0 gt1Z000 Z1~0 8 1171o zv
6Z£V10 £66L17600 86917W00 98Z0000 £1171
16ZV1 C87060*0 17617O000 ~990000 9117 I
£6Z£Z1 988t60'0 8Z00*0 8~00 1 f 1171Zv'
9K6ZV1 888v600O 179&O000 9LLOOO0 I 17171

6ZEEZ10 L60i60*0 9tZ000 £08000'0 £1171I
178EZL0 Z176600O 9tlZZ00 818,000*0 61 V1
96LZVZI £8t600' 9gt9000 £ 18000'0 1117*1
£96Z 0 V 176£0*0 £9Z000 98000*0 L1171

~160V 8t90960'0 t£19Z000 Z99000'0 60171"
9£6Z10V 60 1960'0 ~89000 8080000O 8017'1
ZZ1 0 1&11960'0 t£17Z000 1Z80000 £0171
6ZEZV0 I17960*0 661Z000 L08000'0 90171

t,0ZEZ10 Zi7&g600 17&17O000 £18000*0 Z I V1
96U1 0 96600 9017OO000 118000*0 17171I
E961£Z10 'v7960'0 E9O000 908000*0 £0171

161£ 0 61960*0 £1£ZO000 800000 80V I
981Z1 117£g,600 Et9Z000 I 9L000'0 10171

IL1£I0 96tL90'0 66ZZOO0 gEL000'0 90V1

V691£1 U 179960'0 9E1O000 L98000'0 66V1

691EZV0 9860*0 Zt171O000 919000*0 86£*1
191EZ10 gL8960'0 660Z000 V95~000'0 L6f*1


