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Abstract

Every airline passenger faces the risk of arriving late because flight times are subjected to
many sources of variability. These can be weather conditions and airspace congestion, imbalances
between airport demand and capacity, fleet and crew availability, technical failures and delays in
maintenance, and other airline operations such as boarding and fueling. The main objective of this
thesis is to explore the most common sources of variability in flight operations and study how
U.S. carriers add buffer time (or pad) to scheduled block time to account for them.

Using flight data from FAA Aviation System Performance Metrics, we analyze the
scheduled and actual flight times on 2359 directional non-stop domestic routes during 2009. The
time of each flight is decomposed to delay at gate, taxi-out time, airborne time and taxi-in time.
Then, the buffer time of each flight is computed, using as nominal airborne time the lO
percentile of the actual airborne time distribution. Our study consists of two parts. First, an
aggregate statistical analysis is performed, concentrating on trends and correlations among factors
such as buffer, flight time components, route distance, seasonality effects, delays caused by
Ground Delay Programs, time of day and day of week, a flight's relative position to other flights
operated on the same day by the same aircraft, total number of flights operated by the same
aircraft during a day, the role of airport and carriers' network structure. Finally, we perform an
econometric analysis through linear regression models to estimate how some of the above factors
affect carriers' padding and their on-time performance.

The results indicate distance and time of day to be the most important factors that affect
schedule padding. While absolute buffer increases with distance, when buffer is measured as a
fraction of nominal block time it decreases exponentially. Furthermore, buffer and on-time
performance fluctuate strongly over the course of the day, with flights scheduled to arrive during
the evening peak having the worst on-time performance, despite the fact that these flights are
padded the most. The data reveal that among the studied carriers Southwest pads its schedule
more extensively, achieving a very high on-time performance, whereas other low cost carriers
pad their flights substantially less, and have a lower on-time performance. Our findings also show
that flights destined to the carrier's hub have more buffer than flights destined to spoke airports.
Last, competition has a positive effect on schedule buffer and on-time performance.

Thesis Supervisor: Peter P. Belobaba
Title: Principal Research Scientist of Aeronautics and Astronautics
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Chapter 1

Introduction

1.1 Thesis Motivation

Since the 1978 airline industry deregulation, flight delays have been a serious and

growing issue in the United States transportation system. Despite major investments in the

modernization and expansion of aviation infrastructure in the last decades, the increase in airport

and airspace capacity has not followed the substantial growth in traffic, resulting in a rapidly

widening imbalance between capacity and demand.

One would expect that airlines, responding to these capacity constraints, would adjust

their flight frequencies and timing of operations, in an effort to alleviate aviation infrastructure

congestion. However, the highly competitive environment and the congestion externality have

had an opposite effect. In practice, carriers tend to operate smaller aircraft offering more frequent

flights, and match competitors' schedules at times of high demand. These behaviors lead to peak

traffic load, hence flight delays.



Flight delays have a tremendous cost for airlines, passengers, and the environment. First,

they increase the direct flight operating cost, resulting in losses for airlines. To recover this cost,

airlines might increase passenger fares, making air travel more expensive and less attractive.

Moreover, delays reduce the airlines' fleet and crew utilization by inducing carriers to add slack

to their schedules, in order to account for the variability in their operations. Furthermore, delayed

aircraft increase the need for extra gates and ground personnel. The above impose the additional

cost of lost demand from potential airline customers, who may turn to other travel alternatives or

telecommunication means. Last, there are revenue losses from re-accommodating passengers who

miss their flights (when the airline is the contributing factor) or flight cancellations.

For passengers, the delay impact is mainly expressed in terms of stress and discomfort

experienced in the terminal or on board, and the delay in reaching their destination. These costs

grow considerably when late aircraft arrivals result in missed connections or cancellations of

subsequent flights. In these cases, an additional cost for food and lodging may result.

Furthermore, flight delays have a significant environmental impact because delays on tarmac or

en route produce more fuel emissions, affecting global climate changes and air quality.

In addition to the direct costs to the airline industry and passengers, flight delays have an

indirect effect on the U.S. economy as well, as airlines transfer their costs to their customers, who

pay higher fares, thus increasing the travel cost in the business industry. Moreover, flight delays

translate into longer trip times for business passengers, resulting in productivity reduction for

employers. Just in 2007, the total cost of flight delays to the U.S. economy was estimated at $32.9

billion'.

In an effort to provide incentives to carriers to enhance the efficiency of their operations

and reduce delays, the U.S. Department of Transportation implemented the On-Time Disclosure

Rule in 1987. This rule requires U.S. carriers that account for at least one percent of U.S.

domestic passenger revenue to submit monthly Airline Service Quality Performance Reports to

the Bureau of Transportation Statistics (BTS). BTS releases publicly available monthly reports

with the arrival statistics of each carrier. The most widely used performance metric is the on-time

arrival rate, where a flight is considered on time if it arrives within 15 minutes of its scheduled

arrival time.

'Ball, M., Barnhart, C., Dresner, M., Hansen, M., Neels, K., Odoni, A., et al., Total Delay Impact Study: A
Comprehensive Assessment of the Costs and Impacts of Flight Delay in the United States, Final Report,
Washington, D.C.: Federal Aviation Administration, October 2010.



In response to the On-Time Disclosure Rule, carriers increased their scheduled gate-to-

gate times (block times) by adding buffer, and established longer scheduled flight times compared

to those required under optimal conditions. This practice, known as "schedule padding", is used

by carriers as a primary means for improving schedule reliability and on-time arrival statistics. A

reliable schedule reduces delay propagation throughout an airline's network, increases customers'

satisfaction, and improves carrier's operational integrity. Furthermore, a high ranking in BTS's

on-time arrival rates may improve the public perception about the carrier's service quality, thus

increase the passengers' willingness to pay.

However, carriers face a trade-off between padding their scheduled flights times and

improving their on-time performance versus the cost of increased scheduled times. First, typical

labor agreements specify that flight crew salaries are based on the maximum of scheduled and

actual block time, whichever is higher. Thus, scheduling flights that systematically arrive earlier

than planned imposes an extra labor cost to the carriers that could be avoided. Long buffer times

also hinder airlines from making optimum use of their limited resources: aircraft, crew, and

airport infrastructure. Moreover, long scheduled block times may result in lower demand,

revenues and market share, as flights are listed in the global distribution systems according to

their scheduled block time, with the shortest flight having the best screen presence.

Recently, schedule padding has attracted public interest in the U.S., as frequent travelers

often notice their flights arriving ahead of scheduled time. By lengthening their scheduled block

times, thus reducing late flight occurrences, airlines simultaneously increase the likelihood of

early arrivals. In other words, the cost of schedule reliability increases with variability in airline

operations. These factors are interdependent, meaning that the more variable the conditions under

which flights are operated, the more difficult and expensive it is to schedule and operate them in a

timely manner.

The aim of this thesis is to analyze the airline schedule padding practices with respect to

variability in airline operations. First, we will try to understand what causes this variability, and to

what degree it can be predicted by airlines. Then, we will investigate how U.S. airlines adjust

their scheduled block times on domestic routes to improve their reliability. Last, we will study

how these changes in schedule are reflected to carriers' on time performance.



1.2 Thesis Objectives and Approach

The main scope of this thesis is to study the variability in flight time components on U.S.

domestic flights during 2009, and shed light on the padding practices that U.S. carriers use to

improve their schedule reliability. Our objective is to examine a number of potential delay causal

factors and analyze their magnitude and variation on selected U.S. routes. Furthermore, we want

to look for relationships among them, as well as their impacts on buffer and on-time performance.

The data source of this thesis is the Individual Flights Record of the FAA Aviation

System Performance Metrics (ASPM). ASPM provides detailed information on individual flight

performance for a large number of U.S. carriers and airports, reporting more than 80% of

domestic flights. From this data source we extract data for commercial flights on 2359 non-stop

routes and 40 carriers, studying in total 59% of the domestic commercial flights in 2009.

The literature review in Chapter 2 suggests that delays at different flight stages vary in

terms of predictability, and their impact in flights arrival delays with respect to schedule. To

examine their effect on an individual basis, we decompose flight times to delays at gate, taxi-out

times, airborne times and taxi-in times. Next, we compute buffer, which is the core metric in our

research, using as nominal airborne time the 10t percentile of the actual airborne time

distribution during a month period.

Our analysis is separated into two parts. First, we concentrate on the descriptive analysis

of our sample, and we look for trends and correlations among our variables. Special attention is

given to factors such as flight time components, route distance, seasonality effects, delays

imposed by Ground Delay Programs, number of flights operated by the same aircraft during a

day, time of day and day of week, the role of airport and carriers' network structure. Finally, we

perform an econometric analysis through linear regression models to estimate how some of the

above factors affect padding and on-time performance.



The goal of the thesis it to investigate the following issues:

e What is the magnitude of variability in the different flight segments? How do carriers adjust

their schedule with respect to them?

* What is the relationship between buffer and stage length? Does stage length influence the

likelihood of a flight to arrive on-time?

e Do carriers adjust their scheduled block times over the course of the day?

e What is the impact of a flight's relative position to other flights operated on the same day by

the same aircraft on delay components, buffer and on-time performance?

e What are the differences in buffer and scheduled turn-around times between flights in or out

from hubs, compared to other airports?

e To what extent do Ground Delay Programs affect a carrier's decision regarding buffer?

* Are there differences in schedule padding practices and on-time performance across carriers?

e How does the number of competitors on a route affect carriers' padding and on-time

performance?

1.3 Thesis Structure

This thesis comprises six chapters:

In Chapter 1 we introduce the notion of airline schedule padding and briefly describe the

benefits and costs associated with it. We also present the objectives of this thesis and the structure

we will follow.

Chapter 2 is a literature review of studies on delays, padding practices and the on-time

disclosure rule. First, we review the most important delay metrics and explore their causes and

the evolution of delays over time. Then, we present studies addressing the response of the carriers

to the on-time disclosure rule and discuss the imposed changes in scheduled block times, arrivals

delays, and on-time performance. We also review the impact of competition and hub-and-spoke



networks on airline schedule padding. Last, we look at the cost impacts of delay and buffer on

airlines, passengers and the U.S. economy.

Chapter 3 comprises two parts. In the first part, we describe the FAA ASPM database,

and introduce in detail the dataset that was extracted for the purposes of this study. In the second

part, we present the metrics and the terminology we will use. Furthermore, we explain the

methodology we follow for computing the unimpeded airborne time and the buffer time of the

flights in the data sample.

Chapter 4 contains an aggregate analysis of our dataset. We present the distributions of

delay metrics and buffer on selected non-stop routes, and describe the uncertainty and the

variability in airline operations. We also analyze the correlation between the delay components

and the buffer time, and we try to understand how uncertainty influences airlines' padding

practices. Finally, we further examine the most important factors that affect each flight segment,

and formulate assumptions about the way that carriers adjust their schedules with regard to them.

In Chapter 5 we perform an econometric analysis to estimate how certain factors affect

buffer and on-time performance. First, we present the explanatory variables that we will study

and test for multicollinearity between them. Next, we construct six regression models, we

formulate our assumptions, and we discuss how the models' results agree with our expectations.

The developed regression models provide us with more information on carriers padding practices

by quantifying the impact of the studied variables. Furthermore, they help us understand how

changes in padding affect a carrier's on-time performance.

Finally, Chapter 6 summarizes this thesis' findings. It also discusses some of the

limitations of this analysis and suggests directions for future research.



Chapter 2

Literature Review

Since deregulation in 1978, when the U.S. airline industry became increasingly

competitive and air traffic started reaching the airport and air traffic management system's

capacity, a number of studies have investigated the causes of flight delays, the correlation

between them, and their impact on the performance and the cost of the air transportation system.

This thesis explores the most common sources of variability in the flight time components and

studies how U.S. carriers plan their schedules to account for them.

The first part of this literature review illustrates the most important metrics of delays.

Based on previous research, we explore the causes of delays and the evolution of delays over

time. Looking at the existing literature on flight delays, we hope to get a better understanding of

how delays are generated and propagated within the air transportation system. In doing so, we

expect to develop the basic framework for studying how airlines select buffer times so as to

incorporate the potential for delays in their schedules. Special attention is given to the on-time

disclosure rule of 1987. According to this rule, domestic air carriers accounting for at least 1% of

U.S. domestic passenger revenues must submit, on a monthly basis, Airline Service Quality

Performance Reports to the Bureau of Transportations Statistics (BTS). Furthermore, we review

the studies that address the impact of competition in the market and the role of hub-and-spoke

networks in airline schedule padding.



2.1 Metrics and Sources of Delay

There are several metrics that describe the delays that a flight can experience. In this

thesis, a flight is decomposed into four time segments: the time prior to push-back (gate delay),

the taxi-out time, the airborne time and the taxi-in time. Many of the factors that influence these

individual flight segments have been extensively studied in the past mostly through simulations

and analysis of historical flight data.

There are two government agencies that report air traffic delay statistics in the U.S.; the

Federal Aviation Administration (FAA) and the Bureau of Transportation Statistics (BTS). While

BTS's main purpose is to provide information to consumers about carriers' operations, FAA's

data serve to measure system-wide ATC performance and identify areas for improvement. These

two agencies sometimes use alternative ways to track the delays. Therefore, there are differences

in the reported data and statistics 2. All studies described below collect their data from one of these

two sources, unless otherwise indicated.

A model to estimate the gate delay distribution was developed by Tu et al. (2008)3. The

gate delay was defined as the difference between the scheduled departure time and the actual

departure time from the gate (push-back time). The gate delay can be influenced by many factors

such as weather conditions, airport congestion, airline policies, mechanical problems, baggage

handling, demand surges and propagation delays caused by late arrival of the previous flight with

the same aircraft. Tu et al. grouped these factors into three main categories: seasonal trend, delay

propagation pattern, and random residuals. The model's parameters show a strong seasonal

pattern with high delays in summer and winter but low in spring and fall. Moreover, there is a

very strong propagation effect with delays building up gradually over the course of the day and

decrease only very late at night. It is surprising to notice that, although the propagation delay

becomes negative for the few flights scheduled to depart after midnight, the delay of the flights

that actually depart after midnight is extremely high compared to the rest. According to the

authors, the reason is that the vast majority of these flights have been delayed for a very long

time. Furthermore, while the distribution of the scheduled departures follows a very distinct

2 Mueller, E., Chatterji, G., Analysis of Aircraft Arrival and Departure Delay Characteristics, AIAA's
Aircraft Technology, Integration, and Operations Forum, Los Angeles, California, 2002.
3 Tu, Y., Ball, M., Jank, W., Estimating Flight Departure Delay Distributions - A Statistical Approach with
Long-term Trend and Short-term Pattern, Journal of the American Statistical Association, Vol. 103, No.
481, March 2008.



spiked pattern, the distribution of the actual departures is smoother, mostly due to limitations on

the airport departure rate.

In the past, many researchers developed queuing models in order to study the taxi-out

delays, as for example Shumsky (1995)4, Pujet (1999)5 and Andersson et al. (2000)6. These

models identified as main causal factors the following: the airline (gate location relative to

runway, push-back time, etc.), the departure demand, the airport throughput and the runway

configuration. Idris et al. (2001)' performed a causal factors analysis for the case of Logan

Airport. Their results confirm the findings of previous studies. Moreover, they address the

significance of the flow management programs imposed on the departure traffic heading to

weather-impacted destination airports, jet routes or exit fixes. Although weather is usually the

main reason for having flow management programs, these can be imposed due to other causes,

such as high traffic volume or equipment outages (Idris, 2001)8.

Willemain (2001)9 developed a method to identify and estimate sources of airborne time

variation throughout a regional airspace. In his paper, he studied two types of airborne time

variability: deviations from long-run average airborne times, and deviations from the estimated en

route times filed in flight plans. He analyzed four sources of variability: the system-wide airspace

(day effect), the route's airspace (en-route effects), the airspace around the departure airport

(origin effect), and around the arrival airport (destination effect). His methodology shows that

airborne time variability is mostly attributable to the en-route effects, followed by the destination

effect. The origin effect is limited. A very important finding is that when the variation around the

long-run average was studied, the relative directions of two flights exercised a great influence on

the correlation of their estimated daily en-route effects. This suggests that en-route effects in fact

reflect the impact of jet streams. Furthermore, there is a strong negative correlation between

origin and destination effects at the same airports. However, these relationships do not apply in

4Shumsky, R., Dynamic Statistical Modelsfor the Prediction ofAircraft Take-off Times, Ph.D. Thesis, Dept
of Electrical Engineering and Computer Science, MIT, September 1995.

Pujet, N., Modeling and Control of the Departure Process of Congested Airports, Ph.D. Thesis, Dept of
Aeronautics and Astronautics, MIT, September 1999.
6 Andersson, K., Carr, F., Feron, E. and Hall, W., Analysis and Modeling of Ground Operations at Hub
Airports, 3rd USA/Europe Air Traffic Management R&D seminar, Naples, Italy, June 2000.
7 Idris, H., Clarke, J., Bhuva, R., and Kang L., Queuing Model for Taxi-out Time Estimation, Air Traffic
Control Quarterly, Vol. 10, No. 1, September 2001.
8 Idris, H., Observation and Analysis of Departure Operations at Boston Logan International Airport,
Ph.D. Thesis, Dept of Mechanical Engineering, MIT, February 2001.
9 Willemain, T., Estimating Components of Variation in Flight Time, The National Center of Excellence for
Aviation Operations Research (NEXTOR), May 2001. Available at: http://www.nextor.org/pubs/WP-01-
2.pdf



the case of deviations from the estimated en route times, where the impact of jet streams is

excluded.

Willemain et al. (2003)10 examined the effect of other factors on the variability in the

estimated en-route times filed in flight plans. They demonstrated that the month of the year, the

day of the week, the hour of the day, the aircraft type and the carrier were all significant factors.

Furthermore, they showed that the effect of the month varies significantly among routes at

different latitude, highlighting at the same time the impact of winds aloft. The deviation among

airlines is not only caused by the use of different aircraft but also because of the differences in the

carrier's flight planning styles. It was noted that the difference in standard deviation of estimated

en-route times between two carriers on the same route does not indicate which flight planning

process is better. A low standard deviation might mean that the airline puts emphasis on

predictability and achieves consistency in the filed flight times. However, this could also be

explained in the light of poor planning and rare changes in flight plans.

The effect of en-route weather on flight delays was thoroughly examined by Post et al.

(2002)'". They developed an en-route weather severity index based on the densities of lightning

strikes and flight plan tracks. The relationship between this en-route weather index and the
2airborne delays was very well described by a linear model with R = 0.76.

A spectra analysis by Welch and Ahmed (2003)12 examined the relation of airport

throughput to airborne and arrival delays. It was found that airborne delays at intermediate

throughputs occurred mostly in en-route airspace and not on approach to the airport runway.

Moreover, the delay relative to scheduled arrival time varied significantly in regard to arrival

throughput. At hub airports, the arrival delay decreases with the throughput, because the highest

throughput occurs when on-time flights arrive during the connecting banks. On the contrary, at

non hub airports, the arrival delay sometimes increases with throughput because the highest

throughput occurs when on-time flights merge with delayed flights due to weather.

Mueller and Chatterji (2002)2 extracted flight data of 2001 from the Post Operations

Evaluation Tool (POET) database and studied the departure, en-route and arrival delay

characteristics for 10 major U.S. airports. The departure delay measures the discrepancy between

10 Willemain, T.., Ma, H., Yakovchuk, N., Child, W., Factors Influencing Estimated Time En Route, Tech.
rep., The National Center of Excellence for Aviation Operations Research (NEXTOR), 2003.
" Post, J., Bennett, M., Bonn, J., Knor, D., Estimation of an En Route Weather Severity Index Using
Lightning Strike and Flight Plan Data, FAA Technical Publication, 2002.
12 Welch, J., Ahmed, S., Spectral Analysis of Airport Capacity and Delay, 5th USA/Europe Air Traffic
Management R&D Seminar, Budapest, Hungary, June 2003.



the actual time the aircraft lifts off the runway and the time the aircraft was scheduled to leave the

gate, plus an estimated taxi out time. It was shown that the departure delay fits better the Poisson

distribution while the en-route and arrival delays are better modeled using Normal distributions.

The study revealed a small amount of day to day variation in the average number of departures,

percentage of delayed departures and average departure delay (for the delayed flights only).

However, there is no evidence of correlation between these three metrics. Xu et al. (2007)"

argued that the relationship between the delay components (turn-around delay, gate delay, taxi

out-delay, airborne delay, taxi-in delay, and arrival delay) and their sources vary greatly among

different ranges of the delay components.

El Alj (2003)1 developed a new metric to estimate delays due to congestion at airports

and in airspace, as well as due to other system inefficiencies. This metric was defined as the

difference between the actual block time and a baseline time, measured as the 15 th percentile of

the actual block time distribution of a given month. The true delays based on this metric were

about 40% to 60% greater than arrival delays relative to schedule. Her analysis of block and

arrival delays suggests that although airlines predict block times with high accuracy, they are not

as good at predicting departure times. This might be one of the main reasons that delays relative

to schedule are incurred. Furthermore, El Alj showed that there is a strong correlation between

the taxi-out delays and the origin airport, and between the taxi-in delays and the destination

airport. Last, she estimated that around 60% of the airborne delay on any given route is

attributable to airspace congestion, while the remaining 40% is attributable to the destination

airport.

In this thesis we will compute the unimpeded airborne time by using an approach similar

to El Alj's baseline time. More specifically, we will extract the 10h percentile of the actual

airborne time distribution for a given directional route, month and carrier, and then we will

compare it to the actual airborne time in order to estimate the delay that a flight experiences en

route. The validity of the 10 th percentile usage for estimating the unimpeded airborne time has

been tested by Vlachou et al.".

13 Xu, N., Donohue, G., Laskey, K., Chen, C.H., Williams S. and Sherry L., Bayesian Network Analysis of
Flight Delays, 86th Transportation Research Board Annual Meeting, Washington D.C, January 2007.
"4 El Alj, Y., Estimating the True Extent of Air Traffic Delays, Master Thesis, Dept of Civil and
Environmental Engineering, MIT, June 2003.
"5 Vlachou, K., Tripodis, Y., Lovell, D., A Comparison of Different Approaches to Estimate Unimpeded
Flight Times, 12* Air Transportation Research Society World Conference, Athens, Greece, July 2008.



2.2 The Response of the Carriers to the On-Time Disclosure Rule

In response to a public outcry over the growth in air traffic delays, in 1987, the U.S.

Department of Transportation implemented the On-Time Disclosure Rule that requires domestic

air carriers that account for at least 1% of U.S. domestic passenger revenues to submit monthly

Airline Service Quality Performance Reports to BTS. There are 32 U.S. airports for which these

carriers have to report their flight performance data. However, the carriers are voluntarily

reporting all domestic operations to the BTS. Based on these data, BTS releases publicly

available monthly reports with the arrival statistics of each carrier. This rule aims to prevent

carriers from developing two schedules: one that is posted on the reservation systems for

marketing purposes, and one that is flown. Furthermore, it gives incentives to carriers to improve

their on-time performance either by scheduling times that they can meet in practice or by

improving their operations.

BTS's most widely used performance metric is the on-time arrival rate where a flight is

defined as delayed if the aircraft fails to set its parking brake or open the passenger door less than

15 minutes after the scheduled arrival time. However, the on-time arrival rate is not a reliable

indicator of the impacts on passengers because carriers' operational inefficiencies can be very

well hidden through extensive padding. For example, let us assume two carriers A and B that

operate on the same route, with the same scheduled departure time, and with scheduled block

times of 60 and 70 minutes respectively. If a flight of carrier A arrives with 17 minutes of delay

and a flight of carrier B with 10 minutes, BTS will consider the first flight delayed and the second

as being on-time. Still, the passengers of carrier A will have arrived at their destination three

minutes earlier than those of carrier B.

The desire to achieve a high ranking in the on-time arrival rates can be a strong incentive

for carriers to lengthen their scheduled block times so as to improve the public perception about

the carrier's service quality and increase the passengers' willingness to pay. Forbes (2008)16

estimated a fare reduction of $1.42 on average for direct passengers for every minute of

additional delay. Her analysis suggests that a decrease in quality has a strong negative effect on

the market price in competitive markets, and a much weaker effect in markets with limited

competition.

16 Forbes, S., The effect of air traffic delays on airline prices, International Journal of Industrial
Organization, Vol. 26, Issue 5, September 2008.



However, in practice there are many constraints in adding an extra buffer to the

scheduled block time. First, many labor agreements specify that the flight crews are paid based on

the maximum of scheduled and actual block time. Scheduling flights that systematically arrive

earlier than planned imposes an extra labor cost to the carriers that could be avoided. In addition,

this practice restrains carriers from maximizing the utilization of their resources: aircraft, crew,

and airport infrastructure. Furthermore, carriers are competing for passengers, and the flight time

can be more critical in passengers' final choice than the on-time performance, about which they

are usually not informed. Especially in the past, short block times were offering tremendous

competitive advantage to carriers, because the flights are listed in the computer reservation

systems according to their scheduled block time, with the shortest flight having the best screen

position.

Shumsky (1993)17 examined how carriers responded to the on-time disclosure rule from

1987 to 1991, and suggested ways for optimal scheduling. He showed that within this five-year

period the major carriers consistently increased their scheduled block times (the total increase

was about 10%), despite the fact that the actual block times were declining after 1989. It is

remarkable that if the carriers had not lengthened their schedules since 1987, the percentage of

flights arriving on-time in 1991 would have been 20% lower.

Nevertheless, Shumsky found that the scheduling practices with respect to on-time

performance varied among carriers in terms of the time added to their schedules, and also in the

way in which this extra time was distributed among flights. For example, in the case of

Continental Airlines, the number of minutes added to each flight was well approximated by a

simple linear model, using the previous year's on-time performance as the independent variable.

On the other hand, American Airlines used a more sophisticated technique, where the buffer time

was estimated based on the marginal gain that each flight would have from a potential

lengthening. American Airlines lengthened the block time of flights that were most likely to be

benefited, and in some cases further shortened the block time of flights with poor on-time

performance, if the additional buffer time required for improving it was substantially large. This

finding provides significant evidence that carriers take into account the distribution of the actual

block time, a hypothesis that will be fully addressed in this thesis.

17 Shumsky, R., Response of the U.S. Air Carriers to the On-Time Disclosure Rule, Transportation
Research Record, Issue 1379, 1993.



Shumsky explored two strategies for distributing a fixed amount of extra minutes in a

carrier's schedule. In the first strategy, the extra time was distributed uniformly among all flights,

whereas in the second, a mixed-integer program formulation was used to allocate the extra time in

a manner that optimizes the on-time performance of the flights in the previous year. Surprisingly,

his results showed that the first strategy performed as well as the second strategy and the carriers'

own schedules with respect to on-time performance. Shumsky concluded that the on-time

disclosure rule rewards the carriers with less variability in their flight times, and those that have

high variability but can afford very large increases.

A longer time period, from 1988 till 2000, was studied by Mayer and Sinai (2003)18.

While the average annual on-time performance increased between 1989 and 2000 (83%), it then

gradually declined reaching the lowest value of 73% in 2000. Similarly, over the 1995-2000

period the average true delay on the 618 routes studied by El Alj14 increased by 52% from 11.1

minutes to 16.9 minutes. Mayer and Sinai showed that there are systematic differences in on-time

performance across months, with the worst on-time performance in the months with bad weather.

Because on-time performance has a systemic variation in regard to some factors, they suggested

that airlines do not appear to adjust their scheduled block time to compensate for them. In this

thesis, we will explore to what extent this suggestion holds true, building on their finding that

carriers shorten their scheduled block times when the variability in block time is very large. This

seems to support Shumsky's observation about American Airlines marginal gain approach17 . Last,

they showed that there are no substantial differences in the scheduling behavior across carriers,

and the reason that Southwest Airlines achieves a better on-time performance is attributed to the

fact that it has the shortest turn-around times.

Zhu (2009),19 in his masters thesis, explored among others the differences and

effectiveness of the scheduling practices of two carriers, the legacy carrier A and the low cost

carrier B, during two days of operations in 2006, one with low delays and one with high delays.

Zhu showed that the legacy carrier A tends to plan more slack in its turn-around times, whereas

the low cost carrier B tends to add more slack in its block time. Furthermore, carrier B schedules

almost identical amounts of turn-around times at each airport. Zhu argues that the differences in

schedule padding practices between the two airlines are directly related to the type of hubs

operated by the carrier. In particular, carrier A operates banked hubs in which turn-around times

18 Mayer, C., Sinai, T., Why do airlines systematically schedule their flights to arrive late?, Mimeo,
Wharton School of Business, May 2003.
19 Zhu, Y., Evaluating Airline Delays: The Role of Airline Networks, Schedules and Passenger Demands,
Master Thesis, Dept of Civil and Environmental Engineering, MIT, February 2009.



must be longer on average to accommodate connecting passengers. On the other hand, carrier B

operates de-banked hubs and schedules shorter turn-around times to maximize aircraft and crew

productivity. In order to avoid the propagation of delays due to the tighten turn-around times,

carrier B schedules more slack in its block times.

2.3 The Impact of Competition on Padding

Market competition can affect a carrier's decision to shorten or lengthen a flight's

scheduled block time in several ways: appearance in the computer reservation systems, public

perception about quality of service, scheduling at peak travel times, and cost imposed onto

passengers.

The benefits that passengers can gain from market competition depend heavily on

passengers' accessibility to information about the provided service quality. Foreman and Shea

(1999)20 studied market response to the publication of on-time performance, and showed that the

reduction in the search cost of information results to an overall improvement in airlines

performance. They also found a positive correlation between on-time performance and

competition.

It has been shown by Suzuki (2000)21 that a passenger is more likely to switch carriers

after experiencing a flight delay. His findings also suggest that on-time performance affects

carriers' market share more through the passengers' personal experience and perception of the

carriers' reliability, rather through the reported on-time arrival statistics. Borenstein and Netz

(1999)22 showed that in competitive markets carriers schedule their flight departures closer

together compared to a single carrier that operates the same number of flights. The reason is that

by offering schedules at peak travel times, carriers capture more demand. Based on this, one

would expect that competition might deteriorate the carriers' on-time performance because it

forces them to schedule their departures at peak hours. However, the literature suggests that

competition has a positive impact on carriers' on-time performance.

20 Foreman, S., Shea, D., Publication of Information and Market Response: The Case of Airline on Time
Performance Reports, Review of Industrial Organization, Vol. 14, 1999.
21 Suzuki, Y., The Relationship between On-time Performance and Airline Market Share: A New Approach,
Transportation Research Part E: Logistics and Transportation Review, Vol. 36, 2000
22 Borenstein, S., Netz, J., Why do all the flights leave at 8 am?: Competition and Departure-time
Differentiation in Airline Markets, International Journal of Industrial Organization, Vol. 17, 1999.



Mazzeo (2003)23 compared quality outcomes across markets to investigate how

competition provides incentives for carriers to improve their service quality. His results render

clear that on routes served only by one carrier, or when the carrier's presence prevails, the flight

delays are significantly longer and the on-time performance worse, compared to routes with

greater competition. According to Mazzeo, this happens because delays will affect airlines

profitability less if they are imposed on passengers who have fewer alternatives.

Rupp et al. (2006)24 reached similar conclusions with regard to the positive relationship

between route competition and on-time arrival rates. Moreover, their study showed that hubbing

has a greater impact on on-time performance than the route competition. Flights that originate

from the airline's hub have on average the worst on-time arrival rates, probably because they are

scheduled to depart at peak airport congestion periods. No difference was found in on-time arrival

rates between hub and non-hub airlines for flights destined to hub airports. Previous study of

Mayer and Sinai (2003)25 had resulted in similar findings.

23 Mazzeo, M., Competition and Service Quality in the U.S. Airline Industry, Review of Industrial
Organization, Vol. 22, 2003.
24 Rupp, N., Owens, D., Plumly, W., Does competition Influence Airline On-Time Performance?, Elsevier,
Advances in Airline Economics, Vol. 1, 2006.
25 Mayer, C., Sinai, T., Network Effects, Congestion Externalities, and Air Traffic Delays: or Why All
delays Are Not Evil, American Economic Review, Vol. 93, Issue 4, September 2003.



2.4 Assessment of the Cost of Padding

Although there are a few studies that estimate the cost of delays relative to schedule for

the carriers and the passengers in the U.S. air travel system, very limited information is available

in the present literature for the incremental costs imposed by the buffer times.

The most comprehensive study on the delay impact in the U.S. was conducted by the five

NEXTOR universities and the Brattle Group (2010)'. The research team derived translog cost

functions assuming that each airline minimizes its cost of producing a certain output, given the

costs of its input factors for production such as labor and fuel, as well as other factors that

influence its production process. One factor among the latter can be delay. The independent

variables used in the model estimation were: output (revenue-ton-miles), fuel price, labor price,

materials price, capital service, stage length, points served, and delays against the 10h and the 2 0 th

percentile of feasible flight time. The monetary values of passenger delays were computed based

on the recommended values of travel time in the departmental guidance of the DOT (2003)26.

In 2007, the total cost of all U.S. air transportation delays was estimated to be $32.9

billion:

* Costs to Airlines: $8.3 billion

e Costs to Passengers: $16.7 billion

e Indirect Impact on Economy: $4.0 billion

e Costs from Lost Demand: $ 3.9 billion

From the $8.3 billion that delays cost to airlines, $3.7 billion (45%) is attributed to

scheduled buffer. The fractional cost of scheduled buffer is less for the passenger delay,

accounting for the 36% of the total passenger cost ($6 billion out of $16.7 billion). This reduction

occurs, because passengers experience a high cost due to flight cancellations ($3.2 billion). In

absence of flight cancellations, the fractional cost of scheduled buffer would be the same for both

the carriers and the passengers.

26 Department of Transportation (DOT), Valuation of Travel Time in Economic Analysis, Revised
Departmental Guidance, 2003.



2.5 Summary

The first part of this literature review presented the sources of the main delay

components, and highlighted the impact of weather conditions, excess traffic, and delay

propagation on on-time performance. Although many studies have shown that variability in these

factors has a negative effect on on-time performance, it is still unclear whether airlines shorten

their buffer times when variability is very high, or on-time performance is low because airlines

failed to predict correctly the extent of this variability. This thesis attempts to provide more

insight into this issue by studying the relationship of buffer with every delay component and its

causal factors.

Next, the response of U.S. carriers to the on-time disclosure rule was reviewed. Some

studies suggest that there have been differences in the scheduling behavior across carriers after

the rule was implemented. However, these studies were limited to a small number of U.S. carriers

and used small samples of these carriers' yearly operations.

Furthermore, we looked at previous research into the effects of route competition and

airports in airline schedule padding. It has been shown that flights on competitive routes have

longer buffer, thus achieving better on-time performance. Regarding hub operations, these have a

lower on-time performance relative to other flights.

In this thesis, our objective is to explore the schedule padding practices with respect to

both route and carrier characteristics. Therefore, we are using a very large data sample including

more than half of all domestic operations in 2009.



Chapter 3

Definitions and

Data Presentation

This chapter is separated into two parts. In the first part, we try to familiarize the reader

with the data set used. We present the sources of the database and describe explicitly the data

used in our analysis. We also describe the requirements we used for constructing the final data

sample and analyze its significance and limitations. In the second part, the metrics and the

terminology used throughout this thesis are presented and discussed. We also explain the

methodology followed for computing the unimpeded airborne time and the buffer time of the

flights in the data sample.



3.1 Data Source

The data used in this thesis are derived from the Individual Flights Record of the FAA

Aviation System Performance Metrics (ASPM). ASPM uses two primary flight data sources: the

Enhanced Traffic Management System (ETMS) and the Out, Off, On, and In (0001) data from

Aeronautical Radio, Incorporated (ARINC). Additionally, ASPM is updated and enhanced by

data from the BTS Airline Service Quality Performance (ASQP) and the Official Airline Guide

(OAG).

In ASPM there are data available for 55 U.S. airports after January 2000 and for 20 more

U.S. airports after October 2004. For 2009, that is the year we study, ASPM provides detailed

information on individual flight performance for 23 ASPM Carriers (Table 3-1) regardless of the

airport, and for the vast majority of commercial flights for 77 U.S. airports (Table 3-2) regardless

of the carrier. In 2009, these 77 airports accounted for the 88% of all domestic enplanements and

the 80% of all scheduled domestic departures (BTS T- 100 Domestic Segment).

ASPM reports flight performance data of six aircraft classes that operate at any of the 77

ASPM airports: commercial, air taxi, freight, general aviation, military and other. International

flights from U.S. or international carriers operated at these airports are also reported. However,

we will limit our analysis to domestic commercial and air taxi flights, operated by U.S. carriers

only.

Air Canada AC Frontier Airlines F9
Airtran Airways FL Hawaiian Airlines HA
Alaska Airlines AS Jetblue Airways B6
Aloha Airlines AQ Mesa Airlines YV
American Airlines AA Northwest Airlines NW
American Eagle MQ Pinnacle Airlines 9E
Atlantic Southeast Airlines EV Skywest Airlines 00
Comair OH United Airlines UA
Continental Airlines CO United Parcel Service 5X
Delta Air Lines DL US Airways US
ExpressJet Airlines XE Southwest Airlines WN
FedEx FX

Table 3-1: ASPM Carriers reported in 2009



ATL
ORD
DFW
DEN
CLT
IAH
LAX
PHL
DTW
MSP
PHX
LGA
LAS
EWR
BOS
SFO
MEM
SLC
SEA
MCO
JFK
DCA
BWI
IAD
CVG
STL
MDW
CLE
PDX
SAN
FLL
TPA
HNL
MKE
MIA
IND
MCI
RDU
PIT

Hartsfield-Jackson Atlanta Intl
Chicago O'Hare Intl
Dallas/Fort Worth Intl
Denver Intl
Charlotte Douglas Intl
George Bush Houston Intercontinental
Los Angeles Intl
Philadelphia Intl
Detroit Metropolitan Wayne County
Minneapolis/St. Paul Intl
Phoenix Sky Harbor Intl
New York LaGuardia
Las Vegas McCarran Intl
Newark Liberty Intl
Boston Logan Intl
San Francisco Intl
Memphis Intl
Salt Lake City Intl
Seattle/Tacoma Intl
Orlando Intl
New York John F. Kennedy Intl
Ronald Reagan Washington National
Baltimore/Washington Intl
Washington Dulles Intl
Cincinnati/Northern Kentucky Intl
Lambert Saint Louis Intl
Chicago Midway
Cleveland Hopkins Intl
Portland Intl
San Diego Intl
Fort Lauderdale/Hollywood Intl
Tampa Intl
Honolulu Intl
Milwaukee Gnl Mitchell International
Miami Intl
Indianapolis Intl
Kansas City Intl
Raleigh/Durham Intl
Pittsburgh Intl

BNA
OAK
SDF
HOU
SJC
SMF
AUS
DAL
SNA
SAT
SJU
MSY
ABQ
BUF
ONT
JAX
RSW
BDL
OMA
OGG
BUR
PVD
PBI
DAY
ANC
BHM
TUS
MHT
HPN
LGB
PSP
ISP
SWF
RFD
OXR
GYY
TEB
VNY

Table 3-2: List of the 77 ASPM Airports Sorted by Decreasing Domestic Departures in 2009

Nashville Intl
Oakland Intl
Louisville Intl
Houston Hobby
Norman Mineta San Jose Intl
Sacramento International Airport
Austin-Bergstrom Intl
Dallas Love Field
John Wayne Airport-Orange County
San Antonio Intl
San Juan Luis Munoz Intl
Louis Armstrong New Orleans Intl
Albuquerque Intl Sunport
Buffalo Niagara Intl
Ontario Intl
Jacksonville Intl
Southwest Florida Intl
Bradley Intl
Omaha Eppley Airfield
Kahului
Bob Hope (Burbank/Glendale/Pasadena)
Providence Francis Green State
Palm Beach Intl
Dayton Intl
Ted Stevens Anchorage Intl
Birmingham Intl
Tucson Intl
Manchester
Westchester County
Long Beach
Palm Springs International
Long Island Mac Arthur
Stewart Intl
Greater Rockford
Oxnard
Gary Chicago Intl
Teterboro
Van Nuys



3.2 Data Sample

Throughout this thesis we will be studying how U.S. carriers adjust their schedules on

domestic flights to account for the variability in their operations. In order to do so, we selected a

flight sample representative of the U.S. domestic flight network in terms of stage length, carrier

competition, time of operations, airport traffic and delays. Furthermore, the number of flights

examined on each route are adequately large so that the estimated unimpeded airborne times are

not biased and the results of our analysis can be safely expanded to the whole population. The

methodology we followed for the construction of the final sample is described below:

e First, we limited our analysis to U.S. carriers and domestic flights that were identified as

"Commercial" or "Air Taxi". "Freight", "General Aviation", "Military" and "Other" flights were

excluded.

e Only routes between the ASPM airports were studied because the data provided for them are

more accurate.

e The flights that were scheduled to depart between midnight and 5am were excluded from our

sample. Normally, flights at those hours are not routinely scheduled, and thus could behave as

outliers with minimum scheduled and actual flight time components.

e From the final data set we eliminated the routes where no carrier operated on a daily basis. A

carrier was considered to operate daily on a given route if it had scheduled flights for at least 300

days of 2009. As a result, Gary Chicago Intl (GYY), Greater Rockford (RFD), Oxnad (OXR),

Teterboro (TEB) and Van Nuys (VNY) were excluded.

The final data set consists of 2,359 non-stop routes, on which 40 carriers operate,

resulting in 4,250 route carrier pairs. Table 3-3 shows the number of routes and scheduled

departures for each studied carrier. The total traffic on these routes served by the selected carriers

corresponds to the 75% of the total revenue passengers (BTS T-100 Domestic Segment) and the

59% of the total domestic commercial flights in 2009.

It is worth pointing that for all the legacy carriers (DL, UA, US, NW, CO) and the major

Low Cost Carriers (WN, FL, B6, F9, VX) the flights between the studied 72 ASPM airports

account for more than 75% of these carriers' total domestic departures. This shows that the U.S.

domestic air traffic is very heavily concentrated at the largest commercial airports.



IATA Routes Population Sample Sample / Total
Carrier Name CoTe in Size Size Population Passengers

Code Sample (Departures) (Departures) Size Enplaned

Southwest Airlines WN 860 1,128,004 951,534 84% 101,374,390

American Airlines AA 352 547,854 493,295 90% 66,168,794

Delta Air Lines DL 277 432,033 371,790 86% 55,708,779

United Air Lines UA 281 375,103 333,549 89% 45,582,670

US Airways US 309 412,665 379,336 92% 44,554,186

Northwest Airlines NW 252 299,656 241,709 81% 32,624,283

Continental Air Lines CO 178 260,172 243,333 94% 31,954,535

AirTran Airways FL 230 251,441 188,372 75% 23,821,768

Skywest Airlines 00 494 543,294 195,382 36% 20,025,879

JetBlue Airways B6 214 193,312 162,665 84% 20,022,359

American Eagle Air. MQ 334 468,891 167,320 36% 14,966,473

Alaska Airlines AS 107 129,506 95,647 74% 14,060,609

Atlantic Southeast Air. EV 203 295,424 38,307 13% 12,815,256

Expressjet Airlines XE 290 310,792 154,000 50% 11,569,872

Mesa Airlines YV 256 241,783 88,332 37% 10,816,722

Pinnacle Airlines 9E 338 260,331 71,870 28% 10,279,203

Frontier Airlines F9 76 86,889 81,076 93% 9,073,307

Republic Airlines YX 167 142,565 83,957 59% 8,701,157

Hawaiian Airlines HA 37 73,015 31,314 43% 8,195,675

Mesaba Airlines XJ 220 180,562 37,488 21% 6,551,978

Comair OH 161 150,266 87,922 59% 6,019,605

Horizon Air QX 101 110,243 33,447 30% 5,980,067

Chautauqua Airlines RP 197 163,433 85,519 52% 5,762,187

Air Wisconsin Airlines ZW 176 149,792 68,774 46% 5,284,263

Spirit Air Lines NK 48 41,771 28,098 67% 4,953,800

PSA Airlines 16 120 122,701 27,419 22% 4,796,065

Shuttle America S5 100 95,215 62,232 65% 4,542,406

Virgin America VX 26 33,436 32,746 98% 3,747,220

Piedmont Airlines 17 107 128,122 25,066 20% 3,109,515

Compass Airlines CP 62 50,553 27,049 54% 2,927,289

Colgan Air 9L 103 101,884 19,523 19% 2,531,872

Trans States Airlines AX 84 68,459 28,204 41% 2,445,344

GoJet Airlines G7 63 41,758 18,972 45% 2,114,189

Freedom Airlines F8 66 40,563 18,659 46% 1,492,715

Sun Country Airlines SY 10 9,581 3,345 35% 1,029,287

Commutair C5 34 34,280 9,593 28% 818,679

Midwest Airlines YX 18 10,969 9,755 89% 760,727

Island Air Hawaii WP 17 18,488 1,334 7% 416,652

Gulfstream Int. Airlines 3M 27 26,414 5,421 21% 250,434

Aloha Airlines AQ 8 9,521 1,994 21%

Table 3-3: List of the Airlines in the Data Sample Sorted by Decreasing Passengers Enplaned



The rest of the carriers have lower fractions for two reasons. First, it is common that these

carriers do not offer daily scheduled flights on many routes of their network. These flights were

excluded from our dataset, based on the daily service requirement we had set. Second, most of

these carriers are feeder airlines that operate under contract with the major carriers and serve

secondary airports not included in our list.

Figure 3-1 shows that on more than half of the studied routes there was only one carrier

offering daily service in 2009. Only 20% of the sample's routes were served directly by three or

more carriers. This happens because hub airlines, which are the most dominant in our sample,

compete on an origin-destination market and not on a route basis. This demonstrates the

substantial role of the hub-and-spoke networks in the U.S. air transportation system and the trend

towards traffic consolidation at hubs.
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Figure 3-1: Carrier Presence on non-stop Routes

Figure 3-2 describes how the sample routes are distributed in terms of distance. It is easy

to notice that the vast majority of the routes range from 250 to 1000 miles. This illustrates a trend

towards more frequent short and medium haul flights between spoke cities and hubs, rather than

long haul non-stop flights.
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In order to determine if our final sample is representative of the airlines' networks and

operations we computed the sample's average stage length for the each carrier and compared it to

the total average 27 (Figure 3-3). First of all, we can notice that for the low cost carriers the two

estimates are very close, with Southwest having the shortest sample average stage length.

Regarding the legacy carriers, the sample's average is lower than the total, as expected, because

our sample does not include the long-haul international flights. However, it is clear that the

sample's stage length follows the same pattern with the total average of each carrier across all

legacy carriers. Therefore, the sample can be considered representative of the real network, at

least for the airlines shown in Figure 3-3.

3.3 Extracted Data

The ASPM database offers a wealth of data that enable the study of carriers' performance

for flights departing or arriving at a U.S. airport. For the purposes of our study we extracted 28

pieces of flight information from the ASPM database (Table 3-4). For each selected route and

every carrier that was operating daily on it, we extracted all flights with scheduled departure time

from 5am until midnight on every day of 2009. The final data set consists of 5,005,348 flights.

Although ASPM provides flight delay data, we do not make use of them. The reason is

that it reports only the positive delays, whereas the negative delays are assigned as zero.

However, as will be shown in Chapter 4.1, the distribution of early arrivals might have a great

impact on carriers' decision to lengthen or shorten their scheduled block times. Therefore, we

developed our own methodology for estimating the delay components used throughout this thesis.

These are presented in the following section.

27 Source: MIT Airline Data Project,
http://web.mit.edu/airlinedata/www/default.html



Field Description Data

Scheduled Departure Year and Month (Local Date) 200901

Scheduled Departure Day (Local Day) 1

Scheduled Departure Hour (Local Hour) 7

Scheduled Arrival Year and Month (Local Date) 200901

Scheduled Arrival Day (Local Day) 1

Scheduled Arrival Hour (Local Hour) 11

Flight Carrier Code (ICAO) AAL

Flight Number 25

Aircraft Tail Number N5CFAA

IATA Aircraft Equipment Code from ETMS B752

Departure Airport Code (ICAO) BOS

Arrival Airport Code (ICAO) LAX

ARINC OOOI/ASQP Present Y

ETMS Present Y
Aircraft Class (Commercial, Air Taxi, Freight,
General Aviation, Military, Other) C

Scheduled Gate Departure Time (Local) 7:45

Actual Gate Departure Time (Local) 9:01

Unimpeded Taxi out Time (minutes) 13

Actual Taxi Out Time (minutes) 19

EDCT Hold Time (minutes) 0

Estimated Airborne Time based on Flight Plan (minutes) 359

Actual Airborne Time (minutes) 352

Unimpeded Taxi In Time (minutes) 7.1

Actual Taxi In Time (minutes) 13

Scheduled Block Time (minutes) 385

Actual Block Time (minutes) 384

Scheduled Gate Arrival Time (Local) 11:10

Actual Gate Arrival Time (Local) 12:25

Table 3-4: Individual Flight Data Sample of ASPM



3.4 Anatomy of Flight Time - Definitions

The main objective of this thesis is to explore how airlines lengthen their planned flight

times to account for the variability in flight operations and improve their performance with

respect to delays and schedule reliability. Thus, we first develop a methodology for estimating the

buffer time based on scheduled and actual flight data, and then we study how this is related to

certain variables. To do so, it is essential to understand the structure of a flight and divide it into

segments that are easily to define and study. For this purpose we define four time instants that

occur during a flight (Figure 3-4):

* The gate departure time or push-back time: The instance at which the aircraft leaves the

gate or the parking position. It is recorded when the pilot releases the aircraft parking brake after

aircraft doors have been closed. If the aircraft left the gate and then returned to the gate before

departing, the actual gate departure time is the last gate out time28
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Figure 3-4: Break down of Scheduled and Actual Flight Times

28Source: BTS Technical Directive: On-Time Reporting, Number 17
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e The wheels off time: The moment at which the aircraft leaves the ground. It is recorded

when the air/ground sensor on the landing gear is set to "airborne" state.

e The wheels on time: The moment at which the aircraft touches down. It is recorded when

the air/ground sensor on landing gear is set to "ground" state.

* The gate arrival time: The moment at which the aircraft arrives at the gate or the parking

position. It is recorded when the parking brake is applied. If the parking brake is not set, it is

recorded when the passenger door opens28.

The time interval between the gate departure and the gate arrival for a given flight is the

block time.

Scheduled Block Time = Scheduled Gate Arrival Time - Scheduled Gate Departure Time

Actual Block Time = Actual Gate Arrival Time - Actual Gate Departure Time

Figure 3-4 illustrates how the scheduled and actual block time (upper and bottom bar

respectively) can be broken down using the four time instances described above. The scheduled

block time can be considered as the unconstrained gate-to-gate transit time under optimal

conditions (nominal block time), lengthened by the buffer. Hence, the buffer time can be

estimated as the difference between the scheduled block time and the nominal block time, where

the latter is the sum of the unimpeded taxi-out, airborne and taxi-in times.

Buffer Time = Scheduled Block Time - Nominal Block Time

Nominal Block Time = Unimpeded Taxi-out Time + Nominal Flight Time + Unimpeded Taxi-in

Time

The unimpeded taxi-out time is defined as the taxi-out time under optimal operating

conditions, when neither congestion, weather nor other factors delay the aircraft during its

movement from gate to takeoff29. ASPM estimates the unimpeded taxi-out time by calendar year

and season for each airport and carrier. The reason for this distinction is that unimpeded taxi out

time varies by carrier at a given airport depending on the location of that carrier's gates relative to

the used runways, by airport depending on the airfield characteristics, and by season depending

on the changes in normal operating procedures.

29Federal Aviation Administration, Documentation For The Aviation System Performance Metrics (ASPM),
Actual Versus Scheduled Metrics, Washington DC, May 2002.



In ASPM the unimpeded taxi-out times are estimated through multiple regressions of

available data, where the taxi-out time is the dependent variable and the length of the departure

and arrival queues the independent variables. Specifically, the unimpeded taxi-out time is defined

as the taxi-out time when the length of the departure queue is equal to 1 and the length of the

arrival queue is equal to 0. The departure and arrival queues are estimated by analyzing actual

flight data from the Out, Off, On, and In (0001) data provided by Aeronautical Radio,

Incorporated (ARINC) database. The regression equation used by ASPM is the following:

TOa,c,s= biTOQa,c,s + b 2 TIQac,s + c

Where

TO = taxi-out time

TOQ = number of aircraft in taxi-out queue

TIQ = number of aircraft in taxi-in queue

a = airport

c = carrier

s = season

bi = coefficient for TOQ

b2= coefficient for TIQ

c = constant

The unimpeded taxi-out time is calculated by setting the departure queue TQQ equal to 1

and the arrival queue TIQ equal to 0. The highest 25% of the values of actual taxi time were

excluded from the regression in order to remove the influence of extremely large taxi-out times

that cannot occur under optimal operating conditions. Because the queues' length is estimated

based on the available data that do not include all actual flights, the actual queues might be longer

and the actual unimpeded taxi-out times shorter.

The unimpeded taxi-in time is defined and estimated by ASPM similarly to the

unimpeded taxi-out time. Again, the actual unimpeded taxi-in times might be shorter, because the

actual departure and arrival queues are underestimated.



The estimation of the unimpeded airborne time has been one of the most critical steps

of this thesis research. Using a very low bound for the unimpeded airborne time would result to

an overestimation of delays and buffer. Given the wide range of actual airborne times (Figure

3-5) it was considered appropriate to use a percentile measure in the range of 5th - 2 0 th. These

percentiles would exclude the outliers and provide a good estimate of the time that it takes to fly

from A to B under optimal conditions. Sensitivity analysis performed by El Alj14 had shown that

any percentile in this range could be appropriate for use in the nominal airborne time estimation.

We decided to use the 1O* percentile in order to be consistent with most of the existing literature

and the methodology used by ASPM. Additionally, we distinguished by carrier to account for

differences in aircraft equipment across carries, and by month because as shown next in Chapter

4.3.1 there is a strong seasonality in airborne times.
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Figure 3-5: Actual Airborne Time distribution on LAX-EWR route in January 2009 by
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As opposed to scheduled block time, the decomposition of the actual block time is

straightforward: actual taxi-out time, actual airborne time, and actual taxi-in time.

Actual Block Time = Actual Taxi-out Time + Actual Airborne Time + Actual Taxi-in Time

Actual Taxi-out Time = Actual Wheels Off Time - Actual Gate Departure Time

Actual Airborne Time = Actual Wheels On Time - Actual Wheels Off Time

Actual Taxi-in Time = Actual Gate Arrival Time - Actual Wheels On Time

The actual taxi-out, airborne and taxi-in times can be further broken down to their

unimpeded times and their respective delays.

The taxi-out delay is the difference between the actual and the unimpeded taxi-out time:

Taxi Out Delay = Actual Taxi-out Time - Unimpeded Taxi-out Time

The airborne belay is the difference between the actual and the unimpeded airborne time:

Airborne Delay = Actual Airborne Time - Unimpeded Airborne Time

The taxi-in delay is the difference between the actual and the unimpeded taxi-in time:

Taxi-in Delay = Actual Taxi-in Time - Unimpeded Taxi-in Time

The block delay is the difference between the actual and scheduled block time. It can

also be estimated by subtracting the buffer time from the sum of the taxi-out, airborne and taxi-in

delay.

Block Delay = Scheduled Block Time - Actual Block Time

Block Delay = Taxi-out Delay + Airborne Delay + Taxi-in Delay -Buffer Time

However a flight can arrive late at gate not only because of delays experienced during

these three flight segments, but also because of delays prior to push-back, named gate delays.

Gate Delay = Actual Gate Departure Time - Scheduled Gate Departure Time

It is still unclear if airlines try to incorporate the gate delays into the buffer time. One of the goals

of this thesis is to provide insight into this area by studying how gate delays are correlated to

buffer time and arrival delays.



The arrival delays are measured relative to scheduled arrival time and are defined as the

difference between the actual and the scheduled gate arrival time:

Arrival Delay = Actual Gate Arrival Time - Scheduled Gate Arrival Time

Although this delay metric is the most commonly used, it is sensitive to changes in

scheduled block time and does not estimate the true extent of a flight's delay. For example, let us

assume two flights A and B with the same scheduled times (Figure 3-6). Flight A arrived behind

scheduled arrival time and thus has a positive arrival delay. However, there is an additional

amount of delay suffered by flight A that is hidden through buffer and is not reflected in arrival

delay relative to schedule. The true extent of flight's A arrival delay is the delay relative to

schedule plus the buffer time. On the other hand, flight B arrived prior schedule and has a

negative arrival delay. Yet, flight B would have had a positive true delay if the scheduled block

time had not been lengthened.

For computing the true extent of delays one must first estimate the delay free arrival time

and then compute the arrival delay relative to this.

Delay Free Gate Arrival Time = Scheduled Gate Departure Time + Nominal Block Time

True Arrival Delay = Actual Gate Arrival Time -Delay Free Gate Arrival Time

Scheduled Delay Free Scheduled
Departure Arrival Arrival Actual Arrival

Behind Schedule

Flight A

Flight B

Actual Arrival
Arrival Delay Relative to Schedule Prior Schedule

True Arrival Delay

Figure 3-6: True Arrival Delays



3.5 Summary

In the first part of this chapter, we described the FAA ASPM database from which we

derived the data used in this thesis. Then, we set the requirements for constructing the final data

sample, which consists of 2,359 non-stop routes between 72 airports, served by 40 US carriers.

Our final sample accounts for 59% of the total domestic commercial flights in 2009, the year of

this study. The majority of these routes are short haul, and competition exists on less than half of

them.

In the second part, we detailed the metrics we will use in our analysis and the

methodology we will follow to estimate them. Emphasis is given in the description of the

unimpeded taxi-out and taxi-in times, as these are defined by ASPM. For the estimation of the

unimpeded airborne time, we decided to use the 10t percentile of the actual airborne time

distribution in a one month period, a definition that has been used and tested in previous studies.

The estimation technique for unimpeded airborne time is of great importance because it is used as

the baseline for computing schedule buffer, the core metric in this thesis.



Chapter 4

Data Analysis

This chapter is comprised of three parts. In the first part, the distributions of the delay

metrics and the buffer time for selected non-stop routes are presented and discussed, as well as

the distributions of the mean and standard deviation on all 4,250 route carrier pairs of the studied

database. In the second part, we analyze the correlation between the delay components and the

buffer time, and we try to understand how uncertainty can influence airline schedule padding

practices. Finally, in the last part, we further examine the most important factors that affect each

flight segment, and formulate assumptions about the way that carriers adjust their schedules with

regard to them.



4.1 Distributions of Flight Time Components

The time to travel between two airports varies significantly from flight to flight. The

sources of variability differ for each stage of flight and can be classified into two categories:

'periodic' and 'stochastic'. Periodic factors are the season of the year, the time of day, and the

day of week. Stochastic factors include the weather, flight path, runway configuration, gate

assignments, aircraft and crew delays from the previous flight, as well as airline operations such

as boarding processing, fueling, baggage handling, catering, and aircraft maintenance issues. As

discussed in Chapter 2, each factor influences the flight time components differently, causing

distinct levels of variations. Understanding the sources and the magnitude of variation for every

component is useful before investigating the practices that US carriers follow to incorporate it in

their schedules.
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Figure 4-1: Distribution of Delay Components and Buffer Time on LaGuardia - Atlanta Route in

2009 by Delta (5,365 flights)

Figure 4-1 shows the Kernel density functions of buffer time and six delay metrics on the

LaGuardia (LGA) - Atlanta (ATL) route for all scheduled flights operated by Delta during 2009.

The taxi-out, taxi-in, airborne and block delays are relative to unimpeded times, the gate and

arrival delays are relative to scheduled times. It should be noted that the block delay is the sum of

the taxi-out, taxi-in and airborne delay, whereas the arrival delay is the sum of the gate and block

delay, with the buffer time subtracted.

In analyzing the distributions of gate, taxi-out, and airborne delays, it is notable that they

are all right-skewed with very thick right tails that can reach large positive values. Of great



interest is the fact that although 60% of the flights departed the gate before their scheduled time,

the mean gate delay is 11 minutes and the standard deviation is 32 minutes. This significant

standard deviation value is driven by the large number of flights that left the gate very delayed:

14% later than 30 minutes and 8% later than one hour. The taxi-out and airborne delay density

functions have a lower kurtosis and thinner tails, with less than 2% of the flights exceeding the

one hour delay for any of these two metrics. The block delay density function is more diffused as

a result of the aggregated variation of the taxi-out, airborne and taxi-in delays. Its mean exceeds

30 minutes, and its standard deviation is 20 minutes.

The arrival delay, the metric of the greatest interest to travelers and airlines, has a very

wide distribution. Its range starts from minus one hour and exceeds three hours. In contrast to

public perception, more than half of the flights (55%) arrived at the gate earlier than scheduled,

with 28% arriving more than 15 minutes earlier. On the other hand, 27% of the flights arrived

later than 15 minutes after scheduled arrival time, and 9% later than one hour behind schedule.

Given the very high average values of gate and block delays on this route, Delta

lengthened its scheduled block times by a significant amount of time to achieve the above

mentioned on-time performance. An optimal padding strategy maximizes the number of flights

that arrive on time, and at the same time minimizes the total negative delay. The long right tail in

the gate and block delay distribution reveals the existence of flights that require a large amount of

buffer time to arrive on time. Because these flights are distributed over a wide time range, the

gains in on-time performance would be very small compared to the cost of underutilizing the

aircraft, the gates and the crew for every minute of early arrival. The buffer added by Delta on

this route ranges from 15 to 60 minutes with an average of 36 minutes. Later in this chapter, we

study how buffer changes by time of day, season, day of week, and aircraft type.

However, the shape of these distributions can vary significantly for different routes.

Figure 4-2 provides a comparison among five non-stop directional routes: Newark (EWR) - Los

Angeles (LAX): 2,672 flights; Los Angeles (LAX) - Newark (EWR): 2,657 flights; Denver

(DEN) - Seattle (SEA): 5,443 flights; Boston (BOS) - LaGuardia (LGA): 10,563 flights; and

Atlanta (ATL) - Miami (MIA): 6,364 flights. It is evident that each route has its own

characteristics that determine the thickness and the length of the tails, the skewness, the peak

values, and the overall shape of the distributions.
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The EWR-LAX and LAX-EWR routes have very similar distributions for all metrics

except the taxi-out delays and the buffer times. Their commonalities are attributable to some

extent, to the similar weather conditions on the two routes. Since on the EWR-LAX route the

aircraft fly from east to west and on LAX-EWR from west to east, one might expect that the jet

streams would cause opposite effects to the airborne delays on these two routes. However,

airborne delays are estimated using as baseline the 10h percentile of the actual airborne times

distribution of a given month. Therefore, they measure the dispersion of actual times around the

baseline. Large variation in the wind strength causes long airborne delays in both directions,

whereas small variation causes short delays, even for very strong winds. For example, on the

EWR-LAX route, March had on average longer nominal and actual airborne times compared to

January (Figure 4-3). Thus, we can reasonable assume that jet streams in March were stronger.

Though, March has shorter airborne delays, meaning that the winds in this month were constantly

strong, while in January they were more variable.
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Figure 4-3: Monthly Average Nominal Airborne Times and Airborne Delays on Los Angeles
(LAX)-Newark (EWR) and Newark (EWR)-Los Angeles (LAX) Route

The gate delay and the taxi-out delay density functions of the EWR-LAX route have the

thickest right tails compared to the other routes. Although the carriers operating on this route have

used longer buffer times, this route still has the worst on-time performance (American: 73%,

Continental: 70%). Still, this route has the largest percentage of flights that arrived at the gate 20

minutes earlier than scheduled (17%). This illustrates the difficulties in incorporating uncertainty

in the schedule, since adding more buffer would cause a disproportional increase in the negative

delays relative to the improvement of on-time performance. However, a very important issue is

the extent to which this uncertainty is caused by the airline's schedule, operational weaknesses,

and poor overall performance, rather by external factors that the airline cannot forecast and

handle effectively. This aspect is examined in Chapter 5.



On all five routes, the taxi-in delay density functions are very narrow, with their peak

close to zero. Only a very small portion of flights had delays longer than 10 minutes. Taxi-in

delays can be caused by congestion on the taxiways and from gate unavailability. Additionally, in

the case that gate arrival time is measured by the instance at which the aircraft door opens, taxi-in

delays can be the result of lags at attaching the gate airbridge to the aircraft. As shown in Figure

4-4 below, these observations can be expanded to all 4,250 route-carrier pairs studied in this

thesis. The average taxi-in delays are, in the vast majority of the cases, negligible and only in four

cases they exceed the ten minutes (all at JFK). Similarly, the standard deviation is also very

small, indicating that taxi-in time is not a time component that airlines need to take into account

when lengthening their schedules.

On the other hand, the average taxi-out delays are more widely distributed, and on 10%

of the route-carrier pairs they exceed the 10 minutes. The standard deviation of taxi-out delays is

even larger, ranging between 10 and 20 minutes on 21% of the pairs. It is remarkable that JFK is

the origin airport on 34 out of the 51 routes on which the standard deviation of taxi-out delay was

longer than 20 minutes. This demonstrates the importance of investigating in depth the role of

airports in generating taxi-out delays (Chapter 4.3.4)
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The distributions of the mean and the standard deviation of airborne delays look very

similar (Figure 4-5), with their values concentrated between 3 and 12 minutes (87% for the

average and 92% for the standard deviation). Because different methodologies have been used for

the estimation of the taxi-out, taxi-in and the airborne delays, a comparison of their distributions

would be misleading. However, it is clear that taxi-out delays and airborne delays are the main

contributors to block delays.

Among all flight segments, the time prior to pushback suffers from the highest

uncertainty. Although gate delays are on average similar to airborne delays, except that their tails

are longer, their standard deviation is substantially higher. On 70% of the route carrier pairs the

standard deviation of gate delays is larger than 20 minutes, and on 50 routes it exceeds 40

minutes. It must be noted that EWR is the destination airport on 29 out of these 50 pairs. This

large variation in gate delays is driven to some extent by the Ground Delay Programs (GDPs).

A GDP is initiated by FAA every time that a degraded arrival capacity or excess demand

is expected for the next few hours at a specific airport. Flights that have scheduled arrival times

during the time period of an active GDP and have not departed yet, are delayed on the ground and

are assigned new departure and arrival times on a "first-scheduled, first-served" basis. The aim of

GDPs is to match arrival demand with arrival capacity, and the rationale behind is that it is more

convenient and less expensive for a flight to suffer unavoidable delays on the ground rather than

en route.

Despite the existence of many route carrier pairs with lengthy taxi-out and airborne

delays, the distribution of the mean block delays relative to schedule suggests that if the aircraft

left the gate on-time, the vast majority of the route carrier pairs (86%) would have negative

average arrival delays (Figure 4-5). This happens because airlines add large amounts of slack

time to their scheduled block times, as indicated by the distribution of average buffer times. The

mean buffer of all studied flights in 2009 is 18.5 minutes, and 40% of the route carrier pairs have

an average buffer longer than 20 minutes. The standard deviation of block delays varies from 3 to

37 minutes, with an average of 13 minutes. In Section 4.3.2 it is shown that on many routes the

gate and the taxi-out delays are a function of the scheduled arrival time and follow an increasing

trend through the course of the day. Thus, we would expect that buffer time would also vary by

the time of day so as to improve the on-time performance. Nonetheless, the distribution of

standard deviation of buffer time does not support this assumption, at least on the majority of the

routes, indicating that carriers use almost constant buffer times across all flights on a given route.
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The distribution of the average arrival delays (Figure 4-6). approximates the Gaussian,

with a mean of three minutes and a range from -18 to 34 minutes However, the average delay is

not sufficient to obtain an adequate understanding of airlines' performance, because it does not

capture the degree to which these delays are predictable. For example, if all flights on a certain

route are delayed by a constant amount of time (e.g. the standard deviation of arrival delays is

small), the airline could improve drastically its on-time performance either by rescheduling the

departure time if the delays are experienced prior to pushback, or otherwise, by increasing buffer.

On the contrary, the average arrival delay might be zero, but the standard deviation very high,

with many flights arriving very early and many others arriving very late. The distribution of the

standard deviation of arrival delays in Figure 4-6 is the result of the large extent of uncertainty to

which flight operations are exposed.

Table 4-1 shows a classification of the delays suffered by the flights in our data sample.

Of the 1,846,270 aircraft hours of true delays (as defined in Chapter 3), 1,423,455 hours are

attributable to flights that arrived late, and 413,815 hours to flights that arrived before schedule.

The first can be further divided to delays relative to schedule (60%) and schedule buffer (40%).

The true delays of flights that arrived before schedule are all attributed to excessive schedule

buffer. Assuming no change in the actual times of our flights, the extra buffer time that would be

required to diminish all delays relative to schedule under optimal time allocation is 17%.

However, these numbers do not capture the delays associated with the disrupted

connecting passengers. Their delays are a function of the arrival delays on each leg and their

connecting time. In fact, long delays on the first leg can cause a missed connection and

Average Arrival Delay Standard Deviation of Arrival Delay



subsequently very large delays for passengers. The shortcomings of the on-time performance

metric in reflecting the true extent of passenger delays is addressed by Bratu and Barnhart 30 .

Delay Relative Buffer / Total
toD Buffer True Delay True Delay

Flight Arrived 864,249 568,206 1,432,455 30.8%behind Schedule 86,456,01434530%

Flight Arrived -599,783 used: 413,815 413,815 22.4%
prior Schedule non used: 552,583 29.9%

Total 264,466 1,534,604 1,846,270 83.1%

Table 4-1: Delays in the Data Sample (in aircraft-hours)

4.2 Correlation of Flight Time Components

In this section we perform correlation tests among the delay metrics and the buffer time,

using the Pearson product-moment correlation coefficent. These tests provide information on the

interaction of the different metrics, and are also necessary for the succesful construction of the

linear regression models discussed in Chapter 5. Note that if two variables have a large

correlation coefficient, then they should not be used together as explanatory variables in the

models.

The Pearson's correlation parameter between two random variables X and Y gives a

quantitive measure of how well we can predict the value of one variable, knowing the value of the

other. It also indicates the existence of a linear relationship among the two variables, and provides

a measure of their dependence. The sample correlation coefficient, denoted by r, is defined as the

estimate of the covariance of the two variables divided by the product of their standard

deviations:

COV(X,Y)
r=

S SY

30 Bratu, S., Barnhart, C., An Analysis of Passenger Delays Using Flight Operations and Passenger
Booking Data, Journal of Transportation and Statistics, Vol. 1, 2005
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Studying the plots of Figure 4-7, we observe a small correlation between buffer time and

arrival delays that is negative on most route-carrier pairs. This result is in accord with our

assumption that adding more buffer in the schedule would cause a small reduction in reported

delays. Regarding the route-carrier pairs where longer buffer is slightly correlated with increased

arrival delays, we expect that these are between highly congested airports that operate at their full

capacity, where even the application of additional buffer does not result in better arrival statistics.

As expected, block delays relative to schedule decrease with buffer, but on many pairs

the absolute value of the correlation parameter is very small. The reason for this small correlation

might be that carriers on these routes do not account for the variability in actual block times and

use almost constant buffer times.

Airborne and taxi-out delays are very similarly correlated to buffer, as illustrated by their

distributions. In general, the longer the expected airborne or taxi-out delays, the more airlines

lengthen their schedules. The area of negative correlation can be attributed to two reasons:

e Airlines used shorter buffer than necessary because of inaccurate forecasting of airborne

and taxi-out delays.

* Airlines tried to allocate buffer in a way that would improve their aggregate on-time

performance statistics. Therefore, they removed buffer from flights that were operating under

large uncertainty (e.g. during peak hours), and allocated it to flights where it was more likely to

achieve better performance.

In the previous section we showed that taxi-in delays are negligible and thus we put

forward that airlines do not take them into account for adjusting buffer. The distribution of the

correlation parameter of taxi-in delays with buffer further supports this argument.

Another issue that should be addressed is whether airlines add buffer to compensate for

gate delays. One argument against this practice is that if an airline expected gate delays on a

certain route, then they should icrease the turn-around times by moving departure times later in

the schedule. Longer turn-around times absorb propagated delays, thus improving schedule

reliability. On the other hand, they restrain the time that carriers can allocate to flight operations

and reduce gate availability. Moreover, a small portion of gate delays occur during the boarding

process (e.g. delayed passengers) and can not be absorbed by the turn-around times. Nonetheless,

gate delays are very unpredictable and the gains of trying to incorporate them in schedule is

questionable. The distributions of the correlations between gate delays and buffer, as well as gate



delays and block delays are symmetric around zero. This indicates that, at least on the majority of

the routes, carriers do not adjust buffer based on gate delays.

Furthermore, the relationship between taxi-out and gate delays is very complicated and

depends on the sources of delays, the arrival and the destination airport. Overall, their correlation

is very small because gate delays can be caused by a large number of factors and suffer from huge

uncertainty. On the other hand, taxi-out delays are affected mostly by the weather and the traffic

at origin and destination. When bad weather conditions exist at the origin airport, we expect that

both delay components are affected in a similar way, resulting in a positive correlation between

them. In case of bad weather at the arrival airport, their association depends strongly on the

effectiveness of GDPs. Ideally, GDPs should hold the flights at the gate until they absorb all

expected delays, so the taxi-out delays are minimized. This implies a negative correlation

between taxi-out and gate delays. Indeed, their correlation parameter when only flights under

GDPs are studied is -0.14. Although this number is very small, it illustrates the negative

relationship we expected. Furthermore, the correlation parameter of the time that flights are held

on ground under GDPs with gate delays is 0.77, and with taxi-out delays is 0.30. This suggests

that GDPs hold the flights longer times at the gates rather on the taxi-way.

The correlations between taxi-out and airborne delays (Figure 4-8) are very small, close

to zero and positive on the majority of the routes. This occurs because the main cause of airborne

delays is weather conditions that affect taxi-out delays as well. Nonetheless, we expect that on

long haul flights that have departed after a large taxi-out delay pilots might speed up the aircraft,

if possible, to recover from the delay. In this case, the correlation should be negative. The latter is

further supported by the distribution of the correlation parameters between airborne and gate

delays, where more routes have a negative correlation.

As shown in Figure 4-8, block delays relative to schedule are mostly attributed to

airborne and taxi-out delays, and less to taxi-in delays. This is expected given the magnitude of

the three delay components observed in Figures 4.4 and 4.5. It is important to note that the range

of the correlation parameters is very large and therefore it would be wrong to generalize any

observations. For example, on routes where long taxi-out delays are associated with long block

delays, the effect of airborne delays might be negligible and vice versa. Similarly, airborne and

taxi-out delays have in general a moderate correlation with arrival delays relative to schedule,

whereas taxi-in delays have a smaller one.
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A comparison between the correlation distributions of block and gate delays with arrival

delays (Figure 4-9) illustrates the weakness of airlines in handling effectively the gate delays as

opposed to block delays. With a correlation parameter larger than 80% on most route-carrier

pairs, longer gate delays result directly in increased arrival delays. The impact of block delays

relative to schedule is much smaller, but still substantial.

Summarizing, the correlation among the delay metrics and the buffer time varies

significantly by route, and thus the information we can get from these ditsributions is quite

limited. Therefore, it is useful to examine closely the impact of each factor on delays and buffer.

.................... ........ .. ................. ..............



4.3 Factors affecting flight time components

In the two previous sections we studied the magnitude and variability of buffer and delay

components. We also made assumptions about the causal factors of delays, and discussed how

these are validated by the correlation distributions between the several components. In this

section we will take a closer look at each factor individually, and will explore how they can

influence delays and padding practices, as these are described in our database. This provides

guidance as to which variables to include in the regression models developed next.

4.3.1 Seasonality Effect of Airborne Time

Seasonality has a very strong influence in flight operations, and can affect delays through

two distinct ways: traffic and weather.

Demand for air travel varies by season, and this does not only affect the load factors but

also the number of flights operated. Figure 4-10 shows how domestic US flight departures

fluctuated through 2009, with fewer operations in winter and a peak in the summer. Particularly,

July had 20% more traffic than February. The traffic volume affects directly the airport and

airspace congestion. Based on queuing theory, when a system operates close to its capacity

(which is the case in many U.S. airports and airspace sectors), a small variation in demand can

have enormous impacts on capacity.
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Figure 4-10: Scheduled Domestic Commercial Flights Performed in 2009
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As has been extensively discussed in the relevant literature and in this thesis so far,

weather is one of the most significant causes of delays. First, bad weather conditions (such as low

visibility, rain, snow, and thunderstorms) at the origin or destination airport area increase the

minimum required separations for take-off and landing, and reduce the airport capacity. This has

a direct impact on gate, taxi-out, taxi-in, and airborne delays. Second, bad en-route weather

conditions reduce the airspace capacity and result in airborne delays through longer flight paths.

Lastly, airspace congestion can cause Air Traffic Control (ATC) to hold flights on the ground

imposing additional gate and taxi-out delays.

Besides airspace congestion, jet streams have a seasonal effect in airborne times that is a

function of wind speed and aircraft direction. Studying the magnitude of this effect allows us to

decide if we can use a constant nominal airborne time throughout the year, or if we should limit

our analysis to a monthly basis. Furthermore, it provides helpful information on whether carriers

should adjust their scheduled times respectively, and if so, on which routes.

To study this effect, we followed a three steps method:

1. The 2,359 non-stop routes were classified to 36 groups based on the angle of a rhumb

line between the origin and the destination airport;

2. Seasonality indexes were computed for every route-carrier pair and month;

3. A chi-square homogeneity test was performed between the seasonality indexes on each

route-carrier pair and the weighted averaged seasonality indexes of all other routes in the same

angle group.

To classify the routes based on the angle of a rhumb line between the origin and the

destination airport, the latitude and longitude coordinates of the 73 studied airports were extracted

from the National Airspace System Resources (NASR)31 . Then, for each of the 2,359 directional

routes, the angle of the constant bearing path between the origin and the destination airport, i.e.

the line that crosses all meridians at the same angle, was computed. The 2,359 directional routes

were broken down to 36 groups of 10' based on their path-angle. The first group is from 355' to

50, with 00 being the true North. Figure 4-11 shows the distribution of the route classification.

Notice that the number of routes increases as we move from 00 to 90' and then decreases again.

The distribution is not perfectly symmetrical around 180', because five routes are not studied in

both directions.

31 Source: FAA U.S. & Territories Airport Lookup,
https://airports-gis.faa.gov/airportsgis/airportLookup/index.jsp?category=nasr
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Figure 4-11: Route Classification based on Angle

Next, for every route-carrier pair, we computed the average actual airborne time, first for

the whole 2009, and then for every month. We distinguished by carriers to account for potential

aircraft differences across them. The seasonality index Tu for route-carrier pair i and month j is

defined as the ratio of the average actual airborne time of route-carrier pair i in month j to the

average actual airborne time of the same route-carrier pair i during the whole season:

E[Actual Airborne Times on Route-Carrier i in Month j]
TO - E[Actual Airborne Times on Route-Carrier i in 2009]

Figure 4-12 illustrates the influence of jet streams to the routes of four angle groups:

[850, 950), [2650, 2750), [3550, 50) and [1750, 1850). We notice that the seasonal indexes in the

west to east direction are almost antisymmetric relative to the indexes of the east to west

direction. This result is expected because jet streams cause opposite effects on each direction. On

the other hand, flights from south to north and north to south appear to be affected in a slightly

similar way by the jet streams. The reason is that on these routes the wind is vertical to the

aircraft vector, and therefore it has the same effect independently of the aircraft direction.

Differences among the two distributions could be attributed to the different flight paths.
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Last, chi-square homogeneity tests were performed between the seasonality indexes on

every route-carrier pair i and the weighted averaged seasonality indexes of all routes that are in

the same angle group with i. In order to ensure that we have enough observations in all 12 months

for every route-carrier pair, we excluded those pairs that had less than 20 operations in at least

one month. In total, 3,655 directional route-carrier pairs were studied.

Figure 4-13 illustrates the percentage of route-carrier pairs for which the null hypothesis

of identically distributed seasonality indexes cannot be rejected at a 20% significance level. It is

notable that for the routes with directions close to north-south and south-north, the null

hypothesis is more easily rejected than for the west-east and east north directions. This means that

on these routes the impact of the jet streams is less significant and their airborne time

distributions have fewer seasonal similarities. One other reason that contributes to this result is

the fact that the routes from south to north or form north to south have a smaller average distance

(Figure 4-14) and thus are exposed for less time to jet streams.

Given the seasonality effect on a large number of routes in our database, we decided to

compute separate nominal times for every month.
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4.3.2 Time of Day

The time of day has a very strong influence on flight operations and their on-time

performance through fluctuations in demand, changes in airport capacity, and propagation of

delays.

Queuing theory suggests that the relationship between airport utilization ratio (demand-

to-capacity ratio) and expected delays is highly nonlinear. In periods that demand exceeds

capacity, the expected delay per scheduled movement increases exponentially, often resulting in

flight cancellations. Demand may exceed capacity due to:

e Demand surges in peak hours. During periods of very high traffic, there are periods when

the scheduled operations exceed the airport capacity even under optimal weather conditions.

e Random deviations from schedule. Although scheduled operations may be below

capacity, delays of individual flights can result in intervals with higher demand. These deviations

can be attributed to aircraft or crew arrival delays from previous flights, the boarding process,

mechanical problems, etc.

* Reductions in airport capacity because of strong winds, low visibility and other weather

conditions. This is the most common source of delays.

However, long delays and queues may occur even when the mean demand rate is below

capacity but close to it, due to the variability of the intervals between successive requests for

runway use, and the variability of the service time for each request33. These queues may need a

long time to dissipate, especially at airports that operate very close to capacity for extended

periods of time.

Furthermore, delays that occur on one flight leg can propagate downstream to the next

flights, with respect to aircraft, crew, gate and slot availability. If a short delay suffered by a flight

early in the day is not absorbed by adequate buffer in scheduled block time or slack in the

planned turn-around time, it will cause schedule disruptions that can result in several hours of

delay for subsequent flights. In a network structure, this initial delay can propagate through late

flight arrivals and late connections later in the day, affecting other aircraft and airports where the

airline operates.

32 Larson, R., Odoni, A., Urban Operations Research, Prentice-Hall, NJ, 1982.
33 De Neufville, R., Odoni, A., Airports Systems: Planning, Design and Management, McGraw-Hill, 2003.



The three main airports of the New York area, Newark, LaGuardia and JFK, are excellent

examples of airports operating often at their capacity limits. There is a strong interaction between

the terminal airspaces of these airports and there exists a common weather impact on its

operations. Figure 4-15 shows how scheduled arrivals at the three airports, along with their

associated delays and buffer, are spread throughout the day.

Flights that arrive before l0am have on average negative arrival delays and their on-time

performance is close to 90%. After that time, taxi-out, gate and arrival delays increase steadily

until they reach their peak between 6pm and 7pm. At the peak, only 60% of the flights arrived on-

time. These delays are attributed to a great extent to the instituted Ground Delay Programs

(GDPs), since the average ground hold time between 6pm and 10pm exceeds the 20 minutes. The

ground hold time is defined as the difference between the expected departure clearance time

(EDCT) that is assigned to a flight affected by a GDP and its original gate departure time. Ground

hold times provide an approximation for the actual gate delay, but are not equal, because a flight

can depart before or after the expected departure clearance time. Also, in cases of gate

constraints, a large proportion of the ground hold times is spent on the tarmac.

Furthermore, Figure 4-15 shows that the buffer is increasing constantly between 12pm

and 6pm. However, it is not clear if this happens because buffer varies through the day on a route

basis. Another factor that may drive this increase in average buffer is the stage length of the

flights scheduled to arrive during these hours. As will be discussed in Section 4.3.4, buffer has a

linear relationship with distance. After 7pm, delays are declining and on-time performance is

slightly improved.

Moreover, it is notable that the time when peaks in arrival delay occur lags behind the

peak of scheduled demand. The reason for this time lag is that when GDPs are active during

periods of high demand, queues of flights requesting an arrival are formed. The flights that are at

the end of the period of an active GDP are necessarily placed at the end of the queue, thus

experiencing the longest delays.

Although the taxi-out delays of the arrivals to these three airports are driven mostly by

the GDPs and have one peak in the evening, the taxi-out delays of flights that depart from these

airports have other causes and follow a different distribution (Figure 4-16). The peak of
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scheduled departures occurs at 8am and results in a morning peak in taxi-out delays at 9am.

Again, there is a time lag of one hour for the reasons mentioned above. Although the volume of

scheduled departures is lower in the evening, the taxi-out delays are higher. The same applies for

the gate delays, which cannot be attributed to GDPs because, as shown in Figure 4-16, the ground

hold times are negligible. We assume that the evening peak of gate and taxi-out delays is caused

by airfield and airspace congestion due to the increased volume of total operation. Gate delays

may also be the result of delay propagation and late aircraft arrivals at gate from previous flights.
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In section 4.1 we highlighted the importance of delay variability in schedule padding. We

claimed that delays with low variability can be predictable and thus incorporated into schedule

through buffer. On the other hand, when delay components are very variable on a given route, the

use of sufficient buffer is very costly for airlines, and the gains are limited. In his Master thesis,

Morisset34 studied the arrival delay distribution of four different hours of the day at EWR in 2007.

He observed that the average delays increased steadily over the course of the day, and most

importantly that the distribution of the delay becomes increasingly dispersed.

Similarly, we studied the arrival and gate delay distribution of six different hours of the

day at LGA (Figure 4-17 and Figure 4-18). It is obvious from these graphs that arrival and gate

delays are very dispersed at any hour, and their mean and standard deviation increase throughout

the day. The situation is improved between 11:00pm and 11:59pm because of traffic reduction,

but the reliability of schedule is still very poor.

34 Morisset, T., Comparing Capacities and Delays at major European and American Airports, Master
Thesis, Engineering Systems Division, MIT, May 2010.
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4.3.3 Day of Week

The day of the week may influence on-time performance and delay components through

the volume of traffic and their distribution over different days of the week. Operations are almost

constant at weekdays and slightly reduced on Sundays (Figure 4-19). Saturday is the least busy

day. Figure 4-20 shows that delays and on-time performance vary through the week and their

distribution indicates a small correlation with the traffic volume.

Thursday and Friday have the longest arrival and gate delays, and the lowest on-time

performance. It is interesting to note that although Sunday is the second least busy day, its on-

time performance is similar to Monday's, which is the busiest day. A reasonable assumption

would be that on Sundays there are more scheduled flights later on the evening hours compared to

Mondays, since leisure travelers would prefer to return home late in the evening. However, an

hour-by hour comparison of the traffic on these two days (Figure 4-21) does not verify this

assumption.

Buffer is very similar for each day of the week, ranging on average between 18.4 minutes

18.6 minutes. This suggests that carriers do not adjust the scheduled block times based on the

of the week.
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4.3.4 Route Distance and Airport Effect

Two factors that are expected to be of great importance in determining the schedule

buffer are: (i) the flight distance between origin and destination, and (ii), the congestion of

airfield and terminal airspace at origin and destination airport. The length of the flight is expected

to have a very strong influence on buffer time, as the longer the distance that an aircraft has to fly,

the more the time that the aircraft is affected by variable weather conditions, and the more likely

that it will be diverted to longer flight paths. Apart from the distance effect, airborne time may be

increased due to congestion at the airport and its terminal airspace. Furthermore, constraints at

airport capacity either at origin or at destination are often responsible for delays suffered at gate

and the taxiway.

We have already shown in Section 4.3.1 that the aircraft direction relative to jet streams

has a significant effect on airborne times and their associated delays. Therefore, in analyzing the

relationship between buffer and distance, we considered more appropriate to use the nominal

airborne time of each directional route-carrier pair, rather than the absolute distance between

origin and destination. Figure 4-22 and Figure 4-23 illustrate how buffer, first as absolute value,

and second as fraction of nominal block time, is related to nominal airborne time. Every point on

these two graphs corresponds to the average values of one of the 4,250 studied route-carrier pairs

in September 2009. September was a month with limited airborne delays, and thus the estimated

nominal airborne time is thought to be more accurate.

First, Figure 4-22 illustrates that there is a weak linearity between buffer and nominal

airborne time. In general, airlines add more buffer in flights that are expected to last longer, to

account for the increased uncertainty en-route. In the vast majority of routes, buffer ranges

between 5 and 30 minutes, and in few cases exceeds the 60 minutes. On the other hand, Figure

4-23 shows that the buffer as a fraction of nominal block time decreases exponentially with

nominal airborne time. On short-haul flights buffer can be a significant fraction of the scheduled

block time, but as the length of the flight increases this fraction becomes smaller. This is intuitive,

since expected delays do not increase proportionally to distance. However, it is of great

importance the existence of few short haul routes where scheduled buffer is more than half of

nominal block time. It is expected that these routes are between congested airports that impose

lengthy ground delays to users. Indeed, 61 out of these 72 routes depart from or are destined to

EWR, LGA, JFK or PHL.



y = 0.060x + 10.784

2R = 0.265

0 60 120 180 240 300 360 420 480 540 600
Nominal Airborne Time (minutes)

Figure 4-22: Mean Buffer Time vs. Nominal Airborne Time on the 4,250 Route-Carrier Pairs in
September 2009

100* |

y = -0.0791n(x) + 0.516

2
R = 0.33

60% t--- -----------

20%-

0 60 120 180 240 300 360 420 480 540 600
Nominal Airborne Time (minutes)

Figure 4-23: Mean Buffer Time / Mean Nominal Block Time vs. Nominal Airborne Time on the
4,250 Route-Carrier Pairs in September 2009

77

75*-

60t--------------------------------------- -----------

80% +

...... ...................................... . ....... . ........ .......

il e ZZ

------------------------



The distinction between the effect that origin and destination airport has on the on-time

performance of a specific route is complicated and outside the scope of this thesis, because

airspace congestion cannot be easily attributed to any specific airport. However, using the

residuals from the linear regression model of Figure 4-23 (Mean Buffer Time/Nominal Block Time

is the dependent variable and In (Nominal Airborne Time) the independent), we can examine if

there are airports with routes where flights are more padded. In Table 4-2 and Table 4-3, airports

with at least 50 route carrier pairs are ranked based on descending order of the fraction of positive

residuals.

It is notable that flights out of airports that have lengthy taxi-out delays tend to be padded

more. Particularly, LGA, EWR, JFK, PHL, CLT and ATL have the most positive residuals and

the longest average taxi-out delays. The result of increased schedule padding of the departing

flights is that their on-time performance is almost equal, and not lower, to flights at the less

congested airports. Airborne delays seem to be independent of the origin airport. On the other

hand, the ranking of destination airports is independent of their taxi-out delays but is correlated to

a small degree with the airborne delays. Airports with a higher fraction of positive residuals have,

in general, longer airborne delays. Furthermore, an airport that has a strong effect as origin does

not necessarily have a similar effect as destination. Exceptions are EWR, JFK and LGA, as the

majority of routes that they serve both at origin as well as at destination are among the most

padded.



.r.n Positive Taxi-out Delay Airborne Delay On-Time
Origin Residuals* Mean St. Dev. Mean St. Dev. Performance

LGA
EWR
JFK
PHL
CLT
ATL

MDW
MSP
IAD,
BOS
LAS
RDU
ORD
PIT

DCA
MCO
BWI
MCI
BNA
PHX
STL
CVG
DTW
IND
LAX
CLE
MIA
DFW
MKE
DEN
IAH
SFO
SEA

MEM
TPA
SLC
FLL
PDX

98.6%
94.8%
92.6%
88.2%
76.5%

67.3%
65.3%

63.7%
56.5%

53.9%

52.4%
50.9%

48.9%
47.3%
43.9%
42.9%
42.7%
41.8%
41.7%
36.8%
36.5%

35.1%

33.9%
33.9%
33.7%
32.9%
32.0%
31.9%
31.0%
29.7%
29.3%
29.3%
29.2%
28.8%
28.1%
26.9%
22.6%
10.2%

13.0
9.2
7.1
9.4
7.4
8.1
3.5

6.2
3.5

4.5

4.6
2.6
3.6
1.5

4.0
2.1
3.3
2.3
1.8
4.1
1.1
1.8
5.8

1.4
2.4
1.4
2.8
3.8
2.0
2.7
6.1
4.0
3.0
3.6
2.3
5.3

2.7
3.3

13.2
10.5
14.8
11.8
9.5
9.4
6.0
7.5

8.6
7.7
6.8
8.3
6.8
5.8

8.4
5.7

6.0
5.1

6.2
6.5

3.6
5.3

7.6
6.2
5.1

4.8
7.5

8.3
5.3
4.9
8.3
6.4
5.1

6.9
5.3

7.0
7.3
4.6

7.0
8.1
8.8
7.2
6.5

5.9

6.6
7.7
7.1
8.2
6.0
6.0
7.0
6.3
6.4
6.7
6.0
6.3
5.9

6.4
6.2
6.3
6.5

6.0
7.4
6.0
7.6
7.5
6.6
7.0
7.0
7.9
8.9
6.3
6.4
6.9
7.0
6.9

7.4
8.3
9.1
7.8
7.3
6.8
7.0
8.0
8.1
8.2
7.2
6.3
7.6
7.0
6.7
7.0
6.3
6.9
6.2
7.3
6.9
6.9
7.0
6.9
8.5

6.5

8.3
7.7
7.7
7.0
7.2
9.2
9.3
7.0
6.7
7.3
7.2
7.6

86.6%
89.8%
89.5%

82.7%
87.2%
82.6%
86.7%
87.0%
89.2%
89.4%
90.7%
89.6%
89.3%
89.1%
89.8%
89.8%
87.5%

89.9%
87.8%
89.5%

90.8%
88.7%
84.1%
89.6%
89.8%
91.5%
82.7%
84.9%
88.0%
87.0%
87.5%
85.4%

90.0%
87.9%
88.1%
87.9%
85.3%

90.4%

Table 4-2: Effect of Origin Airport

* Fraction of positive residuals for the linear regression model of Figure 4-23 with Mean Buffer
Time/Nominal Block Time being the dependent variable and ln (Nominal Airborne Time) the independent



.t Positive Airborne Delay Taxi-out Delay On-Time
estination Residuals* Mean St. Dev. Mean St. Dev. Performance

SEA
LGA
SFO
JFK
LAD
EWR
ORD
CVG
LAS
PHL
MSP
LAX
PDX
MCI
PHX
SLC
ATL
DEN
DCA
STL

MDW
DTW
RDU
CLT
MKE
DFW
PIT
CLE
MCO
IND
FLL
TPA
BOS
BWI

MEM
MIA
BNA
IAH

71.2%
68.1%
67.5%

67.4%
67.0%
65.6%

60.8%
60.0%
59.2%
57.0%
55.4%
54.6%

54.0%
50.0%
48.3%
45.0%

43.3%
41.2%
39.5%

39.5%
38.2%
38.2%
37.9%
37.9%
36.2%
36.2%
35.7%

34.2%
34.1%
33.9%
33.3%
33.3%
33.0%
31.6%
28.6%
28.0%
22.4%
16.5%

9.5
8.0
8.4
10.3
7.3
8.9
6.7
5.9
6.6
8.1
9.4
6.6
6.7
6.1
6.2
6.5

7.7
7.3
5.5

5.3
5.7
6.9
5.1
7.6
5.7
8.2
4.7
5.1
6.3
5.0
7.0
5.7
7.7
5.4
6.4
7.6
5.1
8.1

9.4
7.9
9.6
10.8
7.6
8.8
6.8
6.3
7.2
8.7
9.9
7.9
7.0
6.1
6.7
6.6
8.1
7.2
5.4
5.8

6.3
6.7
5.3
7.3
6.1
9.1
4.9
5.1
6.3
5.3
7.3
6.5
7.9
5.4

6.4
8.2
5.4

8.5

3.9
4.8
4.6
4.7
3.4
4.6
3.9
4.1
3.6
3.8
4.3
3.8
3.2
4.0
3.3
3.8
6.0
3.8
4.1
3.3
3.1
5.0
5.6
5.0
4.3
3.8
4.6
4.1
4.2
4.8
5.3
4.4
5.8
3.6
4.3
4.6
4.0
3.3

7.1
9.4
8.8
9.2
7.5
9.9
7.8
7.3
6.4
8.0
8.8
7.0
6.8
6.6
6.1
6.9
10.8
6.9
7.9
6.4
6.3
8.3
9.6
9.1
7.2
7.3
8.3
7.8
8.0
8.2
9.0
7.8
10.7
6.9
7.4
8.0
7.2
6.9

92.5%
85.6%
87.4%
83.3%
89.1%
86.0%
89.7%
90.3%
91.6%
82.9%
83.7%
91.4%
92.8%
88.0%
91.3%
91.0%
80.2%
90.0%
90.1%
89.6%
89.2%
86.6%
88.2%
88.6%
89.2%
87.9%
88.5%
91.4%
89.2%
89.3%
86.3%
88.2%
85.6%
89.5%
87.7%
84.8%
86.2%
87.0%

Table 4-3: Effect of Destination Airport

* Fraction of positive residuals for the linear regression model of Figure 4-23 with Mean Buffer
Time/Nominal Block Time being the dependent variable and In (Nominal A irborne Time) the independent



4.3.5 Ground Delay Programs

The impact of Ground Delay Programs on gate, taxi-out and arrival delays has already

been addressed in various sections of this chapter. It is intuitive that when a GDP is initiated for a

specific destination, gate and taxi-out times at origin increase, and the on-time performance of

flights destined for the impacted airport worsens. Figure 4-24 shows the fraction of flights

destined for the ten most affected airports that were held on ground by GDPs in 2009. Although

this fraction is very high for some airports, e.g. 30% for EWR and 23% for LGA, and around 500

flights are affected in total every day, it is not possible for airlines to predict, at the time of

making their schedule, which flights will be delayed and the length of the imposed delays.

For example, assume that flights A and B both having the same origin, destination and

departure time. Flight A has no buffer, whereas flight B has a buffer of 20 minutes, and thus it is

scheduled to arrive 20 minutes later than flight A. An early forecast for bad weather at the

terminal airspace of the arrival airport is issued, and a GDP is applied to both flights. In this case,

flight A will be assigned an earlier Expected Departure Clearance Time (EDCT) because of the

"first scheduled, first served" policy followed for the new arrival sequence.

This example illustrates that additional buffer may lead to further flight delays. It must be

noted that the above example would be applicable only in case of GDPs that are initiated several

hours before scheduled departure. For ground hold delays that are imposed on flights when the

pilot requests clearance for pushback or take off, the placement of the flight in the arrival

sequence is computed based on flight plan. The ASPM database does not provide any

information about when ground hold times were assigned to the affected flights.

Figure 4-25 shows that in 2009 more than 50% of the flights that were scheduled to arrive

at EWR between 5pm and 8pm were held by a GDP, independent of the delay interval. For

ground delays longer than 30 minutes this fraction drops to 35%, and for longer than 60 minutes

to 23%. However, a day by day analysis reveals that GDPs at EWR were initiated on 259 days in

2009, with an average number of 141 held flights, and most importantly, a standard deviation of

78 flights. This implies that flights were not affected by GDPs on a systematic basis and that

delays imposed by GPDs are very unpredictable. Therefore, it is unlikely that carriers use ground

delay data in their buffer selection process.
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4.3.6 Aircraft Type

Aircraft type has an impact on airborne time, because of the differences in cruising speed.

To account for any potential differences in aircraft types across carriers, we computed the

nominal airborne time separately for each carrier on a given route. Furthermore, the size of the

aircraft may influence gate delays, through the time required for the boarding process, and taxi-

out times because of the taxiing speed. At congested airports aircraft size can further affect

airborne and taxi-out times, if air traffic controllers are optimizing the sequences of landing and

taking-off aircraft based on wake vortex separation requirements. The relation of aircraft size

with flight delays is discussed further in Section 4.3.8.

4.3.7 Gate Assignment and Runway Configuration

Gate assignment and runway configuration have a direct impact on taxi-out and taxi-in

times by decreasing or increasing the length of taxiing for a given flight. Furthermore, the use of

different runway configurations and gates affects the estimation of unimpeded taxi-out and taxi-in

times, and consequently their delays. ASPM does not encompass these differences in the

estimation of unimpeded times, because no data is available on the runway configurations and

gates used for each flight. Therefore, small deviations in actual taxi-out and taxi-in times or

delays may be attributed to different configurations even under optimal conditions. The runway

configuration may also affect the airborne time by changing the flight path and the length of the

flight.



4.3.8 Flight Sequence

In this final section of this chapter, we analyze on-time performance, buffer, flight delays

and turn-around times on the basis of the number of flight segments that the aircraft has already

flown at the same day. As has been discussed, delays that occur on one flight leg can propagate

downstream to the next flights. To study the effect of delay propagation both in scheduling and in

actual flight performance, we identified the sequence of flights performed by each aircraft in

September 2009.

The ASPM database uses two data sources, ETMS and 0001 (see Section 3.1). Only the

latter reports systematically the aircraft tail number, and thus has been the only source used for

this section's analysis. Even so, there were data entries that reported the same aircraft at two

simultaneous flights. Therefore, we cleaned the database and kept only flight sequences satisfying

the following criteria:

1. All flights in the sequence are performed by an aircraft of the same IATA equipment

code and tail number.

2. The origin of every flight segment in the sequence is the destination of the preceding

flight.

3. All actual turn-around times in the sequence are positive.

In total, we analyzed 31,343 sequences having from two up to eight flights per day (Table

4-4). The results of this analysis are plotted in Figures Figure 4-26 to Figure 4-34. Every line of

these graphs corresponds to the maximum number of flight segments flown by an aircraft in a day

and is averaged across all sequences in September 2009.

Table 4-4: Number of Flight Sequences

Fights in Sequence 2 3 4 5 6 7 8
Sequences in Sample 9,382 7,131 7,145 3,508 2,953 734 490



Looking at the plot of on-time performance (Figure 4-26), we observe two trends:

1. For the same sequence, on-time performance decreases linearly over the course of the

day. This happens because of propagation of delays, and traffic increase in the evening hours. The

plots of arrival and gate delays (Figure 4-27 and Figure 4-28) follow a similarly increasing trend

along each sequence, despite the fact that block delays relative to schedule decrease.

2. For flights that have the same number of preceding flight segments, but belong to

sequences of different length, on-time performance decreases as sequence length decreases. For

example, the second flight of a 5-flight sequence has a worse on-time performance than the

second flight of a 6-flight sequence. The reason is that aircraft in short sequences operate on

longer routes (Figure 4-29), and thus suffer longer airborne delays (Figure 4-30).

Another interesting remark is the evidence of correlation between aircraft size, stage

length, gate delays and taxi-out times. Given that short sequences consist of long-haul flights, we

can assume that the aircraft in these sequences have a larger size. Operating a larger aircraft in a

long flight reduces the unit cost and increases profits when there is sufficient demand. Moreover,

frequency competition in short-haul markets results in more flights with smaller aircraft. Our

assumption about aircraft size is supported by the fact that flights in short sequences have in

general, longer gate delays and taxi-out times than flights in long sequences. The boarding

process lasts typically longer for larger aircraft, since the boarding time is proportional to the

number of boarding passengers. Furthermore, push-back and taxiing speed is slower for larger

aircraft, resulting in longer taxi-out times.

The most important observation in the plot of taxi-out times is that the first flight of the

day has the longest taxi-out time, with the exception of the 6 and 8-flight sequence. This can be

explained by the morning peak in departing operations. Similarly, block delays relative to

schedule of the first flights are substantially longer than of the later flights (Figure 4-33). Since

airborne delays and buffer time are almost constant for each sequence, this trend must be driven

by delays in taxiing. Regarding the 6 and 8-flight sequence, the large systematic fluctuation in

taxi-out times may be attributed to a hub-effect and the excess demand during bank periods in

hub airports. Mayer and Sinai18 had found that flights departing from the airline's own hub are

2.9% to 5.4% less likely to be on time relative to flights on the same route by non-hub airlines.
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The hub effect on flight sequence becomes more evident in the plots of scheduled and

actual turn-around times (Figure 4-35 and Figure 4-34). It must be noted, that the first point of

every line on these two figures corresponds to the time that an aircraft stays at the gate after the

first arrival and prior to the second departure. In sequences with four, six and eight flights, both

the actual and the scheduled turn-around times, alternate between long and short values. We

assume that the flights in these sequences are between hub and spoke airports. We expect that

high turn-around times occur at hubs during "connecting banks" and short times at spoke airports.

The rationale behind this is that aircraft arriving at connecting banks must stay longer on ground

to allow all connecting passengers adequate time to disembark their arriving aircraft and board

the aircraft for their next flight. However, one could argue against this assumption that aircraft

departing from spoke cities often have to stay longer on the ground so as to arrive closer to the

next connecting bank at the hub.

To examine the validity of our assumption, we separated flights to three groups: (i)

flights departing from a specific hub, (ii) flights destined to this hub, and (iii) flights departed

from or destined to other airports. A high fraction of departures from a hub, for a certain flight

number in the sequence, means a departing bank from this hub. We limited our analysis to six

carriers, Delta, American Airlines, United, Continental, Northwest, and US Airways, and to one

hub per carrier. The results for 4-flight and 6-flight sequences are summarized in Table 4-5. The

shaded entries in the HUB - Spoke column indicate a departing bank, and those in the Spoke-

HUB column an arriving bank.

The most important observation in the table below is that the turn-around times during

connecting banks at hubs, are always longer than the turn-around times at spokes. Furthermore,

turn-around times are longer in 4-flight sequences than in 6-flight sequences. Except for the

longer time required for passengers to disembark and board, larger aircraft also need more time

for fueling. But most importantly, a delay of an aircraft that carries more connecting passengers

on a long-haul route with less frequent service is associated with a much higher reaccommodation

cost for disruptive passengers. Therefore, we expect that at connecting banks airlines are usually

inclined to schedule large aircraft to arrive first and depart last.



Delta American Airlines

ATL - Spoke Spoke - ATL Other DFW - Spoke Spoke - DFW Other

mean flights mean flights mean flights mean flights mean flights mean flights

2nd 72.2 55% 52.2 9% 53.8 36% 58.5 148% 51.5 10% 57.9 42%

3rd 67.8 9% 52.4 57% 53.7 34% 57.2 10% 48.5 46% 58.5 44%

4t 75.9 57% 58.2 10% 58.8 33% 56.8 47% 51.5 9% 60.1 44%

2 nd 64.4 89% 41.9 4% 50.8 7% 545 72% 47.8 3% 54.5 26%

3rd 58.7 4% 44.3 91% 53.4 6% 56.5 3% 45.5 68% 50.4 30%

4 th 60.7 91% 43.2 4% 48.9 6% 50.9 67% 50.2 3% 55 30%

5t 67.5 3% 44.4 90% 52.8 7% 47.5 3% 45.6 70% 53.2 28%

6th 65.5 89% 48 3% 55.1 8% 52.6 70% 43.9 4% 53 27%

United Airlines Continental

ORD - Spoke Spoke - ORD Other IAH - Spoke Spoke - IAH Other

mean flights mean flights mean flights mean flights mean flights mean flights

2nd 44 31% 55.3 4% 65.6 65% 71.9 61% 56.7 11% 66.1 28%

3rd 54.1 3% 53.1 37% 53.1 59% 66.9 11% 55.5 61% 63.4 28%

4* 63.2 38% 63.1 5% 71.8 58% 74.9 61% 57.3 7% 70.7 32%

2 " 55.7 56% 54.7 3% 61.2 41% 65.2 92% 55 1% 73.8 7%

3rd 55.9 3% 46.6 50% 45.4 47% 57 1% 51.9 95% 48 4%

4  57.5 50% 34 2% 53.7 48% 62.7 95% 50 1% 69.5 4%
1%t 4%32 4. 2

5* 29.3 2% 46.9 42% 49.2 56% 76 1% 48.4 195% 45 4%
6*h 55.4 42% 68 4% 63.8 53% 65. - 77.6 6%

Northwest US Airways

DTW - Spoke Spoke - DTW Other CLT - Spoke Spoke - CLT Other

mean flights mean flights mean flights mean flights mean flights mean flights

2 d 79 33% 64.6 7% 67.9 61% 71.4 1 30% 71.7 5% 63.1 65%

3 rd 64.3 6% 61 32% 65.8 62% 66.8 5% 61.6 30% 61.3 65%
4 th 750 32% 64.7 6% 81.2 62% 74.3 30% 83.4 4% 71.2 66%

2 nd 68.9 56% 57 10% 61.7 34% 65.2 1 55% 65.3 2% 54.1 44%

3rd 80.1 10% 48.5 58% 49.2 32% 60.9 1% 54.6 58% 54.4 41%

4  63.2 57% 54.8 7% 58 37% 64 57% 72.5 1% 59.6 42%~~ 67.7 57% 54.1 7% 586
5 67.7 7% 49.1 59% 49.7 35% 56.7 1% 52.6 58% 51.8 40%

6 th 66.8 59% 61.3 8% 76.8 33% 67.4 57% 60 1% 59.5 42%

Table 4-5: Actual Turn-around Times (minutes), in 2009
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4.4 Summary

In this chapter we explored the variability in flight time components and buffer time, and

examined their correlation. Moreover, we analyzed some of the major causal factors of delays,

and discussed their impact on schedule padding. The main findings of the analysis are

summarized below.

Airline operations experience large uncertainty, and their flight time components are

very variable. The magnitude and the effects of this variability differ for each flight component

and route because there are many different delay sources. Therefore, it is very difficult to attribute

arrival delays to specific causes.

Among all delay components, gate delays have the strongest correlation with arrival

delays. Given also that the correlation of gate delays with buffer is minimal, we can conclude that

carriers do not take gate delays into account when determining the amount of schedule buffer.

On-time performance is highly affected by the traffic volumes at airports and the delay

propagation from previous flights. Taxi-out times and block delays are longer for the first flight

of an aircraft at a given day, because of the morning peak in departures. However, on-time

performance deteriorates over the course of the day, until it reaches its minimum late in the

evening, and then improves again. To minimize the time that aircraft are delayed on the tarmac,

Ground Delay Programs are initiated by the FAA and revised departure times are assigned to

flights. Despite the fact that a large proportion of flights at several major U.S. airports are

affected by GDPs, our analysis suggests that airlines do not adjust their buffer to account for them

because it is impossible to predict their impact on individual flights on specific days.

Although on-time performance can be improved by the airline adding more buffer, our

findings show that there are cases of flight operations under large uncertainty where airlines use

shorter buffer. This practice worsens the on-time arrival statistics for these routes, but enables

carriers to allocate buffer to flights where the gains in on-time performance can be larger.

Furthermore, the seasonality test that we performed revealed a very strong seasonal effect

in airborne times. This effect is a function of the route direction and increases by flight distance.

Similarly, absolute buffer increases almost linearly by distance, whereas buffer as a fraction of

nominal block time follows an exponentially decreasing trend by distance.



Aside from distance, congestion at destination and origin airports also has a very strong

correlation with the amount of added buffer. Flights out of airports that have lengthy taxi-out

delays tend to be padded more, resulting to similar on-time performance with flights departing

from less congested airports. However, an airport that has a strong effect on schedule padding as

origin does not necessarily have a similar effect as destination.

Additionally, an analysis at six major hubs showed that turn-around times at connecting

banks at hubs are larger than turn-around times at spoke airports. On the other hand, we did not

find any evidence for a hub-effect on buffer. Furthermore, turn-around times increase by the size

of the aircraft.

To further study these results, and validate our assumptions about them, we perform an

econometric analysis by constructing several regression models in the next chapter.



Chapter 5

Regression Analysis

In the previous chapter, we examined the most important factors that affect the operations

on each flight segment, and formulated assumptions about the way that carriers adjust their

schedules based on these factors. In this chapter, we perform an econometric analysis to validate

these assumptions, by constructing several regression models to study how (1) buffer and (2) on-

time performance depend on the combination of several factors, such as the flight time

components, the route competition, the hub effect, the carrier type, and the scheduled arrival time.

This chapter is separated in two sections. First, we present the different explanatory variables and

test for multicollinearity between them. Then, we run six regression models, we elaborate on the

results, and try to explain the effect of the studied parameters in our models.



5.1 Model and Variables

5.1.1 Linear Models

The regression models used for the purposes of our analysis are all linear and take the

form of the following equation:

y = lo + ix + 8 2X2 +...+ nxn + C

where:

y is the dependent (endogenous) variable,

x1 ...x, are the independent, explanatory (exogenous) variables,

o...fl, are the regression coefficients (parameters), estimated by the method of Ordinary Least

Squares (OLS),

and e is the error (disturbance) term.

To determine whether the explanatory variables of our models have a statistically

significant effect on the dependent variable, we test if each of the coefficients of the explanatory

variables is significantly different from 0. Particularly, we perform the following significance

test:

Null hypothesis Ho: fl = 0

Alternative hypothesis H1: ,f:# 0

Test statistic: (t-value) t - " , where so is the standard error of the coefficient l.
s/i

The decision rule for rejecting the null hypothesis in favor of the alternative is t > tcrit

where tet depends on the level of significance a and the associated degrees of freedom. For a

large number of observations, such as our sample, and a significance level a = 0.05, the terit is

equal to 1.96. Thus, a t-value greater than 1.96 (or less than -1.96) indicates that there is sufficient

evidence, within a 95% confidence interval, to support the studied parameter as a statistical

significant parameter for explaining variation in the dependent variable.



5.1.2 Variables

In Chapter 4, we illustrated that there is a strong seasonality effect in flight time

components, with airborne time being the most affected by weather. Figure 5-1 shows the

distribution of on-time performance by month in 2009. It is surprising that the difference in on-

time performance between November (highest) and December (lowest) is 16.6%. Because of this

large variability, we decided to limit the analysis in this chapter to specific months. Particularly,

the months that are used in the regression models are January (low on-time performance), August

(on-time performance almost equal to average), and November (high on-time performance).
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Figure 5-1: On-time Performance by Month, in 2009

In the regressions models discussed in this chapter, the following variables are used:

BUFFER: The buffer time of a single flight operation.

ONTIMEPERFORMANCE: The on-time performance of all flights on a given non-stop route,

carrier and month.

ACTAIR_AV: The average actual airborne time of all flights on a given non-stop route, carrier

and month. The actual airborne time of a single flight has been defined in Section 3.4.

ACTTOAV: The average actual taxi-out time of all flights on a given non-stop route, carrier

and month. The actual taxi-out time of a single flight has been defined in Section 3.4.

. ........... ......

-- - ----- ----- ----- ----- ----- ---- ----- ----- ----- -- -------

-~~~~~~~~~~ ~ ~ ~ ~ -II ----- ------------- ---



ACTTI_AV: The average actual taxi-in time of all flights on a given non-stop route, carrier and

month. The actual taxi-in time of a single flight has been defined in Section 3.4.

GATEDELAY_AV: The average gate delay of all flights on a given non-stop route, carrier and

month. The gate delay of a single flight has been defined in Section 3.4.

COMPET_1, 2, 3, 4, 5: Dummy variables indicating the route competition; 1 = one carrier

operates in the route, 2 = two carriers operate on the route, 3 = three carriers operate on the route,

4 = four carriers operate on the route, 5 = at least five carrier operate on the route.

HUBDEP: A dummy variable that takes on value 1 if the origin airport is a hub for the carrier

operating the flight, and 0 otherwise. Hub airports are shown in Table 5-1.

HUBARR: A dummy variable that takes on value 1 if the destination airport is a hub for the

carrier operating the flight, and 0 otherwise.

ARR_7,8, ... , 23: Dummy variables indicating the scheduled arrival time of a flight; 7 =

scheduled arrival time before 8am, 8 = scheduled arrival time between 8:00am and 8:59 am,

23 = scheduled arrival time between 11pm and 11:59 pm.

SWA: A dummy variable that takes on value 1 if the flight is operated by Southwest, and 0

otherwise.

NLC: A dummy variable that takes on value 1 if the flight is operated by a legacy carrier, and 0

otherwise. The legacy and low cost carriers are shown in Table 5-2.

LCC: A dummy variable that takes on value I if the flight is operated by a low cost carrier, and 0

otherwise.

OTHER: A dummy variable that takes on value 1 if the flight is operated by a carrier other than

Southwest and the airlines listed in Table 5-2, and 0 otherwise.



Carrier Designated Hubs
American Airlines (AA)
Alaska Airlines (AS)
Continental Airlines (CO)
Delta Airlines (DL)
Frontier Airlines (F9)
JetBlue Airways (B6)
Northwest (NW)
Southwest (WN)
AirTran Airways (FL)
United Airlines (UA)
US Airways (US)

Table 5-1: Hub Airports

DFW, ORD, MIA
SEA
IAH, EWR, CLE
ATL, CVG, SLC
DEN
JFK
MSP, DTW, MEM
LAS, MDW, PHX, BWI, DEN
ATL
ORD, DEN ,SFO, IAD
PIT, CLT, PHX, PHL

Legacy Carriers (NLC) Low Cost Carriers (LCC)

American Airlines (AA) AirTran Airways (FL)

Continental Airlines (CO) JetBlue Airways (B6)
Delta Air Lines (DL) Frontier Airlines (F9)
Northwest Airlines (NW) Spirit Air Lines (NK)
Unites Airlines (UA) Virgin America (VX)
US Airways (US)

Table 5-2: Legacy and Low Cost Carriers

Carrier Designated Hubs



5.1.3 Multicollinearity

Before we construct any regression models, it is important that we test for

multicollinearity, which occurs when two or more independent variables are highly correlated.

When multicollinearity between independent variables exists, the estimated regression parameters

have large sampling variability, and this may result in misinterpretation of the relationship

between variables. Moreover, multicollinearity increases the standard errors of the coefficients

for individual independent variables. Thus, variables that in reality are significant may appear to

be insignificant in the regression model.

To detect multicollinearity, we estimated the pairwise correlation between the

independent variables (Table 5-3). We notice that BUFFER is highly correlated with

ACTAIR_AV. This is intuitive, as longer flights have larger airborne delays, and thus carriers add

more buffer in their scheduled block times. In the models where BUFFER is used as the

dependent variable, this high correlation between the two variables is desirable. However, in the

model with ONTIMEPERFORMANCE as the dependent variable, we should use only one of

the two variables.

Moreover, there is a moderate negative correlation between SWA and ACTTOAV,

indicating that Southwest has shorter taxi-out times than other airlines. The same likewise applies

for the taxi-in times, but the correlation coefficient is smaller.

Furthermore, NLC and OTHER are correlated with HUBDEP and HUBARR. NLC has

a positive correlation with these two variables, whereas OTHER has a negative. This occurs

because hub airports have been defined for all carriers designated as NLC, while from OTHER

carriers only Alaska is studied for its hub operations. Additionally, there is a small positive

correlation between NLC and ACTAIRAV, ACT TOAV, and ACT TI AV. The first relation

shows that on average, legacy carriers fly longer distances (Figure 3-3). The second and the third

relations suggest that legacy carriers either operate on more congested airports than the rest of the

carriers, or operate during periods of very high demand. Last, we observe a small correlation

between ACTTIAV and HUBARR. This is likely the result of the large number of very closely

scheduled arrivals at hubs during connecting banks. Despite the indication of correlation between

the above mentioned variables, its magnitude is relative small, and their simultaneous use in the

regression models is not expected to cause multicollinearity issues.
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7(N

BUFFER 1.000 0.626 0.337 0.184 0.246 -0.045 -0.023 0.185 -0.147 0.012 0.009 -0.009 0.014 0.114 0.089

ACTAIR_AV 1.000 0.183 0.134 0.104 -0.126 0.072 0.295 -0.258 0.095 0.027 -0.061 -0.076 -0.056 0.142

ACTTOAV 1.000 0.213 0.211 -0.435 0.026 0.316 0.109 0.051 0.097 0.069 0.074 0.181 -0.052

ACTTIAV 1.000 0.044 -0.354 -0.007 0.277 0.014 0.002 0.089 0.058 0.092 -0.178 0.365

GATEAV 1.000 -0.046 -0.034 -0.118 0.192 0.028 0.043 0.021 0.008 0.055 -0.172

SWA 1.000 -0.164 -0.422 -0.313 0.237 -0.076 -0.122 -0.069 -0.037 -0.009

LCC 1.000 -0.281 -0.208 0.065 0.056 0.051 -0.003 0.003 0.004

NLC 1.000 -0.536 -0.003 0.022 -0.006 0.032 0.346 0.343

OTHER 1.000 0.027 0.046 0.034 -0.001 -0.372 -0.372

COMPET_2 1.000 -0.351 -0.220 -0.149 0.002 -0.005

COMPET_3 1.000 -0.160 -0.108 -0.014 0.003

COMPET_4 1.000 -0.068 0.003 -0.015

COMPET_5 1.000 -0.020 -0.020

HUBDEP 1.000 -0.239

HUBARR 1.000

Table 5-3: Correlation Matrix for the Independent Variables
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5.2 Buffer Time Regression Models

In this section, we construct five regression models with BUFFER as the dependent

variable to test the effect of various variables upon schedule padding. All models were run

separately for three months of 2009: January, August and November. This was done to study

whether the estimated coefficients are consistent across months.

5.2.1 Model 1: Average Flight Times

Objective:

Study to what degree buffer is associated with the average flight times on a certain route,

for a given carrier and month.

Hypotheses:

We expect that actual airborne time will have a very strong positive relationship with

buffer because as has been shown in Section 4.3.4, buffer increases proportionally to distance.

Similarly, actual taxi-out time should have a significant positive effect, since taxi out delays are

responsible for a large extent of block delays and can be absorbed through buffer.

On the other hand, actual taxi-in time and gate delay are expected to have a smaller

effect. In Chapter 4, we showed that taxi-in times are very short and have a limited variability.

Thus, we assumed that airlines do not take them into account for adjusting buffer. This argument

was further supported by the distribution of the correlation parameter of taxi-in delays with buffer

(Figure 4-7). Also, we expect that carriers do not adjust buffer based on gate delays because these

are very unpredictable. Moreover, if a route has consistent lengthy gate delays, it would be more

effective for carriers to adjust their turn-around times rather their scheduled block times.

Results:

Table 5-4 shows the results for Model 1. The adjusted R2 varies from 40.6% to 48.1%

meaning that the actual performance over a period of time explains a substantial portion of the

variation in padding. Contrary to our hypothesis, all variables are statistically significant at a 1%

significance level, with ACT_AIR_AV being the most significant and ACTTIAV the least.
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The constant parameter varies from -1.28 to 1.95. This is the amount of buffer that a

flight would have if all flight time components were zero. However, this can never be the case.

The regression coefficients represent the increase in buffer for every additional minute in the

mean of each flight time component. For example, a 30 minutes average airborne time in January

will increase buffer by 2.4 minutes. Similarly, 10 minutes of average gate delay, taxi-out time and

taxi-in time will increase buffer by 1.9, 3.6 and 2.2 minutes respectively, resulting in a total

buffer of 12.1 minutes. If the airborne time were 240 minutes, the buffer would be 18.9 minutes.

Although the coefficients vary across months, their aggregate effect is almost constant.

Particularly, a flight with 30 minutes average airborne time will have 11.6 minutes of buffer in

August and 13.3 minutes in November, whereas for an average airborne time of 240 minutes,

buffer will increase to 22.1 and 28 minutes respectively. We notice that the effect of airborne time

is limited in August. The reason is that airborne delays are shorter in August, most probably due

to better weather conditions, meaning that the variability in airborne time is lesser, and thus

carriers add less buffer to account for them.

JANUARY AUGUST NOVEMBER
Coeffic. t-Stat Coeffic. t-Stat Coeffic. t-Stat

Intercept 1.95 37.867 -0.71 -15.889 -1.28 -22.582
ACTAIRAV 0.08 511.144 0.05 307.135 0.07 425.966
GATEAV 0.19 99.846 0.22 128.254 0.17 61.526
ACTTOAV 0.36 161.589 0.58 296.127 0.72 256.630
ACTTIAV 0.22 45.799 0.28 63.143 0.36 65.401
AdjustedR 2  0.4805 0.4058 0.4514
Sample Size (flights) 400,793 434,532 388,297

Table 5-4: Model ]
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5.2.2 Model 2: Average Flight Times from 2008

Objective:

(1) Test if the use of the average values of the flight times from 2008 instead of 2009 is

more effective in explaining the variability in buffer, (2) and study if the effect of flight time

components is similar in different years.

Hypotheses:

One of the parameters that airlines take into account when determining the schedule

buffer on a route, is their past performance in previous months and years. In Section 4.3.1 it was

shown that there is a strong seasonality in flight times. The actual flight times of the same month

in the previous year can be used for forecasting the actual flight times in the current year. Thus,

we expect that there is a strong correlation between the buffer times in 2009 and the actual flight

times in 2008. If this assumption holds true, using 2008 data, instead of 2009, for the independent

variables of Model 1 should improve the goodness of fit of the model. Furthermore, because of

the seasonality in flight times and their associated delays across years, we do not expect large

changes in the coefficient parameters.

Results:

Comparing the R2 for the regressions in Model 1 (2009 data) with those in Model 2 (2008

data), we notice a small improvement in the fit of the latter for all three months. This supports our

hypothesis that flight data from the previous year provide more information about the amount of

buffer used, compared to flight data of the same year.

Furthermore, the estimated parameters of the four independent variables, with the

exception of GATEAV, are very similar to those of Model 1. This can be attributed to the fact

that the mean values and the magnitude of variation of the dependent variables are very similar

across consecutive years.

Nonetheless, it is very important that carriers forecast any changes in air traffic and take

into account special events to adjust their schedule buffer accordingly. Otherwise, the use of

historical data can result in an over or underestimation of optimal buffer, causing either an

unnecessary increase in operational cost or a reduction in on-time performance.
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JANUARY AUGUST NOVEMBER

Coeffic. t-Stat Coeffic. t-Stat Coeffic. t-Stat

Intercept 2.00 38.752 0.44 10.120 0.08 1.550
ACTAIRAV 0.08 481.835 0.04 282.427 0.07 394.333
GATEAV 0.11 82.390 0.11 74.922 0.13 60.256
ACTTOAV 0.41 168.426 0.57 303.171 0.67 255.829
ACT TI AV 0.16 31.506 0.25 56.687 0.18 33.564
Adjusted R2  0.4860 0.4263 0.4557
Sample Size 367,399 395,866 362,710

Table 5-5: Model 2

5.2.3 Model 3: Competition and Hub Effects

Objective:

Study how competition and hub operations affect padding.

Hypotheses:

We expect that carriers use more buffer on flights destined to their hub, compared to

other flights, so as to allow adequate time for passenger connections. The reason is that a late

arrival at a connecting bank is associated with a higher cost because of the re-accommodation of

connecting passengers. Flights departing from a carrier's hub are expected to be padded similarly

to spoke-to-spoke flights.

Competition may affect a carrier's decision to shorten or lengthen a flight's scheduled

block time in several ways: screen presence in the global distribution systems, public perception

about quality of service, and scheduling at peak travel times.

From the quality of service perspective, competition should have a positive impact on

buffer, since we expect that all else being equal, passengers would prefer the airline that reports

the best on-time performance on a certain route. This agrees with the literature, which suggests

that competition has a positive impact on carriers' on-time performance (see Section 2.3).

Additionally, competition affects buffer time by forcing competitive airlines to match their

schedules and offer departures during peak hours.
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On the other hand, in competitive routes, shorter buffer can offer a competitive advantage

to carriers, because flights are listed in the global distribution systems according to their

scheduled block time, with the shortest flight having the best screen presence. Copeland et al.

illustrated that, on average, 70% of all bookings were made from the first six options presented to

a travel agent. Thus, from a marketing perspective, it might be more valuable for an airline to

have a better screen presence in the distribution systems rather than a better on-time performance.

However, the emergence of direct booking from airlines websites and other internet travel

intermediaries limits the benefits associated with shorter block times, because users can

customize the ranking criteria, with price being the most common criterion. Since the effects of

competition in block time length are contradictory, we cannot make any reasonable hypothesis

towards a specific direction.

Results:

The positive coefficient estimates of HUBARR (Table 5-6) support our hypothesis that

flights destined to the carriers' hub are padded more, when compared to non-hub flights.

Particularly, the increase in buffer for hub departures ranges from 0.47 to 1.61 minutes. However,

this trend cannot be generalized for all hub operations, because HUBDEP has opposite signs in

different months. Although the coefficient of HUBDEP is negative only in August (and even

then it is very close to zero), it could be interpreted as a result of less flexibility in lengthening the

block time of flights departing from connecting banks at hubs, since these flights have

significantly longer turn-around times (Section 4.3.8). Another possible explanation for the

opposite signs, is that the origin airport has very limited effect on delays and consequently on

buffer.

Although all competition indicator variables are statistically significant at a 1%

significance level, the effect of competition on a certain route is not captured in the models.

Coefficient estimates of competition indicator variables are quite small and vary in sign,

depending on the month. As stated in our hypothesis, competition can have contradictory effects

in padding. These may depend heavily on the flight demand, the offered frequency, the traffic

(local vs. connecting), the competing carriers, etc.

35 Copeland, D., Mason, R., McKenney, J., Sabre: The development of information-based competence and
execution of information-based competition, IEEE Annals of the History of Computing, Vol. 17, No. 3,
1995.
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The above results suggest that airlines allocate buffer in a way that not only improves

individual flights' on-time performance, but also maximizes market share and minimizes delay

cost at a network level. This means that legacy carriers, with hub operations and a large fraction

of connecting passengers, might use more buffer on certain flights that are considered more

important for the airline profitability, operational integrity and public perception, even if the

marginal gains in on-time performance from this practice are limited.

JANUARY AUGUST NOVEMBER
Coeffic. t-Stat Coeffic. t-Stat Coeffic. t-Stat

Intercept 1.92 36.182 -0.64 -13.829 -1.66 -28.848
ACTAIR_AV 0.08 492.925 0.05 291.616 0.07 402.659
GATE_AV 0.1942 101.498 0.2239 130.759 0.1811 66.688
ACT_ TOAV 0.36 153.243 0.59 290.666 0.69 236.986
ACTTIAV 0.18 34.323 0.23 47.702 0.28 47.205
COMPET_2 -0.19 -6.14221 -0.16 -5.54775 0.33 10.32842
COMPET_3 0.24 6.675 -0.36 -10.730 0.72 18.996
COMPET_4 1.07 22.264 0.16 3.710 1.65 31.267
COMPET_5 1.35 20.104 -0.50 -9.592 1.50 22.396
HUBARR 0.47 16.009 0.92 34.936 1.61 52.084
HUB DEP 0.18 6.454 -0.15 -5.600 1.22 39.808
Adjusted R2  0.4822 0.4082 0.4577
Sample Size 400,793 434,532 388,297

Table 5-6: Model 3
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5.2.4 Model 4: Differences in Padding across Carriers

Objective:

Study if the extent of padding varies across carrier groups (i.e. legacy carriers, low cost

carriers, Southwest, and others). Southwest is studied separately from the other low cost carriers

because it has a different network structure with very short stage length.

Hypotheses:

For flights with the same stage length, one would expect that Southwest uses less buffer

than other airlines, because it flies mostly between secondary non-congested airports. However,

Southwest's on-time performance is among the highest in the industry (87%), despite the fact that

it has very short scheduled turn-around times. According to Gittell3 6, this is attributed, to some

extent, to the excellent relational coordination of the company. However, it might also be that

Southwest allocates more buffer in scheduled block times, whereas other carriers add more slack

in scheduled turn-around times, rather than in block times. Model 4 sheds some light on this

strategy.

We also expect that legacy carriers pad their schedules more than low cost and OTHER

carriers because they carry more connecting and business passengers, who are more sensitive to

schedule reliability.

Results:

The coefficient estimates of dummy variables for carrier groups reveal some differences

in padding practices among carriers, especially between Southwest and the other groups. The

base of comparison is the flights operated by airlines other than Southwest and those included in

Table 5-2.

First, Southwest's flights have 4.2 to 9.6 minutes additional buffer than the rest of the

carriers. This explains how Southwest achieves a very high on-time performance, although it

schedules very short turn-around times. On the other hand, low cost carriers pad their flights the

least, and this results in a poor on-time performance (78.5%). Legacy carriers pad their flights

36 Gittell, J., Supervisory Span, Relational Coordination and Flight Departure Performance: A
Reassessment of Postbureaucracy Theory, Organization Science, Vol. 12, Issue 4, 2001.
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very similarly to OTHER carriers, and they have almost the same on-time performance, 80.9%

and 81.2% respectively.

First of all, these findings show that carriers with more buffer have on average a better

on-time performance. Furthermore, Southwest's example shows that when a carrier does not

operate at congested airport, it might be more effective for absorbing delays to add more slack in

block times, rather than in turn-around times. However, this practice has a higher cost because

usually crews are paid on the maximum of scheduled and actual block time, whichever is higher.

JANUARY AUGUST NOVEMBER

Coeffic. t-Stat Coeffic. t-Stat Coeffic. t-Stat

Intercept -4.31 -69.506 -3.66 -70.419 -7.05 -105.902
ACTAIRAV 0.08 502.421 0.05 304.675 0.07 421.214
GATEAV 0.16 87.853 0.17 99.617 0.12 44.786
ACTTOAV 0.58 234.842 0.69 317.904 0.93 301.254
ACTTIAV 0.46 96.473 0.44 96.398 0.59 106.977
NLC -0.10 -3.321 -0.38 -13.285 0.71 21.500
LCC -0.83 -18.926 -1.94 -48.246 -2.46 -53.675
SWA 6.99 163.712 4.16 104.579 7.16 159.302
AdjustedR 2  0.5226 0.4293 0.4989
Sample Size 400,793 434,532 388,297

Table 5-7: Model 4

5.2.5 Model 5: Time of the Day

Objective:

Study the impact of the time of the day (scheduled arrival time) on padding practices.

Hypotheses:

Following our discussion in Section 4.3.2, we expect that the time of day has a strong

influence on the amount of buffer that carriers add to their block times. Particularly, we expect

that flights scheduled to arrive in the evening peak are padded more, so as to absorb more

effectively the propagated delays from previous flights, and any further delays caused by airport

and airspace congestion.
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On the other hand, our analysis in Chapter 4 did not provide enough evidence for the

existence of a morning peak in padding.

Results:

The coefficient estimates of the dummy variables for scheduled arrival time (shown in

Figure 5-2 and in Table 5-8) reveal a large fluctuation in padding practices over the course of the

day. All coefficients are positive, indicating that flights scheduled to arrive before 8am are

padded the least.

Flights scheduled to arrive between 8am and 12am, as well as between 5pm and 9pm,

have more buffer compared to the rest of the flights. This is in agreement with our initial

hypothesis about the effect of congestion and delay propagation on schedule padding.

Furthermore, the regression coefficients are almost the same in January and November. On the

other hand, August flights have substantially more buffer in the evening peak compared to the

morning peak. This could be attributed to the fact that thunderstorms which disrupt a large

proportion of flights at U.S. airports during the summer months, occur most likely in the evening.

Another important observation is that all competition indicator variables have positive

coefficients. Furthermore, most of the coefficient estimates increase with the number of

competitors on a route, suggesting that buffer in general increases with the number of carriers

competing on the same route.
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Figure 5-2: Parameter Coefficients of Dummy Variables for Scheduled Arrival Time
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JANUARY AUGUST NOVEMBER
Coeffic. t-Stat Coeffic. t-Stat Coeffic. t-Stat

Table 5-8: Model 5

AdjustedR 2  0.5380 0.4645 0.5204
Sample Size 400,793 434,532 388,297

Intercept -8.97 -108.944 -7.29 -106.174 -11.85 -136.566
ACTAIRAV 0.08 508.137 0.05 305.825 0.08 431.728
GATEAV 0.16 86.803 0.16 94.866 0.12 47.901
ACTTOAV 0.55 221.574 0.69 319.094 0.89 286.928
ACTTIAV 0.43 84.614 0.38 80.873 0.51 87.757
COMPET_2 0.50 17.343 0.46 16.588 1.19 39.098
COMPET_3 1.08 32.132 0.43 13.339 1.79 49.341
COMPET_4 1.66 36.170 0.91 22.301 2.35 47.139
COMPET_5 1.71 26.813 0.04 0.753 1.88 29.737
HUBARR 0.02 0.773 1.06 35.210 0.96 27.637
HUBDEP 0.02 0.626 -0.07 -2.165 0.61 17.793
NLC -0.14 -3.545 -0.83 -23.014 0.08 1.848
LCC -0.90 -19.773 -2.32 -55.953 -3.09 -65.225
SWA 6.93 153.225 3.78 90.404 6.66 139.108
ARR_8 4.65 57.380 1.96 28.077 5.07 60.815
ARR_9 4.86 64.682 2.52 39.580 4.82 60.651
ARR_10 5.27 76.220 2.89 46.973 5.93 81.101
ARR_11 4.85 66.627 2.57 40.488 5.37 70.390
ARR_12 4.95 69.421 2.47 39.156 4.24 56.590
ARR_13 4.04 56.502 2.35 37.487 3.72 50.034
ARR_14 3.12 43.343 2.50 39.624 2.89 38.375
ARR_15 3.96 55.156 3.33 52.415 3.02 39.938
ARR_16 4.10 58.173 4.31 70.223 3.79 51.390
ARR_17 5.28 74.181 4.87 78.902 4.56 60.841
ARR_18 5.46 75.872 6.22 100.680 5.54 74.007
ARR_19 5.63 79.064 6.03 96.075 5.49 72.870
ARR_20 5.50 79.204 6.18 100.772 5.30 72.249
ARR_21 4.84 67.411 5.56 88.753 5.20 68.199
ARR_22 4.64 60.405 5.60 83.347 4.44 54.635
ARR_23 2.53 31.232 3.22 44.117 1.63 18.659



5.3 On-Time Performance Regression Models

In this section, we construct a regression model with ONTIMEPERFORMANCE as the

dependent variable. In contrast to the previous models, where each entry is one flight, every entry

of this model corresponds to one flight number. Only flight numbers that had at least ten flights in

the studied month were included in the sample. ONTIMEPERFORMANCE, BUFFER,

AIRBORNEAV, GATE_AV, ACTTOAV, and ACTTIAV were estimated as the average values

over all flights with the same flight number in a month. In the cases where flights with the same

flight number had different scheduled arrival hour, the indicator variables for the scheduled

arrival time were determined based on the median arrival time.

Objective:

Study to what degree the variables studied in Models 1 through 5 affect the on-time

performance.

Hypotheses:

First, we expect that longer buffer will be associated with better on-time performance.

Although adding more buffer increases the likelihood that a flight will arrive on-time, it does not

follow that the flights with the longest buffer have also the best on-time performance. The flights

that need substantial buffer are those that suffer from the largest uncertainty, and thus are more

likely to arrive late with respect to their nominal arrival time. However, the gains from adding

more buffer to these flights are small, as shown in Chapter 4. On the other hand, flights with less

variability in their flight time components can achieve a good on-time performance without

having excessive buffer.

Considering that long-haul routes are associated with a larger variability in airborne

times, one would expect that distance has a negative effect on on-time performance. On the other

hand, carriers often absorb some of the previously suffered delays by increasing the cruising

speed of the aircraft, with long flights being benefited at most from this practice. Also, given that

buffer increases with distance, we cannot make any reasonable hypothesis about the correlation of

distance with on-time performance.

Regarding gate delays, taxi-out times, and taxi-in times, we expect that longer times are

associated with worse on-time performance. Gate delays should be the most important because,

as has been shown in Chapter 4, they are very highly correlated to arrival delays.
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Furthermore, according to existing literature (see Section 2.3), competition should have a

positive impact on on-time performance. We also expect that flights that are scheduled to arrive at

peak hours, both morning and evening, will have a worse on-time performance, although they are

padded more. The rationale is that the likelihood of a late arrival increases exponentially with

traffic.

In section 5.2.3, it was shown that, on average, airlines pad more the flights destined to

their hubs, compared to non-hub flights. However it is not clear yet if this practice also results to

higher on-time performance. The reason is that connecting banks at hubs consist of a large

number of very closely scheduled arrivals followed by many very closely scheduled departures.

This often results to short periods of large congestion, and thus to excess taxi-in and taxi-out

delays. Model 6 is expected to show whether carriers use adequate buffer to absorb these delays.

Results:

The variable coefficient estimates in Table 5-9 represent the change in on-time

performance (in percentage points) that each variable is associated with. The fields in bold are the

statistically significant variables at a 5% significance level. The most significant variables are

BUFFER, GATEAV, ACTTOAV, and ACTTIAV. From the remaining variables only

COMPET 4, LCC, SWA, ARR_19, and ARR_21 are significant at a 5% level for all three months.

COMPET 2, and COMPET_3 are not significant for any month, whereas the significance of the

other variables varies across months.

First, we notice that buffer is associated with an increase in on-time performance.

Particularly, 10 additional minutes of buffer increase the percentage of flights that arrive on time

by approximately 2 percentage points, depending on the month. The largest effect of every extra

minute of buffer is observed in August and the smallest in January.

At this point we should mention that BUFFER is highly correlated with AIRBORNEAV

(see Section 5.1.3). In order to avoid multicollinearity in Model 6, AIRBORNEAV was not

included in the regression. To estimate its effect we run separate regressions with AIRBORNE_AV

instead of BUFFER. Based on the results, AIRBORNE_AV is statistically significant at a 1% level

for the three months, and its per minute impact on on-time performance varies from -0.003

percentage points in January, to 0.011 in August, and 0.016 in November. For a 60 minutes flight,

this is translated to an absolute change in on-time performance of -0.16, 0.63, and 0.98 percentage

points, respectively. This result contradicts our hypothesis about the negative effect of airborne

113



time, and suggests that long haul flights often have better on-time performance than short haul

flights. Although this is explained to some extent by the increase of buffer with distance, it could

also be attributable to the fact that on long flights carriers can absorb some of the suffered delays

by increasing the cruising speed of the aircraft.

As expected, GATEAV, ACTTOAV and ACT_TI_AV have all negative effects on on-

time performance. It is surprising that every minute of average gate delays reduces on-time

performance by almost 1 percentage point. The effect of the taxi-out time is approximately the

half. This difference can be attributed to the fact that taxi-out delays are more related to buffer

than gate delays are, and thus can be absorbed easier, resulting in less arrival delays.

Regarding competition, there is no evidence of differences between the on-time

performance of non competitive routes and routes with two or three competitors. However, when

more than three airlines compete on the same route their on-time performance increases. This

could be explained by the results of Models 3 and 5, which show that on routes with four or five

competitors the used buffer is longer compared to less competitive routes. The only exception to

this result, were routes with five competitors in August, but in this case competition does not have

a statistically significant effect on on-time performance (Table 5-9).

The sign and the significance of HUBDEP and HUBARR vary across months. In

January, which is the month with the worst on-time performance, hubs are associated with a

reduction in on-time performance by approximately 1 percentage point for both arrivals and

departures. In August, the same effect applies also to hub departures, whereas hub arrivals are

associated with a slightly better on-time performance. Both variables are insignificant in

November.

As far as the carrier groups are concerned, low cost carriers are consistently associated

with a worse on-time performance. On the other hand, the coefficient signs of SWA and NLC vary

across months, suggesting that any differences in on-time performance between Southwest,

legacy carriers and OTHER carriers might be attributed to other factors, such as network

structure, airports, and allocated buffer.

Last, the indicator variables for the scheduled arrival time illustrate a high reduction in

on-time performance of the flights that are scheduled to arrive during the evening peak. This is

expected based on our discussion in Section 4.3.3.
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JANUARY AUGUST NOVEMBER

PERFORMANCE) 77.02% 79.68% 88.59%

Coeffic. t-Stat Coeffic. t-Stat Coeffic. t-Stat
Intercept 0.9836 311.552 0.9905 452.394 0.9775 451.756
BUFFER 0.0017 30.454 0.0026 53.208 0.0022 57.708
GATEAV -0.0096 -126.784 -0.0096 -167.915 -0.0097 -145.013
ACTTOAV -0.0074 -68.657 -0.0048 -58.350 -0.0047 -52.940
ACTTIAV -0.0034 -16.509 -0.0065 -39.956 -0.0033 -21.079
COMPET_2 0.0006 0.502 0.0014 1.593 -0.0004 -0.510
COMPET_3 0.0021 1.578 0.0006 0.635 0.0012 1.320
COMPET_4 0.0103 5.983 0.0031 2.473 0.0033 2.778
COMPET_5 0.0153 6.626 0.0005 0.322 0.0101 6.383
HUBDEP -0.0124 -9.667 -0.0146 -15.747 0.0002 0.219
HUBARR -0.0112 -8.496 0.0026 2.710 -0.0008 -0.860
LCC -0.0120 -6.605 -0.0213 -15.026 -0.0281 -23.173
NLC 0.0144 9.575 -0.0062 -5.473 0.0005 0.507
SWA 0.0090 5.256 -0.0036 -3.108 0.0142 12.092
ARR_8 -0.0009 -0.298 -0.0077 -3.685 -0.0061 -3.003
ARR_9 0.0009 0.319 -0.0049 -2.453 -0.0034 -1.739
ARR_10 -0.0020 -0.720 -0.0103 -5.254 -0.0055 -2.927
ARR_11 -0.0015 -0.516 -0.0096 -4.766 -0.0021 -1.090
ARR_12 -0.0018 -0.655 -0.0084 -4.202 -0.0060 -3.157
ARR_13 0.0019 0.686 -0.0080 -3.978 -0.0023 -1.195
ARR_14 -0.0005 -0.179 -0.0086 -4.283 -0.0037 -1.947
ARR_15 0.0009 0.333 -0.0094 -4.663 -0.0038 -2.002
ARR_16 0.0022 0.780 -0.0120 -6.095 -0.0058 -3.096
ARR_17 -0.0026 -0.938 -0.0158 -8.027 -0.0054 -2.813
ARR_18 0.0002 0.076 -0.0147 -7.502 -0.0064 -3.413
ARR_19 -0.0071 -2.528 -0.0151 -7.493 -0.0075 -3.896
APR_20 -0.0007 -0.263 -0.0168 -8.511 -0.0049 -2.603
ARR_21 -0.0062 -2.187 -0.0187 -9.300 -0.0085 -4.387
ARR_22 0.0022 0.721 -0.0129 -5.969 -0.0018 -0.856
ARR 23 -0.0012 -0.368 -0.0096 -3.938 -0.0016 -0.695
Adjusted R2  0.6921 0.7237 0.6846
Sample Size 13,964 19,038 14,802

Table 5-9: Model 6
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5.4 Summary

In this chapter we performed an econometric analysis through linear regression models

using buffer and on-time performance as the dependent variables. Our objective was to study how

these two variables are related with each other and with a set of factors, such as the flight time

components, the route competition, the hub effect, the carrier type, and the scheduled arrival time.

The main findings of the analysis are summarized below.

Concerning the impact of the four flight time components on buffer, airborne and taxi-out

times are estimated to be the most significant, with airlines adding on average 0.5 - 0.8 minutes

of buffer for every ten minutes of airborne time, and 3.6 - 7.2 minutes for every ten minutes of

taxi-out time. Gate delays and taxi-in times have a smaller impact in determining the schedule

buffer, with airlines adding approximately 2 to 3 minutes for every ten minutes of taxi-in times or

delays at gate. Nonetheless, the effect of each time component on buffer varies strongly across

months and routes.

Additionally, flights that are destined to the carrier's hubs have more buffer than flights

destined to other airports. This suggests that flights with passengers connecting to succeeding

flights might be associated with a higher delay cost for airlines than flights with local passengers.

However, the effect of the carrier's hubs on the buffer of departing flights is variable across

months.

The data reveal that Southwest pads its flights more extensively than other carriers. This

practice results to one of the highest on-time arrival ratings in the industry. On the other hand, the

other low cost carriers pad their flights the least, and have a lower on-time performance. The

group of legacy carriers pads its flights similarly to OTHER carries.

Furthermore, the regression models provide evidence that buffer increases with the

number of carriers competing on the same route. On routes where more than three airlines

compete, there is also a positive effect on on-time performance. These results suggest that

competition affects carriers' padding practices more through on-time arrival statistics and

passengers perception of carriers' reliability, rather than through screen presence in the

reservation systems.

The estimates of the arrival time indicator variable coefficients show that flights

scheduled to arrive during the morning and the evening peaks have more buffer compared to the
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rest of the flights. While morning and evening flights are similarly padded in January and

November, flights in August have more buffer during the evening peak compared to the morning.

We attribute this difference to two reasons: (1) to the increase in the number of evening

operations during August, and (2) to the frequent evening thunderstorms during the summer

season. However, despite the fact that evening flights are padded the most, they are also less

likely to arrive on time.

Last, out findings suggest that buffer is associated with an increase in on-time

performance. Particularly, 10 additional minutes of buffer increase the percentage of flights that

arrive on time by approximately 2%. Although longer flights suffer from a larger uncertainty,

usually on-time performance does not decrease with distance. This is explained, first, by the fact

that carriers add more buffer in longer flights, and second, because pilots often speed up the

aircraft when a flight departs late. The benefits of the latter can be significant in long-haul flights,

but are negligible in short flights.

Summarizing, this chapter's analysis confirmed most of the assumptions we formulated

in chapter 4. Moreover, it helped us quantify the impact of the studied factors on padding and

understand how these are associated with carriers' on-time performance.
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Chapter 6

Conclusions

6.1 Summary of Findings

The main objective of this thesis was to study the variability in flight time components

and shed light on the padding practices that U.S. carriers use to improve their schedule reliability.

For this purpose, we extracted and analyzed individual flights on 2,359 U.S. domestic non-stop

directional routes, served by 40 U.S. carriers. Our dataset accounted in total for 59% of the

domestic commercial flights in 2009. In Chapter 1, we presented a set of key questions on which

we wanted to concentrate our research. After performing and presenting the analysis in Chapters

4 and 5, we can now respond to these questions and summarize our findings:
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e What is the magnitude of variability in the different flight segments? How do carriers adjust

their schedule with respect to them?

Flight times experience a very large uncertainty, which is driven by periodic and

stochastic factors. Periodic factors are the season of the year, the time of day and the day of week.

Stochastic factors include the weather, flight path, runway configuration, gate assignments,

aircraft and crew delays from previous flights, as well as airline operations such as boarding

processing, fueling, baggage handling, catering, and aircraft maintenance issues. Each factor

influences the flight time components differently, causing distinct levels of variation.

Gate delays are the most variable, followed by airborne and taxi-out times. Delays during

the taxi-in process are very limited, with the exception of few airports such as JFK and LGA. The

results of the regression models in Chapter 5 suggest that airlines schedule their block times

based on their past performance and their expectations of the four flight time components.

Airborne and taxi-out times are estimated to be the most significant, with airlines adding on

average 0.5 - 0.8 minutes of buffer for every ten minutes of airborne time, and 3.6 - 7.2 minutes

for every minute of taxi-out time. Gate delays and taxi-in times have a smaller impact in

determining the schedule buffer, with airlines adding approximately 2 to 3 minutes for every ten

minutes of taxi-in times or delays at gate. However, the effect of each time component on buffer

varies strongly across months and different routes.

e What is the relationship between buffer and stage length? Does stage length influence the

likelihood of a flight to arrive on time?

Stage length is one the most significant parameters affecting buffer. In general, carriers

increase buffer with route distance. In other words, all else being equal, a long-haul flight will

have more buffer than a short-haul flight. The reason is that the longer the flight distance, the

larger the exposure of the aircraft to variable weather conditions, thus the more likely that the

flight will suffer airborne delays. On the other hand, buffer as a fraction of nominal block time

decreases exponentially with distance. This happens for two reasons: First, airborne delays do not

increase proportionally to distance. Second, on longer flights, some delays can be absorbed by

increasing the aircraft speed.

Moreover, the effect of distance to airborne delays, and consequently to buffer, is highly

related to route direction and season. Jet streams have a larger impact on west-east and east-west
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flights compared to south-north and north-south flights. In addition, this results in bigger seasonal

differences in airborne times on west-east and east-west routes, meaning that carriers have to

make larger adjustments to their scheduled block times from month-to-month to account for

changes in jet streams.

Although the regression models in Chapter 5 do not provide enough evidence of

correlation between distance and on-time performance, the analysis we performed in Section

4.3.8 based on the number of flights that an aircraft flies on the same day, suggests that on-time

performance decreases with distance.

e Do carriers adjust their scheduled block times over the course of the day?

During a day, airline operations can be affected by delay propagation throughout airline

networks and changes in traffic volume. To minimize the effect of these factors on their on-time

performance, carriers often schedule distinct block times for flights on the same route that operate

at different hours. This results in large buffer fluctuation over the course of the day. Particularly,

flights scheduled to arrive during the morning and the evening peaks have more buffer compared

to the rest of the flights. Despite the adjustments in block times, on-time performance deteriorates

over the course of the day, with evening flights being the least likely to arrive on time. The reason

is that the dispersion of delay distributions increases with time of day, hence it is more difficult to

achieve high reliability.

e What is the impact of a flight's relative position to other flights operated on the same day by

the same aircraft on delay components, buffer and on-time performance?

Gate and arrival delays increase almost linearly as the number of flights previously flown

on the same day by the same aircraft grows. This happens because, first, delays propagate

downstream to next flights, and second, because there is more congestion in the evening hours.

Airborne delays, scheduled block times and buffer remain almost constant, whereas taxi-out times

fluctuate strongly. Moreover, the first aircraft flight has on average a longer taxi-out time and

block delay than subsequent flights, due to the morning peak in departing operations. Regarding

on-time performance, it is highly correlated to gate delays and deteriorates as the flight's relative

position in the aircraft's daily schedule becomes later in the day.
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e What are the differences in buffer and scheduled turn-around times between flights in or out

from hubs, compared to other airports?

Poor on-time performance in hub networks may be associated with a higher cost for

airlines and passengers, as it often results in more missed connections. Our analysis shows that

flights destined to the carrier's hubs have more buffer than flights destined to other airports.

Moreover, flights during connecting banks at hubs have longer turn-around times, as opposed to

flights departing from spoke cities. Regarding departures from the carrier's hubs, there is no

evidence of consistent schedule padding differentiation from other flights. Last, on-time

performance does not appear to be related to whether an airport is hub or not.

e To what extent do Ground Delay Programs affect a carrier's decision regarding buffer?

Ground Delay Programs are responsible for a large proportion of the variation in gate

delays and taxi-out times on many domestic routes, with the rationale behind them being that it is

more convenient and less expensive for flights to experience unavoidable delays on the ground

rather than en route. Our analysis suggests that airlines do not adjust buffer to account specifically

for them because it is impossible to predict the impact of GDPs on individual flights on specific

days. However, when GDPs are initiated frequently on a route, they cause a significant increase

in gate delays and taxi-out times. Therefore, they indirectly affect the amount of schedule buffer

when carriers take into account the length and variability in taxi-out times and gate delays in

determining scheduled block times.

e Are there differences in schedule padding practices and on-time performance across

carriers?

Among the four carrier groups we studied, i.e. Southwest, Legacy carriers, LCCs and

OTHERs, Southwest pads its schedule the most, achieving one of the highest on-time arrival

ratings in the industry (at least in 2009, the focus year). On the other hand, other low cost carriers

use on average the shortest buffer, a practice that results in lower on-time performance. Legacy

carriers follow similar padding practices with OTHERs. Their on-time performance is close to the

industry's average and fluctuates strongly during the year, driven mostly by changes in buffer,

weather and traffic.
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* How does the number of competitors on a route affect carriers' padding and on-time

performance?

According to the developed regression models, buffer increases with the number of

carriers competing on the same route. When more than three airlines compete on the same route,

there is also a positive effect on on-time performance. These results support the findings of

previous studies that on-time performance is positively correlated to competition. Furthermore,

they suggest that competition affects carriers' padding practices more through on-time arrival

statistics and passengers' perception of their reliability, rather than through screen presence in the

reservation systems.

6.2 Future Research

Flight delays and on-time performance are very sensitive to weather conditions and vary

significantly across years and seasons. Airlines adjust constantly their scheduled block times

based on their past on-time performance and changes in their fleet, schedule and network. Hence

the results of the regression models discussed in Chapter 5 should not be extended over time.

Updating this research periodically is very essential for tracking changes in airlines schedule

padding practices and understanding how airlines respond to past on-time arrival statistics.

One of the limitations of this research is the fact that we did not account for the use of

different aircraft types on the same route. If a carrier consistently assigns distinct aircraft types on

flights scheduled at different hours on one route, it would be more appropriate to compute

separate nominal airborne times for each type. However, given the very large size of our dataset,

the impact of aircraft speed on the estimation of buffer was considered insignificant and thus was

not taken into account.

Furthermore, a more extensive econometric analysis may be performed by introducing

weather information, such as VFR versus IFR conditions, and airport concentration levels, like

the Herfindahl-Hirschman Index. We expect that both these factors affect significantly carriers'

padding practices, and thus incorporating them into the regression models could explain much of

the variability in buffer. Beyond that, it would also be of great interest to examine the

implications of on-time performance to market share and revenues.
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Last, every minute of buffer is associated with different costs and benefits for each

carrier, even if there are commonalities among them, e.g. legacy versus low cost carriers.

Therefore, for evaluating carriers' choices regarding padding, one should also examine their

network structure, operating cost, passengers' type, and restrictions in fleet, crew and gates.

Unfortunately, not all of these data are publicly available, and such an analysis could only be

conducted at an individual carrier level.
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