Congruence of integers

We will spend very little time on congruence, and this brief outline is intended as a review.

We fix a prime integer \(p \), and we denote by \(H \) the subgroup \(p\mathbb{Z} \) of \(\mathbb{Z}^+ \).

- If \(a, a' \) be integers, then \(a \) is congruent to \(a' \) (modulo \(p \)) if \(n \) divides \(a - a' \).

If \(a \) is congruent to \(a' \), one writes \(a \equiv a' \), adding “modulo \(p \)” in ambiguous situations. Congruence is an equivalence relation. The equivalence classes for congruence are called congruence classes. They partition the set of integers.

- The congruence class of an integer \(a \) is the additive coset \(\overline{a} = a + H \).

Every congruence class contains just one integer \(r \) with \(0 \leq r < p \). The \(p \) congruence classes form a set for which there are two standard notations:

\[
\mathbb{Z}/p\mathbb{Z} = \mathbb{F}_p = \{\overline{0}, \overline{1}, ..., \overline{p-1}\}.
\]

- If \(a \equiv a' \) and \(b \equiv b' \) then \(a + b \equiv a' + b' \), \(-a \equiv -a' \), and \(ab \equiv a'b' \).

It follows that one can add, subtract and multiply congruence classes, using addition and multiplication of integers:

\[
\overline{a} + \overline{b} = \overline{a+b} \quad \overline{-a} = -\overline{a} \quad \overline{ab} = \overline{ab}.
\]

Rules such as the associative, commutative, and distributive laws carry over to congruence classes.

Let’s verify that if \(a \equiv a' \) and \(b \equiv b' \), then \(ab \equiv a'b' \). We suppose that \(p \) divides \(a - a' \) and \(b - b' \), and we must show that \(p \) also divides \(ab - a'b' \). A bit of experimenting gives the identity \(ab - a'b' = a(b - b') + (a - a')b' \).

Both terms on the right side are divisible by \(p \).

Next comes the first really interesting fact about congruence, and also the first place where the assumption that \(p \) is a prime is essential.

- Every congruence class \(\overline{a} \) different from \(\overline{0} \) has a multiplicative inverse.

Since \(\mathbb{F}_p \) is closed under the four operations \(+, -, \times, \div \), it is a field. The set \(\mathbb{F}_p^* = \mathbb{F}_p - \{\overline{0}\} \) of nonzero congruence classes, with multiplication as law of composition, forms a group of order \(p - 1 \).

The fact that a nonzero class is invertible is a consequence of the cancellation law:

- If \(\overline{a} \neq \overline{0} \) then \(\overline{a} \overline{b} = \overline{a} \overline{c} \) implies \(\overline{b} = \overline{c} \).

Proof. We bring the term \(\overline{a} \overline{b} \) over to the left side. Let \(\overline{d} = \overline{b} - \overline{a} \). Then what has to be proved is: If \(\overline{a} \neq \overline{0} \) and \(\overline{a} \overline{d} = \overline{0} \), then \(\overline{d} = \overline{0} \). In terms of congruences, if \(a, d \) are integers such that \(ad \equiv 0 \) but \(a \neq 0 \), then \(d \equiv 0 \). Or, if \(p \) divides \(ad \) but \(p \) does not divide \(a \), then \(p \) divides \(d \). This is proved in the handout on greatest common divisor.

We now prove that that a multiplicative inverse exists. Let \(\overline{a} \) be a congruence class different from zero. We consider the sequence of powers of \(\overline{a} \):

\[
\overline{a}, \overline{a}^2, \overline{a}^3,
\]

Because there are finitely many congruence classes, there must be repetitions on this list. So there are positive integers \(i, j \) with \(i < j \) such that \(\overline{a}^i = \overline{a}^j \). We cancel \(\overline{a}^i \), obtaining a relation \(\overline{1} = \overline{a}^{j-i} \), where \(r = j - i \). Then \(\overline{a}^{-1} \) is the inverse of \(\overline{a} \). □

Fall 2006
Example: Say that \(p = 13 \). The powers of \(2 \) are
\[
\begin{align*}
2^1 &= 2, & 2^2 &= 4, & 2^3 &= 8, & 2^4 &= 16 = \overline{3}, & 2^5 &= 6, & 2^6 &= 12, \\
2^7 &= \overline{11}, & 2^8 &= \overline{3}, & 2^9 &= \overline{5}, & 2^{10} &= \overline{10}, & 2^{11} &= 7, & 2^{12} &= 1.
\end{align*}
\]

The inverse of \(2 \) is \(2^{11} = \overline{7} \). We would have found this out more quickly by guessing. But I computed the powers to illustrate something else that is very interesting: The element \(2 \) has order 12 in the group \(\mathbb{F}_{13}^\times \). This group also has order 12, so it is a cyclic group, generated by the congruence class \(2 \).

Another example: Let \(p = 7 \). Then \(2^2 = 4, \quad 2^3 = \overline{8} = \overline{1} \). The class \(2 \) has order 3, so it does not generate \(\mathbb{F}_7^\times \). However,
\[
\begin{align*}
3^1 &= 3, & 3^2 &= \overline{2}, & 3^3 &= \overline{6}, & 3^4 &= \overline{4}, & 3^5 &= \overline{5}, & 3^6 &= \overline{1}.
\end{align*}
\]

The group \(\mathbb{F}_7^\times \) is a cyclic group of order 6, generated by the class \(3 \).

It is a fact that for every prime \(p \), \(\mathbb{F}_p^\times \) is a cyclic group. This is proved in the handout on the multiplicative group.