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18.701 October 2007
ISOMETRIES

By definition, an isometry of R™ is a distance-preserving map m : R™ — R", a map such that
Im(v) —m(w)| = v —w|

for all v and w in R™. To simplify notation, let v’ to stand for m(v). Then the distance-preserving property
of m reads
v —w'| =|v—w| forall v,weR"

Translations t,, defined by t,(x) = x + a, and orthogonal linear operators, are examples of isometries. The
composition of two isometries is an isometry.

Theorem 1. If an isometry of R™ fizes the origin, then it is an orthogonal linear operator.
Theorem 2. Every isometry of R™ is the composition of an orthogonal linear operator and a translation.

Theorem 3. The orthogonal linear operators on R? with determinant 1 are the rotations about axes through
the origin.

This very neat proof of Theorem 1 was found a few years ago by Sharon Hollander, a student in 18.701.

Lemma 1. Let z and y be vectors in R™. If the three dot products (x - ), (x -y), (y-y) are equal, then
T =1y.

Proof. Suppose that (z-z) = (z-y) = (y - y). To show that z = y, it suffices to show that the length of the
vector & — y is zero. This is seen by expanding |z — y|*:

(z-y)-(@-y)=(@2)-2@-y)+(@y-y)=0 O

Lemma 2. An isometry that fizes the origin preserves dot products, i.e., for allv,w € R™, (v'-w') = (v-w).

Proof. Since |[v/ —w'| = |[v — w|,

(*) (v =) (v = w)) = ((v-w) (v-w))
for all v, w. Since 0’ = 0 by hypothesis, setting w = 0 shows that (v'-v") = (v-v). Similarly, (w'-w") = (w-w).
The lemma follows by expanding (*) and cancelling (v - v) and (w - w) from the two sides. O

Proof of Theorem 1. The fact that m is orthogonal will follow from Lemma 2, once we show that it is a
linear operator.

We show first that m(u + v) = m(u) +m(v) for all v and v in R™. Let’s introduce a symbol for u + v, say
w = u + v. Using our prime notation, the relation to be shown becomes w’' = v’ + v'.

We substitute x = w’ and y = v’ + v’ into Lemma 1. To show that w’ = w' + ¢/, it suffices to show that
(w W), (W - (v +v")), and ((v' + ') - (' 4 v')) are equal, or that

(w-w') =W - u)+ @)= @)+ 20 )+ (D).
Lemma 2 allows us to drop the primes from these dot products. It suffices to show that

(w-w)=(w-u)+ (w-v)=(u-u)+2u-v)+ (v-v).



Now whereas w’ = u’ + v’ was to be shown, w = u + v is true by definition. So these equalities follow by
expanding the dot products.

To show that m is a linear operator, we must also show that m(cv) = em(v) for all v € R™ and all scalars c.
Writing w = cv, we must show that w’ = cv’. The proof is similar. O

Proof of Theorem 2. Let m be an isometry, and let a = m(0). We claim that m = t, for some orthogonal
operator ¢. This formula is equivalent with t_,m = ¢, which determines p. So we must show that t_,m
is an orthogonal linear operator. Since it is the composition of two isometries, t_,m is an isometry, and it
fixes the origin. So Theorem 2 follows from Theorem 1. |

The next lemma is Chapter 4, Lemma 5.23 of the text.
Lemma 3. An orthogonal linear operator with determinant 1 has 1 as an eigenvalue. ]

Lemma 4. An orthogonal linear operator on R3 with determinant 1, and which fizes two linearly independent
vectors vy, va, 1S the identity operator.

Proof. Let p denote the operator. Let vz be a vector orthogonal to both v, and vs. Because the operator is
orthogonal, puvs is also orthogonal to v; = pv; and to ve. Also, pvs has the same length as vs. So pvs + v3.
In the basis (v1, va, v3), the matrix of the operator becomes

1 0 O
A=10 1 0
0 0 =+1
Since the determinant is +1, the sign of the bottom entry is +, and p is the identity. O

Proof of Theorem 3. We need a definition of a rotation p. We make three requirements:
e p is an isometry which fixes the origin,
e p fixes a nonzero vector v, and
e p rotates the plane orthogonal to v through an angle 6.

Let p be a rotation. By Theorem 1, p is an orthogonal linear operator. Its determinant is £1. The
determinant varies continuously with the angle of rotation #, and it is +1 when the angle is zero. Therefore
it is 41 for all 6.

Conversely, let p be an orthogonal linear operator with determinant 1. By Lemma 3, there is an eigenvector
v1 such that pv; = vy.

We choose a nonzero vector vy orthogonal to vi. Because the operator is orthogonal, pvs is orthogonal to
pv1 = v1, and it has the same length as v2. So ve and pvy are vectors of equal length in the plane orthogonal
to v;. There is a rotation p about the axis v; which carries vy to pva. Then p~'p fixes both v; and
vy. Moreover, being a composition of orthogonal operators with determinant 1, p~'p is also an orthogonal
operator with determinant 1. By Lemma 4, p~!p is the identity, and p = p. O





