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18.701 October 2007 
ISOMETRIES 

By definition, an isometry of Rn is a distance-preserving map m : Rn � Rn, a map such that 

|m(v) − m(w)| = |v − w| 

for all v and w in Rn . To simplify notation, let v� to stand for m(v). Then the distance-preserving property 
of m reads 

|v � − w �| = |v − w| for all v, w � Rn . 

Translations ta, defined by ta(x) = x + a, and orthogonal linear operators, are examples of isometries. The 
composition of two isometries is an isometry. 

Theorem 1. If an isometry of Rn fixes the origin, then it is an orthogonal linear operator. 

Theorem 2. Every isometry of Rn is the composition of an orthogonal linear operator and a translation. 

Theorem 3. The orthogonal linear operators on R3 with determinant 1 are the rotations about axes through 
the origin. 

This very neat proof of Theorem 1 was found a few years ago by Sharon Hollander, a student in 18.701. 

Lemma 1. Let x and y be vectors in Rn . If the three dot products (x · x), (x · y), (y · y) are equal, then 
x = y. 

Proof. Suppose that (x · x) = (x · y) = (y · y). To show that x = y, it suffices to show that the length of the 
vector x − y is zero. This is seen by expanding |x − y|2: 

((x − y) · (x − y)) = (x · x) − 2(x · y) + (y · y) = 0. � 

Lemma 2. An isometry that fixes the origin preserves dot products, i.e., for all v, w � Rn , (v� ·w�) = (v ·w). 

Proof. Since |v� − w�| = |v − w|, 

(*) ((v � − w �) · (v � − w �)) = ((v − w) · (v − w)) 

for all v, w. Since 0� = 0 by hypothesis, setting w = 0 shows that (v� ·v�) = (v ·v). Similarly, (w� ·w�) = (w ·w). 
The lemma follows by expanding (*) and cancelling (v · v) and (w · w) from the two sides. � 

Proof of Theorem 1. The fact that m is orthogonal will follow from Lemma 2, once we show that it is a 
linear operator. 

We show first that m(u + v) = m(u) + m(v) for all u and v in Rn . Let’s introduce a symbol for u + v, say 
w = u + v. Using our prime notation, the relation to be shown becomes w� = u� + v� . 

We substitute x = w� and y = u� + v� into Lemma 1. To show that w� = u� + v�, it suffices to show that 
(w� · w�), (w� · (u� + v�)), and ((u� + v�) · (u� + v�)) are equal, or that 

(w � · w �) = (w � · u �) + (w � · v �) = (u � · u �) + 2(u � · v �) + (v � · v �). 

Lemma 2 allows us to drop the primes from these dot products. It suffices to show that 

(w · w) = (w · u) + (w · v) = (u · u) + 2(u · v) + (v · v). 
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Now whereas w� = u� + v� was to be shown, w = u + v is true by definition. So these equalities follow by 
expanding the dot products. 

To show that m is a linear operator, we must also show that m(cv) = cm(v) for all v � Rn and all scalars c. 
Writing w = cv, we must show that w� = cv� . The proof is similar. � 

Proof of Theorem 2. Let m be an isometry, and let a = m(0). We claim that m = ta� for some orthogonal 
operator �. This formula is equivalent with t−am = �, which determines �. So we must show that t−am 
is an orthogonal linear operator. Since it is the composition of two isometries, t−am is an isometry, and it 
fixes the origin. So Theorem 2 follows from Theorem 1. � 

The next lemma is Chapter 4, Lemma 5.23 of the text. 

Lemma 3. An orthogonal linear operator with determinant 1 has 1 as an eigenvalue. � 

Lemma 4. An orthogonal linear operator on R3 with determinant 1, and which fixes two linearly independent 
vectors v1, v2, is the identity operator. 

Proof. Let p denote the operator. Let v3 be a vector orthogonal to both v1 and v2. Because the operator is 
orthogonal, pv3 is also orthogonal to v1 = pv1 and to v2. Also, pv3 has the same length as v3. So pv3 ± v3. 
In the basis (v1, v2, v3), the matrix of the operator becomes 

⎝ � 
1 0 0 

A = � 0 1 0 � . 
0 0 ±1 

Since the determinant is +1, the sign of the bottom entry is +, and p is the identity. � 

Proof of Theorem 3. We need a definition of a rotation �. We make three requirements: 
• � is an isometry which fixes the origin, 
• � fixes a nonzero vector v, and 
• � rotates the plane orthogonal to v through an angle �. 

Let � be a rotation. By Theorem 1, � is an orthogonal linear operator. Its determinant is ±1. The 
determinant varies continuously with the angle of rotation �, and it is +1 when the angle is zero. Therefore 
it is +1 for all �. 

Conversely, let p be an orthogonal linear operator with determinant 1. By Lemma 3, there is an eigenvector 
v1 such that pv1 = v1. 

We choose a nonzero vector v2 orthogonal to v1. Because the operator is orthogonal, pv2 is orthogonal to 
pv1 = v1, and it has the same length as v2. So v2 and pv2 are vectors of equal length in the plane orthogonal 
to v1. There is a rotation � about the axis v1 which carries v2 to pv2. Then �−1p fixes both v1 and 
v2. Moreover, being a composition of orthogonal operators with determinant 1, �−1p is also an orthogonal 
operator with determinant 1. By Lemma 4, �−1 p is the identity, and p = �. � 




