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Search for b ! u transitions in B� ! ½K����0�DK� decays
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We present a study of the decays B� ! DK� with D mesons reconstructed in the Kþ���0

or K��þ�0 final states, where D indicates a D0 or a �D0 meson. Using a sample of 474� 106 B �B

pairs collected with the BABAR detector at the PEP-II asymmetric-energy eþe� collider at SLAC,
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we measure the ratios R� � �ðB�!½K����0�DK�Þ
�ðB�!½K����0�DK�Þ . We obtain Rþ ¼ ð5þ12

�10ðstatÞþ2
�4ðsystÞÞ � 10�3 and R� ¼

ð12þ12
�10ðstatÞþ3

�5ðsystÞÞ � 10�3, from which we extract the upper limits at 90% probability: Rþ < 23� 10�3

and R� < 29� 10�3. Using these measurements, we obtain an upper limit for the ratio rB of the

magnitudes of the b ! u and b ! c amplitudes rB < 0:13 at 90% probability.

DOI: 10.1103/PhysRevD.84.012002 PACS numbers: 13.25.Hw, 14.40.Nd

I. INTRODUCTION

CP violation effects are described in the standard model
of elementary particles with a single phase in the Cabibbo-
Kobayashi-Maskawa quark mixing matrix Vij [1]. One of

the unitarity conditions for this matrix can be interpreted as
a triangle in the plane ofWolfenstein parameters [2], where
one of the angles is � ¼ argf�V�

ubVud=V
�
cbVcdg. Various

methods to determine � using Bþ ! DKþ decays have
been proposed [3–5]. In this paper, we consider the decay
channel Bþ ! DKþ with D ! K��þ�0 [6] studied
through the Atwood-Dunietz-Soni (ADS) method [4]. In
this method, the final state under consideration can be
reached through b ! c and b ! u processes as indicated
in Fig. 1 that are followed by either Cabibbo-favored or
Cabibbo-suppressed D0 decays. The interplay between
different decay channels leads to a possibility to extract
the angle � alongside with other parameters for these
decays.

Following the ADS method, we search for Bþ !
½K��þ�0�DKþ events, where the favored Bþ ! �D0Kþ
decay, followed by the doubly-Cabibbo-suppressed
�D0 ! K��þ�0 decay, interferes with the suppressed
Bþ ! D0Kþ decay, followed by the Cabibbo-favored
D0 ! K��þ�0 decay. These are called ‘‘opposite-sign’’
events because the two kaons in the final state have oppo-
site charges. We also reconstruct a larger sample of ‘‘same-
sign’’ events, which mainly arise from the favored
Bþ ! �D0Kþ decays followed by the Cabibbo-favored
�D0 ! Kþ���0 decays. We define f � Kþ���0 and
�f � K��þ�0. We extract

Rþ ¼ �ðBþ ! ½ �f�DKþÞ
�ðBþ ! ½f�DKþÞ ; (1)

R� ¼ �ðB� ! ½f�DK�Þ
�ðB� ! ½ �f�DK�Þ (2)

from the selected Bþ and B� samples, respectively.
While our previous analysis [7] used another set of

observables:

RADS � �ðBþ ! ½ �f�DKþÞ þ �ðB� ! ½f�DK�Þ
�ðBþ ! ½f�DKþÞ þ �ðB� ! ½ �f�DK�Þ ; (3)

AADS � �ðB� ! ½f�DK�Þ � �ðBþ ! ½ �f�DKþÞ
�ðBþ ! ½ �f�DKþÞ þ �ðB� ! ½f�DK�Þ ; (4)

we prefer to use observables defined in Eqs. (1) and (2)
since their statistical uncertainties, which dominate in the
final error of this measurement, are uncorrelated.
The amplitude of the two-bodyB decay can bewritten as

AðBþ ! D0KþÞ ¼ jAðBþ ! �D0KþÞjrBei�ei�B ; (5)

where rB � jAðBþ!D0KþÞj
jAðBþ! �D0KþÞj is the ratio of the magnitudes of

the b ! u and b ! c amplitudes, �B is the CP conserving
strong phase, and � is the CP violating weak phase. For the
three-body D decay we use similarly defined variables:

r2D � �ðD0 ! fÞ
�ðD0 ! �fÞ ¼

R
d ~mA2

DCSð ~mÞR
d ~mA2

CFð ~mÞ ; (6)

kDe
i�D �

R
d ~mADCSð ~mÞACFð ~mÞei�ð ~mÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
d ~mA2

DCSð ~mÞR d ~mA2
CFð ~mÞ

q ; (7)

where ACFð ~mÞ and ADCSð ~mÞ are the magnitude of the
Cabibbo-favored (CF) and doubly-Cabibbo-suppressed
(DCS) amplitudes, respectively, �ð ~mÞ is the relative strong
phase, and ~m indicates a position in the D Dalitz plot of
squared invariant masses ½m2

K�;m
2
K�0�. The parameter kD,

called the coherence factor, can take values in the interval
[0, 1].
Neglecting D-mixing effects, which in the standard

model give negligible corrections to � and do not affect
the rB measurement, the ratios Rþ and R� are related to the
B- and D-mesons’ decay parameters through the following
relations:

Rþ ¼ r2B þ r2D þ 2rBrDkD cosð�þ �Þ; (8)

R� ¼ r2B þ r2D þ 2rBrDkD cosð�� �Þ; (9)

with � ¼ �B þ �D. The values of kD and �D measured by
the CLEO-c Collaboration [8], kD ¼ 0:84� 0:07 and

b
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FIG. 1. Feynman diagrams for Bþ ! �D0Kþ (top, �b ! �c tran-
sition) and Bþ ! D0Kþ (bottom, �b ! �u transition).
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�D ¼ ð47þ14
�17Þ�, are used in the signal yield estimation

and rB extraction. The ratio rD has been measured in
different experiments and we take the average value r2D ¼
ð2:2� 0:1Þ � 10�3 [9]. Its value is small compared to the
present determination of rB, which is taken to be (0:106�
0:016) [10]. According to Eqs. (8) and (9), this implies that
the measurements of ratios R� are mainly sensitive to rB.
For the same reason, the sensitivity to � is reduced, and
therefore the main aim of this analysis is to measure Rþ,
R�, and rB. The current high precision on rB is based on
several earlier analyses by the BABAR [7,11–13], BELLE
[14–16], and CDF [17] Collaborations.

This paper is an update of our previous analysis [7]
based on 226� 106 B �B pairs and resulting in a measure-
ment of RADS ¼ ð13þ12

�10Þ � 10�3, which was translated

into the 95% confidence level limit rB < 0:19.
The results presented in this paper are obtained with

431 fb�1 of data collected at the �ð4SÞ resonance with the
BABAR detector at the PEP-II eþe� collider at SLAC,
corresponding to 474� 106 B �B pairs. An additional ‘‘off-
resonance’’ data sample of 45 fb�1, collected at a center-
of-mass (CM) energy 40 MeV below the �ð4SÞ resonance,
is used to study backgrounds from ‘‘continuum’’ events,
eþe� ! q �q (q ¼ u, d, s, or c).

II. EVENT RECONSTRUCTION AND SELECTION

The BABAR detector is described in detail elsewhere
[18]. Charged-particle tracking is performed by a five-layer
silicon vertex tracker and a 40-layer drift chamber. In
addition to providing precise position information for
tracking, the silicon vertex tracker and drift chamber mea-
sure the specific ionization, which is used for identification
of low-momentum charged particles. At higher momenta,
pions and kaons are distinguished by Cherenkov radiation
detected in a ring-imaging device. The positions and ener-
gies of photons are measured with an electromagnetic
calorimeter consisting of 6580 thallium-doped CsI crys-
tals. These systems are mounted inside a 1.5 T solenoidal
superconducting magnet. Muons are identified by the in-
strumented flux return, which is located outside the
magnet.

The event selection is based on studies of off-resonance
data and Monte Carlo (MC) simulations of continuum
and eþe� ! �ð4SÞ ! B �B events. The BABAR detector
response is modeled with GEANT4 [19]. We also use
EVTGEN [20] to model the kinematics of B meson decays

and JETSET [21] to model continuum background pro-
cesses. All selection criteria are optimized by maximizing

the S=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Sþ B

p
ratio, where S and B are the expected

numbers of the opposite-sign signal and background
events, respectively. In the optimization, we assume an
opposite-sign branching fraction of 4� 10�6 [9].

The charged kaon and pion identification criteria are
based on a likelihood technique. These criteria are typi-
cally 85% efficient, depending on the momentum and polar

angle, with misidentification rates at the 2% level. The
�0 candidates are reconstructed from pairs of photon
candidates with an invariant mass in the interval
½119; 146� MeV=c2 and with total energy greater than
200 MeV. Each photon should have energy greater than
70 MeV.
The neutral D meson candidates are reconstructed from

a charged kaon, a charged pion, and a neutral pion. The
correlation between the tails in the distribution of the
K��0 invariant mass, mD, and the �0 candidate mass,
m�0 , is taken into account by requiring jmD �m�0 j to be
within 24 MeV=c2 of its nominal value [9], which is 1.5
times the experimental resolution.
The Bþ candidates are reconstructed by combining D

and Kþ candidates, and constraining them to originate
from a common vertex. The probability distribution of the
cosine of the B polar angle with respect to the beam axis in
the CM frame, cos�B, is expected to be proportional to
(1� cos2�B). We require j cos�Bj< 0:8.
We measure two almost independent kinematic

variables: the beam-energy substituted (ES) mass mES �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs=2þ ~p0 	 ~pBÞ2=E2

0 � pB
2

q
, and the energy difference

�E � EB � ffiffiffi
s

p
=2, where E and ~p are the energy and

momentum, the subscripts B and 0 refer to the candidate
B meson and eþe� system, respectively,

ffiffiffi
s

p
is the center-

of-mass energy, and EB is measured in the CM frame. For
correctly reconstructed B mesons, the distribution of mES

peaks at the B mass, and the distribution of �E peaks at
zero. TheB candidates are required to have�E in the range
½�23; 23� MeV (� 1:3 standard deviations). We consider
only events with mES in the range ½5:20; 5:29� GeV=c2.
In less than 2% of the events, multiple Bþ candidates are

present, and in these cases we choose that with a recon-
structed D mass closest to the nominal mass value [9]. If
more than one Bþ candidate share the same D candidate,
we select that with the smallest j�Ej. In the following, we
refer to the selected candidate as Bsig. All charged and

neutral reconstructed particles not associated with Bsig, but

with the other B decay in the event, Bother, are called the
rest of the event.

III. BACKGROUND CHARACTERIZATION

After applying the selection criteria described above, the
remaining background is composed of nonsignal B �B
events and continuum events. Continuum background
events, in contrast to B �B events, are characterized by a
jetlike topology. This difference can be exploited to dis-
criminate between the two categories of events by means
of a Fisher discriminant F , which is a linear combination
of six variables. The coefficients of the linear combination
are chosen to maximize the separation between signal and
continuum background so that F peaks at 1 for signal and
at �1 for continuum background. They are determined
with samples of simulated signal and continuum events,
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and validated using off-resonance data. In the Fisher dis-
criminant, we use the absolute value of the cosine of the
angle between Bsig and Bother thrust axes, where the thrust

axis is defined as the direction maximizing the sum of the
longitudinal momenta of all the particles. Other variables
included in F are the event shape moments L0 ¼ P

ipi,
and L2 ¼ P

ipij cos�ij2, where the index i runs over all
tracks and energy deposits in the rest of the event; pi is the
momentum; and �i is the angle with respect to the thrust
axis of the Bsig. These three variables are calculated in the

CM system. We also use the distance between the decay
vertices of Bsig and D, the distance of closest approach

between K meson tracks belonging to signal decay chain,
and j�tj, the absolute value of the proper time interval
between the Bsig and Bother decays [22]. The latter is cal-

culated using the measured separation along the beam
direction between the decay points of Bsig and Bother and

the Lorentz boost of the CM frame. The Bother decay point
is obtained from tracks that do not belong to the recon-
structed Bsig, with constraints from the Bsig momentum and

the beam-spot location. We use mES and F to define two
regions: the fit region, defined as 5:20<mES <
5:29 GeV=c2 and �5<F < 5, and the signal region,
defined as 5:27<mES < 5:29 GeV=c2 and 0<F < 5.

The B �B background is divided into two components:
nonpeaking (combinatorial) and peaking. The latter con-
sists of B-meson decays that have a well-pronounced peak
in the mES signal region. One of the decay channels which
can mimic opposite-sign signal events, is the Bþ ! D�þ
decay with D ! KþK� and �þ ! �þ�0. In order to
reduce this contribution, we veto events for which the
invariant KþK� pair massmKþK� is jmKþK� �MDðPDGÞj>
20 MeV=c2 (with the D meson invariant mass, MDðPDGÞ,
taken to be 1864:83 MeV=c2 [9]). Simulations indicate
that the remaining background is negligible.

Another possible source of peaking B �B background is
the decay Bþ ! D�þ with D ! Kþ���0, which can
contribute to the signal region of the same-sign sample
due to the misidentification of the�þ as aKþ. The number
of events is expected to be about 8% of the total same-sign
signal sample (see Table I).

The charmless Bþ ! KþK��þ�0 decay can also con-
tribute to the signal region. The branching fraction of this
decay has not been measured. Therefore the size of this

background is estimated from the sidebands of the recon-
structedDmass, 1:904<MD < 2:000 GeV=c2 or 1:700<
MD < 1:824 GeV=c2. The result of the study is reported in
Table I. In the final fit, we fix the yield of the same-sign B �B
peaking background to the sum of charmless and open-
charm events. The opposite-sign background in the final
event sample is assumed to be negligible.
The overall reconstruction efficiency for signal events

is ð9:6� 0:1Þ% for opposite-sign signal events and
ð9:5� 0:1Þ% for same-sign signal events. These numbers
are equal within the uncertainty as expected. The compo-
sition of the final sample is shown in Table I.

IV. FIT PROCEDURE AND RESULTS

To measure the ratios Rþ and R�, we perform extended
maximum-likelihood fits to the mES and F distributions,
separately for the Bþ and B� data samples. We write the
extended likelihood functions L� as

L� ¼ e�N0

N!
	 N0N 	YN

j¼1

f�ðxjj�; N0Þ; with

f�ðxj�;N0Þ ¼ 1

N0

�
R�NB�;total

1þ R� f�sig;osðxj�sig;osÞ

þ NB�;total

1þ R� f�sig;ssðxj�sig;ssÞ

þX
i

N
bkg
Bi

f�Bi
ðxj�Þ

�
;

where fsig;ssðxj�sig;ssÞ, fsig;osðxj�sig;osÞ, and fBi
ðxj�Þ are the

probability density functions (PDFs) of the hypotheses that
the event is a same-sign signal, opposite-sign signal, or a
background event (Bi are the different background catego-
ries used in the fit), respectively, N is the number of events
in the selected sample, and N0 is the expectation value for
the total number of events. The symbol � indicates the set
of parameters to be fitted. NB�;total is the total number of

signal events, R� ¼ Nsig;os

Nsig;ss
for the decays of the B� meson,

and Nbkg
Bi

is the total number of events of each background

component. For the opposite-sign events, the background
comes from continuum and B �B events. The peaking B �B
background is introduced as a separate component in the fit
to the same-sign sample. The fit is performed to the Bþ
sample (consisting of 15 706 events) to determine Rþ and

TABLE I. Composition of the final selected sample as evaluated from the MC samples
normalized to data and from data for the charmless peaking background. The signal contribution
is estimated using values of branching fractions from the PDG [9] and rB ¼ 0:1 [10]. The errors
are from the statistics of the control samples only.

Sample Region Signal B �B nonpeaking Continuum D� Charmless peaking

Same sign Fit 2252� 20 459� 12 7403� 62 176� 14 28� 14
Signal 1921� 18 147� 8 203� 10 130� 14 21� 14

Opposite sign Fit 28:7� 0:2 434� 12 21201� 104 	 	 	 �2� 9
Signal 24:4� 0:2 65� 5 612� 18 	 	 	 �2� 9
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to the B� sample (consisting of 15 057 events) to deter-
mine R�. The PDFs for Rþ and R� fits are identical. The
RADS ratio is fitted to the same likelihood ansatz, but to the
combined Bþ and B� data sample.

Since the correlations among the variables are negli-
gible, we write the PDFs as products of the one-
dimensional distributions of mES and F . The absence of
correlation between these distributions is checked using
MC samples. The signal mES distributions are modeled
with the same asymmetric Gaussian function for both
same-sign and opposite-sign events, while the F distribu-
tion is taken as a sum of two Gaussians. The continuum
background mES distributions for the same and opposite-
sign events are modeled with two different threshold
ARGUS functions [23] defined as follows:

AðxÞ ¼ x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

�
x

x0

�
2

s
	 ecð1�ððxÞ=ðx0ÞÞ2Þ; (10)

where x0 represents the maximum allowed value for the
variable x, and c determines the shape of the distribution.
The mES distribution of the nonpeaking B �B background
components are modeled with crystal ball functions that
are different for same-sign and opposite-sign events [24].
The crystal ball function is a Gaussian modified to include
a power-law tail on the low side of the peak. The F
distributions for the B �B background are approximated
with sums of two asymmetric Gaussians. For the peaking
B �B background, we conservatively use the same parameter
set as for the signal.

The PDF parameters are derived from data when pos-
sible. The parameters for continuum events are determined
from the off-resonance data sample. The parameters for the
mES distribution of signal events are extracted from the

sample of Bþ ! D�þ with D ! Kþ���0, while for the
parameters of the signal Fisher PDF we use the MC sam-
ple. The parameters of nonpeaking B �B distributions are
determined from the MC sample.
From each fit, we extract the ratios Rþ, R�, or RADS, the

total number of signal events in the sample ðNB�;totÞ along
with the nonpeaking background yields and threshold
function slope for the continuum background. We fix the
number of peaking B �B background events.
To test the fitting procedure, we generated 10 000 pseu-

doexperiments based on the PDFs described above. The
fitting procedure is then tested on these samples. We find
no bias in the number of fitted events for any component of
the fit. Tests of the fit procedure performed on the full MC
samples give values for the yields compatible with those
expected.
The main results of the fit to the data are summarized in

Table II.
The fits to the mES for F > 0:5 and the F distribution

with mES > 5:27 GeV=c2 are shown in Fig. 2, for the

TABLE II. Results of fits to the Bþ, B�, and the combined Bþ
and B� samples, including the extracted number of signal and
background events and their statistical errors.

Sample Bþ B� Bþ and B�

R, 10�3 5þ12�10 12þ12�10 9:1þ8:2
�7:6

NB� ;tot 1032� 41 946� 39 1981� 57

N
bkg

B �B;OS
305� 52 120� 36 402� 65

N
bkg

B �B;SS
315� 44 329� 44 644� 62

N
bkg
cont;OS 10290� 111 10017� 105 20329� 154

N
bkg
cont;SS 3660� 69 3539� 68 7203� 76
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FIG. 2 (color online). Distribution of (a,b) mES (with F > 0:5) and (c,d) F (with mES > 5:27 GeV=c2) and the results of the
maximum-likelihood fits for the combined Bþ and B� samples (extracting RADS), for (a,c) opposite-sign and (b,d) same-sign decays.
The data are well described by the overall fit result (solid blue line) which is the sum of the signal, continuum, nonpeaking, and
peaking B �B backgrounds.
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combined Bþ and B� sample. These restrictions reduce the
background and retain most of the signal events. Figure 3
shows the fits for the separate Bþ and B� samples.

V. SYSTEMATIC UNCERTAINTIES

We consider various sources of systematic uncertainties,
listed in Table III. One of the largest contributions comes
from the uncertainties on the PDF parameters. To evaluate
the contributions related to themES andF PDFs, we repeat
the fit varying the PDF parameters for each fit species
within their statistical errors, taking into account correla-
tions among the parameters (labeled as ‘‘PDF error’’ in
Table III).

To evaluate the uncertainties arising from peaking back-
ground contributions, we repeat the fit varying the peaking
B �B background contribution within its statistical uncer-
tainties and the errors of branching fractions, B, used to
estimate the contribution. For the opposite-sign events,
only the positive part of the probability distribution is
used in the evaluation.

Differences between data and MC (labeled as
‘‘Simulation’’ in Table III) in the shape of the F distribu-
tion are studied for signal components using the data
control samples of Bþ ! D�þ with D ! Kþ���0.
These parameters are expected to be slightly different
between the B ! D� and B ! DK samples. We conser-
vatively take the systematic uncertainty as the difference in
the fit results from the nominal parameters set (using MC

events) and the parameters set obtained using the B ! D�
data sample.
The systematic uncertainty attributed to the cross feed

between opposite-sign and same-sign events has been
evaluated from the MC samples. The number of same-
sign events passing the selection of the opposite-sign
events is taken as a systematic uncertainty. The efficiencies
for same-sign and opposite-sign events were verified to be
the same within a precision of 3% [25]. We hence assign a
systematic uncertainty on R� based on variations due to
changes in the efficiency ratio by �3%.
The systematic uncertainties for the ratios Rþ, R�, and

RADS are summarized in Table III. The overall systematic
errors represent the sum in quadrature of the individual
uncertainties.

VI. EXTRACTION OF rB

Following a Bayesian approach [26], the probability
distributions for the Rþ and R� ratios obtained in the fit
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FIG. 3 (color online). Projections of the 2D likelihood for mES with the additional requirement F > 0:5, obtained from the fit to the
Bþ (left) and B� (right) data sample for opposite-sign events (extracting Rþ and R�). The labeling of the curves is the same
as in Fig. 2.

TABLE III. Systematic errors for R� and RADS in units
of 10�3.

Source Rþ R� RADS

PDF error þ1:1
�1:8 1.1 1.0

Same-sign peaking background 0.2 0.5 0.2

Opposite-sign peaking background þ0
�3:6

þ0
�3:6

þ0
�3:4

Simulation 0.6 0.6 0.7

B errors 0.2 0.6 0.4

Cross feed contribution 0.1 0.4 0.3

Efficiency ratio 0.1 0.4 0.3

Combined uncertainty þ1:2
�4:1

þ1:6
�3:9

þ1:4
�3:7

Br

0 0.1 0.2 0.3 0.4 0.5

P
ro

b
ab

ili
ty

 d
en

si
ty

0

0.2

0.4

0.6

0.8

-310×

Br

0 0.1 0.2 0.3 0.4 0.5

P
ro

b
ab

ili
ty

 d
en

si
ty

0

0.2

0.4

0.6

0.8

-310×

Br

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

-310×

FIG. 4 (color online). Bayesian posterior probability density
function for rB from our measurement of Rþ and R� and the
hadronic D decay parameters rD, �D, and kD taken from [8,9].
The dark and light shaded zones represent the 68% and 90%
probability regions, respectively.
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are translated into a probability distribution for rB using
Eqs. (8) and (9) simultaneously. We assume the following
prior probability distributions: for rD a Gaussian with
mean 4:7� 10�2 and standard deviation 3� 10�3 [9]; for
kD and �D, we use the likelihood obtained in Ref. [8],
taking into account a 180 degree difference in the phase
convention for �D; for � and �B we assume a uniform
distribution between 0 and 360 degrees, while for rB a
uniform distribution in the range [0, 1] is used. We obtain
the posterior probability distribution shown in Fig. 4. Since
the measurements are not statistically significant, we inte-
grate over the positive portion of that distribution and
obtain the upper limit rB < 0:13 at 90% probability, and
the range

rB 2 ½0:01; 0:11� at 68% probability; (11)

and 0.078 as the most probable value.

VII. SUMMARY

We have presented a study of the decays B� ! D0K�
and B� ! �D0K�, in which the D0 and �D0 mesons decay
to the K����0 final state using the ADS method. The
analysis is performed using 474� 106 B �B pairs, the full
BABAR data set. Previous results [7] are improved and
superseded by improved event reconstruction algorithms
and analysis strategies employed on a larger data sample.

The final results are

Rþ ¼ ð5þ12
�10ðstatÞþ1

�4ðsystÞÞ � 10�3; (12)

R� ¼ ð12þ12�10ðstatÞþ2�4ðsystÞÞ � 10�3; (13)

RADS ¼ ð9:1þ8:2
�7:6ðstatÞþ1:4

�3:7ðsystÞÞ � 10�3; (14)

from which we obtain 90% probability limits

Rþ < 23� 10�3; (15)

R� < 29� 10�3; (16)

RADS < 21� 10�3: (17)

From our measurements, we derive the limit

rB < 0:13 at 90% probability: (18)
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Particules (France), the Bundesministerium für Bildung
und Forschung and Deutsche Forschungsgemeinschaft
(Germany), the Istituto Nazionale di Fisica Nucleare
(Italy), the Foundation for Fundamental Research on
Matter (The Netherlands), the Research Council of
Norway, the Ministry of Education and Science of the
Russian Federation, Ministerio de Ciencia e Innovación
(Spain), and the Science and Technology Facilities Council
(United Kingdom). Individuals have received support from
the Marie-Curie IEF program (European Union), the A. P.
Sloan Foundation (USA), and the Binational Science
Foundation (USA-Israel).

[1] N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963); M.
Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652
(1973).

[2] L. Wolfenstein, Phys. Rev. Lett. 51, 1945 (1983).
[3] M. Gronau and D. London, Phys. Lett. B 253, 483

(1991); M. Gronau and D. Wyler, Phys. Lett. B 265, 172
(1991).

[4] I. Dunietz, Phys. Lett. B 270, 75 (1991); Z. Phys. C 56,
129 (1992); D. Atwood, G. Eilam, M. Gronau, and
A. Soni, Phys. Lett. B 341, 372 (1995); D. Atwood,
I. Dunietz, and A. Soni, Phys. Rev. Lett. 78, 3257 (1997).

[5] A. Giri, Yu. Grossman, A. Soffer, and J. Zupan, Phys. Rev.
D 68, 054018 (2003).

[6] Charge conjugate processes are assumed throughout the
paper.

[7] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 76,
111101 (2007).

[8] N. Lowrey et al. (CLEO Collaboration), Phys. Rev. D 80,
031105(R) (2009).

[9] K. Nakamura et al. (Particle Data Group), J. Phys. G 37,
075021 (2010).

[10] M. Bona et al. (UTfit Collaboration), J. High Energy Phys.
07 (2005) 028. Updated results available at http://www
.utfit.org/.

[11] P. del Amo Sanchez et al. (BABAR Collaboration), Phys.
Rev. D 82, 072004 (2010).

[12] P. del Amo Sanchez et al. (BABAR Collaboration), Phys.
Rev. D 82, 072006 (2010).

[13] P. del Amo Sanchez et al. (BABAR Collaboration),
Phys. Rev. Lett. 105, 121801 (2010).

SEARCH FOR b ! u TRANSITIONS IN . . . PHYSICAL REVIEW D 84, 012002 (2011)

012002-9

http://dx.doi.org/10.1103/PhysRevLett.10.531
http://dx.doi.org/10.1143/PTP.49.652
http://dx.doi.org/10.1143/PTP.49.652
http://dx.doi.org/10.1103/PhysRevLett.51.1945
http://dx.doi.org/10.1016/0370-2693(91)91756-L
http://dx.doi.org/10.1016/0370-2693(91)91756-L
http://dx.doi.org/10.1016/0370-2693(91)90034-N
http://dx.doi.org/10.1016/0370-2693(91)90034-N
http://dx.doi.org/10.1016/0370-2693(91)91542-4
http://dx.doi.org/10.1007/BF01589716
http://dx.doi.org/10.1007/BF01589716
http://dx.doi.org/10.1016/0370-2693(94)01317-6
http://dx.doi.org/10.1103/PhysRevLett.78.3257
http://dx.doi.org/10.1103/PhysRevD.68.054018
http://dx.doi.org/10.1103/PhysRevD.68.054018
http://dx.doi.org/10.1103/PhysRevD.76.111101
http://dx.doi.org/10.1103/PhysRevD.76.111101
http://dx.doi.org/10.1103/PhysRevD.80.031105
http://dx.doi.org/10.1103/PhysRevD.80.031105
http://dx.doi.org/10.1088/0954-3899/37/7A/075021
http://dx.doi.org/10.1088/0954-3899/37/7A/075021
http://dx.doi.org/10.1088/1126-6708/2005/07/028
http://dx.doi.org/10.1088/1126-6708/2005/07/028
http://www.utfit.org/
http://www.utfit.org/
http://dx.doi.org/10.1103/PhysRevD.82.072004
http://dx.doi.org/10.1103/PhysRevD.82.072004
http://dx.doi.org/10.1103/PhysRevD.82.072006
http://dx.doi.org/10.1103/PhysRevD.82.072006
http://dx.doi.org/10.1103/PhysRevLett.105.121801


[14] K. Abe et al. (Belle Collaboration), Phys. Rev. D 73,
051106 (2006).

[15] Y. Horii et al. (Belle Collaboration), Phys. Rev. Lett. 106,
231803 (2011).

[16] A. Poluektov et al. (Belle Collaboration), Phys. Rev. D 81,
112002 (2010).

[17] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. D 81,
031105 (2010).

[18] B. Aubert et al. (BABAR Collaboration), Nucl. Instrum.
Methods Phys. Res., Sect. A 479, 1 (2002).

[19] S. Agostinelli et al. (GEANT4 Collaboration), Nucl.
Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).

[20] D. J. Lange, Nucl. Instrum. Methods Phys. Res., Sect. A
462, 152 (2001).

[21] T. Sjostrand, Comput. Phys. Commun. 82, 74 (1994).
[22] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 66,

032003 (2002).
[23] H. Albrecht et al. (ARGUS Collaboration), Z. Phys. C 48,

543 (1990).
[24] M. J. Oreglia, Ph.D. thesis, SLAC-236, 1980, Appendix D;

J. E. Gaiser, Ph.D. thesis, SLAC-255, 1982, Appendix F;
T. Skwarnicki, Ph.D. thesis, DESY F31-86-02, 1986,
Appendix E.

[25] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 80,
031102 (2009).

[26] G. D’Agostini, CERN Report No. 99-03; G. D’Agostini
and M. Raso, arXiv:hep-ex/0002056.

J. P. LEES et al. PHYSICAL REVIEW D 84, 012002 (2011)

012002-10

http://dx.doi.org/10.1103/PhysRevD.73.051106
http://dx.doi.org/10.1103/PhysRevD.73.051106
http://dx.doi.org/10.1103/PhysRevLett.106.231803
http://dx.doi.org/10.1103/PhysRevLett.106.231803
http://dx.doi.org/10.1103/PhysRevD.81.112002
http://dx.doi.org/10.1103/PhysRevD.81.112002
http://dx.doi.org/10.1103/PhysRevD.81.031105
http://dx.doi.org/10.1103/PhysRevD.81.031105
http://dx.doi.org/10.1016/S0168-9002(01)02012-5
http://dx.doi.org/10.1016/S0168-9002(01)02012-5
http://dx.doi.org/10.1016/S0168-9002(03)01368-8
http://dx.doi.org/10.1016/S0168-9002(03)01368-8
http://dx.doi.org/10.1016/S0168-9002(01)00089-4
http://dx.doi.org/10.1016/S0168-9002(01)00089-4
http://dx.doi.org/10.1016/0010-4655(94)90132-5
http://dx.doi.org/10.1103/PhysRevD.66.032003
http://dx.doi.org/10.1103/PhysRevD.66.032003
http://dx.doi.org/10.1007/BF01614687
http://dx.doi.org/10.1007/BF01614687
http://dx.doi.org/10.1103/PhysRevD.80.031102
http://dx.doi.org/10.1103/PhysRevD.80.031102
http://arXiv.org/abs/hep-ex/0002056

