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LETTER

Reply to Luo and Konstantinidis:
Phosphorus-related genes are
enriched in Prochlorococcus
populations from the North Atlantic

Luo and Konstantinidis (1) assert that there is no difference
in phosphorus (P)-related gene content between surface
Prochlorococcus populations in the North Atlantic [Bermuda
Atlantic Time Series (BATS)] and North Pacific [Hawaii Ocean
Time Series (HOT)] and that mixing of ecotypes explains P-gene
enrichment at BATS (2). We disagree.

P-Related Genes Are More Abundant at All Depths at BATS

At 20/25m, nine genes are significantly enriched at BATS relative
to HOT, including alkaline phosphatase (phoA; Table 1); phoBR
are also enriched although not statistically significant. At 50/75m
—dominated by the high-light adapted ecotype eMIT9312 (Fig. 1)
—22 genes are enriched at BATS, including phoBR, phoA, and the
regulator ptrA. Although phosphonate utilization genes only ap-
pear in deeper waters (1), 19 other genes with experimental or
bioinformatic evidence linking them to P limitation are enriched
in the shallower depths at BATS (3) (Table 1). Thus, every depth
contributes to the signal we observed (2). Furthermore, our results
concur with another study (4) that examined Prochlorococcus
P-related genes in surface waters only.

Ecotypic Structure Cannot Explain Differential P Gene Abundance

Although ecotype structure is not identical at a given depth be-
tween the two sites (Fig. 1 A and B), it is nearly identical when
summed over the water column (Table S2 in ref. 2; Fig. 1C). Ad-
ditionally, our sample collection at BATS preceded winter mixing
(Fig. 1D); thus, advection of ecotypes (1) cannot easily explain our
results. Further, if the latter were true, we would expect to find
other ecotype-specific genes enriched at BATS, for instance low-
light adaptive genes. More importantly, P-acquisition genes are
decoupled from the core genome (ecotype) phylogeny (2–5) in
Prochlorococcus; there is no evidence to date that particular eco-
types are adapted to low P.

P-Related Genes Originate from Prochlorococcus
The vast majority (83%) of shotgun clones we claim to carry
a Prochlorococcus P-related gene match Prochlorococcus on both

ends (Table 1; contrast with Table 1 from ref. 1, which shows only
a fraction of the clones). Some do not (1, 2) (Table 1), but this is
expected because P-related genes are known to occur in hyper-
variable islands in Prochlorococcus (2, 3). Further, known Pro-
chlorococcus phoBR sequences cluster phylogenetically—and we
have yet to find a Prochlorococcus-like phoBR sequence residing in
a noncyanobacterial genome—suggesting that similar sequences
from wild cells also likely derived from Prochlorococcus regardless
of the adjacent genes. Last, an across-the-board 80% identity
cutoff for calling a gene Prochlorococcus-derived is overly rigid,
because we know, from sequenced genomes, that some genes are
less conserved than others: for example, a P-regulated conserved
hypothetical gene (P9301_12451), unique to Prochlorococcus, is
only 72% identical between Prochlorococcus genomes.

Summary

Our conclusion that selection for P-related genes accounts for
their enrichment in the North Atlantic is the most parsimonious
explanation for our observations (2) and is consistent with pre-
vious studies (3, 4). Moreover, the overrepresentation of P-related
genes in Pelagibacter at BATS (2) reinforces the significance of
P-limitation as a selective agent. Given the complexity of natural
systems, metagenomics will invariably present ambiguities; inter-
preting them can be informed by the experimental and genomic
context provided by model organisms like Prochlorococcus.
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Fig. 1. Ecotype composition and mixing do not explain Prochlorococcus P-related gene enrichment at BATS. Ecotypes with depth (A) at BATS and (B) at HOT.
(C) Summed ecotype composition over three depths. Ecotype abundance was determined by mapping 454 reads from core genes to sequenced genomes.
Reads were only assigned to an ecotype if the top two genome hits belonged to the same ecotype. (D) Temperature profiles at BATS (data from http://bats.
bios.edu), showing that the October 2006 profile, from which our samples were collected, looked more summer-like than winter-like, which does not support
the ecotype advection hypothesis of Luo and Konstantinidis (1).
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