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ABSTRACT

As new observation systems are developed and deployed, new and presumably more precise information is

becoming available for weather forecasting and climate monitoring. To take advantage of these new obser-

vations, it is desirable to have schemes to accurately retrieve the information before statistical analyses are

performed so that statistical computation can be more effectively used where it is needed most. The authors

propose a sequential variational approach that possesses advantages of both a standard statistical analysis

[such as with a three-dimensional variational data assimilation (3DVAR) or Kalman filter] and a traditional

objective analysis (such as the Barnes analysis). The sequential variational analysis is multiscale, in-

homogeneous, anisotropic, and temporally consistent, as shown by an idealized test case and observational

datasets in this study. The real data cases include applications in two-dimensional and three-dimensional

space and time for storm outflow boundary detection (surface application) and hurricane data assimilation

(three-dimensional space application). Implemented using a multigrid technique, this sequential variational

approach is a very efficient data assimilation method.

1. Introduction

It is common in atmospheric data assimilation to treat

the observations and model backgrounds as random

vectors and to use a statistical approach to maximize the

probability for a good analysis (Lorenc 1986). The quality

of this analysis depends on the accuracy of the model

background and observation error covariance in the hope

that the model and observation statistics can provide

accurate correlation information between analysis grid

points and model states. However, a model background

error covariance requires more information than the

model error itself. Consider each model background er-

ror as a vector of N elements encompassing several state

variables and their grid values over all grid points, where

N is usually about 106 for atmospheric data assimilation.

Since the covariance matrix is symmetric, it contains N 3

N/2 elements. A common statistical practice cannot af-

ford more than ;100 model backgrounds or ensemble

members to accumulate the needed covariance. There-

fore, there is a tremendous amount of information miss-

ing from the computed covariance. Accurate estimation

of model background error covariance remains a diffi-

cult and challenging problem in atmospheric data as-

similation (Bouttier and Courtier 1999). In addition, the

derived error covariance from this statistical information

is typically singular and thus, some localization or con-

volution techniques must be used to make the estimated
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covariance matrix positive definite. Such localization

techniques introduce additional uncertainty into main-

taining the limited information in the covariance matrix.

With the deployment of increasingly high-density, ac-

curate, and advanced operational observation systems,

more information is now available in the observations

than ever before. We can take advantage of this in-

formation for atmospheric data assimilation to retrieve

the resolvable information before applying a statistical

analysis. A standard single variational approach such as

three- or four-dimensional variational data assimilation

(3DVAR or 4DVAR) (Lorenc 1981; Lewis and Derber

1985; Courtier and Talagrand 1987) may not be ade-

quate, since the required covariance is difficult to obtain

at all scales given the flow, location, and time depen-

dency of the covariance. On the other hand, a traditional

objective analysis, such as a successive correction ap-

proach or Barnes scheme (Koch et al. 1983; Hiemstra

et al. 2006), can retrieve resolvable information from

conventional observations without requiring any statis-

tical computation. We refer to the method of retrievals

that do not require statistical computation as a deter-

ministic approach, and it differs from those methods

based on a statistical theory, such as a standard 3DVAR

or 4DVAR or ensemble Kalman filter (EnKF). How-

ever, a traditional objective analysis approach cannot fully

take advantage of the modern observations or utilize

physical balance constraints in its analysis, even though

such schemes are very effective in handling conventional

observations. In summary, the modern data assimilation

techniques 3DVAR, 4DVAR, and EnKF, are limited by

a lack of sufficient statistical information for a flow-,

location-, and time-dependent error covariance matrix,

even though they could fully take advantage of modern

observation datasets and dynamic balances. On the other

hand, a traditional objective analysis can retrieve resolv-

able information from conventional observations but it

cannot fully use the modern observation datasets and dy-

namical balances. With the rapid growth of modern ob-

servation systems, it is desirable to develop a method that

can take advantage of both the modern statistical data as-

similation techniques and the traditional objective analyses.

In this paper, we propose a sequential variational anal-

ysis approach that can effectively retrieve the resolvable

information from observations at the initial steps of the

sequence, after which the sequence of multiscale anal-

yses smoothly evolves to a standard statistical varia-

tional analysis. The method introduced in this paper is

named the Space and Time Multiscale Analysis System

(STMAS) because it solves a sequence of variational

problems from large to small scales and incorporates

temporal information in the datasets, including in situ or

remotely sensed data from radar, satellite, and microwave

instruments. This sequential variational analysis can also

employ proper balance and physical constraints at differ-

ent analysis scales in the multiscale sequence; for example,

geostrophic balance may be applied on the large scale,

whereas appropriate balance relationships and numerical

prediction models can be used as constraints at relatively

small scales as in a 4DVAR scheme. We intend to fully use

the spatial and temporal information from the observa-

tions, creating a flexible system for future extension to

a sequential four-dimensional variational analysis using

a numerical model as a constraint.

This approach was initially implemented for surface

analysis using surface and temporal observation data but

has been extended to a full three-dimensional spatial

analysis system with a temporal analysis option. For the

surface analysis applications, STMAS runs every

15 min on a 5-km grid in real time at the Global Sys-

tems Division (GSD) of the National Oceanic and

Atmospheric Administration (NOAA) Earth System

Research Laboratory (ESRL), with results available

online (http://laps.noaa.gov/cgi/laps/domains/faa2km/

or http://laps.noaa.gov/request/nph-laps.cgi). STMAS

is also being used at the Massachusetts Institute of

Technology (MIT) Lincoln Laboratory (LL), where

the STMAS surface analysis is being used as input to

a boundary detection algorithm developed at LL for

nowcasting in support of a Federal Aviation Administration

(FAA) project to improve the automated Tactical Con-

vection Weather Forecasts (TCWF; Wolfson et al. 2004).

This paper is organized as follows. In section 2, we

review the techniques and difficulty in obtaining statis-

tical error covariance and we compare a single 3DVAR

and Barnes scheme using a response function analysis

(a Fourier analysis). We then explain why a sequential

variational analysis, such as STMAS, can result in much

improved analyses. In section 3, we describe STMAS

algorithms and implementation details. In section 4, we

show some numerical comparisons of the analyses pro-

duced by the methods discussed here, a single 3DVAR,

the Barnes scheme, and STMAS using an idealized,

highly nonlinear, and multiscale test function. In sec-

tion 5, we present numerical results using real datasets

and verify the accuracy of our analysis. We also dem-

onstrate the temporal impact of observations and dy-

namic constraints on the STMAS analysis. Concluding

remarks are presented in section 6.

2. Comparing 3DVAR and successive corrections
objective analyses

a. Error covariance in a standard variational analysis

The background and observation error covariance must

be accurate in a three-dimensional variational analysis
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based on the Bayesian theory (Lorenc 1986) to provide

an accurate analysis within a certain probability. First,

there is an assumption that these random errors of back-

ground and observations follow unbiased Gaussian

distributions and the Gaussian covariance is accurate.

Second, even if the covariance is accurate, an optimal anal-

ysis cannot be guaranteed, although it can be assumed to

be the most probabilistically likely when the background

and observation are treated as random vectors.

In general, it is very difficult to obtain an accurate

background covariance. Many statistical approaches

have been applied to obtain covariance estimations as-

suming the model background is an unbiased random

vector representing the true atmosphere and include

recursive filters (Hayden and Purser 1995; Purser et al.

2003a,b); the National Meteorological Center (NMC)

method by Parrish and Derber (1992), the breeding

vector method (Toth and Kalnay 1995; Pu et al. 1997),

and ensemble approaches (Evensen 1994; Mitchell and

Houtekamer 2000; Mitchell et al. 2002; Whitaker and

Hamill 2002; Hamill et al. 2002). However, accurately

estimating background error covariance for meteorologi-

cal data assimilation remains a difficult statistical and

computational problem. Even though the ‘‘unbiased’’

assumption is valid, the spatially and temporally de-

pendent covariance requires a tremendous amount of

case- and flow-dependent statistical samples since the

number of control variables is usually O(.1 000 000)

for meteorological data assimilation. Generating these

statistics is very expensive given the expense of running

forecast models. Since the true atmosphere is unknown,

forecast differences are usually used to estimate fore-

cast errors under the unbiased assumption. These

forecast differences can be computed by subtracting

one forecast from another valid at the same time and

they can be time-lagged, initial or boundary perturbed,

or different model ensemble forecasts. The statistical

correlations of these errors are used to estimate the error

covariance. This approach can provide some information

on the error covariance but it eliminates the diagnosis of

major model bias even when a number of prediction

models are used. The important model bias information

will be missing in the estimated covariance.

An alternative approach for estimating the covariance

would be to use the Kalman filter method. Running a

Kalman filter in a long time sequence could provide not

only a good error covariance but also a good analysis

under the following assumptions: the forecast model is

linear, observation simulation operators are linear, model

and observation errors are unbiased, and the linear com-

bination of the model and observation errors is the best

error estimate of the true atmosphere. For nonlinear fore-

cast models, a Kalman filter approach can be generalized

but not theoretically proven to provide an accurate co-

variance in general applications. It is not difficult, how-

ever, to find studies where the Kalman approach fails in

its covariance estimation (Julier and Uhlmann 1997).

Thus, a classical Kalman filter is a good data assimilation

technique for linear systems but may not be a good can-

didate for mesoscale meteorological data assimilation

with respect to the high nonlinearity and high computa-

tional cost. To integrate forward in time, a full covariance

matrix using the linear prediction model operator is ex-

tremely expensive for meteorological Kalman filter data

assimilation.

The ensemble Kalman filter becomes an interesting

tool for generating not only the forecasts but also the

covariance (Evensen 1994; Julier and Uhlmann 1997;

Mitchell and Houtekamer 2000, etc.). As an approxi-

mation to a classical Kalman filter method, EnKF in-

herits the above drawbacks of the classic Kalman filter.

For large-scale meteorological features that are approx-

imately linear, EnKF may effectively use a limited num-

ber of ensemble members to construct partial error

covariance. When the covariance matrix is large, a small

number of ensemble members are inadequate at speci-

fying elements in the matrix. As Julier and Uhlmann

(1997) discussed, at least 2N 1 1 members, where N is the

number of controls, are needed to estimate the mean flow

transported by a nonlinear system.

In summary, estimating the error covariance is a chal-

lenging and difficult problem. In fact, accurately esti-

mating the covariance is essentially more difficult than

solving the data assimilation problem itself. It is inter-

esting that, to provide an analysis, one deals with N

unknown states and grid values. But one faces an even

more challenging problem in estimating ½N 3 N un-

knowns for the symmetric covariance matrix using his-

torical model forecasts.

However, as we have pointed out, more and more

resolvable information is available in observational data-

sets. Each observation value contains information on all

scales about the true atmosphere within the range of its

observation error. All of these scales can be divided into

two categories: (a) a part that can be resolved by given

observation networks (i.e., relatively longer waves) and

(b) a part that cannot be resolved by the networks but

may possibly be estimated under a statistical analysis.

We intend to propose a method that takes advantage of

the resolvable and statistical information instead of ap-

plying a statistical analysis directly. For example, accu-

rate frontal boundary information is usually missing

from a model background field. If an observation net-

work can observe the boundary, this is resolvable in-

formation that is retrievable. However, if the difference

between the observations and model background were
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treated as random errors, as is done in a standard

3DVAR, there would be little chance to define bound-

ary structure correctly unless an accurate flow-dependent

covariance was given. A two-step method would be

more effective than a conventional statistical analysis.

This proposed procedure would fully exploit the data to

resolve real atmospheric features, followed by an ap-

plication of statistical estimation for scales that cannot

be resolved by the observation networks. For the second

step of the statistical estimation, the error covariance of

the method becomes a narrowly banded matrix and this

statistical estimation is thus more efficient than the di-

rect statistical approaches.

Before discussing this proposed method, let us review

how an objective analysis retrieves resolvable informa-

tion from observations. Even though many data assimi-

lation techniques have been shown to be equivalent under

the condition of a given accurate covariance (Lorenc

1986), a Barnes analysis (Koch et al. 1983; Hiemstra

et al. 2006) is different in the sense that it does not re-

quire prior knowledge of the error covariance. The Barnes

multiple-pass successive corrections scheme starts with

an analysis for longer waves using a Gaussian function

with a large influence radius. Its analysis scales are grad-

ually reduced to smaller ones until the scales cannot be

resolved by the observation networks. For in situ ob-

servations only and for a given error variance of an an-

alyzed field, a single Barnes correction could result in

a similar analysis to a 3DVAR. However, the Barnes

scheme has difficulty handling remotely sensed datasets,

such as radar radial winds and satellite radiances. Also,

the traditional Barnes scheme cannot handle correlations

between different analysis variables or physical balances

and other constraints. A variational approach is more

appropriate as it handles these requirements simulta-

neously in one minimization process.

b. Response analysis

In modern data assimilation, a 3DVAR has taken

precedence over traditional successive corrections ob-

jective analyses such as the Barnes scheme because of

the known limitations in handling advanced observations

and physical constraints. However, discussion is rarely

heard about 3DVAR limitations. In this study, we would

like to explore the 3DVAR limitations when analyzing

in situ observational data.

To demonstrate the difference between a Barnes anal-

ysis and a single 3DVAR for analyzing conventional data,

a response function analysis for a single 3DVAR system

using a recursive filter and a two-pass Barnes scheme is

presented. The response function analysis helps us un-

derstand that STMAS (a sequential variational analysis

approach) can be viewed as a variational extension of

the Barnes scheme in space and time. Owing to the dif-

ficulty in obtaining an accurate error covariance, a sim-

ple recursive filter is widely used to approximate the

covariance of a Gaussian error distribution for a model

background field. This ensures the positive definiteness

of the error covariance. Purser et al. (2003a,b) have in-

troduced a more flexible anisotropic recursive filter but,

as will be shown, the conclusions are not limited to our

use here of simple recursive filters. The more general

message of this discussion is that for any error covari-

ance or filters used in 3DVAR, a successive correction

analysis can be implemented using the same covariance

information, and a single correction pass can yield the

same analysis as 3DVAR. The simple recursive filter has

the following form (see Hayden and Purser 1995):

u
i
9 5 au

i�1
9 1 (1� a)u

i
left pass,

u
i
0 5 au

i11
0 1 (1� a)u

i
9 right pass,

where u is a state variable of a 3DVAR analysis, u9 is an

intermediate filtered variable in one direction, and u0 is

the filtered variable. The subscript index of i indicates

the ith grid point of the dimension that the filter is ap-

plied. The a parameter is used to determine the filter’s

scale or the influence radius. A Fourier transformation

of the recursive filter yields

(1� aZ�1)u9 5 (1� a)u,

(1� aZ)u0 5 (1� a)u9, (2)

or

u0 5
(1� a)2

1� a(Z�1 1 Z) 1 a2
u (3)

for a single pass of a combination of the left- and right-

pass filters, where Z 5 e2ip/l is a unit complex number

and l is the horizontal wavelength; the bar over a vari-

able stands for the Fourier transformation of that vari-

able. This transformation shows how a recursive filter

responds to different wavelengths of physical space. The

transformed function is called its response function.

To compare this response function with that from the

Barnes scheme, we first note that in a general form of

the Barnes objective analysis (a successive correction

scheme), a non-Gaussian error distribution function can

also be used. Nonetheless, here a Gaussian is used to

compare with the above 3DVAR using a recursive filter.

Its (k 1 1)th iteration results in an analysis from its kth

iteration by the following equation:
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u
k11

5 u
k

1 (o� u
k
)e

k
, (4)

where

e
k

5 exp � d2

k
0
gk

 !
(5)

and g is the numerical convergence parameter that pro-

duces a scale reduction between two iterations, k0 is the

initial iteration scale parameter, and d is the distance

between the observation data o and a gridpoint location.

The response function of this iteration has the following

form (Koch et al. 1983):

e
k

5 exp�k
0
g k p

l

� �2
� �

. (6)

A simple comparison to relate these analyses is consid-

ered here. For the response function of a recursive filter

with a given filter parameter a, we simply find a param-

eter k0gk such that the response function of a single

Barnes iteration is closest to the given recursive filter

response function. Figure 1 shows the response func-

tions of the recursive filter with a 5 0.5, 0.7, and 0.9 and

the corresponding responses of a Barnes iteration, re-

spectively, where the responses are plotted as functions

of dimensionless wavelength l* 5 l/L, where L is an

arbitrary scale length. With a more careful selection of

the parameters for the Barnes scheme, the Barnes re-

sponse functions could be made to be even closer to the

recursive filter curves.

We can see then that a 3DVAR analysis using a re-

cursive filter is approximately equivalent to a single

correction of the Barnes analysis using a Gaussian dis-

tribution. Hayden and Purser (1995) pointed out this

equivalence when they studied the intrinsic scale of the

recursive filter. In a more general sense, if the same error

distribution function is used by a 3DVAR or a Barnes

scheme, the 3DVAR is essentially equivalent to a single

correction of the Barnes analysis. However, it is well

known that an analysis from a single Barnes iteration

does not yield a good objective analysis because multiple

iterations are required. Since a single Barnes iteration

cannot provide a good analysis, one cannot thus expect

a good analysis from a 3DVAR either unless a good error

covariance is available. This seems contradictory to the

assumed optimality of a 3DVAR, but it is not if we are

aware of the assumptions made. Let us review the nec-

essary assumptions for this optimal 3DVAR.

In a 3DVAR derivation, observations and background

errors are treated as random variables (Lorenc 1986)

that statistically follow a certain Gaussian error distri-

bution. If the Gaussian error covariance for background

and observations are known, a 3DVAR is optimal with

a known probability. Under the assumption that the

error distribution is Gaussian and the covariance is known,

the 3DVAR and the Barnes analysis with a single itera-

tion are equivalent (Lorenc 1986). However, in practice,

it is almost impossible to obtain a perfect or accurate

error covariance. A Barnes analysis usually requires

multiple iterations with different influence radii in the

hopes of sweeping through all analysis scales and finding

a better overall analysis by combining the analyses over

these scales. However, this practice is far from optimal

when the spatial distribution of the data is quite non-

homogeneous (Koch et al. 1983). Likewise, a single

3DVAR may not yield a good analysis if the covariance

is unknown or contains incomplete or partial informa-

tion. No strong evidence exists that shows that a 3DVAR

analysis is in any way superior over a Barnes analysis

with multiple iterations for conventional or in situ ob-

servation datasets. The advantages of using a 3DVAR

over a Barnes analysis are in its ability to handle ad-

vanced observation data with specified error covariance,

using covariance instead of variance, and imposing bal-

ance or constraints directly in the analysis instead of in

a postprocessing stage. Hence, each of these two methods

possesses their own respective superiority and limitations.

This response analysis could also provide a way to

obtain a better variational analysis when there is useful

resolvable information in the observations and back-

ground. We can apply a sequential variational method

that mimics a Barnes scheme in a variational analysis

context. A comparison of two response functions for

FIG. 1. Responses from a recursive filter (RF) and a Barnes it-

eration (BN). For example, RF-0.5 reflects the response of a re-

cursive filter for a 5 0.5 while BN-0.5 represents a Barnes response

from a parameter of k0gk that makes its response closer to RF-0.5.
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Barnes and 3DVAR using a recursive filter (Fig. 2)

shows that a sequential variational approach can yield

essentially the same response as a Barnes successive

corrections scheme. For the resolvable scales in a given

observation network, a sequential variational analysis

can be made to match a Barnes analysis if the scheme

can directly analyze the observation data. Thus, in a se-

quential variational approach, the resolvable information

can be retrieved deterministically (i.e., no prior knowl-

edge of the covariance) just like the Barnes scheme

before becoming a statistical variational analysis. Fur-

thermore, since a sequential variational analysis retains

its variational attributes, it can handle all data sources,

error covariances, and constraints appropriately. Thus,

a sequential variational analysis possesses both advan-

tages of variational and successive corrections analyses,

and overcomes some of their individual limitations.

3. Space and Time Mesoscale Analysis System

A sequential variational analysis system called the

Space and Time Multiscale Analysis System has been

implemented at the NOAA Global Systems Division

of the Earth Systems Research Laboratory. It utilizes

spatial and temporal observations and is derived based

on the response analysis described in the previous sec-

tion. The basic idea is to iterate sequentially the varia-

tional analysis beginning at the larger scales and ending

at the smallest resolvable ones (similar in that sense to

successive correction approaches). Since a sequential

variational analysis method can be implemented in many

different ways as long as it can control the analysis scales

at each of its iterations, we have developed and tested

STMAS using a variety of procedures.

The first procedure tested is a straightforward im-

plementation using a recursive filter. This version of

STMAS starts with a variational analysis using a re-

cursive filter with a large influence radius a in space and

time (note the sizes of a are different in each dimen-

sion). After its initial variational solution, STMAS solves

a similar variational analysis using a smaller influence

radius a to resolve shorter waves contained in the re-

sidual between the previous analysis and the observa-

tions. This procedure may be repeated until no further

analysis scales are resolvable by the observational data.

Adding each sequence of analyses together produces the

STMAS final analysis. This whole procedure is sum-

marized as follows.

STMAS algorithm

Set large a’s (e.g., 0.999)in each direction of space and

time.

Step 1. Solve a variational minimization problem

min(X� Xb)TB�1(X� Xb) 1 (HX� Yo)TO�1

3 (HX� Yo) 1 P, (7)

where Xb is a background, X is the analysis at this

variational sequence, Yo is the observations, H is a

mapping from grid space to observation locations, and

P is a proper balance term added at this sequence of

the analysis. The matrices of B and O are the error

covariance for background and observation, respec-

tively. For observation information retrieval, B can be

set to b(CTC)21 where C is the recursive filter oper-

ator and b is infinitely large unless a good estimation

of B is available.

Step 2. Suppose the solution of step 1 to be Xa. Set

Xb 5 Xa and Yo 5 Yo 2 HXb.

Step 3. Determine whether an additional analysis is

needed (see the following discussion). If no further

analysis sequence is needed, the final analysis will

be the sum of the incremental analyses at all levels:

Xfinal 5 X
1

1 X
2

1 . . . X
m

where Xj is the solution at the iteration sequence j. If

further analysis is needed, go to step 4.

Step 4. Identify proper balance forming a penalty term

as P and reduce a by ta where t 2 (0, 1) and go to

step 1.

Note that the background error covariance of the first

term of (7) should change with different iterations to

FIG. 2. Compositions of 2 response functions with RF-0.9 and

RF-0.7 and with their counterparts by a Barnes scheme.
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obtain more scale-dependent information and further

improve the analysis. However, in this paper, it is as-

sumed to be constant; that is, it does not change with

different scales. Future study will focus on this im-

provement.

One remaining question is how many of these itera-

tions are necessary. STMAS employs the method of

Koch et al. (1983) to determine how many iterations are

needed to fully resolve the smallest scales that a given

observational dataset can represent. Even though the

recursive filters are isotropic, the final analysis incre-

ment of STMAS is fundamentally anisotropic because

the increment is determined by the anisotropic differ-

ence between the background and observations. The

recursive filter version of STMAS is implemented as

follows: 1) an initial recursive filter parameter a 5 0.999

is used for the first variational analysis, and 2) this pa-

rameter a is then reduced by a fraction t (50.8) in each

of the following 3DVAR solutions.

STMAS assimilates observations both spatially and

temporally (i.e., the observations also have influence in

temporal space over a certain length of time period).

The recursive filter is applied not only in horizontal space

but also in time space. Since STMAS was designed to

provide a 5-km gridded analysis over the conterminous

United States (CONUS) every 15 min (and 5 min in

the future), we found that it is computationally too

demanding to apply the recursive filter in all three

dimensions (horizontal space and time) for this high-

frequency product cycle. Moreover, parallelization of

the recursive filter on multiprocessors presents additional

complexity. It became necessary to test and compare

more efficient implementations of STMAS. Hence, both

a wavelet version of STMAS using cubic-spline base

functions and a multigrid version were developed. Tests

revealed that each version generated nearly identical

analyses to the one produced using the recursive-filter

version of STMAS (as discussed in section 4). This in-

dicates that the particular numerical techniques have no

bearing on the underlying science and performance. For

a wavelet implementation, the STMAS algorithm re-

mains the same except that C 5 I, an identity matrix,

and X is replaced by a product of wavelet base functions

and their correspondence coefficients. For a multigrid

implementation, it is the same as the wavelet im-

plementation except that X only has values at grid

points for its multigrid levels. They are all variational,

which minimizes the cost function of (7).

Because of its numerical efficiency and simplicity for

parallelization compared to the recursive filter version

of STMAS, a multigrid version STMAS was selected

for operational surface analysis and boundary detection.

As discussed above, each individual variational analysis

requires a scale control mechanism. The multigrid im-

plementation uses the number of grid points to control

the analysis scales. For a given number of grid points

over a given domain, only limited wave scales can be

resolved. The more grid points there are, the smaller the

scales that can be resolved. Therefore, a multigrid im-

plementation of STMAS initially uses a coarse grid with

fewer grid points in each spatial and temporal direction

to limit short waves. This allows resolution of only the

longest waves in its analysis. During each sequential

pass, the number of grid points is doubled uniformly

until the grid distance reaches a minimum, at which the

observation networks provide no further resolvable in-

formation. Since the number of grid points controls the

analysis scales, nothing further is required, although the

technique can benefit whenever an appropriate error co-

variance can be estimated. Thus, each variational cost

function of the sequence of analyses requires a simple

interpolation from grid values to the values at observation

locations for conventional data analysis, and a paralleli-

zation of this multigrid STMAS is straightforward.

The multigrid version of STMAS run for the surface

analysis is so efficient that it only takes ;5 min to com-

plete an analysis of eight variables with 5-km resolution

over the Rapid Update Cycle (RUC) CONUS domain

using a single processor with a clock speed of 3.2 GHz.

A recursive filter version takes more than 30 min to

complete the same analysis. To be precise, this CONUS

domain has 1473 3 1025 horizontal grid points and em-

ploys 15-min time steps over a 90-min temporal window

(thus, six time intervals of data are used). The reason for

choosing a 90-min temporal window is based on the

computation requirement for STMAS implemented us-

ing a recursive filter. It takes longer than our analysis

cycle time to provide an analysis if a longer time window

is used. Using a longer than 90-min time window for a

multigrid version of STMAS does not result in a dramatic

improvement.

Despite the tremendous number of surface observa-

tion sites available for the STMAS surface analysis,

there are still large areas with relatively sparse obser-

vations interspersed with small regions of abundant ob-

servations, much like observation ‘‘oases’’ scattered with

data ‘‘deserts’’ (Fig. 8). Neither successive correction

(SC) schemes (such as the Barnes scheme) nor optimum

interpolation (OI) nor 3DVAR analysis schemes ade-

quately handle the desert–oasis (data nonhomogeneity)

problem. For example, inhomogeneous station distribu-

tions cause problems for a fixed value of either the final-

pass weighting function in successive correction methods

or the covariance function scale in OI and 3DVAR

methods. ‘‘Overshooting’’ is often seen in the data-sparse

area as the schemes attempt to propagate information
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from the oases to the deserts [see the discussion in Koch

et al. (1983) about overshooting]. Typically, none of these

schemes explicitly includes the high-resolution time in-

formation inherent in much of the mesonet data, with

the single notable exception of a time-to-space conver-

sion (TSC) extension of the Barnes scheme developed

by Koch and O’Handley (1997) for the specific analysis

of quasi-two-dimensional propagating features such as

gravity waves. STMAS offers locally variant scales in its

analysis and uses the temporal information (without the

need to invoke the TSC approximation) to resolve the

problem inherent between oases and deserts, particu-

larly if some of the observations in sparse areas are in-

termittent.

4. Numerical experiments

In this section, an idealized experiment is presented

to demonstrate the differences of the data assimilation

methods discussed earlier. It is known that sharp frontal

discontinuities, convective outflow boundaries, sea breeze

convergence zones, and other mesoscale boundaries

are usually missing from model backgrounds, or at least

not accurately represented. If a relatively dense ob-

servation network (Fig. 3) can observe these bound-

aries, there is very useful information in the difference

between background and observations. This provides

the opportunity for an application of STMAS to di-

agnose the boundaries. These retrieved boundaries will

have strong impact on short-range nowcasts and fore-

casts of deep convection, atmospheric dispersion, fire

weather, and other applications. For this reason, in this

idealized test case, a highly nonlinear, multiscale analytic

function mimicking a complex bore/soliton phenomenon

frequently associated with fronts or outflow boundaries

(e.g., Koch et al. 2008) is constructed. Its two-dimensional

FIG. 3. MesoNet stations available in 2004.

FIG. 4. The (a) 3D surface, (b) contour, and (c) profile plots of

an analysis function.
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horizontal contour plot, vertical profile, and a 3D visu-

alization are shown in Fig. 4. We assume that this analytic

function is a missing feature not resolved by a model

background but is observed by a national mesonet net-

work over the region shown in Fig. 3; (station locations

are depicted as dots). In this experiment, we use the ac-

tual mesonet observation station locations available in

2004 and the analytic function values at these station lo-

cations as the observed values to test different data as-

similation methods and see how they resolve the ‘‘true’’

feature.

We start with a 3DVAR method using a recursive

filter on this idealized case. The main issue in using a

3DVAR with a recursive filter is the selection of the

influence radius for the recursive filter (i.e., a for this

simple recursive filter test), which is computed based on

a statistical estimation in practice. As discussed earlier,

determining the value of a is a difficult and poorly posed

problem. Therefore, we examined several choices for a

and discuss the results in analyzing the multiscale fea-

tures of this test case. We selected a 5 0.5, 0.7, and 0.9

and ran a standard 3DVAR with each of these param-

eters, respectively. The results (Fig. 5) show that the

analysis with a 5 0.5 produces an abundance of small-

scale features. If this parameter value were applied in

a real case where the true state of the atmosphere is not

known, these small-scale features could be misinter-

preted as mesoscale waves. Use of larger a values pro-

duces smoother analyses, but the small waves are lost

relative to the dominant long wave because of the highly

multiscale, nonlinear (non-Gaussian) character of the

bore function. The multiscale character is a challenge for

a data assimilation method like a single pass of a stan-

dard 3DVAR using a recursive filter.

To confirm our response analysis conclusions, we also

applied a two-pass Barnes scheme over the ‘‘observa-

tion data’’ and obtained the analysis shown in Fig. 6. A

single iteration of the Barnes analysis (not shown) gave

results that are similar to those from the 3DVAR, but

the two iterations of the Barnes scheme compare much

better to the analytic function in Fig. 4 and approximate

the front quite accurately. The positive aspect of this

scheme results from it being a multiple iteration scheme

that sweeps through finer-scale wavelengths. On the

other hand, the amplitude-ordered wave train behind

the bore front is poorly represented in the Barnes anal-

ysis (though it is decidedly better than in the 3DVAR).

Thus, it is reasonable to expect a STMAS implementa-

tion to obtain a similar or better result.

We tested the recursive filter, wavelet, and multigrid

versions of STMAS over the same datasets. Even though

there are slight differences among these analyses (Fig. 7),

they each captured the major wavelengths of the storm

boundaries from large to small better than either the

3DVAR or the Barnes scheme did. As we discussed in

section 2, the analyses are anisotropic because of the

multiple passes. Other arbitrary test functions were also

tested, confirming that STMAS provides good analyses

under a variety of scenarios. From this experiment, we

FIG. 5. Recursive filter 3DVAR analyses; a 5 (a) 0.5, (b) 0.7,

and (c) 0.9.
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conclude that STMAS can handle multiscale analyses

by using multiple iterations better than either a single

3DVAR or successive corrections approach. Its capa-

bility to handle remote sensing data from radar and

satellite, as well as physical balances, will be investigated

in future data assimilation.

From this analytic function experiment, we have dem-

onstrated how well STMAS approximates an analytical

front or boundary feature, consistent with the response

function analysis. The following experiments illustrate

STMAS’ performance in an operational-like setting for

automated storm boundary identification. These real data

case studies serve as further verification of the STMAS

analysis capabilities.

5. Numerical experiments on real surface
mesonet data

a. Analysis accuracy verification

In this section, we further substantiate the accuracy of

the STMAS analysis, demonstrate its inhomogeneous,

multiscale analysis capability, and assess the temporal

impact using actual mesonet data and the RUC 40-km

model forecasts as background fields. The STMAS sur-

face analysis utilizes all possible surface data sources

through GSD’s Meteorological Assimilation Data Ingest

System (MADIS), including aviation routine weather

reports (METARS), the coastal marine automated net-

work (C-MAN), surface aviation observations (SAOs),

the modernized cooperative observer program (COOP),

and MesoWest. Table 1 lists the MesoNet providers

available to MADIS in 2004, which at that time provided

data from more than 13 000 stations. Today, more than

50 000 stations are available over the United States (Fig. 8),

and many of these stations are providing 1-min sampled

data. STMAS is able to fully use these data made avail-

able through MADIS, a system that is becoming fully

FIG. 6. A Barnes analysis with two iterations.

FIG. 7. STMAS analyses: (a) recursive filter, (b) wavelet, and

(c) multigrid analyses.
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operational in the National Weather Service. MADIS

includes automated quality control, gross validity checks,

temporal consistency checks, internal (physical) con-

sistency checks, and spatial checks (see http://www-sdd.

fsl.noaa.gov/MADIS), as well as a blacklist that can

screen out stations with known issues.

STMAS is being used to provide surface mesoanalyses

with temporal consistency for convective boundary iden-

tification, which is very important for some FAA ap-

plications (Wolfson et al. 2004). A real data case from

22 September 2005 is presented here as a demonstration

of the marriage of the STMAS analysis with the La-

grangian Scalar Integration (LSI) method developed at

MIT for the FAA (Jones and Winkler 2002). We also

compare the objectively analyzed surface fronts against

analyzed boundaries manually created at the Hydro-

meteorological Prediction Center (HPC; http://www.hpc.

ncep.noaa.gov/sfc). The LSI technique can be applied to

gridded surface analysis fields, which for this study is

the STMAS analysis. LSI specifies a grid of tracers from

a wind analysis at a resolution of interest and then ad-

vects the tracers following the horizontal winds. Data

are gathered along each trajectory as a time series that is

then time-averaged over some fixed integration period.

At MIT LL, the LSI method is applied to the STMAS

surface analysis over a region where the HPC boundary

identification shows the location of the storm fronts. The

automated analysis of fronts and other boundaries de-

rived from this LSI time-integrated divergence tech-

nique is plotted in Fig. 9 and compared to the HPC

analysis. The red and blue lines are the warm and cold

fronts provided by the HPC analysis, and the underlying

black and white images are the LSI-based products com-

puted using STMAS. MIT and HPC produced these

boundary detections independently. The detected bound-

aries are very close and they are almost identical at

certain times. This indicates that the STMAS produced

a meaningful analysis, allowing the automated boundary

detection method to perform well; since STMAS uses

temporal information, the gridded data reveal a smooth

transition of the frontal boundaries. Together with the

application of LSI, this enables the MIT detection al-

gorithm to identify the boundaries accurately, which had

not been possible based on other analyses.

In addition to the above qualitative verification, a quan-

titative comparison is presented here for STMAS and

a standard 3DVAR using a recursive filter. Following

traditional analysis evaluation metrics, we examined the

root-mean-square (RMS) errors of the analyzed values

compared to the observations over a region encompass-

ing the eastern CONUS. Table 2 shows the RMS errors

of the recursive filter version of the STMAS analysis

TABLE 1. A list of MADIS MesoNet providers available on 11 May 2004.

MesoNet Provider No. of sites Coverage

US. Army Aberdeen Proving Grounds APG 5 Maryland

Citizen Weather Observer Program APRSWXNET 2195 Global

AWS Convergence Technologies, Inc. AWS 5600 U.S.

Anything Weather Network AWX 64 CONUS

Colorado Department of Transportation CODOT 107 Colorado

Florida MesoNet FL-Meso 39 Florida

Ft. Collins Utilities FTCOLLINS 5 Colorado

Goodland WFO Miscellaneous GLDNWS 15 CO/KS/NE

Gulf of Maine Ocean Observing System GoMOOS 10 Gulf of Maine

FSL ground-based GPS GPSMET 340 U.S.

Hydrometeorological Automated Data System HADS 60 New England

Iowa Department of Transportation IADOT 50 Iowa

Iowa Environmental MesoNet IEM 88 Iowa

Boulder WFO Miscellaneous INTERNET 13 Colorado

Kansas Department of Transportation KSDOT 41 Kansas

Multi-Agency Profiler Surface Observations MAP 12 CONUS

Cooperative MesoNets in the western United States MesoWest 2552 West CONUS

Minnesota Department of Transportation MNDOT 92 Minnesota

National Ocean Service Physical Oceanographic Real-Time System NOS-PORTS 34 CONUS

National Weather Service Cooperative Observer Program NWS-COOP 100 New England

Oklahoma MesoNet OK-Meso 116 Oklahoma

Remote Automated Weather Stations RAWS 1777 U.S.

Radiometer RDMTR 2 U.S.

Denver Urban Drainage and Flood Control District UDFCD 17 Colorado

Weather for You WXforYou 414 U.S.

Total: 13 748
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compared to those from a single 3DVAR with different

a values over the same region. A smaller influence radius

for the 3DVAR analysis has a negligibly smaller RMS

error, which means it fits observations slightly better us-

ing smaller-scale waves than with larger-scale waves. By

comparison, STMAS has decreased the RMS analysis

error by roughly 50% relative to either 3DVAR analysis.

In the independent verifications against the HPC front

analysis and through RMS errors, the STMAS surface

analysis consistently shows accurate surface analyses with

very fine detailed structure. The scheme is computation-

ally very reliable and stable. The verification validates

the conclusions we made in previous sections for Barnes,

3DVAR, and STMAS analyses.

b. Temporal consistency

An important feature of STMAS that could help ame-

liorate the effects of spatial and temporal inhomogeneity

is its use of temporal information, since STMAS pro-

vides a temporally coherent analysis. For the operational

STMAS analysis, a 90-min time window is set and the

multigrid technique is also applied in this temporal do-

main. To illustrate the temporal impact on the analysis,

we set two STMAS runs: one a 90-min time window,

FIG. 8. National and regional maps of MesoNet stations available in 2008.
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which is the standard STMAS configuration, and the

other a 15-min time window. We compared their dif-

ferences to assess the impact from assimilating tempo-

ral information. Figure 10 shows the 15-min dewpoint

temperature analysis increments at 1600–1645 UTC

23 January 2008 on the left and the 90-min window

analysis on the right. From 1600 to 1645 UTC, the 90-min

dewpoint analysis smoothly changes and transitions

through time, while the 15-min window analysis shows

more discontinuity, particularly in the areas over Colo-

rado, Kansas, Oklahoma, and Texas at 1615 UTC. The

90-min window analysis is likely a better depiction of the

real atmosphere. This temporal impact is particularly

helpful operationally since real-time observation data-

sets can vary rapidly in both coverage and quality for

various reasons. For example, different report frequency,

hardware failure, communication problems, and quality

control, among others, all contribute to observational

data variations in time. Table 3 lists the numbers of ob-

servation data that are actually ingested into the STMAS

analysis every 15 min at 1600 UTC 23 January 2008.

Even though the surface datasets are quite stable, they

still vary from time to time by 10%. Regarding temporal

continuity, by fully taking advantage of STMAS’ com-

putational efficiency, STMAS reduces the impact due to

observation data temporal unavailability of observation

data and temporal variability and provides more robust

analyses. This advantage is extremely important for storm

boundary detections.

FIG. 9. Comparison between MIT LL and HPC boundary detections. Blue and red curves are the HPC boundary

and the black and white images are the MIT–STMAS storm boundary. (a)–(d) The storm boundary propagation in

3-h intervals during 0300–1800 UTC 22 Sep 2005.

TABLE 2. RMS errors (m s21) of the wind analysis against obser-

vations over an eastern CONUS domain.

Method

STMAS

(recursive)

3DVAR

(a 5 0.5)

3DVAR

(a 5 0.7)

RMS errors 0.1173 0.2676 0.2831
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c. Full three-dimensional spatial analysis
using STMAS

From the above cases, STMAS is shown to improve

3DVAR analysis by handling multiple scales that are

resolved by the observation network without using any

statistical information. It saves the statistical computa-

tion for finer-scale data assimilation that will be demon-

strated in the near future. The combination of a modern

variational analysis and a traditional objective analysis

FIG. 10. STMAS dewpoint analysis with (left) 15-min and (right) 90-min temporal windows. The plots are at the exact

same times even though the analyses use different temporal windows: (top to bottom) 1600, 1615, and 1630 UTC analyses.
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has not demonstrated how STMAS handles balances

and remotely sensed data in the above STMAS surface

analysis. To show STMAS reduces a traditional objec-

tive analysis limitation on handling balance and modern

observation datasets, we consider a full four-dimensional

analysis over a pressure coordinate, where geostrophic

and/or hydrostatic balances can be applied.

A fully four-dimensional (3D spatial plus temporal)

version of STMAS has also been applied to several se-

vere weather situations. These results will be fully pre-

sented in a separate paper. However, initial results for

various three-dimensional applications of STMAS are

very encouraging. Some initial forecast impacts show

that with the geostrophic and hydrostatic balances,

STMAS reduces the initial shock waves when it initial-

izes an Advanced Research Weather Research and

Forecasting model (ARW–WRF) forecast. For the

Hurricane Katrina test case, at the initial hours (3 and

6 h) of WRF forecasts, the STMAS analysis with these

balances only increases the central pressure by 2–3

millibars, as compared to 20 millibars if a Barnes scheme

is used. STMAS indeed improves a Barnes analysis by

directly applying dynamic balances as constraints in its

minimization of the cost function. An analysis of Hur-

ricane Dennis on 11 July 2005 was performed using both

conventional in situ and a gridded airborne radar data-

set. STMAS-3D analyzed these datasets remarkably

well and captured the detailed hurricane structure. The

u and y components of the wind at 850 hPa are shown in

Fig. 11. The STMAS multiscale analysis capability can

be seen clearly in the increment field; for example, the

u-component increment in Fig. 12 shows finer-scale fea-

tures over the area covered by airborne radar data and

relatively large-scale features elsewhere.

In summary, the STMAS idealized and surface cases

show how STMAS improves modern variational analy-

sis and the later full four-dimensional case demonstrates

how STMAS improves a traditional objective analysis

by using modern observation datasets and applying

dynamical balances. STMAS indeed combines the ad-

vantages of both variational and objective analyses and

reduces their limitations respectively.

6. Conclusions

A sequential, multiscale variational analysis scheme—

the Space and Time Multiscale Analysis System

(STMAS)—has been developed. STMAS possesses the

advantages of both a traditional successive corrections

technique and modern variational analysis while address-

ing their limitations. Examination of the response func-

tions for each scheme provided a basic understanding

of the difference between a 3DVAR and a traditional

TABLE 3. Number of observations at every 15-min temporal

window.

Time window (UTC)

No. of valid

dewpoint observations

1600–1615 8499

1615–1630 8879

1630–1645 8022

1645–1700 7790

1700–1715 8705

FIG. 11. STMAS 3D analysis of Hurricane Dennis at 850 hPa at 2100 UTC 5 Jul 2005: (left) u component; (right) y

component. The color bar shows 10-m s21 intervals from 225 to 25 m s21.
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Barnes analysis. Additional insight about the differences

in their behavior was gained from an idealized analytic

function designed to mimic a highly nonlinear, multiscale

phenomenon. STMAS greatly outperformed both of the

other approaches in that idealized experiment. We dem-

onstrated STMAS’ capability to produce a multiscale

analysis while also showing that a standard 3DVAR has

difficulty in managing all of the resolvable scales when an

accurate covariance is unavailable. STMAS was then

tested using a recursive filter, wavelet approach, and

a multigrid method, and the multigrid version was then

chosen for real-data applications.

In subsequent real-data experiments, we demon-

strated the value of using the STMAS analysis in com-

bination with a Lagrangian scalar integration method to

objectively detect storm boundaries. A comparison of the

results to the HPC boundary analysis verified the quality

of the STMAS–Lagrangian analysis method. We also

compared the analysis error from STMAS to that from

a standard 3DVAR using a recursive filter for estimating

the covariance. This comparison demonstrated the sub-

stantial positive impact provided by the temporal con-

sistency in STMAS. We further confirmed that STMAS

indeed provides accurate multiscale, inhomogeneous,

and temporally consistent analyses using model back-

ground and observations.

STMAS shows potential to be a full three-dimensional

spatial analysis scheme, including the ability to handle

remotely sensed datasets. This full analysis holds prom-

ise for providing accurate nowcasts and for initializing

numerical prediction models. In the near future, STMAS’

full three-dimensional spatial analysis could take ad-

vantages of its 3D variational attributes for handling

radar, satellite, physical constraints, and error covari-

ance, though it is likely that the code will need to be

parallelized as the computation becomes more intense.

The multigrid STMAS will greatly reduce the com-

plexity of parallelization compared to its recursive fil-

ter version counterpart.

More future work is needed for improving STMAS

analysis for nowcasting and forecasts. In this paper,

STMAS assumes the background and observation error

covariance are invariant from coarse grid to fine grid.

More sophisticated and scale-dependent error covari-

ance would further improve STMAS analysis. This will

be studied in the near future.
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