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Abstract
Modern systems require applications to balance competing goals,
e.g. achieving high performance and low power. Achieving this
balance places an unrealistic burden on application programmers
who must understand the power and performance implications of
a variety of application and system actions (e.g. changing algo-
rithms or allocating cores). To address this problem, we propose the
Self-aware Computing framework, or SEEC. SEEC automatically
and dynamically schedules actions to meet application specified
goals. While other self-aware implementations have been proposed,
SEEC is uniquely distinguished by its decoupled approach, which
allows application and systems programmers to separately spec-
ify observations and actions, according to their expertise. SEEC’s
runtime decision engine observes the system and schedules actions
automatically, reducing programmer burden. This general and ex-
tensible decision engine employs both control theory and machine
learning to reason about previously unseen applications and ac-
tions while automatically adapting to changes in both application
and system models. This paper describes the SEEC framework and
evaluates it in several case studies. SEEC is used to build an adap-
tive system that optimizes performance per Watt for the PARSEC
benchmarks on multiple machines, achieving results as least 1.65×
better than a classical control system. Additional studies show how
SEEC can learn optimal resource allocation online and respond to
fluctuations in the underlying hardware while managing multiple
applications.

1. Introduction
Where once application optimization generally meant performance
maximization; now it is increasingly a process of balancing com-
peting goals. For example, as energy and power limits turn into
primary concerns, optimization may mean meeting performance
targets within a given power-envelope or energy budget. This opti-
mization process can be viewed as a problem of action scheduling.
Both the application and system (OS, hardware, etc.) support vari-
ous actions (e.g. changing or assignment of resources) and the ap-
plication programmer must schedule actions that meet performance
goals with minimal cost. Doing so requires both application domain
expertise and a deep systems knowledge in order to understand the
costs and benefits of a range of possible actions. Additionally, mod-
ern systems are dynamic with dramatically changing application
workloads and unreliable and failure prone system resources that
require online rescheduling of actions in response to environmental
fluctuations. It is unrealistic to expect that application programmers
acquire the necessary systems knowledge to optimally schedule ac-
tions in a fluctuating environment.

Self-adaptive or autonomic computing techniques have been
proposed to address this problem [23, 26]. Self-adaptive systems

Figure 1. SEEC’s decoupled observe-decide-act loop.

are characterized by an observe-decide-act (ODA) loop wherein the
system monitors itself and its environment making decisions about
how to adapt behavior using a set of available actions. These sys-
tems have been implemented in both hardware and software, but
recent survey papers point out several challenges in their imple-
mentation [22, 32, 37]. In this work, we focus on the challenge (de-
scribed by Salehie & Tahvildari [37]) of creating a general and ex-
tensible self-optimizing system and note two common limitations
to the generality of existing implementations. First, these imple-
mentations tend to focus on a fixed set of actions defined at design
time and characterized for a limited domain (e.g. web servers). Sec-
ond, these approaches focus on a single system layer (e.g. applica-
tion only) and do not allow coordination across layers.

This paper proposes the SElf-awarE Computing (SEEC) frame-
work to address the problem of automatically and dynamically
scheduling actions while balancing competing goals in a fluctuating
environment. The SEEC approach overcomes current limitations to
generality by flexibly incorporating new actions and coordinating
across multiple system layers. SEEC is based on two insights: 1)
decoupling the ODA loop implementation and 2) supporting a gen-
eral and extensible decision mechanism – itself an adaptive system.
In the decoupled approach, applications specify goals and feedback
(and optionally application-level actions), while system hardware
and software separately specify system-level actions as shown in
Figure 1. The SEEC decision engine automatically schedules ac-
tions to meet goals efficiently while responding to environmental
fluctuations. SEEC can handle an array of new applications and
system actions by automatically building and updating its internal
models online. SEEC’s decision mechanism is completely general
and extensible, and can easily handle new applications and actions
without redesign and re-implementation.

SEEC’s runtime decision mechanism has four novel features
supporting the generalized decoupled approach:
• SEEC directly incorporates application goals and feedback.
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• SEEC uses adaptive control to respond quickly to new applica-
tions or phases within an application.
• SEEC’s decision engine implements adaptive action schedul-

ing to determine when to race-to-idle versus allocating re-
sources proportional to need.
• SEEC’s runtime combines feedback control with reinforcement

learning to adapt its internal system-level models dynamically.
It initially functions as a learner and determines the available
actions’ true costs and benefits, becoming a control system as
the learned values converge to the true values.

SEEC is implemented as a set of libraries and runtime system
for Linux/x86 which we test in various scenarios. First, we mod-
ify the PARSEC benchmark suite [6] to emit goals and progress
towards those goals. Separately, we specify several actions on
two separate machines that allow SEEC to change the allocation
of cores and memory resources to applications, change the clock
speed of cores, and change an application itself. We then demon-
strate that the SEEC decision engine adapts to meet goals. Specifi-
cally, using the available actions on two different machines, SEEC
optimizes performance per Watt for the PARSEC benchmarks.
When moving from one machine to another the SEEC decision
engine is unchanged; however, in both cases SEEC is over 1.65×
better than a classical control system. Additional experiments show
that, compared to allocating for worst case execution time, SEEC
produces 1.44× better performance per Watt for a video encoder
across a range of different inputs. Further experiments show that
SEEC can learn to manage memory-bound applications without
over-provisioning resources and simultaneously manage multiple
applications in response to loss of compute power.
This paper makes the following contributions:

• It proposes and illustrates a decoupled approach to adaptive
system implementation. This approach allows application and
systems programmers to specify either observations or actions,
according to their expertise. SEEC’s runtime decision engine
observes the system and schedules actions automatically; ulti-
mately reducing programmer burden. To our knowledge, SEEC
provides the first implementation of such a decoupled adaptive
system.
• It addresses the challenge of creating a general and extensi-

ble decision mechanism for self-optimizing systems. Without re-
design or re-implementation, SEEC’s decision engine supports
the decoupled approach by managing a wide range of new ap-
plications and system actions.
• It demonstrates the combination of control and machine learn-

ing to manage behavior of a computer system.
• It presents a thorough evaluation of the SEEC implementation

controlling performance of the PARSEC benchmarks on multi-
ple machines using several different sets of available actions.
This evaluation compares the SEEC decision engine to some
existing approaches and demonstrates the benefits of incorpo-
rating both control and learning.
• It presents results and discussions describing some tradeoffs

between control theory and machine learning applied to system
optimization problems.

The rest of this paper is organized as follows. Section 2 dis-
cusses related work. Section 3 describes the SEEC model and
runtime system. Section 4 describes the applications and actions
used to test the SEEC decision engine. Section 5 presents sev-
eral case studies evaluating SEEC’s decision mechanism. The pa-
per concludes in Section 6.

2. Related Work
A self-aware, adaptive, or autonomic computing system is able to
alter its behavior in some beneficial way without human interven-
tion [19, 23, 26, 37]. Self-aware systems have been implemented in
both hardware [2, 7, 12] and software [37]. Some example systems
include those that that manage resource allocation in multicore
chips [7], schedule asymmetric processing resources [36, 40], op-
timize for power [25], and manage cache allocation online to avoid
resource conflicts[45]. In addition, languages and compilers have
been developed to support adapting application implementation for
performance [3, 42], power [4, 39], or both [17]. Adaptive tech-
niques have been built to provide performance [5, 28, 34, 38, 46]
and reliability [9] in web servers. Real-time schedulers have been
augmented with adaptive computing [8, 14, 29]. Operating systems
are also a natural fit for self-aware computation [10, 21, 24, 33].

One challenge facing researchers is the development of general
and extensible self-aware implementations. We distinguish the con-
cept of a general implementation from a general technique and note
that many general techniques have been identified. For example,
reinforcement learning [41] and control theory [15] are both gen-
eral techniques which can be used to create a variety of adaptive
systems. However, many techniques lose generality in their imple-
mentation; i.e. the implementation addresses a specific problem and
new problems require redesign and re-implementation. Other im-
plementations lose generality by fixing a set of actions and failing
to extend to new action sets. In this section, we focus on prior work
in creating general implementations.

Researchers have developed several frameworks that can be
customized for a specific application. These approaches include:
ControlWare [46], Agilos [28], SWiFT [13], the tunability inter-
face [11], AutoPilot [35], and Active Harmony [18]. One limita-
tion to the generality of these approaches is their exclusive fo-
cus on customization at the application level. For example, Con-
trolWare allows application developers to specify application level
feedback (such as the latency of a request in a web server) as well
as application level adaptations (such as admission control for re-
quests). Unfortunately, these approaches do not allow application
level feedback to be linked to system level actions performed by the
hardware, compiler, or operating system. Furthermore, once these
frameworks are customized, they lose their generality. In contrast,
SEEC allows applications to specify the feedback to be used for
observation, but does not require application developers to make
decisions or specify alternative actions (application developers can
optionally specify application-level actions, see Section 3.2). Ad-
ditionally, the SEEC runtime system is designed to handle previ-
ously unseen applications and can do so without redesign or re-
implementation. Thus, SEEC’s decoupled approach allows appli-
cation programmers to take advantage of underlying system-level
adaptations without even knowing they are available.

Other researchers have developed self-aware approaches to
adapt system level actions and handle a variety of previously un-
seen applications. Such system-level approaches include machine
learning hardware for managing a memory controller [20], a neural
network approach to managing on-chip resources in multicores [7],
a hill-climbing technique for managing resources in a simultaneous
multithreaded architecture [12], techniques for adapting the behav-
ior of super-scalar processors [2], and several operating systems
with adaptive features [10, 21, 24, 33]. While these approaches al-
low system level adaptations to be performed without input from
the application programmer, they suffer from other drawbacks.
First, application performance must be inferred from either low-
level metrics (e.g. performance counters [2]) or high-level metrics

1 The paper mentions adaptive control can be supported, but the tested
implementations use classical control techniques.
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Table 1. Comparison of several self-aware approaches.
ControlWare [46] Tunability Interface [11] Agilos [28] Choi & Yeung [12] Bitirgen et al. [7] SEEC

Observation Application System System System System Application & System
Decision Control1 Classifier Fuzzy Hill Climbing Neural Network Adaptive Control &

Control Machine Learning
Action Application Application Application System System Application & System
Handles unknown applications? No No No Yes Yes Yes
Add actions without redesign? Yes Yes Yes No No Yes

Table 2. Roles and Responsibilities in the SEEC model.
Phase Applications Developer Systems Developer SEEC Runtime
Observation Specify goals and performance - Read goals and performance
Decision - - Determine how to meet goals with minimum cost
Action - Specify actions and initial models Initiate actions and update models

(e.g. total system throughput [7]), and there is no way for the sys-
tem to tell if a specific application is meeting its goals. In contrast,
SEEC allows systems developers to specify available actions in-
dependently from the specification of feedback that guides action
selection. In addition, these prior systems work with a fixed set of
available actions and require redesign and re-implementation if the
set of available actions changes. For example, if a new hardware
resource becomes available for allocation, the neural network from
[7] will have to be redesigned, re-implemented, and retrained. In
contrast, SEEC can combine actions specified by different develop-
ers and learn models for these new combinations of actions online.

Table 1 highlights the differences between SEEC and some rep-
resentative prior adaptive implementations. The table includes gen-
eral approaches for specifying application level adaptation and ap-
proaches for specifying system level adaptation for resource man-
agement. For each project, the table shows the level (system or ap-
plication) at which observation and actions are specified and the
methodology used to make decisions. In addition, the table indi-
cates whether the system can handle previously unseen applications
and whether the emergence of new actions requires redesign of the
decision engine.

As shown in Table 1, SEEC is unique in several respects. SEEC
is the only system designed to incorporate observations made at
both the system and application level. SEEC is also the only system
designed to incorporate actions specified at both application and
system level. SEEC’s novel decision engine is, itself, an adaptive
system combining both machine learning and control theory and
capable of learning new application and system models online. Fi-
nally, SEEC is the only adaptive system that can handle previously
unseen applications and incorporate new actions without redesign
of its decision engine.

3. SEEC Framework
A key novelty of SEEC is its decoupling of ODA loop implemen-
tation, which leads to three distinct roles in development: appli-
cation developer, system developer, and the SEEC runtime deci-
sion infrastructure. Table 2 shows the responsibilities of each of
these three entities for the three phases of ODA execution: observa-
tion, decision, and action. The application developer indicates the
application’s goals and current progress toward those goals. The
systems developer indicates a set of actions and a function which
implements these actions. The SEEC runtime system uses a gen-
eralized and extensible decision engine to coordinates actions and
meet goals. We note that in practice, roles can overlap: application
developers can supply actions at the application level and systems
developers can provide system level observations.

The SEEC system block diagram is illustrated in Figure 2. One
difficulty implementing a decoupled adaptive system is designing a
decision engine which can support a wide range of applications and

Figure 2. SEEC block diagram.

actions. Given that difficulty, the majority of this section focuses on
SEEC’s decision engine which is based on a classical control sys-
tem with several novel features. SEEC uses adaptive control to tai-
lor its response to previously unseen applications and react swiftly
to changes within an application. SEEC implements an adaptive
action scheduling scheme to support race-to-idle and proportional
resource allocation, as well as a hybrid of the two approaches. Fi-
nally, SEEC incorporates a machine learning engine used to deter-
mine the true costs and benefits of each action online.

This section discusses each of the observation, action, and deci-
sion phases in greater detail, with a focus on the decision phase. We
note observation and action require developer input, but SEEC’s
runtime handles decisions without requiring additional program-
mer involvement.

3.1 Observe
The SEEC model uses the Application Heartbeats API [16] to
specify application goals and progress. The API’s key abstraction
is a heartbeat; applications use a function to emit heartbeats at
important intervals, while additional API calls specify performance
goals in terms of a target heart rate or a target latency between
specially tagged heartbeats.

The SEEC model assumes that increasing application perfor-
mance generally comes at some cost (e.g., an increase in power
consumption). Therefore, we modify the Application Heartbeats
API so application developers can indicate preferred tradeoffs. Cur-
rently SEEC supports two tradeoff spaces: application-level trade-
offs and system-level tradeoffs. Indicating a preference for one over
another directs SEEC to exhaust all actions affecting the preferred
tradeoff space before attempting any actions in the second. For ex-
ample, if system-level tradeoffs are preferred, then the SEEC run-
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time will only use actions specified at the application level if the
target performance cannot be met by any combination of system-
level actions. This interface is extensible so more tradeoffs can be
specified as more tradeoff spaces are explored.

3.2 Act
The SEEC model provides a separate, system programmers inter-
face for specifying actions that can be taken in the system. A set of
actions is defined by the following features: an identifier for each
action, a function which implements the corresponding action, and
an array of the estimated costs and benefits in the tradeoff space.
The performance benefits of an action are listed as speedups, while
the costs are listed by type. We currently support two types of costs:
POWER and ACCURACY, but the interface can be extended to
support additional costs in the future. In addition to specifying the
type of the cost, developers can specify a function that SEEC can
use to measure cost. This allows the developer flexibility to mea-
sure costs where available or provide a model if measurement is not
practical on a given system.

By convention, the action with identifier 0 is considered to be
the one with a speedup of 1 and a cost of 1; the speedup and costs
of additional actions are specified as multipliers. Additionally, the
systems developer specifies whether an action can affect all appli-
cations or a single application; in the case of a single application,
the developer indicates the process identifier of the affected appli-
cation. Finally, for each action the systems developer indicates a
list (possibly empty) of conflicting actions. Conflicting actions rep-
resent subsets of actions which cannot be taken at the same time;
e.g. allocation of both five and four cores in an eight core system.

For example, to specify the allocation of cores to a process in an
8 core system, the developer indicates 8 actions with identifiers i ∈
{0, ..., 7} and provides a function that takes a process identifier and
action identifier i binding the process to i + 1 cores. The systems
developer provides an estimate of the increase in performance and
power consumption associated with each i. For the core allocator,
the speedup of action i might be i + 1, i.e. linear speedup, while
the increase in power consumption will be found by profiling the
target architecture. For each action i, the list of conflicting actions
includes all j such that j + 1 + i + 1 > 8. Finally, the core
allocator will indicate that it can affect any application. In contrast,
application-level adaptations indicate that they only effect the given
application.

SEEC combines n sets of actionsA0, ..., An−1 defined by (pos-
sibly) different developers using the following procedure. First,
SEEC creates a new set of actions where each action in the set
is defined by the n-tuple < a0

i , a
1
j , ..., a

n−1
k >, and corresponds

to taking the ith action from set A0, the jth action from set A1,
etc. The speedup of each new set is computed as s

<a0i ,...,a
n−1
k

>
=

sa0i
× ... × s

an−1
k

and the cost is computed similarly. SEEC may
need to combine some actions that affect a single application with
others that can affect all applications. If so, SEEC computes and
maintains a separate set of actions for each application.

The models only serve as initial estimates and the SEEC runtime
system can adapt to even large errors in the values specified by
the systems developer. However, SEEC allows these models to be
specified to provide maximum responsiveness in the case where
the models are accurate. SEEC’s runtime adjustment to errors in the
models is handled by the different adaptation levels and is described
in greater detail in the next section.

3.3 Decide
SEEC’s runtime system automatically and dynamically selects ac-
tions to meet the goals with minimal cost. The SEEC decision en-
gine is designed to handle general purpose environments and the
SEEC runtime system will often have to make decisions about ac-

tions and applications with which it has no prior experience. In
addition, the runtime system will need to react quickly to changes
in application load and fluctuations in available resources. To meet
these requirements for handling general and volatile environments,
the SEEC decision engine is designed with multiple layers of adap-
tation, each of which is discussed below.

3.3.1 Classical Control System
The SEEC runtime system augments a classical, model-based feed-
back control system [15], which complements and generalizes the
control system described in [30]. The controller reads the perfor-
mance goal gi for application i, collects the heart rate hi(t) of ap-
plication i at time t, and computes a speedup si(t) to apply to ap-
plication i at time t.

SEEC’s controller observes the heartbeat data of all applications
and assumes the heart rate hi(t) of application i at time t is

hi(t) =
si(t− 1)

w
+ δhi(t) (1)

Where w is the workload, or the expected time between two sub-
sequent heartbeats when the system is in the state that provides the
lowest speedup. Using classical techniques, it is assumed that the
workload is not time variant and any noise or variation in the sys-
tem is modeled with the term δhi(t), representing a time varying
exogenous disturbance. This assumption of constant workload is a
major drawback for a general purpose system and will be addressed
by incorporating adaptive control (in the next section)2.

The control system works to eliminate the error ei(t) between
the heart rate goal gi and the observed heart rate hi(t) where
ei(t) = gi − hi(t). Error is reduced by controlling the speedup
si(t) applied to application i at time t. Since SEEC employs a
discrete time system, we follow standard practice [27, p17] and
analyze its transient behavior in the Z-domain:

Fi(z) =
1

z
(2)

where Fi(z) is the Z-transform of the closed-loop transfer function
for application i (labeled “Classic Control System” in Figure 2).
The gain of this function is 1, so ei(t) is guaranteed to reach 0
for all applications (i.e., the system will converge to the desired
heartrate). From Equation 2, the classic controller is synthesized
following a standard procedure [27, p281] and si(t) is calculated
as:

si(t) = si(t− 1) + w · ei(t) (3)

3.3.2 Adaptive Control
Unlike the classical control system, the adaptive control system
estimates application workload online turning the constant w from
Equation 3 into a per-application, time varying value. This change
allows SEEC to rapidly respond to previously unseen applications
and sudden changes in application performance. The true workload
cannot be measured online as it requires running the application
with all possible actions set to provide a speedup of 1, which will
likely fail to meet the application’s goals. Therefore, SEEC views
the true workload as a hidden state and estimates it using a one
dimensional Kalman filter [44].

SEEC’s represents the true workload for application i at time t
as wi(t) ∈ R and models this workload as:

wi(t) = wi(t− 1) + δwi(t)

hi(t) =
si(t− 1)

wi(t− 1)
+ δhi(t)

(4)

2 The assumption of constant workload may not be a drawback for
application-specific systems, which model the specific controlled applica-
tion before deployment.
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Table 3. Adaptation in SEEC Decision Engine.
Adaptation Level Benefits Drawbacks
Classical Control System Commonly used, relatively simple Does not generalize to unseen applications and unreliable system models
Adaptive Control System Tailors decisions to specific application and input Assumes reasonable system model
Adaptive Action Scheduling Supports both race-to-idle and proportional allocation May over-provision resources if system models are inaccurate
Machine Learning Learns system models online Requires time to learn, guarantees performance only in limit

where δwi(t) and δhi(t) represent time varying noise in the true
workload and heart rate measurement, respectively. SEEC recur-
sively estimates the workload for application i at time t as ŵi(t)
using the following Kalman filter formulation:

x̂−i (t) = x̂i(t− 1)

p−i (t) = pi(t− 1) + qi(t)

ki(t) =
p−i (t)si(t− 1)

[si(t)]2p
−
i (t) + oi

x̂i(t) = x̂−i (t) + ki(t)[hi(t)− si(t− 1)x̂−i (t)]

pi(t) = [1− ki(t)si(t− 1)]p−i (t)

ŵi(t) =
1

x̂i(t)

(5)

Where qi(t) and oi represent the application variance and measure-
ment variance, respectively. The application variance qi(t) is the
variance in the heart rate signal since the last filter update. SEEC
assumes that oi is a small fixed value as heartbeats have been shown
to be a low-noise measurement technique [16]. hi(t) is the mea-
sured heart rate for application i at time t and si(t) is the applied
speedup (according to Equation 3). x̂i(t) and x̂i(t)− represent the
a posteriori and a priori estimate of the inverse of application i’s
workload at time t. pi(t) and p−i (t) represent the a posteriori and
a priori estimate error variance, respectively. ki(t) is the Kalman
gain for the application i at time t.

SEEC’s runtime improves on the classical control formulation
by replacing the fixed value of w from Equations 1 and 3 with the
estimated value of ŵi(t). By automatically adapting workload on
the fly, SEEC can control different applications without having to
profile and model the applications ahead of time. Additionally, this
flexibility allows SEEC to rapidly respond to changes in application
behavior. In contrast, the classic control model presented in the
previous section must use a single value of w for all controlled
applications which greatly limits its efficacy in a general computing
environment.

3.3.3 Adaptive Action Scheduling
SEEC’s adaptive control system produces a continuous speedup
signal si(t) which the runtime must translate into a set of actions.
SEEC does this by scheduling actions over a time window of τ
heartbeats. Given a set A = {a} of actions with speedups sa and
costs ca, SEEC would like to schedule each action for τa ≤ τ time
units in such a way that the desired speedup is met and the total cost
of all actions is minimized. In other words, SEEC tries to solve the
following optimization problem:

minimize(τidlecidle + 1
τ

P
a∈A(τaca)) s. t.

1
τ

P
a∈A τasa = si(t)

τidle +
P
a∈A τa = τ
τa, τidle ≥ 0, ∀a

(6)

Note the idle action, which idles the system paying a cost of
cidle and achieving no speedup. It is impractical to solve this sys-
tem online, so SEEC instead considers three candidate solutions:
race-to-idle, proportional allocation, and a hybrid approach.

First, SEEC considers race-to-idle, i.e. taking the action that
achieves maximum speedup for a short duration hoping to idle the
system for as long as possible. Assuming that max ∈ A such that
smax ≥ sa∀a ∈ A, then racing to idle is equivalent to setting

τmax = si(t)·τ
smax

and τidle = τ − τmax. The cost of doing so is then
equivalent to crace = τmax · cmax + τidle · cidle.

SEEC then considers proportional scheduling. SEEC selects
from actions which are Pareto-optimal in terms of speedup and cost
to find an action j with the smallest speedup sj such that sj ≥ si(t)
and an action k such that sk < sj . The focus on Pareto-optimal
actions ensures j is the lowest cost action whose speedup exceeds
the target. Given these two actions, SEEC takes action j for τj time
units and k for τk time units where si(t) = τj · sj + τk · sk and
τ = τj + τk. The cost of this solution is cprop = τj · cj + τk · ck.

The third solution SEEC considers is a hybrid, where SEEC
finds an action j as in the proportional approach. Again, sj is the
smallest speedup such that sj ≥ si(t); however, SEEC considers
only action j and the idle action, so si(t) = τj · sj + τidle · sidle,
τ = τj + τidle, and chybrid = τj · cj + τidle · cidle.

In practice, the SEEC runtime system solves Equation 6 by
finding the minimum of crace, cprop, and chybrid and and using the
set of actions corresponding to this minimum cost.

3.3.4 Machine Learning Engine
The use of adaptive control and adaptive action scheduling aug-
ments a classical control system with the capability to adjust its
behavior dynamically and control even previously unseen applica-
tions. Even with this flexibility, however, the control system can
behave sub-optimally if the costs and benefits of the actions as sup-
plied by the application programmer are incorrect or inconsistent
across applications. For example, consider a set of actions which
change processor frequency and assume the systems programmer
specifies that speedup is linear with a linear increase in frequency.
This model works well for compute-bound applications, but the
control solutions described so far may allocate too much frequency
for I/O bound applications.

To overcome this limitation, SEEC augments its adaptive con-
trol system with machine learning. At each time-step, SEEC com-
putes a speedup according to Equation 3 using the workload es-
timate from Equation 5 and uses reinforcement learning (RL) to
determine an action that will achieve this speedup with lowest cost.
Specifically, SEEC uses temporal difference learning to determine
the expected utility Qa, a ∈ A of the available actions3. Qa is ini-
tialized to be sa/ca; if the developer’s estimates are accurate, the
learner will converge more quickly.

Each time the learner selects an action, it receives a reward
r(t) = h(t)/cost(t) where h(t) is the measured heart rate and
cost(t) is the measured cost (using a function supplied by the
systems developer, Section 3.2) of taking the action a for τa time
units and idling for the remaining τidle = τ − τa time units. Given
the reward signal, SEEC updates its estimate of the utility function
Qa by calculating:

Q̂a(t) = Q̂a(t− 1) + α(r(t)− Q̂a(t− 1)) (7)

3 SEEC learns the Q functions on a per application basis, but to enhance
readability in this section we drop the i subscript denoting application i.
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Algorithm 1 Select an action to meet the desired speedup.
Inputs:
s - a desired speedup
Q̂ - estimated utility for available actions
r(t) - the reward at time t
α - the learning rate parameter
A - the set of available actions
a ∈ A - the last action selected
ε - parameter that governs exploitation vs. exploration

Outputs:
next - the next action to be taken
ε - an updated value

x = e
−|α(r(t)−Q̂a(t)|

σ

f = 1−x
1+x

δ = 1
|A|

ε = δ · f + (1− δ) · ε
r = a random number drawn with uniform distribution from 0 to 1
if r < ε then

randomly select a′ from A using a uniform distribution
else

find A′ = {b|b ∈ A, ŝb ≥ s}
select a′ ∈ A′ s.t. Q̂a′ (t) ≥ Q̂b, ∀b ∈ A′

end if
return a′ and ε

Where α is the learning rate and 0 < α ≤ 14. In addition, SEEC
keeps estimates of sa and ca calculated as

ĥa(t) = ĥa(t− 1) + α(h(t)− ĥa(t− 1))

ŝa(t) =
ĥa(t)

ĥ0(t)

ĉa(t) = ĉa(t− 1) + α(cost(t)− ĉa(t− 1))

(8)

Given a desired speedup s(t) and the current estimate of utility
Q̂a(t)∀a ∈ A, SEEC updates its estimates of speedups and costs
according to Equations 7 and 8 and then selects an action using
Algorithm 1. This algorithm employs Value-Difference Based Ex-
ploration (VDBE) [43] to balance exploration and exploitation. As
shown in the algorithm listing, SEEC keeps track of a parameter, ε
(0 ≤ ε ≤ 1) used to balance the tradeoff between exploration and
exploitation. When selecting an action to meet the desired speedup,
a random number r (0 ≤ r < 1) is generated. If r < ε, the algo-
rithm randomly selects an action. Otherwise, the algorithm selects
the lowest cost action that meets the desired speedup. ε is initial-
ized to 1 and updated every time the algorithm is called. A large
difference between the reward r(t) and the utility estimate Q̂a(t)
results in a large ε, while a small difference makes ε small. Thus,
when SEEC’s estimates of the true speedups and costs are far from
the true value, the algorithm explores available actions. As the es-
timates converge to the true values, the algorithm exploits the best
solution found so far. The value of σ can be used to tune the tradeoff
between exploration and exploitation5.

Having selected and action a′, SEEC executes that action and
waits until τ heartbeats have been completed (idling itself during
this time). If the heartbeats complete sooner than desired for the
given value of s, then ŝa′ was larger than necessary, so SEEC idles
the system for the extra time. If ŝa′ was too small, then SEEC
does not idle. In either case, the cost and reward are immediately
computed using Equation 7 and a new action is selected using
Algorithm 1. By idling the system if the selected action was too
large, SEEC can learn to correctly race-to-idle even when the sys-
tem models are incorrect.

4 In our system the learning rate is set to 0.85 for all experiments.
5 For all experiments we set σ = 5.

3.3.5 Controlling Multiple Applications
When working with multiple applications, the control system may
request speedups which create resource conflicts (e.g., in an eight
core system, the assignment of 5 cores to one application and 4 to
another). SEEC’s actuator resolves conflicting actions using a pri-
ority scheme. Higher priority applications get first choice amongst
any set of actions which govern finite resources. Actions scheduled
for high priority applications are removed from consideration for
lower priority applications.

For equal priority applications, SEEC resolves conflicts us-
ing a centroid technique. Suppose the total amount of a re-
source is n and this resource must be split between m appli-
cations. SEEC defines an m dimensional space and considers
the sub-space whose convex hull is defined by the combination
of the origin and the m points (n, 0, . . . , 0), (0, n, . . . , 0), . . .,
(0, 0, . . . , n). The desired resource allocation is represented by
the point p = (n1, n2, . . . , nm), where the ith component of p is
the amount of resources needed by application i. If p is outside the
convex hull, SEEC then identifies the centroid point 1

m
(1, 1, . . . , 1)

and the line l intersecting both the centroid and p. SEEC computes
the point p′ where l intersects with the convex hull and then allo-
cates resource such that the ith component of point p′ is the amount
of resource allocated to application i. This method balances the
needs of multiple equal priority applications when resources are
oversubscribed.

3.4 Discussion
SEEC’s decoupled approach has several benefits. First, applica-
tion programmers focus on application-level goals and feedback
without having to understand the system level actions. Similarly,
systems developers specify available adaptations without knowing
how to monitor an application. Both application and systems de-
velopers rely on SEEC’s general and extensible decision engine to
coordinate the adaptations specified by multiple developers. The
decoupled approach makes it easier to develop adaptive systems
which can optimize themselves dynamically.

Each of the adaptation levels in SEEC’s runtime decision mech-
anism (Figure 2) builds on adaptations from the previous level and
each has its tradeoffs, summarized in Table 3. In practice, we find
that it is best to run SEEC using either adaptive action selection or
machine learning and each has different uses. When the systems
developer is confident that the systems models (costs and benefits
of actions) are accurate, then SEEC will work best using adaptive
action selection. These benefits and costs only need to be accu-
rate relative to one another because the adaptive control system can
compensate for absolute errors if the relative values are correct.
In this case, SEEC can adapt to differing applications quickly and
adjust the resource allocation appropriately without machine learn-
ing. In contrast, if the system will be running a mix of applications
and the response to actions varies, then it is unlikely that the mod-
els provided by the developer will be accurate for all applications.
In this case, SEEC’s reinforcement learning can keep the control
system from over-provisioning resources for little added gain. Ex-
periments demonstrating these tradeoffs are described in Section 5.

SEEC can support two types of application goals. If an appli-
cation requests a performance less than the maximum achievable
on a system (e.g. a video encoder working with live video), SEEC
will minimize the cost of achieving that goal. When an applica-
tion simply wants maximum performance, it can set its goal to be a
(near) infinite number. SEEC will attempt to meet that number, but
it will do so while minimizing costs. For example, if an application
is memory bound and requests infinite performance, SEEC can al-
locate maximum memory resources, but also learn not to allocate
too many compute resources.
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Table 4. Variance in heart rate signal for application benchmarks.
Benchmark Min Resources Max Resources
blackscholes 3.03E-03 1.90E-01
bodytrack 3.03E-03 2.32E-01
canneal 7.01E+01 2.40E+09
dedup 1.73E+06 1.10E+10
facesim 6.28E-05 3.51E-03
ferret 2.53E+07 2.27E+07
fluidanimate 7.74E-04 1.29E-01
freqmine 3.07E+07 1.17E+09
raytrace 6.46E-04 9.55E-02
streamcluster 8.24E-04 7.41E-03
swaptions 1.35E+02 9.23E+07
vips 2.97E+05 4.93E+09
x264 5.68E+00 4.94E+02
STREAM 4.42E-02 1.93E-01
dijkstra 3.18E-01 2.50E+01

SEEC is designed to be general and extensible and SEEC can
work with applications that it has not previously encountered and
for which its provided models are wrong. To support this general-
ity, SEEC has mechanisms allowing it to learn both application and
systems models online. To make use of this flexibility, SEEC needs
enough feedback from the application to have time to adapt. Thus,
SEEC is appropriate for supporting either relatively long-lived ap-
plications or short-lived applications that will be repeatedly exer-
cised. In our test scenarios, all applications emitted between 200
and 60000 heartbeats.

4. Using the SEEC Model
This section describes the applications and system actions used to
evaluate the SEEC model and runtime.

4.1 Applications
We use fifteen different benchmarks to test SEEC’s ability to man-
age a variety of applications. Thirteen of these come from PAR-
SEC [6] version 2.1. The additional benchmarks are STREAM [31]
and dijkstra, a benchmark created for this paper.

The PARSEC benchmarks represent a variety of important,
emerging multicore workloads [6], and they tend to scale well with
increasing processing resources. We modify these benchmarks to
emit heartbeats as described in [16]. In general, these benchmarks
have some outer loop (in one case, freqmine, control is governed
by a recursive function call) and this is where we insert the heart-
beats. Use of this suite tests SEEC’s ability to handle a wide range
of applications with different heart rate characteristics. To illus-
trate this range, the variance in heart rate for each of the PARSEC
benchmarks is shown in Table 4. To manage the goals of these
benchmarks, SEEC will have to adapt its internal models to the
characteristics of each application including phases and variance
within a single application. Each PARSEC benchmark is launched
with 8 threads using the “native” input parameters.

Unlike the PARSEC benchmarks, the STREAM benchmark
does not scale well with increasing compute resources [31]. STREAM
is designed to exercise a processor’s memory hierarchy and it is a
classic example of a memory-bound benchmark; however, it only
becomes memory bound once it has enough compute resources to
saturate the memory controllers. To control STREAM optimally,
SEEC will have to find the balance between compute and memory
resources. STREAM has an outer loop which executes a number of
smaller loops that operate on arrays too large to fit in cache. We in-
strument STREAM to emit a heartbeat every outer loop. STREAM
tests SEEC’s ability to adjust its models online and learn how to
manage a memory-bound benchmark.

The dijkstra benchmark was developed for this paper specifi-
cally to test the SEEC system. dijkstra is a parallel implementation

of Dijkstra’s single source shortest paths algorithm processing a
large, dense graph. The benchmark demonstrates limited scalabil-
ity, achieving modest speedup with small numbers of processors,
but reduced performance with large numbers of processors. The
scaling for this benchmark is limited by communication overhead
as each iteration of the algorithm must select from and update a
priority queue. We instrument this application to emit a heartbeat
every time a new vertex is selected from the queue. dijkstra tests
SEEC’s ability to adjust its models online and learn not to over-
provision resources for a benchmark that cannot make use of them.

4.2 Adaptations
This section describes the adaptations we make available to SEEC’s
runtime decision engine. To emphasize the generality and extensi-
bility of the SEEC framework, we examine three distinct combina-
tions of adaptations as summarized in Table 5. The first two focus
on system level actions, while the third includes both system and
application level actions. SEEC’s decision engine can manage all
three distinct combinations of adaptations without redesign or re-
implementation.

All actions are implemented on one of the two different ma-
chines described in Table 6. Both machines are hooked up to Watts
Up? power meters [1], which measure power consumption over
an interval, the smallest supported being 1 second. Acting as sys-
tems developers, we provide SEEC with a function to measure cost
which accesses the power meter. If SEEC’s requests come less than
a second apart, the function interpolates power, otherwise it returns
the power measurement directly.

4.2.1 Compute Adaptations
These adaptations allow allocation of CPUs and clock speed to run-
ning applications. Clock speed is changed by providing a function
that manipulates the cpufrequtils package. Cores are allocated
to an application by changing the affinity mask of processes. For
both machines, we tell SEEC the model for speedup is linear for
both clock and core changes, i.e., changing either resource by some
factor changes speedup by the same factor. The initial power model
for each set of actions on both machines is derived by measuring
the power of an application that simply does a busy loop of floating
point arithmetic. For clock frequency changes, we measure power
using a single core. For core changes, we measure power at the
highest frequency setting. Even for the compute bound applications
in the PARSEC suite this model is overly optimistic as many of the
PARSECs do not achieve linear speedup on our test machines. It is
up to SEEC’s decision engine to overcome this limitation.

4.2.2 Compute and Memory Adaptations
In this case three sets of actions are available to SEEC on Machine
1: the core and clock speed actions from the previous section
and a set of two actions which assign memory controllers to the
application. These actions change the binding of pages to memory
controllers using the numa interface. The initial model provided to
SEEC assumes that the application’s speed increases linearly with
the number of memory controllers. We create the model for power
by running a separate memory bound application (which repeatedly
copies a 1 GB array) and measuring the power consumption using
all eight cores at the maximum clock speed while varying the
number of memory controllers. We provide SEEC with an initial
model which again assumes linear speedup for all resources; i.e. it
assumes that doubling the number of memory controllers and the
number of cores will quadruple the speed of the application. Such
speedup is not close to possible for any application in our test suite.
Using this set of adaptations efficiently will test SEEC’s ability to
learn the true costs and benefits of these actions online and tailor
its response to individual applications.
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Table 5. Summary of Adaptations
Adaptation Action Sets Tradeoffs
Compute Resources Allocate CPUs & Clock Speed Performance vs Power
Compute & Memory Resources Allocate CPUs, Mem. controllers, & Clock Speed Performance vs Power
Compute Resources & Application Behavior Allocate CPUs & Clock Speed, Change application control parameters Performance vs Accuracy

Table 6. Hardware platforms used in evaluation.
Name Processor Cores Memory Controllers Clock Speed (GHz) (Min/Max) Available Speeds Max Power (Watts) Idle Power (Watts)
Machine 1 Intel Xeon E5520 8 2 1.596/2.394 7 220 90
Machine 2 Intel Xeon X5460 8 1 2.000/3.160 4 329 200

4.2.3 Compute and Application Adaptations
This case again makes three sets of actions available to SEEC on
machine 1. The core and clock speed changes used in the previ-
ous two sections are reused here. Additionally, we modify x264
to specify 560 possible actions that alter the way it finds tempo-
ral redundancy between frames [17]. When x264 is running in the
system, SEEC can alter its encoding algorithm using the specified
actions to increase speed at a cost of reduced video encoding qual-
ity. In this case, the SEEC runtime must create two separate models.
The first captures a general, non-adaptive application’s response to
cores and clock speed, while the second captures x264’s response
to both compute resources and algorithm changes. Additionally,
x264 requests that SEEC favor system-level adaptations rather than
application-level ones; i.e. SEEC will only change x264’s algo-
rithm if it cannot meet x264’s goals with the maximum compute
resources. This set of adaptations tests SEEC’s ability to manage
both system and application level actions and its ability to manage
multiple applications at once.

5. Evaluation
This section evaluates the generality, applicability, and effective-
ness of the SEEC approach through case studies that make use of
the applications and actions described in Section 4. We compare
SEEC’s decision engine to other, less general, approaches for man-
aging adaptive systems. We first describe these points of compari-
son and then show results of the case studies.

To evaluate the overhead of SEEC’s runtime system, we run all
benchmark applications with SEEC disabling its ability to take ac-
tions. Thus, SEEC’s runtime observes and decides but cannot have
any positive effect on the system. We compare execution time in
this scenario to the execution time when the application runs with-
out SEEC. For most applications, there was no measurable differ-
ence. The largest difference in performance was 2.2%, measured
for the fluidanimate benchmark, while the power consumption was
within the run to run variation for all benchmarks. These are small
overheads and easily compensated for when SEEC is taking action.

5.1 Points of Comparison
We compare SEEC’s decision engine to several other approaches:
A static oracle, a heuristic system, a classical control system, and a
worst case execution time (wcet) allocator.
Static Oracle: This approach schedules actions for an application
once, at the beginning of its execution, but knows a priori the best
allocation for each benchmark. The oracle is constructed by mea-
suring the performance and power consumption for all benchmarks
with all available sets of actions. Obviously, it is impossible to build
a static oracle on a real system where the set of applications and
inputs is not known ahead of time, but it provides an interesting
comparison for active decision making.
Heuristic: This system simply measures the application’s heart
rate and allocates more resources if the heart rate is too low and
fewer resources when the heart rate is too high. The approach is
based on one originally used to test the Application Heartbeats
framework as described in [16]. This mechanism generalizes to

multiple applications, but new actions require redesign and re-
implementation.
Classical Control: This is the system is described in Section 3.3.1.
One difficulty implementing this approach is the specification of w
in Equation 3. Ideally, we would determine w on a per application
(or per input) basis, but these studies assume no a priori knowledge.
Instead, we use a fixed value of w = 0.5 as recommended in [30].
Using classical control as a point of comparison allows us to show
the benefits of SEEC’s additional adaptive features.
wcet: The wcet allocator knows a priori the amount of compute
resources required to meet an application’s goals in the worst case
(e.g. for the most difficult anticipated input). We use this allocator
as a point of comparison for the x264 video encoder benchmark,
and we construct it by measuring the amount of resources required
to meet goals for the hardest video. The wcet allocator assigns this
worst case amount of resources to all inputs.

5.2 Optimizing the PARSEC Benchmarks
This study shows how SEEC can meet application goals while min-
imizing power consumption. SEEC manages the PARSEC bench-
marks on both Machines 1 and 2 using the compute adaptations
described in Section 4.2.1. Each PARSEC benchmark is launched
on a single core set to the minimum clock speed and it requests
a performance equal to half the maximum achievable with Ma-
chine 1. SEEC’s runtime attempts to meet this application specified
performance goal while minimizing power consumption. For each
application, we measure the average performance and power con-
sumption over the entire execution of the application. We then sub-
tract out the idle power of the processor and compute performance
per Watt as the minimum of the achieved and desired performance
divided by the power beyond idle. We compute this metric for the
static oracle, the heuristic allocator, the classical control system and
for SEEC both with and without machine learning enabled.

Figures 3(a) and 3(b) show the results of this experiment on
Machine 1 and 2, respectively. The x-axis shows the benchmark
(and the average for all benchmarks) while the y-axis shows the
performance per Watt normalized to that of the static oracle. The
bar labeled “SEEC (AAS)” shows the results for the SEEC system
with adaptive control and action scheduling but without machine
learning. The bar labeled “SEEC (ML)” shows the results for the
full SEEC system with the machine learner enabled.

For both machines SEEC (AAS) is over 1.13× better than the
static oracle on average. On Machine 1, SEEC (AAS) outperforms
the static oracle for all benchmarks but dedup; on Machine 2,
it is better than the static oracle for all benchmarks but dedup
and freqmine. SEEC (AAS) outperforms the heuristic solution by
1.27× on Machine 1 and by 1.53× on Machine 2. SEEC (AAS)
outperforms the classical control system by 1.80× on Machine 1
and by 1.65× on Machine 2. For all benchmarks on both machines,
SEEC is able to maintain at least 95% of the performance goal, so
the improvement in performance per Watt directly translates into a
power savings while meeting application goals.

SEEC (AAS) outperforms other approaches because of its mul-
tiple layers of adaptation. SEEC outperforms the classical control

8 2011/8/23



(a) Machine 1

(b) Machine 2

Figure 3. Controlling PARSEC with SEEC.

system as adaptive control tailors response to specific applications
online. The heuristic system handles multiple applications but it is
slow to react, tends to over-provision resources, and often achieves
average performance goals by oscillating around the target. Finally,
SEEC outperforms the static oracle by adapting to phases within an
application and tailoring resource usage appropriately.

On both machines, SEEC (AAS) outperforms SEEC (ML). For
this study, the system models are optimistic, but SEEC (AAS) is
able to overcome errors because the relative costs and benefits are
close to correct for these applications. The ML engine provides
no additional benefit as it explores actions to learn exact models
that are not necessary for efficient control. The ML engine does
outperform all other adaptive systems on Machine 1, achieving
1.01× the performance of the oracle. On Machine 2, SEEC (ML)
achieves 97% the performance of the oracle and outperforms the
other systems that can be realized in practice. Part of SEEC (ML)’s
performance relative to AAS is that the ML is still exploring when
the benchmark terminates. For longer benchmarks ML approaches
the performance of AAS.

SEEC’s AAS has a benefit that is not immediately apparent
from the figures. On Machine 1, SEEC (AAS) correctly decides
to race-to-idle, repeatedly allocating all resources to each bench-
mark for some small number of heartbeats and then idling the ma-
chine for as long as possible (see Section 3.3.3). On Machine 1,
adaptively racing-to-idle improves SEEC’s performance per Watt
by 15% compared to a system that is forced to use proportional

Figure 4. Controlling multiple x264 inputs with SEEC.

allocation. On Machine 2, SEEC determines that it should use the
hybrid approach to action selection and improves performance per
Watt by 14% compared to a system that is forced to race-to-idle.

These experiments show that SEEC can handle a range of im-
portant multicore applications. As shown in Table 4 the PARSEC
benchmarks have a wide range of variance, some have very little
variance (e.g. raytrace) and it is not surprising that these can be
controlled. Others (e.g. dedup and vips) have tremendous variance
in heart rate signal, yet SEEC can still control these applications
even without prior knowledge of their behavior. This study also
shows how the same decision engine can be used to manage dif-
ferent machines without redesign or re-implementation. The only
change going from machine 1 to machine 2 was informing SEEC
that a different set of actions is available. SEEC’s decision engine
takes care of all other required adaptations.

5.3 Optimizing Video Encoding
In this experiment, SEEC’s decision engine maintains desired per-
formance for the x264 video encoder across a range of different in-
puts, each with differing compute demands. In addition to the PAR-
SEC native input, we obtain fifteen 1080p videos from xiph.org.
We then alter x264’s command line parameters to maintain an av-
erage performance of thirty frames per second on the most difficult
video using all compute resources available on Machine 1. x264
requests a heart rate of 30 beat/s corresponding to a desired encod-
ing rate of 30 frame/s. Each video is encoded separately, initially
launching x264 on a single core set to the lowest clock speed. We
measure the performance per Watt for each input when controlled
by the classical control system, the wcet allocator, SEEC (AAS)
and SEEC (ML). Figure 4 shows the results of this case study. The
x-axis shows each input (with the average over all inputs shown at
the end). The y-axis shows the performance per Watt for each input
normalized to the static oracle.

On average, SEEC (AAS) outperforms the static oracle by
1.1×, the classical control system by 1.25×, and the wcet allo-
cator by 1.44×. SEEC (AAS) bests these alternatives because its
adaptive control system allows it to tailor its response to particular
videos and even phases within a video. Additionally, SEEC can
adaptively race-to-idle allowing x264 to encode a burst of frames
using all resources and then idling the system until the next burst is
ready. On average, SEEC AAS achieves 99% of the desired perfor-
mance while SEEC ML achieves 93% of the desired performance.

SEEC (AAS) again outperforms SEEC (ML) in this study, al-
though in this case the difference is just 10%. As in the previous
study, the system models used here assume linear speedup and that

9 2011/8/23



(a) Performance

(b) Power

Figure 5. Learning System Models for STREAM.

is good enough for SEEC (AAS) to meet the needs of this applica-
tion. Using ML, SEEC explores actions to try to learn the true sys-
tem models on a per input basis, but the exploration causes some
performance goals to be missed without a large resulting power
savings. Despite this inefficiency, SEEC’s ML approach achieves
equivalent performance to the static oracle, and outperforms both
classic control and wcet.

5.4 Learning System Models Online
In this section we test SEEC’s ability to learn system models online
and demonstrate two cases where SEEC’s ML engine provides a
clear benefit over AAS alone. For these test cases, SEEC must
control the performance of STREAM and dijkstra on Machine 1
using the set of compute and memory adaptations described in
Section 4.2.2. Both applications request a heart rate of 75% the
maximum achievable. We run these applications separately, each
initially allocated a single core set to the lowest clock speed, and
a single memory controller. We record the performance and power
throughout execution for a classic control system, SEEC (AAS),
and SEEC (ML).

The results of this case study are shown in Figures 5 and 6. In
these figures time (measured in decision periods, see Section 3.3.3)
is shown on the x-axis, while performance and power are shown on
the y-axis of the respective figures and normalized to that achieved
by a static oracle for the respective applications.

(a) Performance

(b) Power

Figure 6. Learning System Models for dijkstra.

Even though the two applications have very different charac-
teristics, the results are similar. In both cases, the SEEC (AAS)
approach is the fastest to bring performance to the desired level,
but it does so by over-allocating resources and using too much
power. In the case of STREAM, SEEC (AAS) allocates the maxi-
mum amount of resources to the application and burns 40% more
power to achieve the same performance. In the case of dijkstra,
SEEC (AAS) over-allocates resources and then attempts to race-to-
idle, but still burns about 10% more power than the static oracle.
SEEC’s AAS approach cannot adapt its system models and thus it
cannot overcome the errors for these two applications.

In contrast, the SEEC (ML) approach takes longer to converge
to the desired performance, but does a much better job of allocat-
ing resources. In the case of STREAM, SEEC (ML) is able to meet
98% of the performance goal while burning only 95% of the power
of the static oracle. For dijkstra, SEEC converges to the perfor-
mance goal while achieving the same power consumption as the
static oracle.

These experiments demonstrate the tradeoffs inherent in using
SEEC with and without ML. Without ML, SEEC quickly converges
to the desired performance even when the system models have
large error. However, these errors manifest themselves as wasted
resource usage. In contrast SEEC’s ML engine takes longer to con-
verge to the desired performance, but it does so without wasting
resources. Both SEEC AAS and ML have advantages over the
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classic control system. SEEC AAS converges to the target perfor-
mance more quickly, while SEEC ML saves average power. For
dijkstra, the classic control system never converges, instead oscil-
lating around the desired value.

5.5 Managing Multiple Applications
This experiment demonstrates how SEEC can use both system and
application level actions to manage multiple applications in re-
sponse to a fluctuation in system resources. In this scenario, SEEC
uses the actions described in Section 4.2.3 to simultaneously con-
trol bodytrack and x264. As discussed in Section 4.2.3 this imple-
mentation of x264 is, itself, adaptive and its adaptations are man-
aged by SEEC’s runtime system. Both applications are simultane-
ously launched on Machine 1 and request a performance of half
the maximum achievable, so the system has just enough capacity
to meet these goals. x264 is given lower-priority than bodytrack. In
addition, x264 indicates a preference for system-level adaptations
indicating that SEEC should only take application level actions if it
has exhausted all system level ones.

Approximately 10% of the way through execution we simulate
a thermal emergency as might occur if chip is in danger of over-
heating. In response, the hardware lowers the processor frequency
to its lowest setting. To simulate this situation, we force Machine
1’s clock speed to its minimum and disable the actions that allow
SEEC to change this value. Doing so forces the SEEC decision
engine to adapt to try to meet performance despite the loss of pro-
cessing power and the fact that some of its actions no longer have
the anticipated effect.

Figures 7(a) and 7(b) illustrate the behavior of SEEC (AAS) in
this scenario, where Figure 7(a) depicts bodytrack’s response and
Figure 7(b) shows that of x264. Both figures show performance
(normalized to the target performance) on the left y-axis and time
(measured in heartbeats) on the x-axis. The time where frequency
changes is shown by the solid vertical line. For each application,
performance is shown with clock frequency changes but no adap-
tation (“No adapt”), and with SEEC adapting to clock frequency
changes using both AAS and ML.

Figure 7(a) shows that SEEC (AAS) maintains bodytrack’s
performance despite the loss in compute power. SEEC observes
the clock speed loss as a reduction in heart rate and deallocates two
cores from the lower priority x264, assigning them to bodytrack.
Without SEEC bodytrack would only achieve 65% of its desired
performance, but with SEEC bodytrack meets its goals. SEEC
(ML) also can bring bodytrack back to its desired performance,
but it takes longer and is done at a cost of oscillation as the ML
algorithm explores different actions.

Figure 7(b) shows how SEEC sacrifices x264’s performance to
meet the needs of bodytrack. SEEC deallocates cores from x264
but compensates for this loss by altering x264’s algorithm. By
managing both application and system level adaptations, SEEC
is able to resolve resource conflicts and meet both application’s
goals. We note that if x264 had been the higher priority application,
SEEC would not have changed its algorithm because x264 requests
system-level adaptations before application-level ones. In this case,
SEEC would have assigned x264 more processors and bodytrack
would not have met its goals. As with bodytrack, SEEC (AAS) is
able to adapt more quickly than SEEC (ML), but both approaches
converge to the desired value.

This study shows how the SEEC runtime system can control
multiple applications, some of which are themselves adaptive. This
is possible because SEEC’s decoupled implementation allows ap-
plication and system adaptations to be specified independently. In
addition, this study shows how SEEC can automatically adapt to
fluctuations in the environment by directly observing application
performance and goals. SEEC does not detect the clock frequency

(a) bodytrack

(b) x264

Figure 7. SEEC responding to clock speed changes.

change directly, but instead detects a change in the applications’
heart rates. Therefore, SEEC can respond to any change that alters
the performance of the component applications.

5.6 Discussion
This section describes several studies illustrating the capabilities of
the SEEC decision engine and results have demonstrated the trade-
offs between the AAS approach and the ML approach. While both
outperform existing mechanisms, neither is ideal for all scenarios.
SEEC AAS without machine learning can provide higher perfor-
mance per Watt when the system models are accurate. When the
system models are inaccurate, SEEC AAS quickly brings perfor-
mance to the desired level (as seen for the STREAM and dijkstra
benchmarks), but it does so at a cost of sub-optimal resource allo-
cation. In contrast, SEEC’s ML engine learns system models on-
line and adjusts to provide optimal resource allocation even when
the models are wrong. This flexibility comes at a cost of reducing
SEEC’s response time and occasionally exploring actions that do
not meet the performance goals.

We note that SEEC’s ML engine can be turned on and off as de-
sired and we offer the following general guidelines. If performance
is paramount, do not use the ML engine. If SEEC is deployed in
a specialized setting where the applications to be run are known
beforehand, the ML engine is probably not necessary. If SEEC is
deployed in a general purpose setting running a mix of applica-
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tions, or a setting where the systems programmers are unsure of the
models, then the ML engine should be turned on to save power. In
addition, the longer the applications run, the less impact the ML
engine will have on average performance because it will eventually
converge to the desired value using an optimal resource allocation.
For long running jobs ML might provide most of the benefits with
negligible drawbacks.

6. Conclusion
This paper proposed the Self-aware computing framework, or
SEEC, which automatically schedules actions to meet goals. SEEC
helps reduce the burden of programming complex modern systems
by adopting a general and extensible approach to adaptive system
design. Key to this generality is the decoupling that allows appli-
cation and systems developers to specify observations and actions
independently. This decoupling lets developers focus on their area
of expertise while creating a system that can adapt across system
layers and coordinate actions specified by multiple developers. To
schedule actions, SEEC employs a runtime decision engine that is,
itself, an adaptive system. This unique runtime incorporates adap-
tive control and reinforcement learning to adapt both application
and system models automatically and dynamically, ensuring that
the action scheduling problem is solved with minimal cost. We
have presented a thorough evaluation of the SEEC framework il-
lustrating the benefits of the approach. In addition, this evaluation
highlights some of the tradeoffs inherent in the use of control and
machine learning techniques.
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