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Abstract
Approximate program transformations such as task skipping [27,
28], loop perforation [20, 21, 32], multiple selectable implementa-
tions [3, 4, 15], approximate function memoization [10], and ap-
proximate data types [31] produce programs that can execute at
a variety of points in an underlying performance versus accuracy
tradeoff space. Namely, these transformed programs trade accuracy
of their results for increased performance by dynamically and non-
deterministically modifying variables that control their execution.

We call such transformed programs relaxed programs — they
have been extended with additional nondeterminism to relax their
semantics and enable greater flexibility in their execution.

We present programming language constructs for developing
and specifying relaxed programs. We also present proof rules for
reasoning about properties of relaxed programs. Our proof rules
enable programmers to directly specify and verify acceptability
properties that characterize the desired correctness relationships
between the values of variables in a program’s original semantics
(before the transformation) and its relaxed semantics. Our proof
rules also support the verification of safety properties (which char-
acterize desirable properties involving values in only the current
execution). The rules are designed to support a reasoning approach
in which the majority of the reasoning effort uses the original se-
mantics. This effort is then reused to establish the desired properties
of the program under the relaxed semantics.

We have formalized the dynamic semantics of our target pro-
gramming language and the proof rules in Coq, and verified that
the proof rules are sound with respect to the dynamic semantics.
Our Coq implementation enables developers to obtain fully ma-
chine checked verifications of their relaxed programs.

1. Introduction
In recent years researchers have developed a range of mechanisms
for dynamically varying application behavior. Typical goals include
maximizing performance subject to an accuracy constraint, maxi-
mizing accuracy subject to a performance constraint, or dynami-
cally adjusting program behavior to adapt to changes in the char-
acteristics of the underlying hardware platform (such as varying
load or clock rate) [15, 16]. Specific mechanisms include multi-
ple selectable implementations of a given component or compo-
nents [3, 4, 36]; sampling inputs to reductions [36], skipping tasks
in parallel programs [27, 28]; loop perforation (skipping iterations
of time-consuming loops) [20, 21, 32]; approximate function mem-
oization (returning a previously computed value when the argu-
ments of the new function call are close to the arguments of the
previous function call) [10]; dynamic knobs (configuration param-
eters that can be changed as the program executes) [15]; and ap-
proximate data types(data types that return approximate results for
operations) [31].

All of these mechanisms can produce a relaxed program—a pro-
gram that may, whenever it reaches a control point, adjust its execu-
tion by changing one or more control variables subject to a speci-

fied relaxation predicate. For example, a program transformed with
loop perforation may dynamically choose to skip loop iterations
each time it enters a loop. A relaxed program is therefore a nonde-
terministic program, with each execution a variant of the original
execution (which never dynamically changes the control variables).
The different executions typically share a common global structure,
with local differences at only those parts of the computation that
are affected by the control variables (for example, the perforated
loops).

1.1 Reasoning About Relaxed Programs
We present a language for writing relaxed programs and proof rules
for reasoning about relaxed programs. The language and proof rules
are designed to support a staged approach in which the developer
first develops a standard program and uses standard approaches to
reason about the program to verify that it satisfies desired correct-
ness properties. We refer to the dynamic semantics of the program
at this stage as the original semantics of the program.

Either the developer or an automated system (such as a com-
piler that implements loop perforation) then relaxes the program to
enable the desired additional nondeterministic executions. We refer
to the dynamic semantics of the program at this stage as the relaxed
semantics of the program.

Finally, the original reasoning is augmented to verify that the
relaxation preserves the correctness properties. At this point, it also
possible for a programmer to specify and verify acceptability prop-
erties that relate the relaxed semantics to the original semantics.

This approach is designed to reduce the overall reasoning effort
by exploiting the structure that the original and relaxed programs
share. With this approach the majority of the reasoning effort works
with the original program semantics and is reused to verify the
nondeterministic relaxed program.

1.2 Relaxed Programming Concepts
The basic concepts of relaxed programming include nondetermin-
istic assignment to control variables (via the relax statement);
acceptability properties that relate the relaxed semantics to the
original semantics (via the accept statement); assertions (via the
assert statement); assumptions (via the assume statement); and
the concept of convergent and divergent program points:

• The Relax Statement: The relax (X) st (P) statement spec-
ifies a nondeterministic assignment to the set of variables X.
Specifically, the relax statement can assign the variables in X
to any set of values that satisfies the relaxation predicate P. In
the original semantics the relax statement has no effect—it
does not change the variables in X.

• The Accept Statement: The accept P statement asserts that
the property P must hold at the program point where the accept
statement appears. The property P in accept statements may
reference values from both the original and relaxed semantics.
So, for example, the statement might require that the value of a
variable x in the relaxed semantics must be greater than or equal
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to the value of that variable in the original semantics. Such
properties are relational properties because they relate states
from the two semantics of the program.

• The Assert Statement: The assert P statement states that P
must hold at the point where the statement appears. In contrast
to the accept statement, P only references values from a single
semantics (original or relaxed). Therefore, assert statements
specify key correctness properties that must hold for all execu-
tions of the program.

• The Assume Statement: The vast majority of reasoning sys-
tems support an assume statement (which instructs the rea-
soning system to simply assume that a property holds). The
assume P statement states that the property P holds at the point
where the assume statement appears. In the original semantics
the assume statement does not generate any proof obligations—
the proof system simply accepts that P holds. To ensure that the
reasoning behind the assume statement remains valid in the re-
laxed semantics, the proof rule for the assume statement gen-
erates an obligation to prove that given the assumption in the
original semantics, then the current relation between the orig-
inal and relaxed semantics establishes that the assumption is
valid in the relaxed semantics.
For example, it may be possible to prove that all the variables
referenced in an assumption have the same values in the original
and relaxed semantics—namely, relaxation does not interfere
with the assumption.

• Convergent Program Points: Conceptually, convergent pro-
gram points occur when executions under the original and re-
laxed semantics on the same input take corresponding control
flow paths to reach corresponding points in the execution. If
the two executions take different branches, then the executions
have diverged.
We note that it is possible for the relaxed execution to diverge,
then converge back again. For example, the relaxed execution
may diverge by taking a different branch at a conditional state-
ment than the original execution, then converge again at the end
of the conditional statement. If this is the case, then the execu-
tions have again reached a convergent program point.
To ensure that acceptability properties have a well-defined se-
mantics that references states from corresponding points in the
original and relaxed semantics, our rules establish that accept
statements appear only at convergent points.

Note that our design enables these statements to work together
to prove important properties. For example, the developer may use
an accept statement to establish a relationship between values
in variables from original and relaxed executions, then use this
relationship to prove that a given property in an assert statement
holds in the relaxed execution.

1.3 Proof Rules
We structure the static semantics of relaxed programs as set of
Hoare logic proof rules:

• Axiomatic Original Semantics: The Hoare-style semantics
models the original execution of the program wherein relax
statements have no effect.

• Axiomatic Intermediate Semantics: The Hoare-style seman-
tics models the relaxed execution of the program wherein
relax statements modify the state of the program.

• Axiomatic Relaxed Semantics:. The relational, Hoare-style
semantics relates executions in the relaxed semantics to execu-
tions in the original semantics. The predicates of the judgment

are given in a relational logic that enables us to express prop-
erties over the value of variables in both the original execution
of the program and a relaxed execution. It also tracks whether
the original and relaxed executions are at convergent or diver-
gent program points and supports the reuse of reasoning effort
from the original semantics by enabling, for example, noninter-
ference proofs that show that the relaxation does not affect the
values of variables in the original semantics.

Our proof rules are sound. Specifically, our proof rules establish
the following semantic properties of relaxed programs:

• Original Progress: If the program verifies under the axiomatic
original semantics, then no execution of the program in the
dynamic original semantics violates an assertion.

• Relaxed Progress: If the program verifies under the axiomatic
intermediate semantics, then no execution of the program in the
dynamic relaxed semantics violates an assertion or an assump-
tion.

• Relaxed Progress Modulo Original Assumptions: If the pro-
gram verifies under the axiomatic relaxed semantics, then if an
execution of the program in the dynamic relaxed semantics vi-
olates an assertion or an assumption, then an execution of the
program in the dynamic original semantics violates an assump-
tion.

• Acceptability: If the program verifies under the axiomatic re-
laxed semantics, then program executions in the dynamic orig-
inal and relaxed semantics satisfy all of the accept statements
in the program.

1.4 Coq Verification Framework
We have formalized the dynamic original and relaxed semantics
with the Coq proof assistant [1]. We have also used Coq to for-
malize the proof rules for the static semantics and obtain a fully
machine checked proof that the rules are sound with respect to
the dynamic semantics and provide the stated semantic proper-
ties. Our Coq formalization makes it possible to develop fully ma-
chine checked verifications of relaxed programs. We have used our
framework to develop and verify several relaxed programs.

Our Coq implementation contains approximately 6000 lines
of code and proof scripts, with 471 lines devoted to the original
semantics and its soundness proofs, 258 additional lines devoted
to the intermediate semantics and its soundness proofs, and 1311
additional lines devoted to the relaxed semantics and its soundness
proofs. A large portion of the implementation (approximately 2898
lines) is devoted to formalizing the semantics of our relational
assertion logic and its soundness with respect to operations in the
logic (e.g., substitution lemmas).

1.5 Contributions
This paper makes the following contributions:

• Relaxed Programming: It identifies the concept of relaxed
programming as a way to specify nondeterministic variants of a
program. The variants often occupy a range of points in an un-
derlying performance versus accuracy trade-off space. Current
techniques that can produce relaxed programs include multi-
ple selectable implementations [3, 4], skipping tasks [27, 28],
loop perforation [20, 21, 32], approximate function memoiza-
tion [10], approximate data types [31], and dynamic knobs [15].

• Reasoning Approach: It identifies the basic reasoning ap-
proach of first verifying important correctness properties of
the original program, stating acceptability properties that may
reference the states of both the original and relaxed programs,
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iop ::= + | − | ∗ | / | ...
cmp ::= < | > | = | ...
lop ::= ∧ | ∨ | ...
X ::= x | x, X
E ::= n | x | E iop E

E∗ ::= n | x〈o〉 | x〈r〉 | E∗ iop E∗
B ::= true | false | E cmp E | B lop B | ¬B
B∗ ::= true | false | E∗ cmp E∗ | B∗ lop B∗ | ¬B∗
S ::= skip | x = E | havoc (X) st (B) | relax (X) st (B)

| if (B) {S1} else {S2} | while (B) {S}
| assume B | assert B | accept l : B∗

| S ; S

Figure 1. Language Syntax

then augmenting the verification of the original program to es-
tablish the correctness properties in the relaxed program. With
this approach, the majority of the reasoning effort works with
the original program.

• Proof Rules: It presents Hoare logic proof rules that support the
above reasoning approach. These rules support the verification
of properties of relaxed programs that may nondeterministically
change control variables. The properties include acceptability
properties that establish relationships between the states of the
original and relaxed program. These properties are restricted to
convergent program points that appear at corresponding pro-
gram points in the two programs.

• Coq Formalization and Soundness Results: It presents a for-
malization of the dynamic semantics and proof rules in Coq.
We have used this formalization to prove that the proof rules
are sound with respect to the dynamic semantics. We note that
our Coq formalization contains a reusable implementation of
our relational assertion logic that is, in principle, suitable for
other uses such as verifying traditional compiler transforma-
tions [7, 29, 34].

• Verified Programs: It presents several relaxed programs for
which we have used the Coq formalization to develop fully
machine checked verifications.

Relaxed programs can deliver substantial flexibility, perfor-
mance, and resource consumption benefits. But to successfully
deploy relaxed programs, developers need to know that the relax-
ation does not violate important correctness properties. This paper
presents a foundational formal reasoning system that leverages the
structure that the original and relaxed executions share to enable
the verification of these properties.

2. Language Syntax and Dynamic Semantics
Figure 1 presents a simple imperative language with integer vari-
ables, integer arithmetic expressions, boolean expressions, condi-
tional statements, while loops, and sequential composition. For
generality, we support nondeterminism in the original seman-
tics via the havoc (X) st (B) statement which nondetermin-
istically assigns the variables in X to values that satisfy B. The
relax (X) st (B) statement supports nondeterministic relaxation
— in the original semantics it has no effect; in the relaxed seman-
tics it nondeterministically assigns the variables in X to values that
satisfy B. The language also supports the standard assume and
assert statements.

Vars ⊆ {x, y, z, ...}
Z = {...,−1, 0, 1, ...}
B = {true, false}

σ ∈ Σ = Vars
fin→ Z

[[iop]] ∈ Z× Z→ Z
[[cmp]] ∈ Z× Z→ B
[[lop]] ∈ B× B→ B

[[E]] ∈ Σ→ Z
[[n]](σ) = n

[[x]](σ) = σ(x)

[[ E1 iop E2]](σ) = [[E1]](σ) iop [[E2]](σ)

[[E∗]] ∈ Σ× Σ→ Z
[[n]](σ1, σ2) = n

[[x〈o〉]](σ1, σ2) = σ1(x)

[[x〈r〉]](σ1, σ2) = σ2(x)

[[E∗1 iop E∗2 ]](σ1, σ2) = [[E∗1 ]](σ1, σ2) iop [[E∗2 ]](σ1, σ2)

[[B]] ∈ Σ→ B
[[true]](σ) = true

[[false]](σ) = false

[[E1 cmp E2]](σ) = [[E1]](σ) cmp [[E2]](σ)

[[B1 lop B2]](σ) = [[B1]](σ) lop [[B2]](σ)

[[¬B]](σ) =

{
true, [[B]](σ) = false

false, [[B]](σ) = true

[[B∗]] ∈ Σ× Σ→ B
[[true]](σ1, σ2) = true

[[false]](σ1, σ2) = false

[[E∗1 cmp E∗2 ]](σ1, σ2) = [[E∗1 ]](σ1, σ2) cmp [[E∗2 ]](σ1, σ2)

[[B∗1 lop B∗2 ]](σ1, σ2) = [[B∗1 ]](σ1, σ2) lop [[B∗2 ]](σ1, σ2)

[[¬B∗]](σ1, σ2) =

{
true, [[B∗]](σ1, σ2) = false

false, [[B∗]](σ1, σ2) = true

expr
[[e]](σ) = n

〈e , σ〉 ⇓E n
bexp

[[b]](σ) = v

〈b , σ〉 ⇓B v

Figure 2. Semantics of Expressions

A main point of departure is the addition of relational integer
expressions (E∗) and relational boolean expressions (B∗). Unlike
standard expressions, which involve values from only the current
execution, relational expressions can reference values from both
the original (x〈o〉) and relaxed (x〈r〉) executions. These relational
expressions enable accept statements to specify relationships that
must hold between the original and relaxed executions. For ex-
ample, the statement accept l : x〈o〉 = x〈r〉 asserts that at the
current program point (labeled by l), x must have the same value
in both executions.

2.1 Semantics of Expressions
Figure 2 presents the semantics of expressions in the language. The
denotations of expressions are functions mapping a state or pair of
states to either an integer (Z) or boolean value (B). A state (σ) is a
finite map from program variables, Vars , to integers, Z and is an
element of the domain Σ–which is the set of all finite maps from
variables to integers.
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〈s, σ〉 ⇓o φ

skip 〈skip, σ〉 ⇓o 〈σ, ∅〉 assign
〈e , σ〉 ⇓E n

〈x = e, σ〉 ⇓o 〈σ[x 7→ n], ∅〉 havoc-t
〈e , σ′〉 ⇓B true ∀x 6∈X · σ(x) = σ′(x)

〈havoc (X) st (e), σ〉 ⇓o 〈σ′, ∅〉

havoc-f
¬∃σ′ · (〈e , σ′〉 ⇓B true ∧ ∀x 6∈X · σ(x) = σ′(x))

〈havoc (X) st (e), σ〉 ⇓o wr
assert-t

〈e , σ〉 ⇓B true

〈assert e, σ〉 ⇓o 〈σ, ∅〉 assert-f
〈e , σ〉 ⇓B false

〈assert e, σ〉 ⇓o wr

assume-t
〈e , σ〉 ⇓B true

〈assume e, σ〉 ⇓o 〈σ, ∅〉 assume-f
〈e , σ〉 ⇓B false

〈assume e, σ〉 ⇓o ba
relax

〈assert e, σ〉 ⇓o φ

〈relax (X) st (e), σ〉 ⇓o φ

accept 〈accept l : e∗, σ〉 ⇓o 〈σ, (l, σ)〉 if-t
〈b , σ〉 ⇓B true 〈s1, σ〉 ⇓o φ

〈if (b) {s1} else {s2}, σ〉 ⇓o φ
if-f
〈b , σ〉 ⇓B false 〈s2, σ〉 ⇓o φ

〈if (b) {s1} else {s2}, σ〉 ⇓o φ

seq-1
〈s1, σ〉 ⇓o 〈σ′, ψ1〉 〈s1, σ′〉 ⇓o 〈σ′′, ψ2〉

〈s1 ; s2, σ〉 ⇓o 〈σ′′, ψ2.ψ1〉
while-f

〈b , σ〉 ⇓B false

〈while (b) {s}, σ〉 ⇓o 〈σ, ∅〉

while-t1
〈b , σ〉 ⇓B true 〈s, σ〉 ⇓o 〈σ′, ψ1〉 〈while (b) {s}, σ′〉 ⇓o 〈σ′′, ψ2〉

〈while (b) {s}, σ〉 ⇓o 〈σ′′, ψ2.ψ1〉

Figure 3. Dynamic Original Semantics

〈s, σ〉 ⇓o φ
seq-2

〈s1, σ〉 ⇓o φ err(φ)

〈s1 ; s2, σ〉 ⇓o φ

seq-3
〈s1, σ〉 ⇓o 〈σ′, ψ〉 〈s2, σ′〉 ⇓o φ err(φ)

〈s1 ; s2, σ〉 ⇓o φ

while-t2

〈b , σ〉 ⇓B true 〈s, σ〉 ⇓o 〈σ′, ψ〉
〈while (b) {s}, σ′〉 ⇓o φ err(φ)

〈while (b) {s}, σ〉 ⇓o φ

while-t3
〈b , σ〉 ⇓B true 〈s, σ〉 ⇓o φ err(φ)

〈while (b) {s}, σ〉 ⇓o φ

Figure 4. Error Propagation in Dynamic Original Semantics

The semantic function [[E]] defines the semantics for integer
expressions, which are composed of the standard integer opera-
tions (e.g., +,−, ∗, /, ...) on integer operands. The semantic func-
tion [[B]] defines the semantics of boolean expressions, which are
composed of the standard comparison operators on integers (e.g.,
<,=, >, ...) and the standard boolean operators (e.g., ∧,∨, ...).

The semantic function [[E∗]] defines the semantics for relational
integer expressions as a function mapping a pair of states (σ1, σ2)
to an integer number. Our convention is to have the first component
of the state pair be a state from the original semantics and the
second component a state from the relaxed semantics. Therefore, a
reference to a variable in the original semantics (x〈o〉) is equivalent
to σ1(x) whereas a reference to a variable (x〈r〉) in the relaxed
semantics is equivalent to σ2(x).

The semantic function [[B∗]] likewise extends the semantics
for boolean expressions with the capability to express boolean
properties over relational integer expressions.

2.2 Dynamic Original Semantics
Figure 3 presents the dynamic original semantics of the program in
a big-step operational style. The evaluation relation 〈s, σ〉 ⇓o φ
means that evaluation of the statement s from a state σ yields the
output configuration φ. An output configuration is an element in
the domain Φ : ba ∪ wr ∪ (Σ×Ψ).

The distinguished element ba is intended to mean that the pro-
gram has failed at an assume statement in the program. The dis-
tinguished element wr denotes that the program has failed due to
another error (such as an unsatisfied assert statement in the pro-
gram).

An element in the domain Σ×Ψ indicates that the program has
terminated successfully, yielding a final state σ and an observation
list, ψ ∈ Ψ, which is the sequence of observations emitted by
accept statements during the execution of the program.

An observation (l, σ) is an element in the domain L × Σ.
L is the finite domain consisting of all the labels specified in
accept statements in the program — the execution of each accept
statement emits an observation consisting of its label along with the
current state of the program.

The structure of an observation list is given by the standard
constructors for lists: Ψ = ∅ | (l, σ) :: Ψ. We also use the notation
ψ1.ψ2 to denote the result of appending two lists.

Standard Rules. the rules for skip, assignment, if, sequential
composition, and while statements follow the standard semantics
for these statements.

The havoc statement non-deterministically assigns values to the
set of variables in X such that their values satisfy the statement’s
constraint, e. All variables not specified in X retain their previous
values. If there does not exist an assignment of values to X that
satisfy e, then the statement evaluates to wr.

The assert statement checks that the state satisfies its constraint
e. If the boolean expression evaluates to true, then evaluation
continues; otherwise, the statement evaluates to wr.

The assume statement checks that the state satisfies its constraint
e. If the boolean expression evaluates to true, then evaluation
continues; otherwise, the statement evaluates to ba.

The relax statement does not modify the state of the program
in the original semantics. However, our design for relaxation is that
a relax statement strictly relaxes or generalizes the semantics of
a program at a given point. In particular, an original execution of
the program is a trivial member of the relaxed semantics of the
program. Therefore, the dynamic semantics of the relax statement
assert that the relaxation predicate holds. We implement this by
reusing the evaluation rule for assert.
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〈s, σ〉 ⇓r φ
relax
〈havoc (X) st (e), σ〉 ⇓r φ

〈relax (X) st (e), σ〉 ⇓r φ

Figure 5. Dynamic Relaxed Semantics

The accept statement is a relational assertion over original and
relaxed executions of the program. As already discussed, the dy-
namic semantics of the statement is to emit an observation con-
sisting of the statement’s label along with the current state of the
program. This semantics enables us to define an acceptability re-
lation on the observation lists emitted by the original and relaxed
variants of the program (Section 4).

Error Propagation Rules. Figure 4 presents standard rules for the
propagation of error values in the semantics. The predicate err(φ)
evaluates to true if and only if φ = wr or φ = ba.

2.3 Dynamic Relaxed Semantics
Figure 5 presents an abbreviated definition of the dynamic relaxed
semantics of a program. The evaluation relation 〈s, σ〉 ⇓r φ
means that evaluation of the statement s from a state σ yields the
output configuration φ.

The dynamic relaxed semantics builds upon the original seman-
tics and differs from the original semantics only in that relax state-
ments modify the state of the program. We have, therefore, elided
the presentation of all the rules that are either reused (skip, as-
signment, havoc, assert, and assume) or adapted to refer to the
relaxed dynamic semantics in their premises (i.e., sequential com-
position, if, and while).

The relax statement extends the definition from the original se-
mantics with the additional property that the statement can modify
the state of the program. The rule implements the modification by
reusing the rule for havoc statements.

3. Axiomatic Semantics
In this section we present axiomatic definitions for programs in
our model. We formalize this problem by presenting axiomatic
definitions for the original semantics, the intermediate semantics,
and the relaxed semantics.

• Axiomatic Original Semantics. The proof rules model the
dynamic original semantics of the program. If the program
verifies with these rules, then no execution of the program in
the dynamic original semantics violates an assertion. However,
the program may dynamically violate an assumption.

• Axiomatic Intermediate Semantics. The proof rules model
the dynamic relaxed semantics of the program. If the program
verifies with these rules, then no execution of the program
in the dynamic relaxed semantics violates an assertion or an
assumption.

• Axiomatic Relaxed Semantics. The proof rules model pairs of
executions of the program in the dynamic original and dynamic
relaxed semantics. If the program verifies with these rules, then
if an execution of the program in the dynamic relaxed seman-
tics violates an assertion or an assumption, then an execution
of the program in the dynamic original semantics violates an
assumption.
A proof with these rules also guarantees that program execu-
tions in the dynamic original and relaxed semantics satisfy all
of the accept statements in the program.

We first present the relational assertion logic that underpins our
axiomatic definitions.

P ::= true | false | E cmp E | P lop P | ¬P | ∃x · P
| prj〈o〉 P ∗ | prj〈r〉 P ∗

P ∗ ::= true | false | E∗ cmp E∗ | P ∗ lop P ∗ | ¬P ∗

Figure 6. Relational Assertion Logic Syntax

[[P ]] ∈ P(Σ)

[[true]] = Σ

[[false]] = ∅
[[E1 cmp E2]] = {σ | [[E1]](σ) cmp [[E2]](σ)}
[[P1 lop P2 ]] = {σ | σ ∈ [[P1]] lop σ ∈ [[P2]]}

[[¬P ]] = [[true]] \ [[P ]]

[[∃x · P ]] = {σ | n ∈ Z, σ ∈ [[P [n/x]]] }
[[prj〈o〉 P ∗]] = { σ1 | (σ1, σ2) ∈ [[P ∗]]}
[[prj〈r〉 P ∗]] = { σ2 | (σ1, σ2) ∈ [[P ∗]]}

[[P ∗]] ∈ P(Σ× Σ)

[[true]] = Σ× Σ

[[false]] = ∅
[[E∗1 cmp E∗2 ]] = {(σ1, σ2) |

[[E∗1 ]](σ1, σ2) cmp [[E∗2 ]](σ1, σ2)}
[[P ∗1 lop P ∗2 ]] = {(σ1, σ2) |

(σ1, σ2) ∈ [[P ∗1 ]] lop (σ1, σ2) ∈ [[P ∗2 ]]}
[[¬P ∗]] = [[true]] \ [[P ∗]]

Figure 7. Relational Assertion Logic Semantics

3.1 Relational Assertion Logic
Figure 6 presents the concrete syntax of our relational assertion
logic. This logic extends a non-relational assertion logic with rela-
tional formulas, which then allow us to reason about the validity of
relational boolean expressions in accept statements. Its presenta-
tion follows the style of Benton in his work on Relational Hoare
Logic [7].

3.1.1 Syntax
The syntactic category P gives the syntax for formulas in first-
order logic with integer expressions and existential quantification.
The syntactic category P ∗ gives corresponding syntax for writing
relational formulas. P ∗ extends P by allowing formula to refer to
relational integer expressions. P also incorporates a new predicate
form that enables us to transform relational formulas into non-
relational formulas: projection.

Projection. Projections enable the logic to decompose a rela-
tional assertion about the behavior of both the original semantics
and the relaxed semantics into a non-relational formula that de-
scribes the set of states that satisfy the relation for either the origi-
nal or relaxed semantics individually.

3.1.2 Semantics
Figure 7 presents the semantics of formulas in the logic. We model
a non-relational formula P as the set of states that satisfy the
formula. The semantic function [[P ]] reuses the semantic definitions
for integer expressions from Figure 2 to construct a definition for
each formula. The semantics of relational formulas closely follows
that of non-relational formulas. We model a relational formula as
the set of pairs of states that satisfy the relation. In our use of
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`o {P} s {Q}
skip`o {P} skip {P} seq

`o {P} s1 {R} `o {R} s2 {Q}
`o {P} s1; s2 {Q} assign

fresh(x′)

`o {P} x = e {∃x′ · x = e[x′/x] ∧ P [x′/x]}

havoc
[[∃X′ · P [X ′/X] ∧ e]] 6= ∅ fresh(X ′)

`o {P} havoc (X) st (e) {(∃X′ · P [X ′/X]) ∧ e} assert
|= P ⇒ e

`o {P} assert e {P ∧ e} assume`o {P} assume e {P ∧ e}

while
`o {P ∧ b} s {P}

`o {P} while (b) {s} {P ∧ ¬b} if
`o {P ∧ b} s1 {Q} `o {P ∧ ¬b} s2 {Q}
`o {P} if (b) {s1} else {s2} {Q} relax

`o {P} assert e {P ∧ e}
`o {P} relax (X) st (e) {P ∧ e}

accept`o {P} accept l : e∗ {P}

Figure 8. Axiomatic Original Semantics

`i {P} s {Q} relax
`i {P} havoc (X) st (e) {Q}
`i {P} relax (X) st (e) {Q}

assume
|= P ⇒ e

`i {P} assume e {P ∧ e}

Figure 9. Axiomatic Intermediate Semantics

the logic, references to the original semantics (e.g., x〈o〉) refer to
the first component of the pair whereas references to the relaxed
semantics (e.g., x〈r〉) refer to the second component of the pair.

Non-relational formulas can contain projection predicates of
the form prj〈o〉 P ∗ and prj〈r〉 P ∗. Following our convention
for variable naming, prj〈o〉 P ∗ selects the component that cor-
responds to the original semantics, and prj〈r〉 P ∗ selects that for
the relaxed semantics—which by our convention corresponds to the
first and second component, respectively.

Injections. We also define the injection functions injo(P ) and
injr(P ), which construct a relational formula from a non-relational
formula. The form injo(P ) constructs a relational formula where
P holds for the original semantics and injr(P ) does the same such
that P holds for relaxed semantics. This means that injo(P ) (resp.
injr(P )) creates a formula consisting of all state pairs where the
first (resp. second) component satisfies P . We also define the fol-
lowing syntactic form for combining a predicate over the original
semantics with one over the relaxed semantics:

〈P1 · P2〉 ≡ injo(P1) ∧ injr(P2)

Auxiliary Definitions. We also define the following judgments
for later use in both the rules of our program logics and the discus-
sion of their semantics:

σ |= P ≡ σ ∈ [[P ]]

|= P1 ⇒ P2 ≡ [[P1]] ⊆ [[P2]]

(σ1, σ2) |= P ∗ ≡ (σ1, σ2) ∈ [[P ∗]]

|= P ∗1 ⇒ P ∗2 ≡ [[P ∗1 ]] ⊆ [[P2]]

Free and Fresh Variables. The set of free variables of a term,
denoted by free(P ), is defined by structural induction on the term.
The boolean predicate fresh(x) , denoting that x is a fresh variable
in the context of an inference rule, is true if x ∈ Vars and it does
not appear in the premises or consequent of the rule.

3.2 Original Semantics
Figure 8 presents a manual translation of our Coq formaliza-
tion of the axiomatic original semantics of the program. The
intended meaning of the judgment is the semantic judgment
|=o {P} s {Q}: for all states σ, if σ |= P and 〈s, σ〉 ⇓o 〈σ′, ψ〉,
then σ′ |= Q. This asserts partial correctness and says nothing
about non-terminating evaluations.

We have elided a discussion of the rules for standard constructs
(i.e., skip, assign, sequential composition, if, while) because
their definitions are the same as in standard presentations (e.g.,
Floyd and Hoare [13, 14]). We define the non-standard rules as
follows:

The havoc rule is similar in semantics to assignment except that
it assigns multiple variables during its execution. We enforce two
properties on havoc statements that enable us to prove that havoc
statements do not evaluate towr: 1) emust be satisfiable (i.e., there
exists some satisfying assignment of the variables in X) and 2) e
must be consistent with P (i.e., P ∧ e 6≡ false).
The assert rule asserts that a formula e is true at a given point in
the program’s evaluation. This rule requires that P implies e and
then adds e to the consequent.

The assume rule assumes that a formula e is true at a given
point in the program’s evaluation. The rule differs from the rule
for assert statements in that it assumes the validity of e and then
makes e part of the consequent. Because there is no obligation to
prove e for an assume statement, e may not hold for all states
that satisfy P and, as a result, the assume may evaluate to ba.
However, by design, we allow assume statements to fail in the
dynamic original semantics.

The relax rule non-deterministically relaxes the relation on vari-
ables in X . In the original semantics of the program, relaxation is
a no-op and does not change the program’s state. However, in the
original semantics, the current state of the program must still sat-
isfy the relaxation. Therefore, the rule asserts that P implies the
relaxation specification, e, and then adds it to the consequent.

The accept rule gives accept statements the same semantics
as skip because, unlike the relaxed axiomatic semantics (Sec-
tion 3.1), the original axiomatic semantics references only a single
execution of the program.

Auxiliary Rules. Although not presented here, we have also for-
malized and verified the standard rules of consequence and con-
stancy to aid in the development of proofs.

3.3 Intermediate Semantics
Figure 9 gives an abbreviated presentation of the program logic for
the intermediate semantics of the program. Specifically, we have
elided all rules that have the same form as those in the original
semantics.

The axiomatic intermediate semantics of the program differs
from the original semantics of the program only in that it captures
the fact that relax statements in the dynamic relaxed semantics
of the program affect the program’s state. The intended meaning
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`r {P ∗} s {Q∗}
accept

|= P ∗ ⇒ e∗

`r {P ∗} accept l : e∗ {P ∗ ∧ e∗} assume
|= P ∗ ∧ 〈e · true〉 ⇒ 〈true · e〉
`r {P ∗} assume e {P ∗ ∧ 〈e · e〉}

if
|= P ∗ ⇒ 〈b · b〉 ∨ 〈¬b · ¬b〉 `r {P ∗ ∧ 〈b · b〉} s1 {Q∗} `r {P ∗ ∧ 〈¬b · ¬b〉} s2 {Q∗}

`r {P ∗} if (b) {s1} else {s2} {Q∗}

while
|= P ∗ ⇒ 〈b · b〉 ∨ 〈¬b · ¬b〉 `r {P ∗ ∧ 〈b · b〉} s {P ∗}

`r {P ∗} while (b) {s} {P ∗ ∧ 〈¬b · ¬b〉} diverge
`o {prj〈o〉 P ∗} s {Qo} `i {prj〈r〉 P ∗} s {Qr} no acc(s)

`r {P ∗} s {〈Qo ·Qr〉}

Figure 10. Axiomatic Relaxed Semantics

of the judgment is |=i {P} s {Q}: for all states σ, if σ |= P and
〈s, σ〉 ⇓r 〈σ′, ψ〉, then σ′ |= Q. This judgment asserts partial
correctness and says nothing about non-terminating evaluations.

The relax rule specifies that a relax (X) st (e) modifies the
variables in X such that their values satisfy e. The modification is
non-deterministic. To capture this, the rule uses the havoc rule to
specify the effects.

The assume rule differs from its counterpart in the original se-
mantics because the effects of relax statements may violate the pro-
grammer’s original assumptions about the behavior of the program.
For example, relaxation may interfere with the values of the vari-
ables in a subsequent assume statement. Therefore, to ensure that
an assume statement does not evaluate to ba, the rule asserts that
the assumption holds.

3.4 Relaxed Semantics
Figure 10 presents a manual translation of our Coq formaliza-
tion of the axiomatic relaxed semantics of the program. This
definition enables us to relate executions of the program under
the dynamic relaxed semantics to executions under the dynamic
original semantics. The intended meaning of the judgment is
|=r {P ∗} s {Q∗}: if (σo, σr) |= P ∗, and 〈s, σo〉 ⇓o 〈σ′o, ψ1〉,
and 〈s, σr〉 ⇓r 〈σ′r, ψ2〉, then (σ′o, σ

′
r) |= Q∗. This asserts par-

tial correctness and says nothing about non-terminating evalua-
tions.

We have elided presentations of the rule of consequence, rule of
constancy, and sequential composition because they have standard
definitions. However, the non-standard rules are as follows:

The accept rule enables reasoning about accept statements in
the program. The rule requires that P ∗ satisfy the acceptability
property, e∗.

The assume rule demonstrates how relational reasoning allows
us to use relations between the original and relaxed semantics of
the program to reason about assumptions in the relaxed semantics.
Specifically, the form of the rule enables us to use general relations
between the original and relaxed semantics of the program along
with the validity of the assumption in the original program to prove
that the assumption is true in the relaxed semantics.

For example, if the precondition of the statement asserts that all
the free variables in the condition of the assume statement are the
same (i.e., relaxation does not interfere with the assumption), then
if the assumption was true in the original semantics of the program,
we can conclude that the assumption is true in the relaxed semantics
of the program.

The if rule allows accept statements to appear within an if
statement if control flow is convergent (i.e., the program takes the
same branch in both the original and relaxed executions). This is
established by checking that for all σ1, σ2, if (σ1, σ2) |= P ∗ then
the conditional’s boolean expression either evaluates to true in
both the original and relaxed semantics or it evaluates to false

in both the original and relaxed semantics. This means that in all
cases, the original and relaxed semantics take the same branch
together. If this condition is not satisfied, then the rule cannot be
applied.

The while rule is similar in form to the if rule in that it requires
that control flow be convergent to allow accept statements within
the body of a while statement.

The diverge rule enables a proof to proceed if the original and
relaxed semantics diverge at a control flow construct. Namely,
the rule establishes the consequent of the statement by inde-
pendently establishing that `o {prj〈o〉 P ∗} s {Qo} and that
`i {prj〈r〉 P ∗} s {Qr} and then uses injection to establish that
`r {P ∗} s {〈Qo · Pr〉}.

The predicate no acc(s) evaluates to true if no accept state-
ments appear within s. This predicate therefore prevents accept
statements from appearing in control flow statements where it can-
not be established that control flow is convergent.

The use of projections in this rule means that all relational
properties between the two semantics are lost. Relational properties
that are not modified by the statement, however, can be preserved
by using a relational variant of the rule of constancy. Alternatively,
some relational properties may be restored if they are provable after
the convergence of the two statements.

The diverge rule also allows the logic to use the rules from
the original and intermediate semantics to give a semantics to the
language’s primitive statements (i.e., skip, assign, assert, havoc,
and relax).

4. Properties
We now present the technical definitions, lemmas, and theorems
that establish the semantic properties of programs in the language.
In our formalization, we restrict ourselves to terminating relaxed
programs. Also, we only present brief sketches of our proofs be-
cause we have verified each lemma and theorem in the Coq devel-
opment included as supplemental material to this paper

4.1 Original Semantics
Our axiomatic definition for the original semantics is sound and can
be used to establish a weak form of the traditional progress theorem
for programs. Namely, if an evaluation in the original semantics
terminates, as given by the rules, then the evaluation does not go
wrong. This is opposed to a strong form of progress that establishes
the same for all programs (including non-terminating).

Lemma 4.1 (Soundness).

If `o {P} s {Q}, then |=o {P} s {Q}
This lemma establishes that our axiomatic definition is sound

with respect to the dynamic original semantics of the program.

Proof Sketch. This proof proceeds by induction on the rules of the
definition. A large portion of the proof effort involves proving the
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semantics of substitution in the case of the assignment rule and the
havoc rule. The case of the havoc rule requires mutual induction on
the lists of modified and fresh variables to establish that the post-
condition holds. The proof consists of approximately 147 lines of
Coq proof script.

Lemma 4.2 (Progress Modulo Assumptions).

If `o {P} s {Q}, and σ |= P , and 〈s, σ〉 ⇓o φ , then
φ 6= wr.

This lemma establishes the progress property that we desire
for the original semantics. Namely, given a proof in the original
axiomatic semantics, then for all states that satisfy P , if evaluation
terminates, then the evaluation does not yield wr. By design, the
judgment does not preclude the program from evaluating to ba
(indicating that it has violated an assumption).

Proof Sketch. This proof proceeds by induction on the rules of the
definition. The proof uses Lemma 4.1 for the cases of sequential
composition and the while statement. In addition, the case for the
while statement proceeds by nested induction on derivations of the
evaluation of a while statement. The proof consists of approxi-
mately 18 lines of Coq proof script.

4.2 Intermediate Semantics
Like its counterpart for the original semantics, the axiomatic defi-
nition for the intermediate semantics is sound and, also, establishes
progress. Because our design does not allow relaxed executions that
have been verified with the axiomatic intermediate semantics to vi-
olate assumptions, the progress lemma is stronger than that of the
original semantics: if a relaxed evaluation terminates (according to
the evaluation rules), then it does not evaluate to wr or ba.

Lemma 4.3 (Soundness).

If `i {P} s {Q}, then |=i {P} s {Q}
This lemma establishes that our axiomatic definition is sound

with respect to the dynamic relaxed semantics.

Proof Sketch. This proof proceeds by induction on the rules of the
definition. Because a large portion of dynamic relaxed semantics
reuses the definitions from the dynamic original semantics, the
proof itself reuses many of the proofs established in Lemma 4.1.
The proof is approximately 19 lines of Coq proof script.

Lemma 4.4 (Progress).

If `i {P} s {Q} and 〈s, σ〉 ⇓r φ , then ¬err(φ).

This lemma establishes that given a proof in the intermediate
axiomatic semantics, for all states that satisfy P , if the program
terminates, producing an output configuration φ, then φ is not an
error configuration (i.e., wr or ba).

Proof Sketch. This proof proceeds by induction on the rules of the
definition. The proof uses Lemma 4.3 for the cases of sequential
composition and the while statement. In addition, the case for the
while statement proceeds by nested induction on derivations of
the evaluation of a while statement. The proof differs from the
corresponding lemma for the original semantics at the assume rule;
the condition on the rule enables us to rule out the situation wherein
the program produces ba. The proof consists of approximately 17
lines of Coq proof script.

4.3 Relaxed Semantics
In addition to the soundness of the definition itself, the axiomatic
definition for the relaxed semantics establishes that if the relaxed
execution violates an assumption or goes wrong, then an original
execution violates an assumption. It also establishes that relaxed
executions of the program satisfy the accept statements in the
program when compared to an original execution of the program.

Lemma 4.5 (Soundness).

If `r {P ∗} s {Q∗}, then |=r {P ∗} s {Q∗}.
This lemma establishes that our axiomatic definition is sound

with respect to the original and relaxed executions of the program.

Proof Sketch. The proof proceeds by induction on the rules of
the definition. The case for the diverge rule uses Lemma 4.1 and
Lemma 4.3 to establish the soundness of the judgment for eval-
uations in which the original and relaxed semantics diverge. The
convergent if and while cases use the convergence condition on the
rules to eliminate cases in which a conditional evaluates differently
in either the original or relaxed evaluation. In the case for the while
rule, the proof proceeds by nested, mutual induction on derivations
of the original and relaxed evaluation of the statement. The proof
consists of approximately 200 lines of Coq proof script.

Theorem 4.1 (Relaxed Progress Modulo Original Assumptions).

If `r {P ∗} s {Q∗}, and (σo, σr) |= P ∗, and 〈s, σr〉 ⇓r φr ,
and φr = ba ∨ φr = wr, and 〈s, σo〉 ⇓o φo, then φo = ba

This theorem establishes the progress guarantee that restores the
ability for relaxed programs to contain assume statements without
mandating that their conditions be verified. Namely, if a relaxed
execution of the program terminates and evaluates to wr or ba, and
an original execution of the program terminates, then the original
execution evaluates to ba.

Proof Sketch. This proof proceeds by induction on the rules of the
definition. In the case of the diverge rule, the proof uses Lemma 4.4
to contradict the premise that 〈sr, σr〉 ⇓r ba. The proof also
uses Lemma 4.5 in the proofs for the sequential composition state-
ment and the while statement. In addition, the proof for the while
statement proceeds by nested, mutual induction on the evaluation
derivations for the while statement in both the original and relaxed
semantics. The proof consists of approximately 200 lines of Coq
proof script.

Theorem 4.2 (Acceptability).

If `r {P ∗} s {Q∗}, and (σo, σr) |= P ∗, and
〈s, σo〉 ⇓o 〈σ′o, ψ1〉, and 〈s, σr〉 ⇓r 〈σ′r, ψ2〉 then

Γ ` ψ1 ∼ ψ2

This theorem establishes that given a proof in the relaxed ax-
iomatic semantics, if the original evaluation of the program termi-
nates successfully and the relaxed evaluation of the program termi-
nates successfully, then the observation lists generated by the exe-
cutions (ψ1 and ψ2, respectively) satisfy the acceptability relation:

Γ ` ψ1 ∼ ψ2.

Figure 11 presents the definition of the acceptability relation.
The symbol Γ represents a finite map from accept statement
labels to relational boolean expressions (i.e, Γ ∈ L → B∗).
We define this map by structural induction on the syntax of the
program, where the label of each accept statement in the program
maps to its relational boolean expression. We require that accept
statements in well-formed programs are uniquely labeled.
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Γ ` ψ1 ∼ ψ2

Γ ` ∅ ∼ ∅
l1 = l2 [[Γ(l1)]](σ1, σ2) = true Γ ` ψ1 ∼ ψ2

Γ ` (l1, σ1) :: ψ1 ∼ (l2, σ2) :: ψ2

Figure 11. Acceptability Relation

The rules specify that if two observations lists are empty, then
they are acceptable. Otherwise, for any two lists, the two lists are
acceptable if 1) the labels in the head are the same (indicating that
they are generated by the same accept statement), 2) the relational
boolean expression for the label evaluates to true for the states in
the head, 3) and the tails of the two lists are acceptable.

Proof Sketch. This proof proceeds by induction on the rules of
the definition. For the diverge rule, the proof uses a sublemma
that if no acc(s) holds and 〈s, σo〉 ⇓o 〈σ′o, ψo〉 (alternatively,
〈s, σr〉 ⇓r 〈σ′o, ψr〉), then ψo = ∅ (alternatively, ψr = ∅). This
proves that the observations lists are trivially acceptable. In the case
of the accept rule, the proof uses the rule’s condition to establish
that the two emitted observations satisfy the accept statement’s
condition. The proof also uses Lemma 4.5 in the proofs for the
sequential composition statement and the while statement. In ad-
dition, the proof for the while statement proceeds by nested, mu-
tual induction on the evaluation derivations for the while statement
in both the dynamic original and dynamic relaxed semantics. The
proof consists of approximately 109 lines of Coq proof script.

5. Example Programs
Inspired by programs that have been successfully relaxed in other
research programs, we developed several example programs de-
signed to capture the core aspects of the successful relaxations. We
then formalized key correctness properties of the relaxations and
used our Coq formalization to prove these properties.

5.1 Swish++
Swish++ is an open-source search engine. We work with a suc-
cessful relaxation that uses Dynamic Knobs to reduce the number
of search results that Swish++ presents to the user [15] when the
server is under heavy load. The rationale for this relaxation is that
1) in most cases, users are interested only in the top search results
and 2) users are very sensitive to how quickly the results are pre-
sented — even a short delay can significantly reduce revenue from
advertisements [15, 33].

Relaxation. The transformation targets a loop that formats and
presents the search query results. The loop keeps track of the
number of search results, which we denote by N. The loop also
has a control variable max_r which is a threshold on the number of
elements that should be presented to the user: if N is smaller than
max_r, then all results will be presented; otherwise, only the first
max_r results will be presented.

A relaxed program can nondeterministically change max_r to
reduce the number of iterations of this loop while still returning the
most important results:

original_max_r = max_r;
relax (max_r) st

(original_max_r <= 10 && max_r == original_max_r)
|| (10 < original_max_r && 10 <= max_r);

This code first saves the original value of the control variable
max_r in original_max_r. It then relaxes max_r. There are two
cases: if the original value of this control variable was less than
or equal to 10, then the relaxed execution should be the same as
the original execution — it presents the same number of results,

since the value of max_r does not change. If, on the other hand, the
original value was greater than 10, the only constraint is that the
value of max_r is not smaller than 10, meaning that it should return
at least the top 10 results when available. The relax statement
nondeterministically changes max_r subject to these constraints.

Correctness. One acceptability property is that the relaxed exe-
cution must present either all of the search results from the original
execution to the user (if the number of search results in the original
execution is less than or equal to 10), or at least the first 10 results
(if the number of results in the original execution is greater than
10). The following accept statement captures these constraints:

accept (num_r<o> < 10 && num_r<o> = num_r<r>) ||
(10 <= num_r<o> && 10 <= num_r<r>);

The loop that formats and presents the search results maintains
a count num_r of the number of formatted and presented results.
This statement therefore uses the value of num_r in the original
program (denoted num_r<o>) to determine how many search re-
sults the original execution presents. The accept statement uses
num_r<o> and the (potentially different) value of num_r in the re-
laxed execution (num_r<r>) to formalize the desired correctness
relationship between the two executions.

Verification. The proof of the accept statement involves 330
lines of Coq proof scripts. Because the relaxation changes the
number of loop iterations, the proof uses the divergent control
flow rule to reason about the loop in the original semantics and
relaxed semantics separately. The key proof steps establish that
the condition of the relax statement holds before entering the
loop and that original_max_r<o> = original_max_r<r> and
N<o> = N<r>. The loop invariant in both the original and relaxed
execution is num_r <= max_r /\ num_r <= N.

Once control flow converges after the loop, the accept statement
can, conceptually, be deduced via a proof by cases. Our proof
environment reflects the accept statement’s proof obligation into
a formula that can be discharged by the decision procedure for
Presburger arithmetic that is available in the Coq standard library.

5.2 Water Parallelization
Our next example is drawn from a parallelization of the Water com-
putation [8] with statistical accuracy bounds [19]. In this computa-
tion a control variable determines whether to execute a loop se-
quentially or in parallel. To maximize performance, the paralleliza-
tion eliminates lock operations that make updates to the RS vari-
able execute atomically. The resulting race conditions produce a
parallel computation whose result may vary nondeterministically
(because of processor scheduling variations) within acceptable ac-
curacy bounds [19].

Relaxation. We model the relaxation nondeterminism by relax-
ing the RS variable with no constraints:

relax (RS) st (true);

The Water computation compares RS to a cutoff variable gCUT2
and, if it is less than the cutoff, uses RS to update an array FF (here
EXP(RS) is an expression involving RS):

while (K < N) {
relax (RS) st (true);
if (RS < gCUT2) { FF[K]= EXP(RS); }
K = K + 1;

}
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Correctness. A key correctness property is that K stays within
the bounds of the array FF. The array bounds are stored in the
variable len_FF. We assume that the developer establishes, via
some standard reasoning process, that the original execution does
not violate the array bounds. The developer therefore inserts the
statement assume (K < len_FF) just before the assignment to
FF[K].

Verification. Recall that the verification of the relaxed program
must verify that the condition in each assume statement holds in
the relaxed execution. One approach is noninterference — verify
that the relaxation does not affect the values of the variables in the
predicate.

However, this is a relational property and because the assume
statement appears at a divergent control flow point (it is affected by
the value of the relaxed variable RS), this approach does not work.

The developer therefore inserts another assume statement,
assume (K < len_FF), just before the if statement. It is pos-
sible to verify this statement using noninterference and then prop-
agate the condition through the if statement to verify the second
assume statement.

The Coq verification of this program consists of approximately
310 lines of proof script. The key prerequisite of the proof is
to establish the relational loop invariants that K<o> = K<r> and
len_FF<o> = len_FF<r>. These invariants enable us to prove
that the relaxation does not interfere with the assumption.

5.3 LU Decomposition
Our third example is drawn from the LU decomposition algorithm
implemented in the SciMark2 benchmark suite [2]. Researchers
have demonstrated that lower-power, approximate memories and
CPU compute units can be used to lower the energy consumption
of this computation at the expense of a small loss in accuracy [31].

We focus on the part of the computation that computes the pivot
row p for each column j in a matrix A. The pivot row is the row
that contains the maximum element in the column.

i = j + 1;
while ( i < N ) {
a = A[i][j];
if (a > max) { max = a; p = i; }
i = i + 1;

}

Relaxation. Following the assumptions on errors in approximate
memories described in [24], if A is stored in approximate memory,
then we can model the range of errors when reading a value from A
with a relaxation that non-deterministically adds bounded error (e)
to the result:

original_a = a;
relax (a) st (a >= original_a - e &&

a <= original_a + e);

Correctness. One acceptability property for this computation is
that the value in the selected pivot row (max) in the relaxed execu-
tion does not differ from the result in an original execution by more
than e. We can specify this with an accept statement:

accept max<o> - max<r> <= e && max<r> - max<o> <= e

We note that this acceptability statement also corresponds to the
notion of the Lipschitz-continuity [10] of the computation. Namely,
small changes in the inputs lead to small changes in the output.

Verification. The Coq verification of this program consists of
approximately 315 lines of proof script. The key prerequisite of
the proof is to establish that the condition in the accept statement
is loop invariant.

6. Related Work
Executable Specifications. Executable specifications, via tech-
niques such as refinement and constraint solving, produce concrete
outputs that satisfy the specification [12, 18, 22, 26, 30, 35] Ap-
plications include recovering from errors in existing code and pro-
viding alternate implementations for code that may be difficult to
develop using standard techniques.

The research in this paper differs in that it promotes nondeter-
ministic relaxation to obtain semantically different but still accept-
able variants of the original program. A focus is therefore enabling
developers to specify and prove correctness requirements as rela-
tional properties between the original and relaxed program.

Unreliable Memory and Critical Data. Researchers have pro-
posed techniques for enabling programs to distinguish data that can
be stored in unreliable low-power memory from critical data whose
values must be reliably stored [9, 17, 31]. These systems typically
focus on data values (such as the values of pixels in an image) that
can, in principle, legally take on any value. The techniques pre-
sented in this paper make it possible to prove specific correctness
properties of these kinds of programs (whose relaxations may pri-
marily involve unreliably stored data that can take on any value).
They also support programs with control variables whose values
must satisfy specific properties identified in relax statements.

Relational Program Logics. Our program logic for the relaxed
semantics of the program builds on previous work on the Rela-
tional Hoare Logic (RHL) [7]. RHL itself was inspired by work on
Translation Validation [25] and Credible Compilation [29] and has
since inspired other forms of relational reasoning about programs.
Researchers have also defined relational separation logic [5, 34],
probabilistic Hoare logic [6], and have used relational reasoning
to verify the correctness of semantics-preserving loop optimiza-
tions [11], Lipschitz-continuity [11], access control policies [23],
and differential privacy mechanisms [6].

While majority of the previous research has been focused on
proving that transformed programs retain the semantics of the orig-
inal version, our goal is different — specifically, to prove that re-
laxed executions (which typically have different semantics) pre-
serve important correctness properties. We adapt RHL to prove
properties that relate the original and relaxed executions and extend
RHL to reason about assertions (which reference only the current
execution) and assumptions (which are assumed to hold in original
executions but must be shown to hold in relaxed executions).

7. Conclusion
The additional nondeterminism in relaxed programs enables pro-
grams to operate at a variety of points with different combina-
tions of accuracy, performance, and resource consumption char-
acteristics. It is possible to exploit this flexibility to satisfy a va-
riety of goals, including trading off accuracy for enhanced per-
formance or reduced energy consumption [3, 4, 10, 15–17, 19–
21, 28, 31, 32, 36] or responding to load spikes or other fluctu-
ations in the characteristics of the underlying computational plat-
form [15, 16, 27, 31].

We present formal reasoning techniques that make it possible to
verify important correctness and acceptability properties of relaxed
programs. Standard verification techniques reference only the cur-
rent execution of the current program under verification. Our tech-
niques, in contrast, aim to reduce the verification effort by taking
a relational approach that exploits the close relationship between
the original and relaxed executions. Our goal is to give develop-
ers the verified correctness and acceptability properties they need
to confidently deploy relaxed programs and exploit the substantial
flexibility, performance, and resource consumption advantages that
relaxed programs offer.
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