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Transport through spin-blockaded quantum dots provides a means for electrical control and detection of nuclear
spin dynamics in the host material. Although such experiments have become increasingly popular in recent years,
interpretation of their results in terms of the underlying nuclear spin dynamics remains challenging. Here we
examine nuclear polarization dynamics within a two-polarization model that supports a wide range of nonlinear
phenomena. We point out a fundamental process in which nuclear spin dynamics can be driven by electron
shot noise; fast electric current fluctuations generate much slower nuclear polarization dynamics, which in turn
affect electron dynamics via the Overhauser field. The resulting intermittent, extremely slow current fluctuations
account for a variety of observed phenomena that were not previously understood.

DOI: 10.1103/PhysRevB.84.075339 PACS number(s): 72.25.Pn, 05.40.Ca, 72.70.+m, 73.63.Kv

I. INTRODUCTION

The opportunity to study spin coherence and many-body
dynamics in a controllable solid-state setting has inspired
a wide range of experiments in a variety of materials such
as GaAs vertically grown and gate-defined structures,1 InAs
nanowires,2 and 13C-enriched carbon nanotubes.3 In particular,
electron transport through spin-blockaded double quantum
dots4 constitutes a purely electrical means of probing and
manipulating the dynamics of nuclear spins. Such experiments
have revealed complex dynamical phenomena, including
bistability and hysteresis,2,3,5,6 switching,3,7,8 slow transient
buildup of current,7 and slow oscillations.5,9

Despite wide interest in these phenomena and their im-
portance for quantum information processing, progress in
understanding them has been slow. While there is little
doubt that nuclear spins in the host material play a crucial
role, the lack of a direct probe of nuclear spin dynamics
requires their behavior to be inferred from electronic transport
measurements. To meet this challenge, theoretical modeling
must be used to complement analysis of relevent features in
transport data.

In previous work on spin dynamics in double quantum
dots, simple models involving a single dynamical variable
describing the total nuclear polarization have been used to
explain the origin of feedback in this system.10,11 Although
such models can successfully account for feedback-driven
nonlinear phenomena such as bistability and hysteresis, the
range of phenomena which they can describe is somewhat
limited. Here we expand the phase space of the model, and
describe nuclear spin dynamics in terms of two dynamical
variables sL and sR corresponding to the independent nu-
clear polarizations in the left and right dots (see also, e.g.,
Ref. 12), thereby extending the range of phenomena that can
be analyzed. Time evolution is described by trajectories in
a two-dimensional phase space (sL,sR), which can exhibit
complex dynamics including nonmonotonic behavior, limit
cycles, or spirals, as illustrated in Fig. 1 (also see Refs. 13

and 14 for additional examples of complex phenomena arising
from two-polarization dynamics in other contexts).

Nuclear polarization dynamics in spin-blockaded dots is
driven by carriers passing through the system.4 Each electron
passing through the dot can produce a spin flip of the nuclei
due to hyperfine exchange with nuclear spins in the host
lattice; see Fig. 1(a). Dynamic nuclear polarization (DNP)
arises when the up and down spin-flip rates are imbalanced,
�+ �= �−.5,10 Since the spin-flip rates in the two dots are in
general different, their corresponding nuclear polarizations

FIG. 1. (Color online) Nuclear dynamics and intermittent current
fluctuations driven by shot noise of the spin-blockaded current
through a double dot. (a) Hyperfine spin exchange with nuclei
mediates transitions between two-electron triplet and singlet states,
relieving blockade and producing dynamical nuclear polarizations
(DNPs) sL and sR in the left and right dots. (b) A phase portrait of
DNP trajectories, with a fixed point (DNP steady state) positioned
near the main diagonal, where current is low due to spin blockade
(see Fig. 3). (c) Typical simulated current trace showing the effects
of steady state DNP fluctuations [pink traces in (b) and (c)]; see the
Appendix. Switching between quiet and noisy regions results from
excursions into the dark stripe sL ≈ sR , marked by the shaded regions
in (c).
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sL and sR have different time dependence, generating an
asymmetry between the dots, sL �= sR . As we shall see, such
asymmetry is dramatically reflected in the time dependence of
the electric current.

In this work we focus on the effects in nuclear polarization
dynamics due to the shot noise arising from the discreteness of
carriers passing through the system. Electrons are injected into
the system one by one, with random spin orientations. While
transiting through the dots, each such electron may exchange
its spin with the nuclear subsystem. Crucially, these stochastic
spin-flip processes comprise an intrinsic source of broadband
noise that couples to nuclear dynamics. The intensity of this
noise, which is proportional to the dc current, remains nonzero
even when the average rates of up and down spin flips are equal:
S ∝ (�+ + �−). The resulting DNP fluctuations are relatively
slow due to the large number of nuclear spins in the dots,
N ≈ 106, which requires many electrons to be transmitted
through the system before the DNP can change substantially.

Another important aspect of the double-dot system is the
complex relationship between the system’s internal variables
and measurable quantities, i.e., between the nuclear polar-
ization and the electric current. Due to the resonant energy
dependence of transition rates, the current is sensitive to the
alignment of energy levels via a number of external and internal
variables (gate voltages, magnetic field, Overhauser fields in
each dot, etc.). Changes in the hyperfine spin-flip rates feed
back into DNP dynamics, giving rise to a variety of inter-
esting nonlinear phenomena occurring on long time scales,
exemplified in Figs. 1(b) and 1(c). Numerical simulations
based on this microscopic model, which is described in detail
below, demonstrate how the complex long-time-scale dynam-
ics arises from the stochastic nature of electron transport.

In particular, we find that the high-frequency noise can drive
intermittency in electric current resembling the multiscale
switching behavior observed in experiments, which will be
discussed below. In dynamical systems, intermittency refers
to the alternation of phases of apparently regular and chaotic
dynamics.15 Such behavior arises in many physical systems.
For example, fluorescence intermittency, or blinking, is com-
monly observed in the optical response of various nanoscale
systems, such as large molecules or quantum dots, where it
signals competition between the radiative and nonradiative
relaxation pathways.16 In our system, a commonly observed
type of behavior is slow buildup followed by intermittent
switching between “quiet” and highly fluctuating current
states, illustrated in Figs. 1(b), 1(c), 2(a), and 2(b).

Throughout this paper, simulation results are compared to
data from the measurements described in Ref. 7. Figure 2(a)
shows typical experimental current traces observed in the
regime of moderate magnetic field (B = 200/mT) and with
a gate voltage setting where the electrostatic energy makes the
lowest two singlet states, one with one electron in each dot and
the other with both electrons in the right dot, nearly degenerate
(i.e., near-zero “detuning”). In this case, these “(1,1)” and
“(0,2)” singlet states are strongly hybridized by the tunnel
coupling between the dots [see Fig. 3(a)]. The traces were
taken after a long waiting period which allowed the system
to relax to equilibrium. The current displays dynamics on a
very long time scale, with a smooth transient “slow-buildup”
period lasting several tens of seconds followed by a “steady
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FIG. 2. (Color online) Time-dependent current, from experiment
(Ref. 7) (a), and from simulation (b), showing a long buildup
lasting several tens of seconds followed by steady-state intermittent
fluctuations (blue traces). Fluctuations can be suppressed by a small
change of detuning (gate voltage) which moves a fixed point away
from the sensitive region sL ≈ sR (red traces). (c) Fourier spectra of
the experimental and simulated noisy traces, evaluated in the marked
steady-state regions. The spectra display a roughly 1/f α dependence
with αexpt ≈ 2.5 and αsimul ≈ 2.

state” featuring intermittent large-amplitude fluctuations with
a correlation time on the scale of seconds (blue trace). The
fluctuations can be abruptly suppressed by a relatively small
change of detuning (red trace). Similar behavior was observed
during slow sweeps of magnetic field (shown in Fig. 4).

Similar-looking fluctuations were reported by Reilly et al.
as “blinking” of the Overhauser field measured in a double
dot which was repeatedly pulsed through a singlet-triplet
level crossing.8 There, long-time-scale noise correlations
were attributed to nuclear spin diffusion resulting from the
dipole-dipole interaction. In contrast, below we describe a
mechanism where diffusion of the net nuclear polarization is
not driven by the conventional dipole-dipole-mediated spin
flips, but rather is driven by shot noise in the current passing
through the system.

The rest of the paper is organized as follows. In Sec. II
we describe the physical mechanism of shot-noise-induced
multiscale intermittent fluctuations of current. Then in
Sec. III we present the mathematical description of our model
for describing the time dependence of nuclear polarization and
current in spin-blockaded double quantum dots. In Sec. IV we
present the results of simulations based on the model described
in Sec. III, and compare with experimental data. Finally, our
conclusions are summarized in Sec. V.

II. TRANSIENTS AND INTERMITTENCY IN THE
TWO-POLARIZATION MODEL

A typical behavior, often seen in the data, is a relatively
slow transient buildup of current after which the system enters
an intermittent state, characterized by alternation of quiet
and noisy behavior. Here we discuss the physics of how
such behavior can arise naturally from the two-polarization
model. The key elements of the mechanism are summarized in
schematic form in Fig. 1(b), which shows a phase portrait
of DNP in the (sL,sR) plane. In our analysis we assume
that, via the hyperfine interaction, the dynamics is primarily
controlled by two variables sL and sR that describe independent
nuclear polarizations in the two dots. The trajectories shown in
Fig. 1(b) are obtained by applying the ideas of Refs. 5 and 10

075339-2



NUCLEAR SPIN DYNAMICS IN DOUBLE QUANTUM DOTS: . . . PHYSICAL REVIEW B 84, 075339 (2011)

FIG. 3. (Color online) (a) Energy level diagram showing hy-
bridization of Sz

tot = 0 levels [see Eq. (1)] and relevant transitions
for spin-blockaded transport. (b) Current as a function of nuclear
polarizations sL and sR on the left and right dots. Current is suppressed
for sL ≈ sR due to the vanishing coupling between |T0〉 and |(1,1)S〉.
Small roman numerals indicate bands of high current due to resonance
between blocked and unblocked levels, shown in (a). Primed labels
indicate analogous configurations with |T±〉 reversed. (c) Simulated
trajectory of polarization arcing through the smooth region of the
current diagram with steady state near the sensitive region sL ≈ sR ,
similar to the schematic in Fig. 1. Arrows indicate the direction
of the flow (6). Inset: Distorted zoom of a narrow strip containing
the diagonal, magnified in the transverse direction to display the
arc-shaped trajectory and steady-state fluctuations.

to the case of two coupled polarizations while ignoring noise;
the fixed points associated with these trajectories describe
steady-state DNP. Due to blockade of the triplet state |T0〉,
current is low in the gray stripe indicated along the main
diagonal sL = sR; away from this line the finite polarization
gradient �s = sL − sR mixes |T0〉 with the singlet states [see
Fig. 3 and Eq. (1) below] and gives rise to enhanced current,
which is then only weakly sensitive to DNP.

Intermittency originates naturally as follows. Due to asym-
metry of the dots, DNP initially moves from the unpolarized
state into the region sL �= sR where the current is insensitive
to polarization [pink curve in Fig. 1(b)]. This corresponds to
the quiet buildup period in the current trace (see Fig. 2). After
approaching the nearly symmetric fixed point, DNP continues
to fluctuate locally. Here, relatively small fluctuations of
polarization take the system in and out of the low-current stripe
sL ≈ sR , resulting in large-amplitude fluctuations of current
and its apparent “switching” between high and low values.

This behavior arises whenever a DNP fixed point resides
near the sensitive region sL ≈ sR , irrespective of the details of
the dynamics near the fixed point. Using a realistic model of
the stochastic dynamics of electron transport and nuclear po-

FIG. 4. (Color online) Current during magnetic field sweep
dB/dt < 0. (a) Experimental field sweeps for several values of �

[see Eq. (1)] in the regime described Fig. 3(d) in Ref. 7 (� = 0 could
be only approximately located experimentally). Curves are offset by
0.1 pA for clarity. (b) Simulated field sweeps in the field regime
indicated by the dotted box in (a), showing bistable current similar to
experimental results. In both cases, the threshold for the change from
noisy to quiet current moves to higher field with increasing detuning.
To treat the case of B ≈ 0, a 5 × 5 formulation akin to that of Ref. 17
must be used.

larization, we have generated current traces exhibiting both the
slow quiet buildup and long-time intermittent fluctuations. The
relationship between the intermittent behavior of current and
fluctuating DNP is illustrated in Fig. 1(c), where corresponding
regions of low current and sL ≈ sR are marked in gray. When
parameters such as the magnetic field or detuning are changed
such that the DNP fixed point moves away from sL ≈ sR ,
intermittent fluctuations of current are abruptly suppressed
[see red line in Fig. 2(b)]; this picture is consistent with
experiment [see Fig. 2(a) and Ref. 7].

III. MATHEMATICAL FORMULATION

We now turn to a detailed description of the model used
to generate Figs. 1 and 2. The relevant energy levels are
depicted in Fig. 3. The states (1,1)S and (0,2)S , coupled by
spin-conserving interdot tunneling with amplitude t , exhibit an
avoided level crossing as a function of detuning �. A uniform
magnetic field B splits the (1,1) triplet into the states |T0〉
and |T±〉 with total z projection of electron spin m = 0, ± 1,
respectively.

The hyperfine interaction gives rise to the Overhauser shift
of the Zeeman energy, which is different on the left and
right dots: HZ

L(R) = (gμBB + AsL(R))Sz. The “polarization
gradient” �s = sL − sR couples the states |T0〉 and |(1,1)S〉.
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Including this coupling, we find the energy levels εn and
eigenstates | n 〉 within the Sz

tot = 0 subspace [spanned by
the states |T0〉, |(1,1)S〉, and |(0,2)S〉] by diagonalizing the
Hamiltonian

Ĥ3×3 =

⎛
⎜⎝

0 A�s/2 0

A�s/2 0 t

0 t −� − ih̄γ /2

⎞
⎟⎠ , (1)

where the energy of the unhybridized (0,2) singlet state,
ε(0,2)S = −� − ih̄γ /2, includes an imaginary part that ac-
counts for its decay due to coupling to the continuum of states
in the drain lead. Due to a large applied bias, we assume
that the (1,1) state cannot decay directly to the continuum.
After diagonalization, each of the states | n 〉 obtains a nonzero
|(0,2)S〉 component and decays with a rate γn = −2Im[εn]/h̄;
see Fig. 3(a).

Current through the system results from electron transmis-
sion through any of the five states {| n 〉,| T± 〉} that may be
populated when the second electron is injected from the lead.
The total current

I (sL,sR; t,�,B0, . . .) =
(∑

n

pnτn + p+τ+ + p−τ−

)−1

(2)

is determined by the inverse of the average of the lifetimes
{τn,±} of these states, weighted by the probabilities pn,± of
loading each of the states.

Cotunneling or spin exchange with the leads with rate
Wcot adds an additional decay channel, leading to the inverse
lifetimes τ−1

n = γn + Wcot; see Refs. 10,18–20. The inverse
lifetimes of |T±〉 are determined by the rates W± of resonant
hyperfine flip-flop transitions to each of the states {|n〉}
[Eqs. (3) and (4) below] and of cotunneling: τ−1

± = W± +
Wcot. We neglect spin-orbit coupling, which is weak in GaAs,
but do not expect any qualitative changes if it is included.

Figure 3(b) shows the current as a function of polarizations
sL and sR on the two dots for a fixed set of external conditions.
In the dark stripe along the main diagonal sL = sR , the current
is set by the cotunneling rate Wcot; away from this line the finite
polarization gradient �s mixes |T0〉 with the singlet states and
gives rise to the large red plateau of enhanced current that spans
most of the figure. The width of the dark stripe is set by the
Overhauser field difference required to mix the |T0〉 state and
the |(1,1)S〉-like hybridized singlet state and depends on tunnel
coupling and detuning, as well as the cotunneling rate Wcot,
which controls the saturation of current. Sharp yellow bands
of further enhanced current appear where the Overhauser shift
brings either |T+〉 or |T−〉 into resonance with one of the states
with Sz

tot = 0. With the help of Fig. 3(a), each line can be
identified with a specific resonant transition.

As seen in Fig. 3(b), the (sL,sR) plane includes vast regions
in which current is essentially independent of the value of
polarization. In these regions, the mean value of polarization
cannot be inferred and fluctuations about the mean do not
induce fluctuations of current. In other regions, in particular
near the line sL = sR , the derivatives ∂I/∂sL,R are large; here
the current is very sensitive to small fluctuations of polarization
which can result in large-amplitude intermittent fluctuations of
current, as discussed above.

As discussed in Ref. 10, DNP arises during spin-blockaded
transport as the result of competition between hyperfine decay
of |T±〉, which changes the z component of nuclear spin, and
non-spin-flip decay channels. Each time an electron in the state
| T+(−) 〉 decays by hyperfine spin flip, a nuclear spin is flipped
from down to up (up to down). By adding the transition rates
from |T±〉 to all three final states in the decaying Sz

tot = 0
subspace, obtained using Fermi’s golden rule, we find the
“bare” transition rates W±,L(R) for hyperfine decay of |T±〉
assisted by a nuclear spin flip in the left (right) dot:

W±,L =
∑

n

|an ∓ bn|2
16NL

A2(1 ∓ sL) γn

(ε± − Re εn)2 + (h̄γn/2)2
, (3)

W±,R =
∑

n

|an ± bn|2
16NR

A2(1 ∓ sR) γn

(ε± − Re εn)2 + (h̄γn/2)2
, (4)

with the hybridized states |n〉 = an|T0〉 + bn|(1,1)S〉 +
cn|(0,2)S〉 obtained from (1), and ε± = gμBB ± A(sL +
sR)/2. The states |n〉 are characterized by a nonuniform
electron spin density on the two dots, which introduces an
asymmetry in the rates W±,L(R) to flip nuclear spins on the left
and right dots via the dependence on an and bn.

The net spin-flip rate in the left (right) dot is proportional
to the total current I , Eq. (2), to the probability p± of loading
|T±〉, and to the probability W±,L(R)/(W±,L + W±,R + Wcot)
that this state, when loaded, decays by hyperfine spin flip in
the left (right) dot, giving

�±,L(R) = p±(I/e)
W±,L(R)

W±,L + W±,R + Wcot
. (5)

Our separate treatment of |T±〉 and |T0〉 is valid in nonzero
field where the degeneracy of these states is lifted. Near zero
field one should employ a 5 × 5 generalization of Eq. (1) as in
Ref. 17.

Finally, using Eq. (5), and including relaxation with rate
�rel, we arrive at the equations of motion for sL and sR:

ṡL = 2(�+,L − �−,L)/NL − �rel sL,
(6)

ṡR = 2(�+,R − �−,R)/NR − �rel sR,

where sL(R) are defined as (N+ − N−)/N in each dot.

IV. SIMULATIONS AND RESULTS

Equation (6) defines a flow, illustrated by the arrows
in Fig. 3(c), that describes the smooth dynamics of mean
polarization. However, polarization is actually stochastically
driven by a train of electrons passing through the system,
and executes a directed random walk around the flow (6).
Fluctuations arise from shot noise in the number of entering
up and down spins, from the random competition between
hyperfine and cotunelling decay channels, and from nuclear
spin diffusion and relaxation. We simulate this random walk by
stochastically loading electrons into each of the five transport
channels and then generating a corresponding sequence of
randomly distributed decay times and numbers of nuclear spin
flips, with mean values given by Eqs. (1), (3), and (4).

From the simulation we obtain current and polarization
trajectories as shown in Figs. 1(c) and 2(b); see the Ap-
pendix for parameters. For dots of unequal sizes, NL �= NR ,
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TABLE I. Simulation parameters.

Figure NL NR Wcot (s−1) t (μeV) � (μeV) γ (μeV) �rel (s−1) B (mT)

1(c) 4.8 × 106 5 × 106 2 × 103 6 3 0.3 3.6 × 10−3 80
2(b), 2(c) 0.75 × 106 1.25 × 106 1 × 104 2 4 0.5 0.6 × 10−2 300
3(c) 0.75 × 106 1.25 × 106 1 × 104 2 4 0.5 0.6 × 10−2 400
3(b)a 1 × 106 2 × 106 1 × 106 15 10 0.1 N/A 650
4 1.6 × 106 2 × 106 1 × 105 1.5 3–8 0.1 1.2 50–350

aParameters for Fig. 3(b) are chosen to most clearly display the sharp resonance features due to level crossings.

the flow (6) is asymmetric with respect to sL and sR . In
particular, the rates (3) and (4) favor spin flips in the smaller
of the two dots due to the increased hyperfine coupling per
nuclear spin. As a result, the system can follow an arc-shaped
trajectory like those shown in Figs. 1(b) and 3(c), in which
polarization passes through the insensitive region sL �= sR

during its buildup, eventually returning to a steady state sL ≈
sR where polarization fluctuations result in large fluctuations of
current.

Slow fluctuations with a power spectrum close to 1/f 2 [see
Fig. 2(c)] are indicative of diffusion, which may be driven
by nuclear dipole-dipole interactions, as discussed in Ref. 8,
or by current as described above. Unlike other sources of
steady-state spin fluctuations, the shot-noise mechanism is
intrinsic to spin blockade and its intensity can be controlled
by current. Alternative mechanisms can thus be distinguished
through the current dependence of the underlying diffusion
coefficient.

Experimentally, current was also measured during slow
sweeps of magnetic field [see Fig. 4(a)]. These data were
obtained in the same regime as that of Fig. 3(d) in Ref. 7,
with a small change in tunnel coupling. At large �, the
current displays a simple peak at small magnetic fields arising
from mixing of the triplet levels with the (1,1) singlet by
the random hyperfine field.17 However, when the detuning
is comparable to the tunnel coupling (dotted box), the
traces show diminished zero-field peaks flanked by noisy
regions exhibiting large fluctuations and stable regions of
high current at higher fields. The boundary between noisy
and stable high current systematically moves to higher
field as detuning is increased and is hysteretic in the sweep
direction.

By including a time-dependent external field in the
simulation, we produced the field sweep traces shown in
Fig. 4(b). The low-field boundary between noisy and quiet
regions depends on detuning in a similar manner to that
observed in the experiment, while on the high-field side we
find an additional current step not observed within the range
of available experimental data. Based on the corresponding
behavior of DNP in the simulations, we thus interpret the
transition from noisy to stable current in the experiment as an
indication that the polarization quasifixed point, ṡL,R = 0 in
Eq. (6), moves away from the sensitive region sL ≈ sR .

V. CONCLUSIONS

The mechanism described above, based on spin dynamics
driven by electron shot noise, provides a natural explanation
for the systematic observation of regions of stable and strongly
fluctuating current. We propose that regions of high, stable cur-
rent [see, e.g., � = −10 μeV, B > 60 mT in Fig. 4] indicate
that the system tends to an asymmetric fixed point with a siz-
able difference between the hyperfine fields in the two dots. As
recently demonstrated, such states can be used to perform con-
trolled manipulations of the double-dot electron spin states.21
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APPENDIX: SIMULATION PARAMETERS

The main text describes the microscopic model used to
generate the simulated current and polarization traces in
Figs 1–4. The behavior exhibited by the model is sensitive
to a number of parameters, many of which are not well
characterized for the experimental system. While on the
one hand the existence of many parameters makes direct
comparison to experiment more difficult, it can also be seen
as a necessary consequence of the fact that such a wide variety
of complex phenomena have been observed in this system. To
this end, we have attempted to include the minimum number of
ingredients necessary to produce the phenomena of slow quiet
transients followed by steady-state fluctuations. We chose
parameters with plausible values for realistic systems (see
Table I), which led to simulated traces clearly demonstrating
the phenomena of interest on field and time scales
approximately comparable to those observed in experiments.

In Table I, NL and NR are the numbers of nuclear spins
in the left and right dots, Wcot is the cotunneling rate, t is
the tunnel coupling, � is the detuning, γ is the decay rate of
(0,2)S [see Eq. (1), main text], �rel is the phenomenological
relaxation rate for nuclear polarization within the double dot,
Eq. (6) of the main text, and B is the magnetic field strength.
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