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Quasiparticle lifetimes in magnesium clusters modeled by self-consistent GW� calculations
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Quasiparticle (QP) lifetimes in magnesium clusters are calculated using many-body Green’s-function theory.
We analyze the effect of the self-consistency of the one-particle Green’s function G on the calculations and
demonstrate the necessity of the implementation of such a self-consistency. Based on hot-electron and hot-hole
lifetimes in Mg40 calculated by the GW� method, we find that in the low-energy excitation regime, the QP
lifetimes are longer than those in the free-electron gas with the electron density rs = 2.66 (3s2 of the bulk Mg)
due to the lack of states available for transitions. In the high-excitation-energy regime, scaled lifetimes of hot
electrons converge to the range of 21–24 fs eV2. Scaled lifetimes of hot holes in this regime are shorter than those
of hot electrons and decrease slightly with increasing excitation energies.
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I. INTRODUCTION

Inelastic electron relaxation in materials is a phenomenon
technically and fundamentally important in many physical
and chemical processes.1 The lifetimes of hot electrons
(holes) in bulk metals and metallic surfaces have been widely
investigated both experimentally and theoretically for several
decades.2–7 As a low-dimensional form of metals, metallic
clusters demonstrate electronic structures distinct from their
bulk counterparts.8 This fact hence raises the question whether
the dynamics of the electrons in a confined system is different
from the bulk, which is important in nanoelectronics and
photochemistry.9,10 Yet the understanding about the inelastic
electron-scattering processes in metallic clusters is still quite
limited.

It is known that confined systems exhibit discrete electronic
levels, possessing fewer states available for the transition of
electrons, and thus hot electrons may have longer lifetimes
as compared to electrons in the bulk. On the other hand, the
screening effect is weakened in small metallic clusters due to
the lack of electrons, increasing the scattering rate of electrons
and reducing electrons lifetimes. Therefore the lifetime of a
hot electron in a cluster can be either longer or shorter than
that in corresponding bulk materials due to the two competing
factors.6

Experimentally, time-resolved two-photon photoemission
(TR2PPES) has been applied to measure the electronic
lifetimes in metallic nanoparticles and clusters.11–16 Mea-
surements for internal electron thermalization times in silver
nanoparticles embedded in a matrix show that the electron
relaxation rate increases with decreasing particle size when the
particle radius is less than 5 nm.11 However, interferometric
TR2PPES measurements for silver nanoparticles on graphite
show that inelastic electron lifetimes are longer than those of
a silver film.12 The inconsistency for these experiments could
be attributed to the following reasons. First, the electronic
levels of the matrix may couple with those of the clusters
embedded, and the screening due to the matrix can also
affect the electronic lifetimes. Second, the first photon in
the TR2PPES measurements intended for the single-particle
excitation may also excite collective modes and complicate
the electron scattering.

The quasiparticle (QP) lifetimes could be understood by
using the state-of-the-art theory or computation. Many-body
perturbation-theory-based GW method has been proven to be
a powerful approach for the investigation of QP energies and
lifetimes of bulk materials and surfaces.17–20 Recently, the
method has also been applied to the ideal jellium model, and
it was found that the hot-electron lifetimes in nanoparticles
are in the femtosecond time scale.21 In this paper, we simulate
inelastic lifetimes of electrons and holes in two Mg clusters for
the understanding of the electronic dynamics in real metallic
clusters.

II. METHODOLOGY

A. GW implementations

The damping rate of a hot electron or a hot hole due to the
inelastic electron-electron scattering is evaluated as22

τ−1
i = 2|Im〈ψi |�xc(r,r′; Ei)|ψi〉|, (1)

where τi , Ei , and ψi are the lifetime, energy, and wave function
of the ith QP, respectively, and �xc(r,r′; Ei) is the exchange-
correlation self-energy operator in the QP equation:

(T + Vext + VH)ψi(r) +
∫

dr′�xc(r,r′; Ei)ψi(r′) = Eiψi(r).

(2)

By following Hedin’s scheme,23 �xc = iGW� (with h̄ = 1),
where � is the vertex function and G is the one-particle Green’s
function:

G(r,r′; E) =
∑

n

ψn(r)ψn(r′)
E − En + iηn0+ , (3)

where En are QP energies. W is the screened Coulomb
interaction and can be obtained by solving the equation
W = V + V PW , where V is the Coulomb interaction and
P = −iGG� is the irreducible polarizability. Both �xc and
P include the vertex function �. It has been shown that a
consistent choice of � is necessary for the QP calculation.24

A straightforward strategy is to approximate �(1,2; 3) with
δ(1,3)δ(2,3), which corresponds to the random phase ap-
proximation (RPA) for W and GW approximation (GWA)
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for �xc. An alternative method is to simplify the equation
� = 1 + (∂�0/∂G)GG� by taking �0(1,2) as Vxc(1)δ(1,2)
in the framework of the local density approximation (LDA),
which is equivalent to the time-dependent LDA (TDLDA)
for W and GW� for �xc. More details can be found in
Refs. 25 and 26. In this study, both the RPA-GWA and the
TDLDA-GW� have been performed for the calculations of
QP energies and lifetimes in Mg10 and Mg40.

In the QP calculations of finite systems there are always
some “pseudobound” states, whose energies are negative when
calculated by density functional theory (DFT) but positive in
the QP calculation. These states will relax to free-electron
states in a full diagonalization QP calculation when a complete
basis set is used.27 Our QP calculations, on the other hand,
focus on the truly bound states with negative QP energies; thus
the QP wave functions are expected to be close to the DFT ones,
and the off-diagonal elements 〈ψi |�xc|ψi ′ 〉 can be neglected.
Then the QP equation can be solved as a perturbation to the
DFT equation

〈ψi |�xc(r,r′; Ei)|ψi〉 − 〈ψi |Vxc(r)|ψi〉 = Ei − εi, (4)

where εi are the DFT eigenvalues. 〈ψi |�xc|ψi〉 can be sepa-
rated as an energy-independent exchange part 〈ψi |�x|ψi〉 and
an energy-dependent correlation part 〈ψi |�c|ψi〉. To evaluate
the latter one, we assume that the response of the density
to the external potential, namely, the reducible polarizability

(r,r′; E), can be expressed as the summation of electron-hole
excitation modes:28


(r,r′; E) = 2
∑

s

ρs(r)ρ∗
s (r′)

×
[

1

E − (ωs − i0+)
− 1

E + (ωs − i0+)

]
, (5)

where

ρs(r) =
∑
v,c

Rv,c
s ψ∗

v (r)ψc(r). (6)

The eigenvectors Rs and eigenvalues ωs are determined
through the RPA or the TDLDA. Then �c(r,r′; E) is expressed
as Eq. (7a) for the GWA or Eq. (7b) for the GW�:29

�c(E) = i

∫
dE′

2π
e−iE′0+

G(E − E′)V 
(E′)V, (7a)

�c(E) = i

∫
dE′

2π
e−iE′0+

G(E − E′)(V + fxc)
(E′)V. (7b)

In Eq. (7b), (V + fxc)
(E′)V is not written in Hermitian
form since we only take into account the diagonal elements.
By sandwiching �c(r,r′; E) with ψi , the energy-dependent
correlation energy 〈ψi |�c|ψi〉 can be evaluated as

〈ψi |�c|ψi〉 =
∑

n

∑
s

an,s,i

E − En − ωsηs

, (8)

where an,s,i equals 2〈ψiψn|V |ρs〉〈ρs |V |ψiψn〉 for the GWA
and 2〈ψiψn|(V + fxc)|ρs〉〈ρs |V |ψiψn〉 for the GW�. The
coefficient ηn is +1 for unoccupied states and −1 for occupied
states, and En in the denominators are the QP energies
introduced from the one-particle Green’s function in Eq. (3).

B. Numerical details

The ground-state LDA calculations are performed using the
SIESTA code.30 Core electrons [1s22s22p6] of Mg are replaced
by the nonlocal norm-conserving pseudopotential based on the
Troullier-Martins scheme.31 A double-ζ polarization (DZP)
basis set of numerical atomic orbitals is used for the valance
electrons of Mg. The cutoff radii are 10 a.u. for both s and
p orbitals. The structures are optimized by simulated anneal-
ing using molecular dynamics with an exponential cooling
schedule, followed by the conjugated gradient algorithm with
the maximum force tolerance of 0.01 eV/Å. The optimized
structures of Mg10 and Mg40 are illustrated in Fig. 1.

All integrals are evaluated on a uniform grid in real space
with a grid spacing of 0.6 a.u., which has been tested to
give QP energies with an accuracy of 0.1 eV. The exchange
integrals

∫
dr

∫
dr′ψi(r)ψj (r)V (r,r′)ψk(r′)ψl(r′) are evalu-

ated by solving Poisson equations first with the multigrid
method.32 The convergence of the QP calculation usually
requires a large number of unoccupied states for the evaluation
of the polarizability. Thus a Coulomb-hole screened-exchange
(COHSEX) remainder scheme has been applied to accelerate
the convergence of the correlation part 〈ψi |�c|ψi〉.29 To obtain
the imaginary parts of the system, analytical continuation is
applied to extend �c to the complex plane, and the complex QP
energy Ei − iηiγi is calculated by solving a complex equation
set numerically:

Re〈ψi |�xc(Ei − iηiγi)|ψi〉 − 〈ψi |Vxc|ψi〉 = Ei − εi, (9a)

Im|〈ψi |�xc(Ei − iηiγi)|ψi〉| = γi. (9b)

III. RESULTS AND DISCUSSIONS

A. Effects of self-consistency on QP energies and lifetimes

In the QP calculations, a ready starting point is the
approximation for G:

G(r,r′; E) ≈ G0(r,r′; E) =
∑

n

ψn(r)ψn(r′)
E − εn + iηn0+ . (10)

From G0 we can calculate W0 and thus �xc and the QP
energies En. However, introduction of Eq. (10) brings an
uncertainty: whether we should recalculate every quantity with
the updated G until its convergence, namely, self-consistency.
It has been shown that the self-consistency cycles including
W (G → W → �xc → G) may deteriorate the agreements

Mg10 (C3v)
Mg40 (C1)

FIG. 1. Optimized structures of Mg10 and Mg40. The labels in
brackets correspond to the point-group symmetries of the clusters.
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between the simulated results and experimental data.33 So
in this study, we take W ≡ W0 and focus on the effect of
self-consistency of G (G → �xc → G) on the QP properties.
For comparison, we solve Eq. (9)) only once in the non-
self-consistent calculation. In the self-consistent calculation,
however, G is updated after each cycle until its convergence.
We speculate the self-consistency for the calculations of the
QP lifetimes as follows.

The decay rate of the ith QP can be written as a sum-
mation Si = 2| ∑n

∑
s

an,s,i γi

(Ei−En−ωsηn)2+γ 2
i

| according to Eqs. (8)

and (9). The quantity Ei − En − ωsηn in each denominator
indicates the coupling of the ith quasiparticle with the nth
state through the sth resonant mode of the system. A large
contribution is expected when Ei − En and ωsηn are very
close to each other. If G0 is used, then Ei − εn − ωsηn will
replace Ei − En − ωsηn, which diminishes the underlying
physics of the summation since the Kohn-Sham system is
only an artificial noninteracting reference system, and the
εn, energies of Kohn-Sham particles, do not have any clear
physical meaning.

Second, the summation Si is sensitive to the positions of the
poles En + ωsηn, which also requires the implementation of
the self-consistency. For a given QP with energy Ei , simplify-
ing En to εn changes the positions of the poles from En + ωsηn

to εn + ωsηn. This only has a minor effect on Re〈ψi |�xc|ψi〉,
which is determined by the ensemble of the poles, including
those lying far away from Ei . However, the simplification
may cause considerable error to |Im〈ψi |�xc|ψi〉|, which is
mostly determined by the arrangement of the poles in the
vicinity of Ei . The effect is illustrated schematically in Fig. 2,
where unoccupied (occupied) energy levels εn obtained by
DFT-LDA are shifted up (down) to yield the QP energy levels
En. Yet the poles εn + ωsηn are not moved together, leading
to misplaced poles around a given energy level Ei , especially
for the highest occupied molecular orbital (HOMO) and the
lowest unoccupied molecular orbital (LUMO). In Fig. 2, the
LUMO and HOMO QP energy levels are adjacent to some
of the poles εn + ωsηn. This situation will not happen if
the poles En + ωsηn are instead used since En + ωsηn will
move together with En and maintain their relative positions
correctly.

B. QP energies and lifetimes in Mg clusters

The QP energies and lifetimes of the HOMOs and LUMOs
of the Mg10 and Mg40 simulated by both the GWA and the
GW� methods are listed in Table I. The results obtained
without self-consistency are denoted by G0. Eigenvalues from
the LDA are also listed. When the decay rate of a QP is van-
ishingly small, its lifetime is denoted by ∞, indicating a rather
long lifetime if only electron-electron inelastic scattering is
considered. The relative effect of the self-consistency over the
non-self-consistency on the QP energies can be readily read
out from Table I. In general, the energy differences between
the self-consistency and the non-self-consistency calculations
are not very significant, especially for the larger cluster Mg40,
which is in accordance with our analysis about Re〈ψi |�xc|ψi〉
in the previous paragraph.

On the other hand, the net effect of the self-consistency
on the QP lifetimes is strongly size dependent. For Mg10, no

E
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ε
n
+ω

s
η

n

ε
n

E
n

E
n
+ω

s
η

n

FIG. 2. (Color online) Schematic plot for the relation among LDA
energies ε and hence derived poles εn + ωsηn and QP energies En and
hence derived poles En + ωsηn. Each color defines a set including an
energy level and poles accompanying the energy level. To maintain
correct orders, En should be used together with En + ωsηn. A mixture
between En and εn + ωsηn changes the pole arrangement in the
vicinity of a QP energy level, which may introduce notable errors
for the QP lifetime.

change has been observed in both the GWA and the GW�

calculations. However, the results have been qualitatively
changed in the case of Mg40. As discussed in Sec. III A, the QP
lifetime is very sensitive to the poles in the vicinity of the QP
energy. According to Fig. 2, the degree of the misplacement
of the poles around the HOMO and LUMO can be roughly
estimated by comparing the QP correction |�Ei | = |Ei − εi |
and the minimum frequency ω1 of the reducible polarizability.
The error of τi is insignificant when |�Ei | is smaller or
comparable to ω1, while it becomes significant when |�Ei |
is larger than ω1. This can be verified by comparing |�Ei |
with ω1, which are 1.50 (TDLDA) and 1.58 eV (RPA) for
Mg10 and 0.27 (TDLDA) and 0.29 eV (RPA) for Mg40.

Table I also illustrates the numerical difference between
the two QP methods adopted in this paper. The net effect
of the GW� over the GWA is an upward energy shift,
almost rigid for both the HOMO and LUMO. Furthermore, the
upward energy shift is observed consistently for all occupied
and unoccupied states, as shown in Fig. 3, where the energy
levels of Mg40 obtained with the DFT-LDA, GWA, and GW�

methods are plotted. This energy shift, a feature of the GW�

method, has also been reported in bulk silicon,24 as well as in
a benzene molecule.29 It can be explained using Eq. (8), where
GW� adds 2〈ψiψn|fxc|ρs〉〈ρs |V |ψiψn〉, a negative quantity,
to each numerator and thus introduces unidirectional shifts
to all En. Thomas et al. have measured the photoelectron
spectra (PES) of Mg−

n clusters.34 The first PES peak of Mg−
n

can be used as a reference for the electronic affinity (EA)
of Mgn, neglecting the structural relaxation due to an extra
electron. According to Ref. 34, EAs of Mg10 and Mg35 are
about 1.70 and 2.85 eV, respectively. To compare with these
data, we perform the calculations for the cluster Mg35. EAs
of Mg10 and Mg35 predicted by the GW� are 1.49 and 2.71
eV, respectively, and those obtained by the GWA are 2.06
and 3.27 eV, respectively. We also test the basis completeness
by increasing the size of the basis set for the simulation of
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TABLE I. Calculated QP energies and lifetimes of the HOMOs and LUMOs of Mg10 and Mg40 clusters by the GWA and the GW�

methods with both self-consistency and non-self-consistency. The subscript in the first column stands for the number of Mg atoms in the cluster.
DFT-LDA energies are also listed in the last column.

G0WA GWA G0W� GW� DFT-LDA

E (eV) τ (fs) E (eV) τ (fs) E (eV) τ (fs) E (eV) τ (fs) E (eV)

HOMO10 −5.80 ∞ −5.95 ∞ −5.41 ∞ −5.47 ∞ −4.26
LUMO10 −2.14 ∞ −2.06 ∞ −1.79 ∞ −1.54 ∞ −2.93
HOMO40 −5.16 6.4 −5.31 ∞ −4.73 16 −4.75 ∞ −3.98
LUMO40 −3.31 27 −3.35 ∞ −2.89 12 −2.79 ∞ −3.74

Mg10 and find that the number of bases is not the source of the
uncertainty for EA of Mg10.35 Jellinek et al. have calculated
the ionization potential (IP) of neutral magnesium clusters
with gradient-corrected DFT.36 IP of Mg10 is obtained as 5.5
eV in Ref. 36 and 5.47 eV (GW�) and 5.95 eV (GWA) in this
work. Summarizing above, we find that the GW� agrees with
currently available data better than the GWA. Therefore our
discussion will focus on the QP lifetimes in Mg40 obtained by
the self-consistent GW� approach.37

Inelastic lifetimes τi and scaled lifetimes τi |Ei − Ef |2 of
hot electrons and holes in Mg40 calculated by the GW�

method are plotted versus the excitation energy |Ei − Ef |
in Figs. 4(a) and 4(b), respectively. The behavior of electrons
in many bulk metals can be described as a free-electron gas
(FEG). In a high-density FEG, lifetimes of hot electrons with
low excitation energies follow an inverse quadratic law as
derived by Quinn and Ferrell:38

τ
QF
i = 263r−5/2

s (Ei − EF )−2 eV2 fs. (11)

This is equivalent to a constant scaled lifetime τi |Ei − Ef |2
for all hot electrons, which is 22.8 fs eV2 for bulk magnesium
with rs = 2.66. However, in the cluster Mg40, scaled QP
lifetimes with low excitation energies (|Ei − Ef | < 2.1 eV)
are longer than the lifetime obtained from Eq. (11) and are
energy dependent. On the other hand, the pattern of scaled
QP lifetimes with high excitation (|Ei − Ef | � 2.1 eV) are
relatively flat. Thus the results indicate that there are two
energy regimes, as illustrated in Fig. 4: a low-energy regime
(RLE) and a high energy one (RHE), which will be discussed
separately.

−7

−6

−5

−4

−3

−2

LDA GWA GWΓ

E
 (

eV
)

FIG. 3. (Color online) Energy levels of Mg40 calculated by the
LDA, GWA, and GW� methods. The net effect of the GW� over
the GWA method is an almost rigid upward shift.

As a general trend, the scaled QP lifetimes in the RLE

increase with decreasing |Ei − Ef | and become notably longer
than τQF. This is qualitatively different from the result obtained
in the bulk magnesium.39 The latter shows that the inelastic
lifetimes of electrons with low excitation energies are close
to (or shorter than) τQF. It has been noted that the QP
scattering rate is determined by two competing factors: the
number of states for possible transitions of a hot electron and
the dynamical screening to the interaction between this hot
electron and other electrons.6 As shown in Fig. 3, energy states
of a small metallic cluster such as Mg40 are missing around
the Fermi level due to the confinement of the electrons, which
is quite different from the bulk counterpart. This reduces the
number of states available for transitions of all hot electrons
(holes) in a cluster. The effect becomes dominant for those
energy levels in the RLE with low excitation energies and
thus leads to relatively long QP lifetimes, and the lower the
excitation energy is, the longer the lifetime is. Also, in the RLE

we find that the lifetimes of hot electrons and hot holes with the

FIG. 4. (Color online) (a) QP lifetimes and (b) scaled QP lifetimes
in Mg40 obtained with the self-consistent GW� approach. The
vertical dashed line separates both plots into a low-energy regime
(RLE) and a high-energy regime (RHE).
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same |Ei − Ef | are close to each other, which is similar to the
results obtained from the FEG in the low-excitation regime.38

In the RHE, the scaled lifetimes of hot electrons fluctuate in
the range of 21–24 fs eV2 with increasing |Ei − Ef |, which is
quite close to 22.8 fs eV2 calculated from Eq. (11). In the bulk
Mg, the scaled lifetimes in the same energy regime increase
from 25 to 30 fs eV2 with increasing excitation energy.39 It is
speculated that the slight difference between the cluster and
the bulk could be attributed to the electronic spill effect, as the
electron wave functions can stretch outside of a finite-potential
well. This effect is notable for small metallic clusters40

and leads to lower electron densities and thus shorter QP
lifetimes.

Note that our results here are different from those in Ref. 21,
where shorter lifetimes are found based on spherical jellium
model calculations. The difference could be attributed to the
definition of the QP excitation energy. In Ref. 21, it is defined
as |εi − εf |, while for the nanoclusters in this article, it is
defined as |Ei − Ef |, which can be approximated as |Ei −
εi | + |εi − εf |. The GW correction term |Ei − εi | vanishes in
infinite uniform electron gas, yet it could be a large number in
finite systems and also strongly size dependent, as can be seen
in Table I.

The scaled lifetimes of hot holes in the RHE decrease slowly
with increasing |Ei − Ef |. They are shorter than those of hot
electrons with the same |Ei − Ef |, which also has been found
in the case of the FEG.6 In a finite system such as Mg40, the
shorter hole lifetimes can be attributed to the smaller angular

momentums of these holes, which leads to more possible
transitions than electrons. This is an analogy to the bulk,
where we can attribute shorter hole lifetimes to the smaller
momentums of holes.41 Note that in simple s-p systems, there
are no localized d electrons. Correspondingly, we have not
observed any localized d holes with longer lifetimes than those
of electrons, as has been demonstrated in noble metals.41,42

IV. CONCLUSION

We calculate the QP energies and lifetimes in Mg10 and
Mg40 clusters and demonstrate the necessity of using self-
consistency for the calculations of the QP lifetimes in finite
systems. For Mg40, the lifetimes of QPs near the HOMO
and LUMO are found to be longer than those in a FEG
with the same valence electron density as in bulk Mg due
to the lack of states available for transitions. In the high-
excitation-energy regime, scaled lifetimes of hot electrons
converge to the range of 21–24 fs eV2, consistent with the value
(22.8 fs eV2) predicted by the inverse quadratic relation of
Quinn and Ferrell. In this regime, hot holes exhibit shorter
lifetimes compared with hot electrons due to the smaller
angular momentums of holes.
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